
Belief Propagation in Genotype-Phenotype Networks
using the geneNetBP package

Janhavi Moharil
University at Buffalo

geneNetBP version 2.0.1 as of 2016-08-03

Contents

1 Introduction 3

2 Datasets 4
2.1 mouse . 4
2.2 hdl . 4
2.3 toy . 5
2.4 yeast . 6

3 Infering network structure 6
3.1 Fit a CG-BN to QTL data . 6

3.1.1 Model . 6
3.1.2 Mouse kidney eQTL Example . 7

3.2 Fit a Discrete Bayesian Network to QTL data 14
3.2.1 Model . 14
3.2.2 Yeast Example . 14

3.3 Extracting Conditional Probability Distributions 17

4 Absorbing evidence and Network Comparison 17
4.1 Conditional Gaussian Bayesian Networks 17

4.1.1 Belief propagation . 17
4.1.2 Jeffrey’s Signed Information (JSI) 17
4.1.3 Mouse Kidney eQTL Example . 18

4.2 Discrete Bayesian Networks . 24
4.2.1 Belief propagation and Fold change (FC) 24
4.2.2 Yeast example . 24

1

5 Visualizing network changes 32
5.1 A complete example of CG-BN . 32

5.1.1 Plot options in plot.gnbp . 34
5.2 A complete example of discrete networks 36

6 Specifying Additional Biological Information 39

7 Belief propagation in known networks 41
7.1 Specifying graphNEL objects . 41
7.2 Specifying edges . 41

2

1 Introduction

The geneNetBP package leverages belief propagation methods in genotype-phenotype net-
works inferred from Quantitative Trait Loci (QTL) data. The network structure can be
perturbed by absorbing phenotypic evidence and the system-wide effects on the network
are quantified in a nodewise manner. The package implements methods specifically to
fit Conditional Gaussian Bayesian Network (CG-BN) or Discrete Bayesian Network to
QTL data, absorb phenotype evidence and quantify and visualize the changes in network
beliefs. For detailed description of methods, refer to our SAGMB publication. To cite
”geneNetBP”, use:

Janhavi Moharil, Paul May, Daniel P. Gaile, Rachael Hageman Blair (2016). ”Belief
Propagation in Genotype-Phenotype Networks.”, Stat Appl Genet Mol Biol, 15(1):39-53.

For belief propagation in CG-BN, the package makes extensive use of the package RHugin

that provides an R interface for the Hugin Decision Engine, a commercial software for
building and infering Bayesian belief networks. The RHugin is currently not available
on CRAN and is hosted on R-Forge. geneNetBP requires both Hugin and RHugin to
be installed. RHugin can be downloaded from http://rhugin.r-forge.r-project.org.
The Hugin Decision Engine can be downloaded from http://www.hugin.com. Detailed
installation instructions of the geneNetBP package and package dependencies are available
on the geneNetBP project homepage. Note that RHugin is required for the functioning of
CG-BN implementation of geneNetBP. The package RHugin will not automatically load
upon loading geneNetBP package. Use library(RHugin) or require(RHugin) to load

RHugin before using geneNetBP.

For belief propagation in discrete bayesian networks where both the genotypes and phe-
notypes are categorical data, the structural learning in geneNetBP version 2.0.0 is im-
plemented using the package bnlearn while belief propagation is implemented using the
package gRain. Both the packages are available on CRAN. HuginLite can also be used
to infer networks from discrete data, however the demo version is restricted to 50 states
and 500 cases. For larger datasets, the discrete bayesian network learning and inference
using functions that implement bnlearn and gRain is recommended.

Load the package before running examples from the vignette.

> library(geneNetBP)

> library(RHugin) ## Needed for CG-BN implementation

3

http://www.degruyter.com/view/j/sagmb.2016.15.issue-1/sagmb-2015-0058/sagmb-2015-0058.xml?format=INT
http://rhugin.r-forge.r-project.org
http://www.hugin.com
http://genenetbp.r-forge.r-project.org/

2 Datasets

There are 4 datasets provided with this package.

2.1 mouse

The Mus Musculus Kidney eQTL data (mouse) was obtained from a F2 inner-cross be-
tween inbred MRL/MpJ and SM/J strains of mice [1]. The original data consists of 33,872
gene expression traits for 173 males. After linkage analysis and filtering based on location
and significance of QTL, the data consists of 14 genes and their SNP markers correspond-
ing to their QTL. Thus the final dataset mouse is a data frame of 173 observations of 19
variables (5 genotypes - SNP markers and 14 genes - normalized gene expression values).

Load the dataset and view the first 3 observations:

> data(mouse)

> head(mouse,n=3)

Qchr4 Qchr17 Qchr15 Qchr11 Qchr2 Cyp4a31 Slc5a9 Slc6a9 Hmgcl

1 2 3 2 2 2 -0.8581591 -1.1433976 2.1143808 -0.3683079

2 1 3 2 <NA> 2 1.8186456 1.7480246 -1.7480246 -1.5763614

3 3 2 2 2 2 0.2622828 0.3683079 0.6476036 0.1155036

Ptp4a2 Ak2 Zbtb8a Stx12 Trspap1 Mecr Wdtc1

1 1.2006550 0.4149740 0.5443409 0.02881581 -1.014499 -0.4625623 -0.3224307

2 1.8186456 -1.0639390 1.0144987 -1.23081837 1.483540 2.2736256 -1.0144987

3 -0.2177984 0.8581591 -1.0389014 0.66547438 -1.685179 -0.7582926 0.9906857

Atpif1 Rbbp4 Tlr12

1 -1.1433976 1.364489 -0.5277093

2 0.7018726 -1.995604 0.8581591

3 -1.3288179 1.230818 -0.8375227

There are 3 possible genotype states MM (homozygous) denoted by 1, H (heterozygous)
by 2 and SS (homozygous) by 3. The genotypes are categorical variables and hence first
5 columns in the data frame mouse have to be of class factor while the phenotypes are
continuous variables with 14 columns in data frame mouse of class numeric.

2.2 hdl

The Mus Musculus HDL QTL data (hdl) was obtained from a F2 inner-cross between
inbred MRL/MpJ and SM/J strains of mice [2]. The original data consists of 33,872 gene
expression traits for 280 males and females. After linkage analysis and filtering based on

4

location and significance of QTL, the data consists of 10 phenotypes (9 genes and HDL
level) and their 5 SNP markers corresponding to their QTL. Thus the final dataset hdl

is a data frame of 280 observations of 15 variables (5 SNP markers and 10 phenotypes (9
normalized gene expression and HDL levels).

Load the dataset and view the first 3 observations:

> data(hdl)

> head(hdl,n=3)

c1 c2 c4 c7 c12 HDL Pla2g4a Nr1i3 Cyp2b10 Ppap2a

1 2 1 2 1 3 -0.1601137 0.67171243 -0.5748821 0.96978138 0.6606545

2 3 3 3 2 2 -0.8365833 -0.75159139 1.1396864 -0.05760458 0.4145857

3 3 1 2 2 1 -1.1655010 -0.08424431 -0.5233845 -0.30585203 -1.0132221

Kdsr Degs1 Neu1 Spgl1 Apoa2

1 0.3762732 0.4049526 0.6940793 1.35105303 1.1396864

2 1.9645187 -0.9011827 0.7398946 -1.37345382 2.1935392

3 0.3667830 0.6065198 1.4451709 -0.02657516 0.7873186

Note that there are 3 possible genotype states MM (homozygous) denoted by 1, H (het-
erozygous) by 2 and SS (homozygous) by 3.

2.3 toy

The toy is a simulated eQTL dataset from the network shown below, of 500 observations,
3 genotypes (Q1,Q2,Q3) each having 2 possible states and 6 phenotypes, X1-X6.

Figure 1. Toy network example.

5

2.4 yeast

The yeast dataset is a subset of the widely studied yeast expression dataset compris-
ing of 112 F1 segregants from a cross between BY4716 and RM11-1a strains of Saccha-
romyces Cerevisiae [3, 4]. The original dataset consists of expression values reported as
log2(sample/ BY reference) for 6216 genes. The data can be accessed in Gene Expression
Omnibus (GEO) by accession number (GSE1990). After linkage analysis and filtering
based on location and significance of QTL, a final set of 38 genes and their corresponding
12 SNP markers were identified and included in the yeast dataset. The gene expression
values are discretized around the median, 1(above or equal to median) and -1 (below
median).

Thus the final dataset yeast is a data frame of 112 observations of 50 variables (12 SNP
markers and 38 genes - normalized and discretized gene expression values).

Load the dataset and view the first 3 observations:

> data(yeast)

> head(yeast,n=3)

Note that there are 2 possible genotype states denoted by 1 and 2. The genotypes are
categorical variables and hence all genotype columns in data frame yeast have to be of
class factor. The phenotypes are also discrete variables and phenotype columns in data
frame yeast of class factor.

3 Infering network structure

3.1 Fit a CG-BN to QTL data

3.1.1 Model

The graphical model is represented by a Directed Acyclic Graph (DAG). The nodes in
the graph represent the model variables, which may be discrete (QTL) or continuous
(phenotypes). The phenotypes (e.g., metabolites, gene-expression, or clinical traits etc)
are assumed to be continuous and follow a normal distribution. The data consists of n
phenotypes (X) and m genotypes at Single Nucleotide Polymorphism (SNP) markers and
is defined as: D = {X1, . . . , Xn, Q1, . . . , Qm} [5].

Model Assumptions:

6

1. Discrete variables precede the continuous variables.
2. No relationships between discrete variables (no edges between them).

Local relationships between continuous child nodes and parents are described using Ho-
mogeneous Conditional Gaussian Models (HCGM). The conditional distribution for a
phenotype Y = Xj with discrete parent Qi with genotype states (g) and continuous
parent Xi (i 6= j) is modeled as:

P (Y | Qi = g,Xi = xi) = N
(
α(g) + β(g)Txi, γ(g)

)
, (1)

where the mean is a regression that depends on both discrete and continuous parents, but
the variance depends only on the discrete parents (genotype states). The parameters of
the CG-BN and subsequently the marginal distributions are inferred from the data under
the constraints of the topology and the Markov condition using the PC-algorithm [6–8]
in RHugin package.

3.1.2 Mouse kidney eQTL Example

We will use the function fit.gnbp to learn the structure of a genotype-phenotype network
from mouse dataset. This function uses the PC algorithm and the EM algorithm [6–8]
implemented in the RHugin package to learn the network structure and and the condi-
tional probability tables for each node in the network. You will need both HuginLite and
RHugin installed. Refer to Section 1 for installation instructions.

Load the mouse dataset and extract the genotype and phenotype data. The first five
columns are genotype (categorical) and the next 14 columns are phenotypes (continuous).

> data(mouse)

> mousegeno<-mouse[,1:5]

> mousepheno<-mouse[,6:19]

The simplest example of fitting a CG-BN to mouse QTL data is given below. This exam-
ple uses default parameters.

> fit.gnbp(mousegeno,mousepheno)

$gp

A Hugin domain: there are 19 nodes and 17 edges

$marginal

$marginal$pheno

7

$marginal$pheno$mean

[,1]

Cyp4a31 -4.877280e-17

Slc5a9 -4.813106e-17

Slc6a9 -5.133979e-18

Hmgcl -3.784939e-17

Ptp4a2 -6.930872e-17

Ak2 -7.153821e-03

Zbtb8a -3.698069e-17

Stx12 2.657651e-17

Trspap1 -3.200715e-17

Mecr -8.794206e-02

Wdtc1 -7.604707e-17

Atpif1 -5.615290e-17

Rbbp4 1.067939e-17

Tlr12 -5.534668e-18

$marginal$pheno$var

[,1]

Cyp4a31 0.9551227

Slc5a9 0.9573564

Slc6a9 0.7425429

Hmgcl 0.7020575

Ptp4a2 0.9584933

Ak2 0.7696464

Zbtb8a 0.9551227

Stx12 0.9575380

Trspap1 0.9551227

Mecr 0.5043761

Wdtc1 0.9551227

Atpif1 0.9572220

Rbbp4 0.9557443

Tlr12 0.7471877

$marginal$geno

$marginal$geno$freq

state1 state2 state3

Qchr4 0.2312139 0.4682081 0.3005780

Qchr17 0.2647062 0.4588229 0.2764709

Qchr15 0.1802326 0.5988372 0.2209303

8

Qchr11 0.2163744 0.5380114 0.2456142

Qchr2 0.2500000 0.5000000 0.2500000

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"

$gp_flag

[1] "cg"

attr(,"class")

[1] "gpfit"

The learnt network structure is returned as RHugin domain in the first element gp of the
list. RHugin domain is an external pointer and hence cannot be saved in R workspace.
The RHugin package provides functions read.rhd and write.rhd for loading and saving
Hugin domains. The domains that are not saved will be lost when quitting R. The use of
assignment operator such as <- or = will only return the pointer. Refer to the RHugin
help manual for more information. The other elements in the list are for internal use with
other functions.

9

The inferred network structure is very sensitive to the significance level (specified as
alpha) and hence it is recommended to try out different values of the argument alpha.
The argument alpha is for use with RHugin package i.e. the function fit.gnbp will pass
on alpha to RHugin functions. For example,

> fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

$gp

A Hugin domain: there are 19 nodes and 31 edges

$marginal

$marginal$pheno

$marginal$pheno$mean

[,1]

Cyp4a31 1.914642e-02

Slc5a9 2.471620e-02

Slc6a9 -1.957688e-02

Hmgcl -7.136515e-03

Ptp4a2 3.519799e-03

Ak2 -7.153821e-03

Zbtb8a -2.003327e-17

Stx12 4.433032e-17

Trspap1 4.239712e-03

Mecr -1.551256e-16

Wdtc1 2.514671e-17

Atpif1 2.190113e-03

Rbbp4 2.317482e-17

Tlr12 5.888329e-02

$marginal$pheno$var

[,1]

Cyp4a31 0.8965621

Slc5a9 0.8538129

Slc6a9 0.7939058

Hmgcl 0.8509102

Ptp4a2 0.8550665

Ak2 0.7696464

Zbtb8a 0.9551227

Stx12 0.9575380

Trspap1 0.8530483

Mecr 0.9550281

10

Wdtc1 0.9574396

Atpif1 0.9027874

Rbbp4 0.9557443

Tlr12 0.7295634

$marginal$geno

$marginal$geno$freq

state1 state2 state3

Qchr4 0.2312139 0.4682081 0.3005780

Qchr17 0.2647062 0.4588229 0.2764709

Qchr15 0.1800768 0.5975270 0.2223963

Qchr11 0.2171277 0.5379791 0.2448932

Qchr2 0.2500000 0.5000000 0.2500000

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"

$gp_flag

[1] "cg"

11

attr(,"class")

[1] "gpfit"

The inferred network structure can be visualized by the generic plot method for objects
of class ”gpfit”.

> mouse.cgbn<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ## plot method for graph objects

> plot(mouse.cgbn)

12

Qchr2

Qchr11Qchr15

Qchr17Qchr4

Tlr12

Rbbp4

Atpif1

Wdtc1

Mecr

Trspap1

Stx12 Zbtb8a

Ak2

Ptp4a2

Hmgcl

Slc6a9

Slc5a9

Cyp4a31

Figure 2. Conditional Gaussian network learnt from mouse kidney eQTL data

The genotypes are represented by boxes and the phenotypes are represented by elliptical
nodes. Notice that the network now has 31 edges. Also, Qchr17 and Qchr2 are not in-
cluded in the network. Any additional domain knowledge can be provided through a list
of constraints. See Section 6 for details.

13

3.2 Fit a Discrete Bayesian Network to QTL data

3.2.1 Model

The model for a Discrete Bayesian Network is very similar to the CG-BN. The graphical
model is still represented by a Directed Acyclic Graph (DAG). The QTL variables are dis-
crete. The phenotypes however are also discrete and not continuous unlike in the CG-
BN representation. The data consists of n phenotypes (X) and m genotypes at Single Nu-
cleotide Polymorphism (SNP) markers and is defined as: D = {X1, . . . , Xn, Q1, . . . , Qm}.

Model Assumptions are restated as:
1. Genotypes precede the phenotypes.
2. No relationships between genotypes (no edges between them).

3.2.2 Yeast Example

A discrete bayesian network can be learnt by 2 approaches: 1. fit.gnbp that implements
the PC algorithm as described above or 2. fit.dbn that implements several score-based
and constraint-based learning methods algorithms from bnlearn.

Load the yeast dataset and extract the genotype and phenotype data. The first 12
columns are genotypes (categorical, 2 states each) and the next 38 columns are phenotypes
(categorical, 2 levels each).

> data(yeast)

> yeastgeno<-yeast[,1:12]

> yeastpheno<-yeast[,13:50]

1. fit.gnbp
A discrete bayesian network can be learnt using fit.gnbp by setting type = "db". Since
the demo version of Hugin allows for only 50 states, use a subset of the data.

> yeast.gnbp<-fit.gnbp(yeastgeno[,1:9], yeastpheno[,1:16],type="db",alpha=0.1)

The RHugin pointer to the inferred network structure is returned in the variable gp

of the list. It consists of 25 nodes and 22 edges. Here is a plot of the network structure.

> plot(yeast.gnbp)

14

Qchr8 Qchr16

Qchr9

Qchr5

Qchr2

Qchr14

Qchr12Qchr3

Qchr4

ALD6

MSE1

SLM5

NCP1

LAT1

VMA13GRX5

MSY1 FLX1

TAT1

ERG12

ERG6

PHA2

ERG9BAP2

HEM3

Figure 3. Discrete Bayesian Network learnt from Yeast data using (fit.gnbp)

2. fit.dbn
The second approach to infer the network structure is by using fit.dbn that can im-
plement several score-based and constraint-based learning methods from the package bn-

learn. The default method is Hill-Climbing (method = "hc").There is no limit on the
number of states or cases, so plug in the complete dataset.

15

> yeast.dbn<-fit.dbn(yeastgeno,yeastpheno)

> plot(yeast.dbn)

HEM3

BAP2 ERG9

PHA2

ERG6

ERG12

TAT1

FLX1

MSY1

GRX5

VMA13LAT1

NCP1

SLM5

MSE1

ALD6

HIS3

NAM2

ACS1

YNL045W

RBK1YMR293C

LCB4

PPA2

DIA4

MIR1

YEL047C

MSK1

TRP3

THI22

TNA1

MSD1

YER152C

TAT2

TYS1

YAT2

YEL041W

COX10

Qchr4

Qchr3 Qchr12

Qchr14

Qchr2 Qchr5

Qchr9

Qchr16

Qchr8

Qchr13

Qchr1

Qchr15

Figure 4. Discrete Bayesian Network learnt from Yeast data using (fit.dbn)

fit.dbn return an object of class dbnfit which is a list of several elements. The inferred
network is returned as a ”bn.fit” object in dbn variable of the list. The conditional prob-

16

abilities are returned in the marginal element of the list. Rest of the variables in the list
are for internal use with other functions.

To choose a different learning method, specify method. For example, to fit the network
by Max-Min Hill Climbing method,

> yeast.dbn<-fit.dbn(yeastgeno,yeastpheno,method="mmhc")

3.3 Extracting Conditional Probability Distributions

In both CG-BN and discrete Bayesian networks, there are conditional probability tables
associated with each node in the network. The marginal distributions are returned in the
second element marginal of the list in both dbnfit and gpfit objects.

In addition, the conditional distributions can also be accessed by using the package specific
functions. For example, get.marginal from the package RHugin can be used to compute
the marginal distributions in an RHugin domain. Another useful function is get.table

to extract the CPT, experience or fading table associated with any node in an RHugin
domain. Refer to RHugin manual for more help on these functions.

4 Absorbing evidence and Network Comparison

4.1 Conditional Gaussian Bayesian Networks

4.1.1 Belief propagation

In a CG-BN, new evidence can be entered by setting phenotypes in the network to a
particular value, Xi = x∗i . The evidence can pertain to a single node or multiple nodes in
the network.

Through message passing, the probability distributions are updated (called as beliefs)
after taking into account new evidence. Updated beliefs for discrete nodes (genotypes)
are simply updated estimated frequencies under the new evidence. For continuous nodes
(phenotypes), the updated beliefs are in terms of revised parameters for the Gaussian
distribution. The original and absorbed network are compared node-wise by quantifying
the change in marginals [5].

4.1.2 Jeffrey’s Signed Information (JSI)

A symmetric version of the Kullback-Leibler information, known as Jeffrey’s information
is calculated to compare the marginal belief in the original network X0

i ∼ N(µ0, σ
2
0) to

17

the absorbed network Xabs
i ∼ N(µabs, σ

2
abs). Jeffrey’s information, which is computed for

all continuous unabsorbed nodes in the network, is given as:

J
(
X0

i , X
abs
i

)
= IKL

(
X0

i , X
abs
i

)
+ IKL

(
Xabs

i , X0
i

)
where

IKL
(
X0

i , X
abs
i

)
=

1

2

{
(µ0 − µabs)

2

σ2
0

+
σ2
0

σ2
abs

− log

(
σ2
0

σ2
abs

)
− 1

}
.

For ease of interpretation, the signed Jeffrey’s information

sign(µ0 − µabs) · J
(
X0

i ,X
abs
i

)
is used to demonstrate the direction of change after the absorption of evidence.

The changes in belief are measured only for the nodes that are d -connected (conditionally
dependent) to the entered evidence. Nodes that are d -separated from absorbed evidence
are not influenced, and, consequently, do not change beliefs [5].

4.1.3 Mouse Kidney eQTL Example

Suppose the marginal mean of the node Tlr12 is known to be -0.99 and we wish to en-
ter this new information in the mouse network and compute the updated states of other
nodes. New evidence for single or multiple nodes can be entered using the function ab-

sorb.gnbp which absorbs evidence and propagates the beliefs. The input to absorb.gnbp

is an object of class gpfit, that is the output returned by the function fit.gnbp.

The function absorb.gnbp uses the RHugin package to absorb evidence in the specified
nodes and update the beliefs of all nodes and then calculates Jeffrey’s signed information
for all d -connected nodes. The following example illustrates how to absorb evidence in a
genotype-phenotype network.

1. Absorb a single evidence for a single node

> mouse.cgbn<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> ## Absorb evidence

> absorb.gnbp(mouse.cgbn,node="Tlr12",evidence=matrix(-0.99))

$gp

A Hugin domain: there are 19 nodes and 31 edges

18

$gp_flag

[1] "cg"

$gp_nodes

node class levels type

[1,] "Cyp4a31" "numeric" "0" "pheno"

[2,] "Slc5a9" "numeric" "0" "pheno"

[3,] "Slc6a9" "numeric" "0" "pheno"

[4,] "Hmgcl" "numeric" "0" "pheno"

[5,] "Ptp4a2" "numeric" "0" "pheno"

[6,] "Ak2" "numeric" "0" "pheno"

[7,] "Zbtb8a" "numeric" "0" "pheno"

[8,] "Stx12" "numeric" "0" "pheno"

[9,] "Trspap1" "numeric" "0" "pheno"

[10,] "Mecr" "numeric" "0" "pheno"

[11,] "Wdtc1" "numeric" "0" "pheno"

[12,] "Atpif1" "numeric" "0" "pheno"

[13,] "Rbbp4" "numeric" "0" "pheno"

[14,] "Tlr12" "numeric" "0" "pheno"

[15,] "Qchr4" "factor" "3" "geno"

[16,] "Qchr17" "factor" "3" "geno"

[17,] "Qchr15" "factor" "3" "geno"

[18,] "Qchr11" "factor" "3" "geno"

[19,] "Qchr2" "factor" "3" "geno"

$evidence

[,1]

[1,] -0.99

$node

[1] "Tlr12"

$marginal

$marginal$pheno

$marginal$pheno$mean

[,1]

Rbbp4 2.317482e-17

Atpif1 2.190113e-03

Wdtc1 2.514671e-17

Mecr -1.551256e-16

Trspap1 4.239712e-03

19

Stx12 4.433032e-17

Zbtb8a -2.003327e-17

Ak2 -7.153821e-03

Ptp4a2 3.519799e-03

Hmgcl -7.136515e-03

Slc6a9 -1.957688e-02

Slc5a9 2.471620e-02

Cyp4a31 1.914642e-02

$marginal$pheno$var

[,1]

Rbbp4 0.9557443

Atpif1 0.9027874

Wdtc1 0.9574396

Mecr 0.9550281

Trspap1 0.8530483

Stx12 0.9575380

Zbtb8a 0.9551227

Ak2 0.7696464

Ptp4a2 0.8550665

Hmgcl 0.8509102

Slc6a9 0.7939058

Slc5a9 0.8538129

Cyp4a31 0.8965621

$marginal$geno

$marginal$geno$freq

state1 state2 state3

Qchr4 0.2312139 0.4682081 0.300578

$belief

$belief$pheno

$belief$pheno$mean

[,1]

Rbbp4 0.8776457

Atpif1 -0.6538109

Wdtc1 0.6669131

Mecr -0.8791569

20

Trspap1 -0.6613503

Stx12 0.8676931

Zbtb8a -0.1222389

Ak2 0.6720433

Ptp4a2 -0.6969352

Hmgcl 0.6855139

Slc6a9 0.5667517

Slc5a9 -0.6510656

Cyp4a31 -0.5043484

$belief$pheno$var

[,1]

Rbbp4 0.4859803

Atpif1 0.6226163

Wdtc1 0.6627283

Mecr 0.4428854

Trspap1 0.5679888

Stx12 0.4933635

Zbtb8a 0.8083572

Ak2 0.5327134

Ptp4a2 0.5448964

Hmgcl 0.5628789

Slc6a9 0.5718937

Slc5a9 0.5254673

Cyp4a31 0.6995273

$belief$geno

$belief$geno$state1

[,1]

Qchr4 0.007944801

$belief$geno$state2

[,1]

Qchr4 0.2152284

$belief$geno$state3

[,1]

Qchr4 0.7768268

21

$JSI

[,1]

Rbbp4 0.71650239

Atpif1 -0.32687548

Wdtc1 0.31813768

Mecr -0.79365404

Trspap1 -0.36674950

Stx12 0.69209864

Zbtb8a -0.01550701

Ak2 0.40056441

Ptp4a2 -0.42017671

Hmgcl 0.39734466

Slc6a9 0.28567820

Slc5a9 -0.41106696

Cyp4a31 -0.18983139

$FC

NULL

attr(,"class")

[1] "gnbp"

Note that the function absorb.gnbp requires the argument evidence to be of class ma-
trix. If only a single value of evidence is to be entered, this can be done by simply using
the function matrix(), as above.

absorb.gnbp returns an object of class ”gnbp” which is a list of several variables. The
Jeffrey’s signed information is returned as a matrix JSI that gives the quantified compar-
ison of beliefs of the continuous nodes (phenotypes) before and after evidence absorption.
Since we absorbed only a single value of evidence, JSI is a column vector.In addition to
Jeffrey’s signed information, the marginal distributions (mean and variance for continu-
ous nodes in and genotype frequencies for SNP markers) before evidence absorption and
the updated beliefs (after evidence absorption) are also returned. The variable FC is for
discrete bayesian networks (see Section 4.2) and is returned with a NULL value for CG-BN.

Since Qchr15 is d -separated when evidence is absorbed in Tlr12, it’s marginal distribu-
tion is not affected and hence the beliefs are not calculated. Qchr4, on the other hand
is d -connected and a list returns the updated frequencies of all 3 genotype states of the
SNP marker Qchr15.

2. Absorb a sequence of evidence for a single node

22

> mouse.cgbn<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> ##Absorb evidence

> absorb.gnbp(mouse.cgbn,node="Tlr12",evidence=t(matrix(c(2.5,3,3.5,4))))

A function gen.evidence is useful to generate evidence for a node, based on it’s marginal
distribution. This is particularly useful when network perturbation to assess the network
behaviour is of interest.

To generate a spectrum of evidence for Tlr12 within ±2 standard deviations of it’s
marginal distribution, we input the inferred network to gen.evidence.

> mouse.cgbn<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ##Generate evidence

> ev<-gen.evidence(mouse.cgbn,node="Tlr12",std=2,length.out=20)

> ##absorb evidence

> absorb.gnbp(mouse.cgbn,node="Tlr12",evidence=ev)

Note that JSI is a matrix whose number of rows are the d -connected phenotype nodes to
Tlr12 and the number of columns is the length of evidence absorbed in Tlr12.

When a sequence of evidence is absorbed for a single node in the network, absorb.gnbp
also plots the JSI of the d -connected nodes vs the evidence absorbed.

Figure 5. Plot produced by absorb.gnbp

23

4.2 Discrete Bayesian Networks

4.2.1 Belief propagation and Fold change (FC)

In Discrete Bayesian Networks, phenotype nodes are represented as {X1, X2, . . . , Xp}. A
nodeXi, has the states, Xi ∈ {s1, s2, . . . , sn}, where

∑n
k=1 sk = 1. LetX0

i = {s01, s02, . . . s0n}
denote the states of Xi in the initial network, and Xpert

i ∈ {spert1 , spert2 , . . . spertn } denotes
the states of Xi in the perturbed network.

The node-wise change in marginals is quantified simply by the Fold Change (FC) as a
measure of effect size for the state of maximal probability in the perturbed network. Let
I∗ be an indicator for the state of Xpert

i with maximum probability. That is, I∗ = 1 if
spertk = maxP (spertk), and 0 otherwise. The node-wise change in marginals is:

FC(Xi) = I∗ · P (spertk)

P (s0k)
.

Note that FC ∈ [0, 1) when the node is inhibited, FC = 1 when the node stays the same,
and FC > 1 when the node is activated.

4.2.2 Yeast example

Consider the yeast network inferred in Section 3.2. The phenotypes are discrete variables
with 2 states (1,-1) in yeast dataset. Suppose we want to evaluate the system wide
changes if COX10 values are known. Like fit methods, there are two ways to absorb the
phenotypic evidence in discrete bayesian networks, the function absorb.dbn that imple-
ments gRain or absorb.gnbp that implements RHugin. absorb.gnbp can be used with
objects of class gpfit that are output from fit.gnbp. The implementation is similar to
the CG-BN example (refer to Section 4.1.), the only difference being FC returned as a
matrix of fold changes and JSI is returned with a NULL value. This section focuses on
abosorbing evidence using absorb.dbn.

> ## Fit the network

> yeast.dbn<-fit.dbn(yeastgeno,yeastpheno)

> ##Absorb evidence

> yeast.dbn.abs<-absorb.dbn(yeast.dbn,"COX10",matrix(c("-1","1"),ncol=2))

> yeast.dbn.abs

$gp

Independence network: Compiled: FALSE Propagated: FALSE

Nodes: chr [1:50] "HEM3" "BAP2" "ERG9" "PHA2" "ERG6" "ERG12" "TAT1" "FLX1" "MSY1" ...

24

$gp_flag

[1] "db"

$gp_nodes

node class levels type

[1,] "HEM3" "factor" "2" "pheno"

[2,] "BAP2" "factor" "2" "pheno"

[3,] "ERG9" "factor" "2" "pheno"

[4,] "PHA2" "factor" "2" "pheno"

[5,] "ERG6" "factor" "2" "pheno"

[6,] "ERG12" "factor" "2" "pheno"

[7,] "TAT1" "factor" "2" "pheno"

[8,] "FLX1" "factor" "2" "pheno"

[9,] "MSY1" "factor" "2" "pheno"

[10,] "GRX5" "factor" "2" "pheno"

[11,] "VMA13" "factor" "2" "pheno"

[12,] "LAT1" "factor" "2" "pheno"

[13,] "NCP1" "factor" "2" "pheno"

[14,] "SLM5" "factor" "2" "pheno"

[15,] "MSE1" "factor" "2" "pheno"

[16,] "ALD6" "factor" "2" "pheno"

[17,] "HIS3" "factor" "2" "pheno"

[18,] "NAM2" "factor" "2" "pheno"

[19,] "ACS1" "factor" "2" "pheno"

[20,] "YNL045W" "factor" "2" "pheno"

[21,] "RBK1" "factor" "2" "pheno"

[22,] "YMR293C" "factor" "2" "pheno"

[23,] "LCB4" "factor" "2" "pheno"

[24,] "PPA2" "factor" "2" "pheno"

[25,] "DIA4" "factor" "2" "pheno"

[26,] "MIR1" "factor" "2" "pheno"

[27,] "YEL047C" "factor" "2" "pheno"

[28,] "MSK1" "factor" "2" "pheno"

[29,] "TRP3" "factor" "2" "pheno"

[30,] "THI22" "factor" "2" "pheno"

[31,] "TNA1" "factor" "2" "pheno"

[32,] "MSD1" "factor" "2" "pheno"

[33,] "YER152C" "factor" "2" "pheno"

[34,] "TAT2" "factor" "2" "pheno"

[35,] "TYS1" "factor" "2" "pheno"

25

[36,] "YAT2" "factor" "2" "pheno"

[37,] "YEL041W" "factor" "2" "pheno"

[38,] "COX10" "factor" "2" "pheno"

[39,] "Qchr4" "factor" "2" "geno"

[40,] "Qchr3" "factor" "2" "geno"

[41,] "Qchr12" "factor" "2" "geno"

[42,] "Qchr14" "factor" "2" "geno"

[43,] "Qchr2" "factor" "2" "geno"

[44,] "Qchr5" "factor" "2" "geno"

[45,] "Qchr9" "factor" "2" "geno"

[46,] "Qchr16" "factor" "2" "geno"

[47,] "Qchr8" "factor" "2" "geno"

[48,] "Qchr13" "factor" "2" "geno"

[49,] "Qchr1" "factor" "2" "geno"

[50,] "Qchr15" "factor" "2" "geno"

$evidence

[,1] [,2]

[1,] "-1" "1"

$node

[1] "COX10"

$marginal

$marginal$pheno

$marginal$pheno$freq

state1 state2

HEM3 0.504 0.496

BAP2 0.500 0.500

PHA2 0.494 0.506

ERG6 0.500 0.500

ERG12 0.492 0.508

TAT1 0.492 0.508

FLX1 0.484 0.516

MSY1 0.499 0.501

GRX5 0.495 0.505

VMA13 0.485 0.515

LAT1 0.489 0.511

NCP1 0.498 0.502

SLM5 0.489 0.511

MSE1 0.480 0.520

26

ALD6 0.507 0.493

HIS3 0.480 0.520

NAM2 0.499 0.501

ACS1 0.504 0.496

YNL045W 0.470 0.530

RBK1 0.497 0.503

YMR293C 0.502 0.498

LCB4 0.503 0.497

PPA2 0.499 0.501

DIA4 0.493 0.507

MIR1 0.492 0.508

YEL047C 0.500 0.500

MSK1 0.499 0.501

TRP3 0.489 0.511

THI22 0.499 0.501

TNA1 0.496 0.504

MSD1 0.493 0.507

YER152C 0.503 0.497

TAT2 0.500 0.500

TYS1 0.499 0.501

YAT2 0.490 0.510

$marginal$geno

$marginal$geno$freq

state1 state2

Qchr3 0.464 0.536

Qchr2 0.571 0.429

Qchr16 0.527 0.473

Qchr13 0.491 0.509

$belief

$belief$pheno

$belief$pheno$state1

[,1] [,2]

HEM3 0.525 0.4826

BAP2 0.492 0.5080

PHA2 0.562 0.4244

ERG6 0.500 0.5002

27

ERG12 0.463 0.5203

TAT1 0.493 0.4911

FLX1 0.545 0.4220

MSY1 0.903 0.0902

GRX5 0.611 0.3785

VMA13 0.269 0.7030

LAT1 0.431 0.5475

NCP1 0.418 0.5788

SLM5 0.880 0.0943

MSE1 0.712 0.2463

ALD6 0.510 0.5040

HIS3 0.465 0.4953

NAM2 0.783 0.2125

ACS1 0.540 0.4662

YNL045W 0.308 0.6330

RBK1 0.212 0.7851

YMR293C 0.893 0.1071

LCB4 0.502 0.5032

PPA2 0.758 0.2377

DIA4 0.758 0.2247

MIR1 0.596 0.3881

YEL047C 0.356 0.6463

MSK1 0.802 0.1927

TRP3 0.479 0.4988

THI22 0.499 0.4990

TNA1 0.581 0.4098

MSD1 0.795 0.1887

YER152C 0.471 0.5353

TAT2 0.672 0.3259

TYS1 0.389 0.6101

YAT2 0.462 0.5187

$belief$pheno$state2

[,1] [,2]

HEM3 0.4750 0.517

BAP2 0.5079 0.492

PHA2 0.4379 0.576

ERG6 0.4996 0.500

ERG12 0.5367 0.480

TAT1 0.5074 0.509

FLX1 0.4552 0.578

28

MSY1 0.0971 0.910

GRX5 0.3889 0.621

VMA13 0.7312 0.297

LAT1 0.5686 0.452

NCP1 0.5818 0.421

SLM5 0.1204 0.906

MSE1 0.2879 0.754

ALD6 0.4904 0.496

HIS3 0.5350 0.505

NAM2 0.2166 0.787

ACS1 0.4595 0.534

YNL045W 0.6919 0.367

RBK1 0.7875 0.215

YMR293C 0.1071 0.893

LCB4 0.4979 0.497

PPA2 0.2419 0.762

DIA4 0.2424 0.775

MIR1 0.4045 0.612

YEL047C 0.6439 0.354

MSK1 0.1978 0.807

TRP3 0.5215 0.501

THI22 0.5007 0.501

TNA1 0.4194 0.590

MSD1 0.2051 0.811

YER152C 0.5288 0.465

TAT2 0.3281 0.674

TYS1 0.6110 0.390

YAT2 0.5383 0.481

$belief$geno

$belief$geno$state1

[,1] [,2]

Qchr3 0.471 0.458

Qchr2 0.573 0.570

Qchr16 0.603 0.450

Qchr13 0.490 0.492

$belief$geno$state2

[,1] [,2]

Qchr3 0.529 0.542

29

Qchr2 0.427 0.430

Qchr16 0.397 0.550

Qchr13 0.510 0.508

$FC

FCFC

[,1] [,2]

HEM3 1.042 1.043

BAP2 1.016 1.016

PHA2 1.139 1.137

ERG6 1.000 1.000

ERG12 1.056 1.058

TAT1 0.999 1.002

FLX1 1.126 1.120

MSY1 1.811 1.815

GRX5 1.234 1.232

VMA13 1.419 1.450

LAT1 1.113 1.119

NCP1 1.159 1.162

SLM5 1.799 1.772

MSE1 1.482 1.450

ALD6 1.006 0.994

HIS3 1.029 0.971

NAM2 1.569 1.573

ACS1 1.073 1.075

YNL045W 1.305 1.348

RBK1 1.567 1.579

YMR293C 1.778 1.793

LCB4 0.999 1.001

PPA2 1.519 1.522

DIA4 1.538 1.528

MIR1 1.210 1.205

YEL047C 1.289 1.291

MSK1 1.608 1.611

TRP3 1.020 0.980

THI22 1.000 1.000

TNA1 1.171 1.170

MSD1 1.611 1.601

YER152C 1.064 1.064

30

TAT2 1.344 1.348

TYS1 1.220 1.223

YAT2 1.056 1.058

FCpheno_state

[,1] [,2]

HEM3 1 2

BAP2 2 1

PHA2 1 2

ERG6 1 1

ERG12 2 1

TAT1 2 2

FLX1 1 2

MSY1 1 2

GRX5 1 2

VMA13 2 1

LAT1 2 1

NCP1 2 1

SLM5 1 2

MSE1 1 2

ALD6 1 1

HIS3 2 2

NAM2 1 2

ACS1 1 2

YNL045W 2 1

RBK1 2 1

YMR293C 1 2

LCB4 1 1

PPA2 1 2

DIA4 1 2

MIR1 1 2

YEL047C 2 1

MSK1 1 2

TRP3 2 2

THI22 2 2

TNA1 1 2

MSD1 1 2

YER152C 2 1

TAT2 1 2

TYS1 2 1

YAT2 2 1

31

attr(,"class")

[1] "dbn"

The output of absorb.dbn is an object of class ”dbn” list of several variables similar to
that of absorb.gnbp. Variables of interest are marginal, belief and FC. The conditional
probabilities before absorbing evidence are returned in marginal while updated beliefs af-
ter evidence absorption are returned in belief. FC is a list of two variables: 1.FC - matrix
of fold changes of phenotypes 2. state - the phenotype state with maximum probability
(the index of belief with higher value is returned).

5 Visualizing network changes

The most important aspect of the package is visualizing the effect of node perturbations
or evidence absorption on the network. To visualize the changes, a generic plot method
for plotting the genotype-phenotype network in which evidence has been absorbed and
propagated is available. The plot method will convert network into an object of class
”graphNEL” by using Rgraphviz package. The argument nodeAttrs to plot method for
graph objects in Rgraphviz package is then used to customize the plot.

5.1 A complete example of CG-BN

For CG-BN, a generic plot method plot.gnbp will be called for objects of class ”gnbp”.
A complete example that fits a CG-BN, absorbs evidence and plots the network:

> mouse.cgbn<-fit.gnbp(mousegeno,mousepheno,alpha=0.1)

> mouse.cgbn<-absorb.gnbp(mouse.cgbn,node="Tlr12",evidence=matrix(-0.99))

> plot(mouse.cgbn)

32

Figure 6. Evidence absorption in single node

The plot method will draw the network with Jeffrey’s signed information mapped onto it
by a colormap. There is an option to plot beliefs (updated marginal means) which can be
entered through the argument y (see help for plot.gnbp).

The d -separated nodes are white while the colored nodes are d -connected, with the color
indicating the strength and direction of change . By default, the continuous nodes are of
shape ”ellipse” and a ”box” shape is used for discrete nodes. The node for which evidence
is absorbed is colored green (default color).

33

5.1.1 Plot options in plot.gnbp

Colormap options such as end colors for the positive and negative gradients and the reso-
lution can be customized. The resolution of the colormap can be specified by col.length.
The argument col.palette can be used to specify the end colors.

> col.palette<-list(pos_high="darkgreen", pos_low= "palegreen2",

neg_high="wheat1", neg_low = "red",

dsep_col="white",qtl_col="grey",node_abs_col="yellow")

> plot(network,col.palette=col.palette)

34

Figure 7. Mouse network with custom color palette

The plot method will always map the JSI or beliefs onto the network for a single piece of
evidence. Incase a spectrum of evidence is absorbed for a single/multiple node(s), then
the evidence for which we wish to visualize the network changes can be chosen by speci-
fying the corresponding column number of JSI or belief matrix through the argument ncol.

For example if we absorbed a sequence of evidence for Tlr12 and we wish to visualize the
belief changes for evidence = 1.767, we can do this as follows.

35

> network<-fit.gnbp(mousegeno,mousepheno,alpha = 0.1)

> ##Generate evidence

> evidence<-gen.evidence(network,node="Tlr12",std=2,length.out=20)

> network<-absorb.gnbp(network,node="Tlr12",evidence=evidence)

> plot(x=network,y="belief",ncol=20)

5.2 A complete example of discrete networks

For discrete bayesian networks, a generic plot method is available for both ”gnbp” and
”dbn” objects. This section focuses on plotting ”dbn” objects. A complete example that
fits a CG-BN, absorbs evidence and plots the network:

> ##load data

> data(yeast)

> ## get genotype and phenotype data

> yeastgeno<-yeast[,1:12]

> yeastpheno<-yeast[,13:50]

> ## Fit discrete network

> yeast.dbn<-fit.dbn(yeastgeno,yeastpheno)

> ## Absorb evidence

> yeast.dbn.abs<-absorb.dbn(yeast.dbn,"COX10",matrix(c("-1","1"),ncol=2))

> ## Plot the network

> plot(yeast.dbn.abs,ncol=2)

36

HEM3

BAP2 ERG9

PHA2

ERG6

ERG12

TAT1

FLX1

MSY1

GRX5

VMA13LAT1

NCP1

SLM5

MSE1

ALD6

HIS3

NAM2

ACS1

YNL045W

RBK1YMR293C

LCB4

PPA2

DIA4

MIR1

YEL047C

MSK1

TRP3

THI22

TNA1

MSD1

YER152C

TAT2

TYS1

YAT2

YEL041W

COX10

Qchr4

Qchr3 Qchr12

Qchr14

Qchr2 Qchr5

Qchr9

Qchr16

Qchr8

Qchr13

Qchr1

Qchr15

state 1
state 2
d−separated
d−connected
absorbed node

Figure 8. Yeast network after absorbing evidence (COX10=”1”)

The plot method will map the phenotype states with maximum probability on the network
by a colormap. The d -separated nodes are white while the colored nodes are d -connected,
with the color indicating the direction of change . By default, the continuous nodes are of
shape ”ellipse” and a ”box” shape is used for discrete nodes. The node for which evidence
is absorbed is colored green (default color).

37

There is also an option to plot Fold Changes (FC) which can be entered through the ar-
gument y (see help for plot.gnbp).

> plot.dbn(yeast.dbn.abs,y="FC",ncol=2)

HEM3

BAP2 ERG9

PHA2

ERG6

ERG12

TAT1

FLX1

MSY1

GRX5

VMA13LAT1

NCP1

SLM5

MSE1

ALD6

HIS3

NAM2

ACS1

YNL045W

RBK1YMR293C

LCB4

PPA2

DIA4

MIR1

YEL047C

MSK1

TRP3

THI22

TNA1

MSD1

YER152C

TAT2

TYS1

YAT2

YEL041W

COX10

Qchr4

Qchr3 Qchr12

Qchr14

Qchr2 Qchr5

Qchr9

Qchr16

Qchr8

Qchr13

Qchr1

Qchr15

000

1

2

Figure 9. Fold Changes in Yeast network after absorbing evidence (COX10=”1”)

38

When y="FC" is specified, the fold changes for the specified column (evidence) are mapped
on the network. FC are positive values. FC of 1 indicates no change from the marginal,
greater than 1 indicates the updated mean is higher than the marginal mean while less
than 1 indicates vice-versa.

6 Specifying Additional Biological Information

If additional biological information is known such as known or forbidden interactions
between variables or the network hierarchy, it can be incorporated into the learning pro-
cess. Such information can be provided in the constraints option of fit.gnbp and as
whitelist and/or blacklist in fit.dbn. An example illustrating this:

Fit a CG-BN to hdl data using fit.gnbp. To do this, load the data.

> ## load data

> data(hdl)

> ##get the genotype and phenotype data

> hdlgeno<-hdl[,1:5]

> hdlpheno<-hdl[,6:15]

This dataset has 5 SNP markers and 10 phenotypes that include HDL levels and 9 genes.
Since HDL levels is the observed characteristic, the genes should precede HDL in the
network. In other words, HDL should be downstream and cannot be a parent of other
variables in the network. This information can be included in the learning process by
providing a list of constraints that defines the edges from HDL to genes as forbidden.

> ## create an empty vector for the blacklist

> blackL<-c()

> # fill in the forbidden edges. For example :"HDL"->"Nr1i3"

> for(i in 2:dim(hdlpheno)[2])

+ blackL=rbind(blackL,cbind(colnames(hdlpheno)[1],colnames(hdlpheno)[i]))

> ## Form a list

> directed.forbidden <- vector("list", nrow(blackL))

> for (i in 1:nrow(blackL))

+ directed.forbidden[[i]] <- blackL[i,]

> constraints<-list(directed=list(forbidden=directed.forbidden,

+ required=NULL), undirected=NULL)

> ## Fit a CG-BN

> hdl.cgbn<-fit.gnbp(hdlgeno,hdlpheno,constraints=constraints,alpha=0.08)

> ## Plot the network

> plot(hdl.cgbn)

39

c12

c7

c4c2c1

Apoa2 Spgl1

Neu1

Degs1

Kdsr

Ppap2a

Cyp2b10

Nr1i3

Pla2g4a

HDL

Figure 10. HDL network

As desired, HDL is downstream of the genes in the network. More help about the struc-
ture of the constraints list can be found in RHugin documentation. For fit.dbn, the
whitelist option can be used to specify the required edges while the blacklist option
can be used to specify forbidden edges.

40

7 Belief propagation in known networks

Belief propagation can be implemented in known genotype-phenotype networks. If the
network structure is known apriori from a knowledge database, then learning step can be
skipped in fit.gnbp by setting learn = FALSE. The conditional probabilities will still
need to be learnt. This section demonstrates how to specify known networks and subse-
quent belief propagation.

7.1 Specifying graphNEL objects

One way to specify a known network is by providing the graph structure as an input (a
graphNEL object) to the fit methods. The following example illustrates how to input a
known graph structure using the fit.dbn function. Consider a discrete bayesian network
implementation of HDL network. Assume that the HDL network structure is known. We
will input the structure that we learnt in the previous section to fit.dbn.

> ## Convert the RHugindomain to a graphNEL object

> bngraph<-RHugin::as.graph.RHuginDomain(hdl.cgbn$gp)

For discrete bayesian network, discretize the phenotypes around median. To fit the net-
work parameters, set learn==FALSE and specify the graph.

> ## discretize the data around median

> hdlpheno_dis<-hdlpheno

> for (i in 1:dim(hdlpheno)[2])

+ {

+ hdlpheno_dis[which(hdlpheno[,i]>=median(hdlpheno[,i])),i]<-"1"

+ hdlpheno_dis[which(hdlpheno[,i]<median(hdlpheno[,i])),i]<-"-1"

+ hdlpheno_dis[,i]<-as.factor(hdlpheno_dis[,i])

+ }

> ## fit dbn

> hdl.dbn<-fit.dbn(hdlgeno,hdlpheno_dis,graph=bngraph,learn ="FALSE")

7.2 Specifying edges

The second way to specify an existing network is by providing a data frame of edges.
Consider the toy network in Section 2. The interactions between the variables in the toy

dataset are known. To specify the toy network as a CG-BN and learn the conditional
probabilities:

41

First create a data frame of known edges from parent to child.

> ## Load the toy dataset

> data(toy)

> ## Create a matrix of edges ("from (parent)", "to (child)")

> edgelist=data.frame(matrix(NA,ncol=2,nrow=10))

> edgelist[1,]<-cbind("Q1","X1")

> edgelist[2,]<-cbind("Q2","X1")

> edgelist[3,]<-cbind("Q2","X2")

> edgelist[4,]<-cbind("Q2","X4")

> edgelist[5,]<-cbind("X1","X2")

> edgelist[6,]<-cbind("Q3","X2")

> edgelist[7,]<-cbind("Q3","X3")

> edgelist[8,]<-cbind("X2","X5")

> edgelist[9,]<-cbind("X2","X6")

> edgelist[10,]<-cbind("X4","X6")

> ## label the columns

> colnames(edgelist)<-c("from","to")

In fit.gnbp provide the edgelist by setting graph=edgelist and set learn = FALSE.
This will skip the learning and only conditional probabilities will be calculated for each
node in the network based on the given network structure and data. Absorbing evidence
and propagating the beliefs subsequently is then straightforward.

> ## Specify the network and learn conditional probabilities

> toy.cgbn<-fit.gnbp(toygeno,toypheno,learn=FALSE,graph=edgelist)

> ##Generate evidence

> evidence<-gen.evidence(toy.cgbn,node="X2",std=2,length.out=20)

> toy.cgbn.abs<-absorb.gnbp(toy.cgbn,node="X2",evidence=evidence)

> plot(x=toy.cgbn.abs,y="JSI",ncol=17,fontsize = 5)

42

Figure 11. Belief propagation in known network

References

1. Hageman RS, Leduc MS, Caputo CR, Tsaih SW, Churchill GA, et al. (2011) Uncov-
ering genes and regulatory pathways related to urinary albumin excretion. Journal
of the American Society of Nephrology 22: 73–81.

2. Leduc M, Blair R, Verdugo R, Tsaih S, Walsh K, et al. (2012) Using bioinformat-
ics and systems genetics to dissect hdl-cholesterol genetics in an mrl/mpj x sm/j
intercross. J Lipid Res 6: 1163-75.

3. Brem R, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene
expression traits in yeast. Proc Natl Acad Sci 102: 1572-1577.

4. Brem R, Storey J, Whittle J, Kruglyak L (2005) Genetic interactions between poly-
morphisms that affect gene expression in yeast. Nature 436: 701-703.

5. Moharil J, May P, Gaile D, Blair R (2016) Belief propagation in genotype-phenotype
networks. Statistical Applications in Genetics and Molecular Biology 15.

6. Lauritzen SL, Jensen F (2001) Stable local computation with conditional gaussian
distributions. Statistics and Computing 11: 191–203.

7. Lauritzen SL (1992) Propagation of probabilities, means, and variances in mixed
graphical association models. Journal of the American Statistical Association 87:
1098–1108.

43

8. Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society Series B (Methodological) : 157–224.

44

	Introduction
	Datasets
	mouse
	hdl
	toy
	yeast

	Infering network structure
	Fit a CG-BN to QTL data
	Model
	Mouse kidney eQTL Example

	Fit a Discrete Bayesian Network to QTL data
	Model
	Yeast Example

	Extracting Conditional Probability Distributions

	Absorbing evidence and Network Comparison
	Conditional Gaussian Bayesian Networks
	Belief propagation
	Jeffrey's Signed Information (JSI)
	Mouse Kidney eQTL Example

	Discrete Bayesian Networks
	Belief propagation and Fold change (FC)
	Yeast example

	Visualizing network changes
	A complete example of CG-BN
	Plot options in plot.gnbp

	A complete example of discrete networks

	Specifying Additional Biological Information
	Belief propagation in known networks
	Specifying graphNEL objects
	Specifying edges

