
Package ‘gdalUtils’
February 13, 2020

Maintainer Jonathan Asher Greenberg <gdalUtils@estarcion.net>

License GPL (>= 2)

Title Wrappers for the Geospatial Data Abstraction Library (GDAL)
Utilities

Type Package

LazyLoad yes

Author Jonathan Asher Greenberg and Matteo Mattiuzzi

Description Wrappers for the Geospatial Data Abstraction Library (GDAL)
Utilities.

Version 2.0.3.2

Date 2020-01-15

Depends R (>= 2.14.0)

Imports sp, foreach, R.utils, raster, rgdal

SystemRequirements GDAL binaries

BugReports https://github.com/gearslaboratory/gdalUtils/issues

Encoding UTF-8

RoxygenNote 7.0.2

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-13 20:10:02 UTC

R topics documented:
align_rasters . 2
batch_gdal_translate . 3
gdaladdo . 5
gdalbuildvrt . 7
gdaldem . 10
gdalinfo . 13
gdallocationinfo . 16

1

https://github.com/gearslaboratory/gdalUtils/issues

2 align_rasters

gdalmanage . 19
gdalsrsinfo . 21
gdaltindex . 23
gdaltransform . 25
gdalwarp . 27
gdal_chooseInstallation . 32
gdal_cmd_builder . 33
gdal_contour . 36
gdal_grid . 38
gdal_rasterize . 44
gdal_setInstallation . 47
gdal_translate . 49
get_subdatasets . 53
is.Raster . 54
mosaic_rasters . 55
nearblack . 57
ogr2ogr . 59
ogrinfo . 65
ogrlineref . 68
ogrtindex . 71
qm . 73
remove_file_extension . 74
tahoe_highrez_training . 74
tahoe_lidar_bareearth.tif . 75
tahoe_lidar_highesthit.tif . 75
test_modis.hdf . 76

Index 77

align_rasters Aligns raster files

Description

Aligns a raster to a reference raster.

Usage

align_rasters(
unaligned,
reference,
dstfile,
output_Raster = FALSE,
nThreads = 1,
projres_only = FALSE,
verbose = FALSE,
...

)

batch_gdal_translate 3

Arguments

unaligned Character. The filename of a raster to be aligned to the reference raster.

reference Character. The filename of a raster to be used as the reference for the alignment.
Syncing will use the reference’s projection, resolution, and extent.

dstfile Character. The filename of the synchronized output file.

output_Raster Logical. Return output dst_dataset as a RasterBrick?

nThreads Numeric or Character. If numeric, the number of threads to use. Setting to > 1
enables multithreaded execution. Can also be "ALL_CPUS" to use all available
CPUS. Default is 1.

projres_only Logical. Matches projection and pixel resolution only, but leaves the spatial
extent unchanged. Useful for mosaicking. Default = FALSE.

verbose Logical. Enable verbose execution? Default is FALSE.

... parameters to be passed to gdalwarp (e.g. resampling approach).

Details

Aligns a raster to the extent and projection of a reference raster and matches the resolution of the
reference raster. This is helpful in preparing multiple files of different projections, resolutions,
extents, and rotations for performing map algebra or change detection.

Value

Either NULL or a RasterBricks depending on whether output_Raster is set to TRUE.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>)

See Also

gdalwarp

batch_gdal_translate batch_gdal_translate

Description

Runs gdal_translate on a batch of files

4 batch_gdal_translate

Usage

batch_gdal_translate(
infiles,
outdir,
outsuffix = "_conv.tif",
pattern = NULL,
recursive = FALSE,
verbose = FALSE,
...

)

Arguments

infiles Character. A directory or a character vector of files (including their path). If a
directory, all files matching the pattern will be converted.

outdir Character. Output directory to save the output files.

outsuffix Character. The suffix to append to the input filename (minus its extension) to
generate the output filename(s).

pattern Character. If infiles is a directory, this is used to limit the file it is searching for.

recursive Logical. If infiles is a directory, should files be searched for recursively?

verbose Logical. Enable verbose execution? Default is FALSE.

... Parameters to pass to gdal_translate

Details

This function is designed to run gdal_translate in batch mode. Files are passed to the function either
directly as a character vector of filenames, or by passing it a directory and (typically) a search pattern
(e.g. pattern=".tif"). gdal_translate will execute based on parameters passed to it, and the output file
will be named based on the input file (stripped of its extension), with the outsuffix appended to it.

If a parallel engine is started and registered with foreach, this program will run in parallel (one
gdal_translate per worker).

Value

Either a list of NULLs or a list of RasterBricks depending on whether output_Raster is set to TRUE.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>)

References

http://www.gdal.org/gdal_translate.html

See Also

gdal_translate, list.files

http://www.gdal.org/gdal_translate.html

gdaladdo 5

Examples

Not run:
input_folder <- system.file("external",package="gdalUtils")
list.files(input_folder,pattern=".tif")
output_folder <- tempdir()
library(spatial.tools)
sfQuickInit() # from package spatial.tools to launch a parallel PSOCK cluster
batch_gdal_translate(infiles=input_folder,outdir=output_folder,
outsuffix="_converted.envi",of="ENVI",pattern=".tif$")
list.files(output_folder,pattern="_converted.envi$")
sfQuickStop() # from package spatial.tools to stop a parallel PSOCK cluster

End(Not run)

gdaladdo gdaladdo

Description

R wrapper for gdaladdo: builds or rebuilds overview images

Usage

gdaladdo(
filename,
levels,
r,
b,
ro,
clean,
oo,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

filename Character. The file to build overviews for (or whose overviews must be re-
moved).

levels Numeric. A list of integral overview levels to build. Ignored with clean=TRUE
option.

r Character. ("nearest"|"average"|"gauss"|"cubic"|"average_mp"|"average_magphase"|"mode")
Select a resampling algorithm. Default is "nearest".

b Numeric. (available from GDAL 1.10) Select an input band band for overview
generation. Band numbering starts from 1. Multiple -b switches may be used to
select a set of input bands to generate overviews.

6 gdaladdo

ro Logical. (available from GDAL 1.6.0) open the dataset in read-only mode, in
order to generate external overview (for GeoTIFF especially).

clean Logical. (available from GDAL 1.7.0) remove all overviews.

oo Character. NAME=VALUE. (starting with GDAL 2.0) Dataset open option (for-
mat specific)

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdaladdo’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/gdaladdo.html), or,
in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdaladdo.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
filename <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
temp_filename <- paste(tempfile(),".tif",sep="")
file.copy(from=filename,to=temp_filename,overwrite=TRUE)
gdalinfo(filename)
gdaladdo(r="average",temp_filename,levels=c(2,4,8,16),verbose=TRUE)
gdalinfo(temp_filename)
}

http://gdal.org/gdaladdo.html
http://www.gdal.org/gdaladdo.html

gdalbuildvrt 7

gdalbuildvrt gdalbuildvrt

Description

R wrapper for gdalbuildvrt: Builds a VRT from a list of datasets

Usage

gdalbuildvrt(
gdalfile,
output.vrt,
tileindex,
resolution,
te,
tr,
tap,
separate,
b,
sd,
allow_projection_difference,
q,
addalpha,
hidenodata,
srcnodata,
vrtnodata,
a_srs,
r,
input_file_list,
overwrite,
ignore.full_scan = TRUE,
verbose = FALSE,
...

)

Arguments

gdalfile Character. Input files (as a character vector) or a wildcard search term (e.g.
"*.tif")

output.vrt Character. Output VRT file.

tileindex Logical. Use the specified value as the tile index field, instead of the default
value with is ’location’.

resolution Character. ("highest"|"lowest"|"average"|"user") In case the resolution of all in-
put files is not the same, the -resolution flag enables the user to control the way
the output resolution is computed. ’average’ is the default. ’highest’ will pick
the smallest values of pixel dimensions within the set of source rasters. ’lowest’

8 gdalbuildvrt

will pick the largest values of pixel dimensions within the set of source rasters.
’average’ will compute an average of pixel dimensions within the set of source
rasters. ’user’ is new in GDAL 1.7.0 and must be used in combination with the
-tr option to specify the target resolution.

te Numeric. c(xmin,ymin,xmax,ymax) (starting with GDAL 1.7.0) set georefer-
enced extents of VRT file. The values must be expressed in georeferenced units.
If not specified, the extent of the VRT is the minimum bounding box of the set
of source rasters.

tr Numeric. c(xres,yres) (starting with GDAL 1.7.0) set target resolution. The
values must be expressed in georeferenced units. Both must be positive values.
Specifying those values is of course incompatible with highest|lowest|average
values for -resolution option.

tap Logical. (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the
extent of the output file to the values of the -tr, such that the aligned extent
includes the minimum extent.

separate Logical. (starting with GDAL 1.7.0) Place each input file into a separate stacked
band. In that case, only the first band of each dataset will be placed into a new
band. Contrary to the default mode, it is not required that all bands have the
same datatype.

b Numeric. (GDAL >= 1.10.0) Select an input band to be processed. Bands are
numbered from 1. If input bands not set all bands will be added to vrt

sd Numeric. (GDAL >= 1.10.0) If the input dataset contains several subdatasets use
a subdataset with the specified number (starting from 1). This is an alternative
of giving the full subdataset name as an input.

allow_projection_difference

Logical. (starting with GDAL 1.7.0) When this option is specified, the utility
will accept to make a VRT even if the input datasets have not the same projec-
tion. Note: this does not mean that they will be reprojected. Their projection
will just be ignored.

q Logical. (starting with GDAL 1.7.0) To disable the progress bar on the console.

addalpha Logical. (starting with GDAL 1.7.0) Adds an alpha mask band to the VRT
when the source raster have none. Mainly useful for RGB sources (or grey-level
sources). The alpha band is filled on-the-fly with the value 0 in areas without
any source raster, and with value 255 in areas with source raster. The effect is
that a RGBA viewer will render the areas without source rasters as transparent
and areas with source rasters as opaque. This option is not compatible with
-separate.

hidenodata Logical. (starting with GDAL 1.7.0) Even if any band contains nodata value,
giving this option makes the VRT band not report the NoData. Useful when you
want to control the background color of the dataset. By using along with the
-addalpha option, you can prepare a dataset which doesn’t report nodata value
but is transparent in areas with no data.

srcnodata Character. (starting with GDAL 1.7.0) Set nodata values for input bands (differ-
ent values can be supplied for each band). If more than one value is supplied all
values should be quoted to keep them together as a single operating system ar-
gument. If the option is not specified, the intrinsic nodata settings on the source

gdalbuildvrt 9

datasets will be used (if they exist). The value set by this option is written in
the NODATA element of each ComplexSource element. Use a value of None to
ignore intrinsic nodata settings on the source datasets.

vrtnodata Character. (starting with GDAL 1.7.0) Set nodata values at the VRT band level
(different values can be supplied for each band). If more than one value is sup-
plied all values should be quoted to keep them together as a single operating
system argument. If the option is not specified, intrinsic nodata settings on the
first dataset will be used (if they exist). The value set by this option is written
in the NoDataValue element of each VRTRasterBand element. Use a value of
None to ignore intrinsic nodata settings on the source datasets.

a_srs Character. (starting with GDAL 1.10) Override the projection for the output
file. The srs_def may be any of the usual GDAL/OGR forms, complete WKT,
PROJ.4, EPSG:n or a file containing the WKT.

r Character. ("nearest" (default) | "bilinear" | "cubic" | "cubicspline" | "lanczos" |
"average" | "mode"). (GDAL >= 2.0) Select a resampling algorithm.

input_file_list

Character. To specify a text file with an input filename on each line.

overwrite Logical. Overwrite the VRT if it already exists.

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

... Additional arguments.

Details

This is an R wrapper for the ’gdalbuildvrt’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single char-
acter string following, precisely, the gdalinfo format (http://gdal.org/gdalbuildvrt.html), or,
in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdalbuildvrt.html

http://gdal.org/gdalbuildvrt.html
http://www.gdal.org/gdalbuildvrt.html

10 gdaldem

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
layer1 <- system.file("external/tahoe_lidar_bareearth.tif", package="gdalUtils")
layer2 <- system.file("external/tahoe_lidar_highesthit.tif", package="gdalUtils")
output.vrt <- paste(tempfile(),".vrt",sep="")
gdalbuildvrt(gdalfile=c(layer1,layer2),output.vrt=output.vrt,separate=TRUE,verbose=TRUE)
gdalinfo(output.vrt)
}

gdaldem gdaldem

Description

R wrapper for gdaldem: Tools to analyze and visualize DEMs. (since GDAL 1.7.0)

Usage

gdaldem(
mode,
input_dem,
output,
of,
compute_edges,
alg,
b,
co,
q,
z,
s,
az,
alt,
combined,
p,
trigonometric,
zero_for_flat,
color_text_file,
alpha,
exact_color_entry,
nearest_color_entry,
output_Raster = FALSE,

gdaldem 11

ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

mode Character. ("hillshade"|"slope"|"aspect"|"color-relief"|"TRI"|"TPI"|"roughness")
input_dem Character. The input DEM raster to be processed.
output Character. The output raster produced.
of Character. Select the output format. The default is GeoTIFF (GTiff). Use the

short format name.
compute_edges Logical. (GDAL >= 1.8.0) Do the computation at raster edges and near nodata

values.
alg Character. "ZevenbergenThorne" (GDAL >= 1.8.0) Use Zevenbergen & Thorne

formula, instead of Horn’s formula, to compute slope & aspect. The littera-
ture suggests Zevenbergen & Thorne to be more suited to smooth landscapes,
whereas Horn’s formula to perform better on rougher terrain.

b Numeric. Select an input band to be processed. Bands are numbered from 1.
co Character. (GDAL >= 1.8.0) Passes a creation option ("NAME=VALUE") to

the output format driver. Multiple -co options may be listed. See format specific
documentation for legal creation options for each format.

q Logical. Suppress progress monitor and other non-error output.
z Numeric. (mode=="hillshade") vertical exaggeration used to pre-multiply the

elevations.
s Numeric. (mode=="hillshade" | mode=="slope) ratio of vertical units to hor-

izontal. If the horizontal unit of the source DEM is degrees (e.g Lat/Long
WGS84 projection), you can use scale=111120 if the vertical units are meters
(or scale=370400 if they are in feet).

az Numeric. (mode=="hillshade") azimuth of the light, in degrees. 0 if it comes
from the top of the raster, 90 from the east, ... The default value, 315, should
rarely be changed as it is the value generally used to generate shaded maps.

alt Numeric. (mode=="hillshade") altitude of the light, in degrees. 90 if the light
comes from above the DEM, 0 if it is raking light.

combined Character. (mode=="hillshade") "combined shading" (starting with GDAL 1.10)
a combination of slope and oblique shading.

p Logical. (mode=="slope") if specified, the slope will be expressed as percent
slope. Otherwise, it is expressed as degrees.

trigonometric Logical. (mode=="aspect") return trigonometric angle instead of azimuth. Thus
0deg means East, 90deg North, 180deg West, 270deg South.

zero_for_flat Logical. (mode=="aspect") By using those 2 options, the aspect returned by
gdaldem aspect should be identical to the one of GRASS r.slope.aspect. Other-
wise, it’s identical to the one of Matthew Perry’s aspect.cpp utility.

color_text_file

Character. (mode=="color-relief") text-based color configuration file (see De-
scription).

12 gdaldem

alpha Logical. (mode=="color-relief") add an alpha channel to the output raster.
exact_color_entry

Logical. (mode=="color-relief") use strict matching when searching in the color
configuration file. If none matching color entry is found, the "0,0,0,0" RGBA
quadruplet will be used.

nearest_color_entry

Logical. (mode=="color-relief") use the RGBA quadruplet corresponding to the
closest entry in the color configuration file.

output_Raster Logical. Return output dst_dataset as a RasterBrick?
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdaldem’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://www.gdal.org/gdaldem.html),
or, in some cases, use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

NULL or if(output_Raster), a RasterBrick.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Matthew Perry, Even Rouault,
Howard Butler, and Chris Yesson (GDAL developers).

References

http://www.gdal.org/gdaldem.html

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
outdir <- tempdir()
gdal_setInstallation()

http://www.gdal.org/gdaldem.html
http://www.gdal.org/gdaldem.html

gdalinfo 13

valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
We'll pre-check for a proper GDAL installation before running these examples:
gdal_setInstallation()
if(!is.null(getOption("gdalUtils_gdalPath")))
{
input_dem <- system.file("external/tahoe_lidar_highesthit.tif", package="gdalUtils")
plot(raster(input_dem),col=gray.colors(256))

Hillshading:
Command-line gdaldem call:
gdaldem hillshade tahoe_lidar_highesthit.tif output_hillshade.tif
output_hillshade <- gdaldem(mode="hillshade",input_dem=input_dem,
output=file.path(outdir,"output_hillshade.tif"),output_Raster=TRUE,verbose=TRUE)
plot(output_hillshade,col=gray.colors(256))

Slope:
Command-line gdaldem call:
gdaldem slope tahoe_lidar_highesthit.tif output_slope.tif -p
output_slope <- gdaldem(mode="slope",input_dem=input_dem,
output=file.path(outdir,"output_slope.tif"),p=TRUE,output_Raster=TRUE,verbose=TRUE)
plot(output_slope,col=gray.colors(256))

Aspect:
Command-line gdaldem call:
gdaldem aspect tahoe_lidar_highesthit.tif output_aspect.tif
output_aspect <- gdaldem(mode="aspect",input_dem=input_dem,
output=file.path(outdir,"output_aspect.tif"),output_Raster=TRUE,verbose=TRUE)
plot(output_aspect,col=gray.colors(256))
}
}

gdalinfo gdalinfo

Description

R wrapper for gdalinfo

Usage

gdalinfo(
datasetname,
json,
mm,
stats,
approx_stats,
hist,
nogcp,

14 gdalinfo

nomd,
nrat,
noct,
nofl,
checksum,
proj4,
oo,
mdd,
sd,
version,
formats,
format,
optfile,
config,
debug,
raw_output = TRUE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

datasetname Character. A raster dataset name. It can be either file name.

json Logical. Display the output in json format.

mm Logical. Force computation of the actual min/max values for each band in the
dataset?

stats Logical. Read and display image statistics. Force computation if no statistics
are stored in an image.

approx_stats Logical. Read and display image statistics. Force computation if no statistics
are stored in an image. However, they may be computed based on overviews or
a subset of all tiles. Useful if you are in a hurry and don’t want precise stats.

hist Logical. Report histogram information for all bands.

nogcp Logical. Suppress ground control points list printing. It may be useful for
datasets with huge amount of GCPs, such as L1B AVHRR or HDF4 MODIS
which contain thousands of them.

nomd Logical. Suppress metadata printing. Some datasets may contain a lot of meta-
data strings.

nrat Logical. Suppress printing of raster attribute table.

noct Logical. Suppress printing of color table.

nofl Logical. (GDAL >= 1.9.0) Only display the first file of the file list.

checksum Logical. Force computation of the checksum for each band in the dataset.

proj4 Logical. (GDAL >= 1.9.0) Report a PROJ.4 string corresponding to the file’s
coordinate system.

oo Character. (starting with GDAL 2.0) NAME=VALUE. Dataset open option (for-
mat specific).

gdalinfo 15

mdd Character. Report metadata for the specified domain.

sd Numeric. (GDAL >= 1.9.0) If the input dataset contains several subdatasets
read and display a subdataset with specified number (starting from 1). This is
an alternative of giving the full subdataset name.

version Logical. Report the version of GDAL and exit.

formats Logical. List all raster formats supported by this GDAL build (read-only and
read-write) and exit. The format support is indicated as follows: ’ro’ is read-only
driver; ’rw’ is read or write (ie. supports CreateCopy); ’rw+’ is read, write and
update (ie. supports Create). A ’v’ is appended for formats supporting virtual
IO (/vsimem, /vsigzip, /vsizip, etc). A ’s’ is appended for formats supporting
subdatasets. Note: The valid formats for the output of gdalwarp are formats that
support the Create() method (marked as rw+), not just the CreateCopy() method.

format Character. List detailed information about a single format driver. The format
should be the short name reported in the –formats list, such as GTiff.

optfile Character. Read the named file and substitute the contents into the commandline
options list. Lines beginning with # will be ignored. Multi-word arguments may
be kept together with double quotes.

config Character. Sets the named configuration keyword to the given value, as op-
posed to setting them as environment variables. Some common configuration
keywords are GDAL_CACHEMAX (memory used internally for caching in
megabytes) and GDAL_DATA (path of the GDAL "data" directory). Individ-
ual drivers may be influenced by other configuration options.

debug Character. Control what debugging messages are emitted. A value of ON will
enable all debug messages. A value of OFF will disable all debug messages. An-
other value will select only debug messages containing that string in the debug
prefix code.

raw_output Logical. Dump the raw output of the gdalinfo (default=TRUE). If not, attempt
to return a clean list (not all parameters will be retained, at present).

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdalinfo’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single char-
acter string following, precisely, the gdalinfo format (http://www.gdal.org/gdalinfo.html), or,
in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

By default, this will return the gdalinfo as a character vector, one line of the output per element.
The user can choose raw_output=FALSE for a cleaner format (similar to GDALinfo in the rgdal
package), although not all parameters are preserved.

http://www.gdal.org/gdalinfo.html

16 gdallocationinfo

Value

character (if raw_output=TRUE) or list (if raw_output=FALSE).

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) and Matteo Mattiuzzi (wrapper) and Frank
Warmerdam (GDAL lead developer).

References

http://www.gdal.org/gdalinfo.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Command-line gdalinfo call:
gdalinfo tahoe_highrez.tif
gdalinfo(src_dataset,verbose=TRUE)
}

gdallocationinfo gdallocationinfo

Description

R wrapper for gdallocationinfo: raster query tool

Usage

gdallocationinfo(
srcfile,
x,
y,
coords,
xml,
lifonly,
valonly,
b,
overview,
l_srs,
geoloc,

http://www.gdal.org/gdalinfo.html

gdallocationinfo 17

wgs84,
oo,
raw_output = TRUE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

srcfile Character. The source GDAL raster datasource name.

x Numeric. X location of target pixel. By default the coordinate system is pixel/line
unless -l_srs, -wgs84 or -geoloc supplied.

y Numeric. Y location of target pixel. By default the coordinate system is pixel/line
unless -l_srs, -wgs84 or -geoloc supplied.

coords Character or Matrix. Filename of coordinates (space separated, no header) or a
matrix of coordinates.

xml Logical. The output report will be XML formatted for convenient post process-
ing.

lifonly Logical. The only output is filenames production from the LocationInfo request
against the database (ie. for identifying impacted file from VRT).

valonly Logical. The only output is the pixel values of the selected pixel on each of the
selected bands.

b Numeric. band. Selects a band to query. Multiple bands can be listed. By
default all bands are queried.

overview Numeric. overview_level. Query the (overview_level)th overview (overview_level=1
is the 1st overview), instead of the base band. Note that the x,y location (if the
coordinate system is pixel/line) must still be given with respect to the base band.

l_srs Character. srs def. The coordinate system of the input x, y location.

geoloc Logical. Indicates input x,y points are in the georeferencing system of the image.

wgs84 Logical. Indicates input x,y points are WGS84 long, lat.

oo Character. "NAME=VALUE". (starting with GDAL 2.0) Dataset open option
(format specific)

raw_output Logical. Dump the raw output of the gdallocationinfo (default=TRUE). If not,
attempt to return a matrix of data.

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdallocationinfo’ function that is part of the Geospatial Data Ab-
straction Library (GDAL). It follows the parameter naming conventions of the original function,
with some modifications to allow for more R-like parameters. For all parameters, the user can

18 gdallocationinfo

use a single character string following, precisely, the gdalinfo format (http://www.gdal.org/
gdallocationinfo.html), or, in some cases, use R vectors to achieve the same end.

This utility is intended to provide a variety of information about a pixel. Currently it reports three
things:

The location of the pixel in pixel/line space. The result of a LocationInfo metadata query against
the datasource - currently this is only implemented for VRT files which will report the file(s) used
to satisfy requests for that pixel. The raster pixel value of that pixel for all or a subset of the bands.
The unscaled pixel value if a Scale and/or Offset apply to the band. The pixel selected is requested
by x/y coordinate on the commandline, or read from stdin. More than one coordinate pair can be
supplied when reading coordinatesis from stdin. By default pixel/line coordinates are expected.
However with use of the -geoloc, -wgs84, or -l_srs switches it is possible to specify the location in
other coordinate systems.

The default report is in a human readable text format. It is possible to instead request xml output
with the -xml switch.

For scripting purposes, the -valonly and -lifonly switches are provided to restrict output to the actual
pixel values, or the LocationInfo files identified for the pixel.

It is anticipated that additional reporting capabilities will be added to gdallocationinfo in the future.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

Character or matrix (if valonly=T & raw_output=F)

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdallocationinfo.html

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Raw output of a single coordinate:
gdallocationinfo(srcfile=src_dataset,x=10,y=10)

A matrix of coordinates and a clean, matrix output:

http://www.gdal.org/gdallocationinfo.html
http://www.gdal.org/gdallocationinfo.html
http://www.gdal.org/gdallocationinfo.html

gdalmanage 19

coords <- rbind(c(10,10),c(20,20),c(30,30))
gdallocationinfo(srcfile=src_dataset,coords=coords,valonly=TRUE,raw_output=FALSE)
}

gdalmanage gdalmanage

Description

R wrapper for gdalmanage: Identify, delete, rename and copy raster data files

Usage

gdalmanage(
mode,
datasetname,
newdatasetname,
r,
u,
f,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

mode Character. Mode of operation. "identify" | "copy" | "rename" | "delete". See
details.

datasetname Character. Raster file to operate on.

newdatasetname Character. For copy and rename modes, you provide a source filename and a
target filename, just like copy and move commands in an operating system.

r Logical. Recursively scan files/folders for raster files.

u Logical. Report failures if file type is unidentified.

f Character. format. Specify format of raster file if unknown by the application.
Uses short data format name (e.g. GTiff).

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

20 gdalmanage

Details

This is an R wrapper for the ’gdalmanage’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/gdalmanage.html),
or, in some cases, can use R vectors to achieve the same end.

Mode of operation

• mode="identify",datasetname: List data format of file.

• mode="copy",datasetname,newdatasetname: Create a copy of the raster file with a new name.

• mode="rename",datasetname,newdatasetname: Change the name of the raster file.

• mode="delete",datasetname: Delete raster file.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

Character.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdalmanage.html

Examples

gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
Using identify mode
Report the data format of the raster file by using the identify mode
and specifying a data file name:

src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
gdalmanage(mode="identify",datasetname=src_dataset)

Recursive mode will scan subfolders and report the data format:
src_dir <- system.file("external/", package="gdalUtils")
gdalmanage(mode="identify",datasetname=src_dir,r=TRUE)

Not run:
Using copy mode
Copy the raster data:
file_copy <- tempfile(fileext=".tif")

http://gdal.org/gdalmanage.html
http://www.gdal.org/gdalmanage.html

gdalsrsinfo 21

gdalmanage(mode="copy",src_dataset,file_copy)
file.exists(file_copy)

Using rename mode
Rename the raster data:
new_name <- tempfile(fileext=".tif")
gdalmanage(mode="rename",file_copy,new_name)
file.exists(new_name)

Using delete mode
Delete the raster data:
gdalmanage(mode="delete",new_name)
file.exists(new_name)

End(Not run)
}

gdalsrsinfo gdalsrsinfo

Description

R wrapper for gdalsrsinfo: lists info about a given SRS in number of formats (WKT, PROJ.4, etc.)

Usage

gdalsrsinfo(
srs_def,
p,
V,
o,
as.CRS = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

srs_def Character. A raster dataset name. It can be either file name.

p Logical. Pretty-print where applicable (e.g. WKT).

V Logical. Validate SRS.

o Character. Output type ("default"|"all"|"wkt_all"|"proj4"|"wkt"|"wkt_simple"|"wkt_noct"|"wkt_esri"|"mapinfo"|"xml")

as.CRS Logical. Return a CRS object? Default=FALSE.
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

22 gdalsrsinfo

Details

This is an R wrapper for the ’gdalsrsinfo’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://www.gdal.org/gdalsrsinfo.
html), or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

If as.CRS is set to TRUE, ’o’ will automatically be set to "proj4" and the output will be coerced to
a CRS object for use with sp.

Value

character

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) and Matteo Mattiuzzi (wrapper) and Frank
Warmerdam (GDAL lead developer).

References

http://www.gdal.org/gdalsrsinfo.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Command-line gdalsrsinfo call:
gdalsrsinfo -o proj4 tahoe_highrez.tif
gdalsrsinfo(src_dataset,o="proj4",verbose=TRUE)
Export as CRS:
gdalsrsinfo(src_dataset,as.CRS=TRUE,verbose=TRUE)
}

http://www.gdal.org/gdalsrsinfo.html
http://www.gdal.org/gdalsrsinfo.html
http://www.gdal.org/gdalsrsinfo.html

gdaltindex 23

gdaltindex gdaltindex

Description

R wrapper for gdaltindex: Builds a shapefile as a raster tileindex

Usage

gdaltindex(
index_file,
gdal_file,
f,
tileindex,
write_absolute_path,
skip_different_projection,
t_srs,
src_srs_name,
src_srs_format,
lyr_name,
output_Vector = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

index_file Character. The name of the output file to create/append to. The default shapefile
will be created if it doesn’t already exist, otherwise it will append to the existing
file.

gdal_file Character. The input GDAL raster files, can be multiple files separated by
spaces. Wildcards my also be used. Stores the file locations in the same style as
specified here, unless -write_absolute_path option is also used.

f Character. format. The OGR format of the output tile index file. Default is Esri
Shapefile.

tileindex Character. field_name. The output field name to hold the file path/location to
the indexed rasters. The default tile index field name is location.

write_absolute_path

Logical. The absolute path to the raster files is stored in the tile index file. By
default the raster filenames will be put in the file exactly as they are specified on
the command line.

skip_different_projection

Logical. Only files with same projection as files already inserted in the tileindex
will be inserted (unless -t_srs is specified). Default does not check projection
and accepts all inputs.

24 gdaltindex

t_srs Character. target_srs. Geometries of input files will be transformed to the de-
sired target coordinate reference system. Using this option generates files that
are not compatible with MapServer < 6.4. Default creates simple rectangular
polygons in the same coordinate reference system as the input rasters.

src_srs_name Character. field_name. The name of the field to store the SRS of each tile. This
field name can be used as the value of the TILESRS keyword in MapServer >=
6.4.

src_srs_format Character. type. The format in which the SRS of each tile must be written.
Types can be AUTO, WKT, EPSG, PROJ.

lyr_name Character. name. Layer name to create/append to in the output tile index file.

output_Vector Logical. Return output dst_filename as a Spatial* object. Currently only works
with f="ESRI Shapefile".

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdaltindex’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdaltindex format (http://www.gdal.org/gdaltindex.
html), or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The user can choose to (optionally) return a SpatialPolygonsDataFrame of the output file.

Value

NULL or if(output_Vector), a SpatialPolygonsDataFrame.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdaltindex.html

http://www.gdal.org/gdaltindex.html
http://www.gdal.org/gdaltindex.html
http://www.gdal.org/gdaltindex.html

gdaltransform 25

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(rgdal) && valid_install)
{
Modified example from the original gdaltindex documentation:
src_folder <- system.file("external/", package="gdalUtils")
output_shapefile <- paste(tempfile(),".shp",sep="")
Command-line gdalwarp call:
gdaltindex doq_index.shp external/*.tif
gdaltindex(output_shapefile,list.files(path=src_folder,pattern=glob2rx("*.tif"),full.names=TRUE),
output_Vector=TRUE,verbose=TRUE)
}

gdaltransform gdaltransform

Description

R wrapper for gdaltransform: transforms coordinates

Usage

gdaltransform(
srcfile,
dstfile,
coords,
s_srs,
t_srs,
to,
order,
tps,
rpc,
geoloc,
i,
gcp,
output_xy,
ignore.full_scan = TRUE,
verbose = FALSE

)

26 gdaltransform

Arguments

srcfile Character. File with source projection definition or GCP’s. If not given, source
projection is read from the command-line -s_srs or -gcp parameters.

dstfile Character. File with destination projection definition.

coords Matrix. A two-column matrix with coordinates.

s_srs Character. source spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUserInput()
call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4 declara-
tions (as above), or the name of a .prf file containing well known text.

t_srs Character. target spatial reference set. The coordinate systems that can be passed
are anything supported by the OGRSpatialReference.SetFromUserInput() call,
which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4 declarations
(as above), or the name of a .prf file containing well known text.

to Character. "NAME=VALUE". set a transformer option suitable to pass to
GDALCreateGenImgProjTransformer2().

order Numeric. order of polynomial used for warping (1 to 3). The default is to select
a polynomial order based on the number of GCPs.

tps Logical. Force use of thin plate spline transformer based on available GCPs.

rpc Logical. Force use of RPCs.

geoloc Logical. Force use of Geolocation Arrays.

i Logical. Inverse transformation: from destination to source.

gcp Character. pixel line easting northing [elevation]: Provide a GCP to be used for
transformation (generally three or more are required)

output_xy Logical. (GDAL >= 2.0) Restrict output to "x y" instead of "x y z"
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdaltransform’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single char-
acter string following, precisely, the gdalinfo format (http://gdal.org/gdaltransform.html),
or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

Numeric.

http://gdal.org/gdaltransform.html

gdalwarp 27

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdaltransform.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
pts <- matrix(c(177502,311865,177503,311866),ncol=2,byrow=TRUE)
gdaltransform(s_srs="EPSG:28992",t_srs="EPSG:31370",coords=pts,verbose=TRUE)
}

gdalwarp gdalwarp

Description

R wrapper for gdalwarp: image reprojection and warping utility

Usage

gdalwarp(
srcfile,
dstfile,
s_srs,
t_srs,
to,
order,
tps,
rpc,
geoloc,
et,
refine_gcps,
te,
te_srs,
tr,
tap,
ts,
ovr,

http://www.gdal.org/gdaltransform.html

28 gdalwarp

wo,
ot,
wt,
r,
srcnodata,
dstnodata,
dstalpha,
wm,
multi,
q,
of = "GTiff",
co,
cutline,
cl,
cwhere,
csql,
cblend,
crop_to_cutline,
overwrite,
nomd,
cvmd,
setci,
oo,
doo,
output_Raster = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE,
...

)

Arguments

srcfile Character. The source file name(s).

dstfile Character. The destination file name.

s_srs Character. source spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUserInput()
call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4 declara-
tions (as above), or the name of a .prf file containing well known text.

t_srs Character. target spatial reference set. The coordinate systems that can be passed
are anything supported by the OGRSpatialReference.SetFromUserInput() call,
which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4 declarations
(as above), or the name of a .prf file containing well known text.

to Character. set a transformer option suitable to pass to GDALCreateGenImgPro-
jTransformer2().

order Numeric. order of polynomial used for warping (1 to 3). The default is to select
a polynomial order based on the number of GCPs.

tps Logical. Force use of thin plate spline transformer based on available GCPs.

gdalwarp 29

rpc Logical. Force use of RPCs.

geoloc Logical. Force use of Geolocation Arrays.

et Numeric. error threshold for transformation approximation (in pixel units - de-
faults to 0.125).

refine_gcps Numeric. (GDAL >= 1.9.0) refines the GCPs by automatically eliminating out-
liers. Outliers will be eliminated until minimum_gcps are left or when no out-
liers can be detected. The tolerance is passed to adjust when a GCP will be
eliminated. Note that GCP refinement only works with polynomial interpola-
tion. The tolerance is in pixel units if no projection is available, otherwise it is
in SRS units. If minimum_gcps is not provided, the minimum GCPs according
to the polynomial model is used.

te Numeric. (c(xmin,ymin,xmax,ymax)). set georeferenced extents of output file
to be created (in target SRS).

te_srs Character. srs_def. (GDAL >= 2.0) Specifies the SRS in which to interpret the
coordinates given with -te. The srs_def may be any of the usual GDAL/OGR
forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT. This must
not be confused with -t_srs which is the target SRS of the output dataset. -te_srs
is a conveniency e.g. when knowing the output coordinates in a geodetic long/lat
SRS, but still wanting a result in a projected coordinate system.

tr Numeric. (c(xres,yres)). set output file resolution (in target georeferenced units)

tap Logical. (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the
extent of the output file to the values of the -tr, such that the aligned extent
includes the minimum extent.

ts Numeric. (c(width,height)). set output file size in pixels and lines. If width
or height is set to 0, the other dimension will be guessed from the computed
resolution. Note that -ts cannot be used with -tr

ovr Character. (level | "AUTO" | "AUTO-n" | "NONE"). (GDAL >= 2.0) To specify
which overview level of source files must be used. The default choice, AUTO,
will select the overview level whose resolution is the closest to the target reso-
lution. Specify an integer value (0-based, i.e. 0=1st overview level) to select a
particular level. Specify AUTO-n where n is an integer greater or equal to 1, to
select an overview level below the AUTO one. Or specify NONE to force the
base resolution to be used.

wo Character. Set a warp options. The GDALWarpOptions::papszWarpOptions
docs show all options. Multiple -wo options may be listed.

ot Character. For the output bands to be of the indicated data type.

wt Character. Working pixel data type. The data type of pixels in the source image
and destination image buffers.

r Character. resampling_method. ("near"|"bilinear"|"cubic"|"cubicspline"|"lanczos"|"average"|"mode"|"max"|"min"|"med"|"q1"|"q3")
See Description.

srcnodata Character. Set nodata masking values for input bands (different values can be
supplied for each band). If more than one value is supplied all values should be
quoted to keep them together as a single operating system argument. Masked
values will not be used in interpolation. Use a value of None to ignore intrinsic
nodata settings on the source dataset.

30 gdalwarp

dstnodata Character. Set nodata values for output bands (different values can be supplied
for each band). If more than one value is supplied all values should be quoted
to keep them together as a single operating system argument. New files will
be initialized to this value and if possible the nodata value will be recorded
in the output file. Use a value of None to ensure that nodata is not defined
(GDAL>=2.0). If this argument is not used then nodata values will be copied
from the source dataset (GDAL>=2.0).

dstalpha Logical. Create an output alpha band to identify nodata (unset/transparent) pix-
els.

wm Numeric. Set the amount of memory (in megabytes) that the warp API is al-
lowed to use for caching.

multi Logical. Use multithreaded warping implementation. Multiple threads will be
used to process chunks of image and perform input/output operation simultane-
ously.

q Logical. Be quiet.

of Character. Select the output format. The default is GeoTIFF (GTiff). Use the
short format name.

co Character. passes a creation option to the output format driver. Multiple -co
options may be listed. See format specific documentation for legal creation
options for each format.

cutline Character. Enable use of a blend cutline from the name OGR support datasource.

cl Character. Select the named layer from the cutline datasource.

cwhere Character. Restrict desired cutline features based on attribute query.

csql Character. Select cutline features using an SQL query instead of from a layer
with -cl.

cblend Numeric. Set a blend distance to use to blend over cutlines (in pixels).
crop_to_cutline

Logical. (GDAL >= 1.8.0) Crop the extent of the target dataset to the extent of
the cutline.

overwrite Logical. (GDAL >= 1.8.0) Overwrite the target dataset if it already exists.

nomd Logical. (GDAL >= 1.10.0) Do not copy metadata. Without this option, dataset
and band metadata (as well as some band information) will be copied from the
first source dataset. Items that differ between source datasets will be set to * (see
-cvmd option).

cvmd Character. (GDAL >= 1.10.0) Value to set metadata items that conflict between
source datasets (default is "*"). Use "" to remove conflicting items.

setci Logical. (GDAL >= 1.10.0) Set the color interpretation of the bands of the target
dataset from the source dataset.

oo Character. NAME=VALUE. (starting with GDAL 2.0) Dataset open option (for-
mat specific).

doo Character. NAME=VALUE. (starting with GDAL 2.1) Output dataset open op-
tion (format specific).

output_Raster Logical. Return output dst_dataset as a RasterBrick?

gdalwarp 31

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

... Additional arguments.

Details

This is an R wrapper for the ’gdalwarp’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single char-
acter string following, precisely, the gdalwarp format (http://www.gdal.org/gdalwarp.html),
or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The resampling_methods available are as follows:

• near: nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).

• bilinear: bilinear resampling.

• cubic: cubic resampling.

• cubicspline: cubic spline resampling.

• lanczos: Lanczos windowed sinc resampling.

• average: average resampling, computes the average of all non-NODATA contributing pixels.
(GDAL >= 1.10.0)

• mode: mode resampling, selects the value which appears most often of all the sampled points.
(GDAL >= 1.10.0)

• max: maximum resampling, selects the maximum value from all non-NODATA contributing
pixels. (GDAL >= 2.0.0)

• min: minimum resampling, selects the minimum value from all non-NODATA contributing
pixels. (GDAL >= 2.0.0)

• med: median resampling, selects the median value of all non-NODATA contributing pixels.
(GDAL >= 2.0.0)

• q1: first quartile resampling, selects the first quartile value of all non-NODATA contributing
pixels. (GDAL >= 2.0.0)

• q3: third quartile resampling, selects the third quartile value of all non-NODATA contributing
pixels. (GDAL >= 2.0.0)

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

NULL or if(output_Raster), a RasterBrick.

http://www.gdal.org/gdalwarp.html

32 gdal_chooseInstallation

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdalwarp.html

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
outdir <- tempdir()
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
Example from the original gdal_translate documentation:
src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Command-line gdalwarp call:
gdalwarp -t_srs '+proj=utm +zone=11 +datum=WGS84' raw_spot.tif utm11.tif
gdalwarp(src_dataset,dstfile=file.path(outdir,"tahoe_highrez_utm11.tif"),
t_srs='+proj=utm +zone=11 +datum=WGS84',output_Raster=TRUE,
overwrite=TRUE,verbose=TRUE)
}

gdal_chooseInstallation

gdal_chooseInstallation

Description

Choose a GDAL installation based on certain requirements.

Usage

gdal_chooseInstallation(hasDrivers)

Arguments

hasDrivers Character. Which drivers must be available?

http://www.gdal.org/gdalwarp.html

gdal_cmd_builder 33

Details

By default, the GDAL commands will use the installation found at getOption("gdalUtils_gdalPath")[[1]],
which is the most recent version found on the system. If the user has more than one GDAL installed
(more common on Windows and Mac systems than *nix systems), gdal_chooseInstallation can be
used to choose an installation (perhaps not the most recent one) that has certain functionality, e.g.
supports HDF4 formatted files.

Value

Numeric id of the most recent installation that matches the requirements.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>)

References

http://www.gdal.org/gdal_translate.html

Examples

Not run:
Choose the best installation that has both HDF4 and HDF5 drivers:
gdal_chooseInstallation(hasDrivers=c("HDF4","HDF5"))
Get the version of this installation:
getOption("gdalUtils_gdalPath")[[
gdal_chooseInstallation(hasDrivers=c("HDF4","HDF5"))]]$version

End(Not run)

gdal_cmd_builder gdal_cmd_builder

Description

Helper function for building GDAL commands.

Usage

gdal_cmd_builder(
executable,
parameter_variables = c(),
parameter_values = c(),
parameter_order = c(),
parameter_noflags = c(),
parameter_doubledash = c(),
parameter_noquotes = c(),
gdal_installation_id = 1,

http://www.gdal.org/gdal_translate.html

34 gdal_cmd_builder

python_util = FALSE,
verbose = FALSE

)

Arguments

executable Character. The GDAL command to use (e.g. "gdal_translate")
parameter_variables

List. A list of parameter names, organized by type.
parameter_values

List. A list of the parameters names/values.
parameter_order

Character. The order of the parameters for the GDAL command.
parameter_noflags

Character. Parameters which do not have a flag.
parameter_doubledash

Character. Parameters which should have a double dash "–".
parameter_noquotes

Character. Parameters which should not be wrapped in quotes (vector parame-
ters only, at present).

gdal_installation_id

Numeric. The ID of the GDAL installation to use. Defaults to 1.

python_util Logical. Is the utility a python utility? Default = FALSE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This function takes the executable name (e.g. "gdal_translate"), a list of parameter names organized
by logical, vector, scalar, character, repeatable, a list of values of these parameters, the order they
should be used in the GDAL command, and a list of parameters that should not have a flag, and
returns a properly formatted GDAL command (with the full path-to-executable) that should work
with a system() call.

Sometimes, a user may not want to use the most recent GDAL install (gdal_installation_id=1), so
the gdal_installation_id can be used to set a different install. This is often used with gdal_chooseInstallation
if, for instance, the particular GDAL installation required needs a specific driver that may not be
available in all installations.

In general, an end user shouldn’t need to use this function – it is used by many of the GDAL
wrappers within gdalUtils.

Value

Formatted GDAL command for use with system() calls.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>)

gdal_cmd_builder 35

References

http://www.gdal.org/gdal_translate.html

Examples

Not run:
This builds a gdal_translate command.
executable <- "gdal_translate"

parameter_variables <- list(
logical = list(
varnames <- c("strict","unscale","epo",
"eco","q","sds","stats")),
vector = list(
varnames <- c("outsize","scale","srcwin",
"projwin","a_ullr","gcp")),
scalar = list(
varnames <- c("a_nodata")),
character = list(
varnames <- c("ot","of","mask","expand","a_srs",
"src_dataset","dst_dataset")),
repeatable = list(
varnames <- c("b","mo","co")))

parameter_order <- c(
"strict","unscale","epo","eco","q","sds","stats",
"outsize","scale","srcwin","projwin","a_ullr","gcp",
"a_nodata",
"ot","of","mask","expand","a_srs",
"b","mo","co",
"src_dataset","dst_dataset")

parameter_noflags <- c("src_dataset","dst_dataset")

Now assign some parameters:
parameter_values = list(
src_dataset = "input.tif",
dst_dataset = "output.envi",
of = "ENVI",
strict = TRUE
)

cmd <- gdal_cmd_builder(
executable=executable,
parameter_variables=parameter_variables,
parameter_values=parameter_values,
parameter_order=parameter_order,
parameter_noflags=parameter_noflags)

cmd
system(cmd,intern=TRUE)

http://www.gdal.org/gdal_translate.html

36 gdal_contour

End(Not run)

gdal_contour gdal_contour

Description

R wrapper for gdal_contour: builds vector contour lines from a raster elevation model

Usage

gdal_contour(
src_filename,
dst_filename,
b,
a,
threeD,
inodata,
snodata,
i,
f = "ESRI Shapefile",
dsco,
lco,
off,
fl,
nln,
output_Vector = FALSE,
config,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

src_filename Character. Any OGR supported readable datasource.

dst_filename Character. The OGR supported output file.

b Numeric. Picks a particular band to get the DEM from. Defaults to band 1.

a Character. Provides a name for the attribute in which to put the elevation. If not
provided no elevation attribute is attached.

threeD Logical. (GDAL parameter ’3d’) Force production of 3D vectors instead of 2D.
Includes elevation at every vertex.

inodata Logical. Ignore any nodata value implied in the dataset - treat all values as valid.

snodata Numeric. Input pixel value to treat as "nodata".

i Numeric. Elevation interval between contours.

f Character. Create output in a particular format, default is "ESRI Shapefiles".

gdal_contour 37

dsco Character. Dataset creation option (format specific). Follows "NAME=VALUE"
format.

lco Character. Layer creation option (format specific). Follows "NAME=VALUE"
format.

off Numeric. Offset from zero relative to which to interpret intervals.

fl Character. Name one or more "fixed levels" to extract.

nln Character. Provide a name for the output vector layer. Defaults to "contour".

output_Vector Logical. Return output dst_filename as a Spatial* object. Currently only works
with f="ESRI Shapefile".

config Character. Sets runtime configuration options for GDAL. See https://trac.osgeo.org/gdal/wiki/ConfigOptions
for more information.

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdal_contour’ function that is part of the Geospatial Data Abstrac-
tion Library (GDAL). It follows the parameter naming conventions of the original function, with
some modifications to allow for more R-like parameters. For all parameters, the user can use a sin-
gle character string following, precisely, the gdal_contour format (http://www.gdal.org/gdal_
contour.html), or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

output vector filename or SpatialLinesDataFrame object.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdal_contour.html

http://www.gdal.org/gdal_contour.html
http://www.gdal.org/gdal_contour.html
http://www.gdal.org/gdal_contour.html

38 gdal_grid

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
Example from the original gdal_contour documentation:
gdal_contour -a elev dem.tif contour.shp -i 10.0
Choose a DEM:
input_dem <- system.file("external/tahoe_lidar_bareearth.tif", package="gdalUtils")
Setup an output filename (shapefile):
output_shapefile <- paste(tempfile(),".shp",sep="")
contour_output <- gdal_contour(src_filename=input_dem,dst_filename=output_shapefile,
a="Elevation",i=5.,output_Vector=TRUE)
Plot the contours using spplot:
spplot(contour_output["Elevation"],contour=TRUE)
}

gdal_grid gdal_grid

Description

R wrapper for gdal_grid: creates regular grid from the scattered data

Usage

gdal_grid(
src_datasource,
dst_filename,
ot,
of,
txe,
tye,
outsize,
a_srs,
zfield,
z_increase,
z_multiply,
a,
spat,
clipsrc,
clipsrcsql,
clipsrclayer,
clipsrcwhere,

gdal_grid 39

l,
where,
sql,
co,
q,
config,
output_Raster = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

src_datasource Character. Any OGR supported readable datasource.
dst_filename Character. The GDAL supported output file.
ot Character. "type". For the output bands to be of the indicated data type.
of Character. "format". Select the output format. The default is GeoTIFF (GTiff).

Use the short format name.
txe Numeric. c(xmin,xmax). Set georeferenced X extents of output file to be cre-

ated.
tye Numeric. c(ymin,ymax). Set georeferenced Y extents of output file to be cre-

ated.
outsize Numeric. c(xsize,ysize). Set the size of the output file in pixels and lines.
a_srs Character. "srs_def". Override the projection for the output file. The srs_def

may be any of the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n
or a file containing the WKT.

zfield Character. "field_name". Identifies an attribute field on the features to be used
to get a Z value from. This value overrides Z value read from feature geometry
record (naturally, if you have a Z value in geometry, otherwise you have no
choice and should specify a field name containing Z value).

z_increase Numeric. increase_value. Addition to the attribute field on the features to be
used to get a Z value from. The addition should be the same unit as Z value. The
result value will be Z value + Z increase value. The default value is 0.

z_multiply Numeric. multiply_value. This is multiplication ratio for Z field. This can be
used for shift from e.g. foot to meters or from elevation to deep. The result value
will be (Z value + Z increase value) * Z multiply value. The default value is 1.

a Character. [algorithm[:parameter1=value1][:parameter2=value2]...] Set the in-
terpolation algorithm or data metric name and (optionally) its parameters. See
INTERPOLATION ALGORITHMS and DATA METRICS sections for further
discussion of available options.

spat Numeric. c(xmin,ymin,xmax,ymax). Adds a spatial filter to select only features
contained within the bounding box described by (xmin, ymin) - (xmax, ymax).

clipsrc Numeric or Character. c(xmin,ymin,xmax,ymax)|WKT|datasource|spat_extent.
Adds a spatial filter to select only features contained within the specified bound-
ing box (expressed in source SRS), WKT geometry (POLYGON or MULTI-
POLYGON), from a datasource or to the spatial extent of the -spat option if you

40 gdal_grid

use the spat_extent keyword. When specifying a datasource, you will generally
want to use it in combination of the -clipsrclayer, -clipsrcwhere or -clipsrcsql
options.

clipsrcsql Character. Select desired geometries using an SQL query instead.

clipsrclayer Character. "layername". Select the named layer from the source clip datasource.

clipsrcwhere Character. "expression". Restrict desired geometries based on attribute query.

l Character. "layername". Indicates the layer(s) from the datasource that will be
used for input features. May be specified multiple times, but at least one layer
name or a -sql option must be specified.

where Character. "expression". An optional SQL WHERE style query expression to
be applied to select features to process from the input layer(s).

sql Character. "select_statement". An SQL statement to be evaluated against the
datasource to produce a virtual layer of features to be processed.

co Character. "NAME=VALUE". Passes a creation option to the output format
driver. Multiple -co options may be listed. See format specific documentation
for legal creation options for each format.

q Logical. Suppress progress monitor and other non-error output.

config Character. Sets runtime configuration options for GDAL. See https://trac.osgeo.org/gdal/wiki/ConfigOptions
for more information.

output_Raster Logical. Return output dst_filename as a RasterBrick?
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdal_grid’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a sin-
gle character string following, precisely, the gdal_contour format (http://www.gdal.org/gdal_
grid.html), or, in some cases, can use R vectors to achieve the same end.

INTERPOLATION ALGORITHMS

There are number of interpolation algorithms to choose from.

• invdist
Inverse distance to a power. This is default algorithm. It has following parameters:

– power: Weighting power (default 2.0).
– smoothing: Smoothing parameter (default 0.0).
– radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter

to zero to use whole point array. Default is 0.0.
– radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this

parameter to zero to use whole point array. Default is 0.0.
– angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

http://www.gdal.org/gdal_grid.html
http://www.gdal.org/gdal_grid.html

gdal_grid 41

– max_points: Maximum number of data points to use. Do not search for more points than
this number. This is only used if search ellipse is set (both radii are non-zero). Zero
means that all found points should be used. Default is 0.

– min_points: Minimum number of data points to use. If less amount of points found the
grid node considered empty and will be filled with NODATA marker. This is only used if
search ellipse is set (both radii are non-zero). Default is 0.

– nodata: NODATA marker to fill empty points (default 0.0).

• invdistnn
(Since GDAL 2.1) Inverse distance to a power with nearest neighbor searching, ideal when
max_points is used. It has following parameters:

– power: Weighting power (default 2.0).
– radius: The radius of the search circle, which should be non-zero. Default is 1.0.
– max_points: Maximum number of data points to use. Do not search for more points

than this number. Found points will be ranked from nearest to furthest distance when
weighting. Default is 12.

– min_points: Minimum number of data points to use. If less amount of points found the
grid node is considered empty and will be filled with NODATA marker. Default is 0.

– nodata: NODATA marker to fill empty points (default 0.0).

• average
Moving average algorithm. It has following parameters:

– radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter
to zero to use whole point array. Default is 0.0.

– radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

– angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).
– min_points: Minimum number of data points to use. If less amount of points found the

grid node considered empty and will be filled with NODATA marker. Default is 0.
– nodata: NODATA marker to fill empty points (default 0.0). Note, that it is essential to

set search ellipse for moving average method. It is a window that will be averaged when
computing grid nodes values.

• nearest
Nearest neighbor algorithm. It has following parameters:

– radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter
to zero to use whole point array. Default is 0.0.

– radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

– angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).
– nodata: NODATA marker to fill empty points (default 0.0).

• linear
(Since GDAL 2.1) Linear interpolation algorithm.
The Linear method performs linear interpolation by compution a Delaunay triangulation of
the point cloud, finding in which triangle of the triangulation the point is, and by doing linear
interpolation from its barycentric coordinates within the triangle. If the point is not in any

42 gdal_grid

triangle, depending on the radius, the algorithm will use the value of the nearest point or the
nodata value.
It has following parameters:

– radius: In case the point to be interpolated does not fit into a triangle of the Delaunay
triangulation, use that maximum distance to search a nearest neighbour, or use nodata
otherwise. If set to -1, the search distance is infinite. If set to 0, nodata value will be
always used. Default is -1.

– nodata: NODATA marker to fill empty points (default 0.0).

DATA METRICS

Besides the interpolation functionality gdal_grid can be used to compute some data metrics using
the specified window and output grid geometry. These metrics are:

• minimum: Minimum value found in grid node search ellipse.

• maximum: Maximum value found in grid node search ellipse.

• range: A difference between the minimum and maximum values found in grid node search
ellipse.

• count: A number of data points found in grid node search ellipse.

• average_distance: An average distance between the grid node (center of the search ellipse)
and all of the data points found in grid node search ellipse.

• average_distance_pts: An average distance between the data points found in grid node search
ellipse. The distance between each pair of points within ellipse is calculated and average of
all distances is set as a grid node value.

All the metrics have the same set of options:

• radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter to
zero to use whole point array. Default is 0.0.

• radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this parameter
to zero to use whole point array. Default is 0.0.

• angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

• min_points: Minimum number of data points to use. If less amount of points found the grid
node considered empty and will be filled with NODATA marker. This is only used if search
ellipse is set (both radii are non-zero). Default is 0.

• nodata: NODATA marker to fill empty points (default 0.0).

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

NULL or if(output_Raster), a RasterBrick.

gdal_grid 43

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdal_grid.html

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && valid_install)
{
Create a properly formatted CSV:
temporary_dir <- tempdir()
tempfname_base <- file.path(temporary_dir,"dem")
tempfname_csv <- paste(tempfname_base,".csv",sep="")

pts <- data.frame(
Easting=c(86943.4,87124.3,86962.4,87077.6),
Northing=c(891957,892075,892321,891995),
Elevation=c(139.13,135.01,182.04,135.01)
)

write.csv(pts,file=tempfname_csv,row.names=FALSE)

Now make a matching VRT file
tempfname_vrt <- paste(tempfname_base,".vrt",sep="")
vrt_header <- c(
'<OGRVRTDataSource>',
'\t<OGRVRTLayer name="dem">',
'\t<SrcDataSource>dem.csv</SrcDataSource>',
'\t<GeometryType>wkbPoint</GeometryType>',
'\t<GeometryField encoding="PointFromColumns" x="Easting" y="Northing" z="Elevation"/>',
'\t</OGRVRTLayer>',
'\t</OGRVRTDataSource>'
)
vrt_filecon <- file(tempfname_vrt,"w")
writeLines(vrt_header,con=vrt_filecon)
close(vrt_filecon)

tempfname_tif <- paste(tempfname_base,".tiff",sep="")

Now run gdal_grid:
setMinMax(gdal_grid(src_datasource=tempfname_vrt,
dst_filename=tempfname_tif,a="invdist:power=2.0:smoothing=1.0",
txe=c(85000,89000),tye=c(894000,890000),outsize=c(400,400),

http://www.gdal.org/gdal_grid.html

44 gdal_rasterize

of="GTiff",ot="Float64",l="dem",output_Raster=TRUE))
}

gdal_rasterize gdal_rasterize

Description

R wrapper for gdal_rasterize: burns vector geometries into a raster

Usage

gdal_rasterize(
src_datasource,
dst_filename,
b,
i,
at,
burn,
a,
threeD,
add,
l,
where,
sql,
dialect,
of,
a_srs,
co,
a_nodata,
init,
te,
tr,
tap,
ts,
ot,
q,
output_Raster = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

src_datasource Character. Any OGR supported readable datasource.

dst_filename Character. The GDAL supported output file. Must support update mode access.
Before GDAL 1.8.0, gdal_rasterize could not create new output files.

gdal_rasterize 45

b Numeric. The band(s) to burn values into. Multiple -b arguments may be used
to burn into a list of bands. The default is to burn into band 1.

i Logical. Invert rasterization. Burn the fixed burn value, or the burn value asso-
ciated with the first feature into all parts of the image not inside the provided a
polygon.

at Logical. Enables the ALL_TOUCHED rasterization option so that all pixels
touched by lines or polygons will be updated not just those one the line ren-
der path, or whose center point is within the polygon. Defaults to disabled for
normal rendering rules.

burn Numeric. A fixed value to burn into a band for all objects. A vector of burn
options can be supplied, one per band being written to.

a Character. Identifies an attribute field on the features to be used for a burn in
value. The value will be burned into all output bands.

threeD Logical. (GDAL parameter ’3d’) Indicates that a burn value should be extracted
from the "Z" values of the feature. These values are adjusted by the burn value
given by "-burn value" or "-a attribute_name" if provided. As of now, only points
and lines are drawn in 3D.

add Logical. Instead of burning a new value, this adds the new value to the existing
raster. Suitable for heatmaps for instance.

l Character. Indicates the layer(s) from the datasource that will be used for input
features. May be specified multiple times, but at least one layer name or a -sql
option must be specified.

where Character. An optional SQL WHERE style query expression to be applied to
select features to burn in from the input layer(s).

sql Character. An SQL statement to be evaluated against the datasource to produce
a virtual layer of features to be burned in.

dialect Character. (starting with GDAL 2.1) The SQL dialect. In some cases can be
used to use (unoptimized) OGR SQL instead of the native SQL of an RDBMS
by passing OGRSQL. Starting with GDAL 1.10, the "SQLITE" dialect can also
be used with any datasource.

of Character. (GDAL >= 1.8.0) Select the output format. The default is GeoTIFF
(GTiff). Use the short format name.

a_srs Character. (GDAL >= 1.8.0) Override the projection for the output file. If not
specified, the projection of the input vector file will be used if available. If
incompatible projections between input and output files, no attempt will be made
to reproject features. The srs_def may be any of the usual GDAL/OGR forms,
complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

co Character. (GDAL >= 1.8.0) Passes a creation option ("NAME=VALUE") to
the output format driver. Multiple -co options may be listed. See format specific
documentation for legal creation options for each format.

a_nodata Numeric. (GDAL >= 1.8.0) Assign a specified nodata value to output bands.

init Numeric. (GDAL >= 1.8.0) Pre-initialize the output image bands with these
values. However, it is not marked as the nodata value in the output file. If only
one value is given, the same value is used in all the bands.

46 gdal_rasterize

te Numeric. c(xmin,ymin,xmax,ymax) (GDAL >= 1.8.0) set georeferenced ex-
tents. The values must be expressed in georeferenced units. If not specified, the
extent of the output file will be the extent of the vector layers.

tr Numeric. c(xres,yres) (GDAL >= 1.8.0) set target resolution. The values must
be expressed in georeferenced units. Both must be positive values.

tap Logical. (GDAL >= 1.8.0) (target aligned pixels) align the coordinates of the
extent of the output file to the values of the -tr, such that the aligned extent
includes the minimum extent.

ts Numeric. c(width,height) (GDAL >= 1.8.0) set output file size in pixels and
lines. Note that -ts cannot be used with -tr

ot Character. (GDAL >= 1.8.0) For the output bands to be of the indicated data
type. Defaults to Float64

q Logical. (GDAL >= 1.8.0) Suppress progress monitor and other non-error out-
put.

output_Raster Logical. Return output dst_filename as a RasterBrick?
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’gdal_rasterize’ function that is part of the Geospatial Data Abstrac-
tion Library (GDAL). It follows the parameter naming conventions of the original function, with
some modifications to allow for more R-like parameters. For all parameters, the user can use a
single character string following, precisely, the gdalwarp format (http://www.gdal.org/gdal_
rasterize.html), or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

NULL or if(output_Raster), a RasterBrick.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdal_rasterize.html

http://www.gdal.org/gdal_rasterize.html
http://www.gdal.org/gdal_rasterize.html
http://www.gdal.org/gdal_rasterize.html

gdal_setInstallation 47

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
Example from the original gdal_rasterize documentation:
gdal_rasterize -b 1 -b 2 -b 3 -burn 255 -burn 0
-burn 0 -l tahoe_highrez_training tahoe_highrez_training.shp tempfile.tif
dst_filename_original <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Back up the file, since we are going to burn stuff into it.
dst_filename <- paste(tempfile(),".tif",sep="")
file.copy(dst_filename_original,dst_filename,overwrite=TRUE)
#Before plot:
plotRGB(brick(dst_filename))
src_dataset <- system.file("external/tahoe_highrez_training.shp", package="gdalUtils")
tahoe_burned <- gdal_rasterize(src_dataset,dst_filename,
b=c(1,2,3),burn=c(0,255,0),l="tahoe_highrez_training",verbose=TRUE,output_Raster=TRUE)
#After plot:
plotRGB(brick(dst_filename))
}

gdal_setInstallation gdal_setInstallation

Description

Sets local GDAL installation options

Usage

gdal_setInstallation(
search_path = NULL,
rescan = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

search_path Character. Force a search in a specified directory. This directory should contain
the gdalinfo(.exe) executable. If a valid GDAL install is found in this path, this
will force gdalUtils to use this installation. Remember to set rescan=TRUE if
you have already set an install.

rescan Logical. Force a rescan if neccessary (e.g. if you updated your GDAL install).

48 gdal_setInstallation

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This function searches the local system for valid installations of GDAL, and returns a list, one item
per valid GDAL install, containing the path to the installation, the version, the release date, available
drivers, and available python utilities. The list will be sorted by release date, so in general the first
entry is the one that is used by the various GDAL utilities. Note that this will automatically run
every time a GDAL wrapper function is called, so the user does not have to explicitly run it.

gdal_setInstallation is designed to invoke consecutively more rigorous searches in able to find a
valid GDAL install. Understanding the search routine may help debug problems on your system.
The order of the searches is as follows, noting that as soon as a valid install is found (determined by
running gdalinfo –version and getting the correct output), gdal_setInstallation stops further search-
ing:

1. Checks a pre-determined location given by the search_path parameter.

2. Checks using Sys.which(). This is typically defined in the system’s PATH, so will override
any other install.

3. Checks in common install locations (OS specific).

4. (optional, if ignore.full_scan=FALSE) Finally, if it can’t find a valid GDAL install anywhere
else, it will brute-force search the entire local system (which may take a long time).

Value

Sets an option "gdalUtils_gdalPath" with GDAL installation information.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) and Matteo Mattiuzzi

References

http://www.gdal.org/gdal_translate.html

Examples

Not run:
Assumes you have GDAL installed on your local machine.
getOption("gdalUtils_gdalPath")
gdal_setInstallation()
getOption("gdalUtils_gdalPath")
If there is more than one installation of GDAL, this is the
most recent installation:
getOption("gdalUtils_gdalPath")[[1]]
The version number:
getOption("gdalUtils_gdalPath")[[1]]$version

http://www.gdal.org/gdal_translate.html

gdal_translate 49

End(Not run)

gdal_translate gdal_translate

Description

R wrapper for gdal_translate

Usage

gdal_translate(
src_dataset,
dst_dataset,
ot,
strict,
of = "GTiff",
b,
mask,
expand,
outsize,
tr,
r,
scale,
exponent,
unscale,
srcwin,
projwin,
projwin_srs,
epo,
eco,
a_srs,
a_ullr,
a_nodata,
mo,
co,
gcp,
q,
sds,
stats,
norat,
oo,
sd_index,
config,
output_Raster = FALSE,
ignore.full_scan = TRUE,

50 gdal_translate

verbose = FALSE,
...

)

Arguments

src_dataset Character. The source dataset name. It can be either file name, URL of data
source or subdataset name for multi-dataset files.

dst_dataset Character. The destination file name.

ot Character. ("Byte"/"Int16"/"UInt16"/"UInt32"/"Int32"/"Float32"/"Float64"/"CInt16"/"CInt32"/"CFloat32"/"CFloat64").
For the output bands to be of the indicated data type.

strict Logical. Don’t be forgiving of mismatches and lost data when translating to the
output format.

of Character. Select the output format. The default is GeoTIFF (GTiff). Use the
short format name.

b Numeric or Character. Select an input band band for output. Bands are num-
bered from 1. Multiple bands may be used to select a set of input bands to write
to the output file, or to reorder bands. Starting with GDAL 1.8.0, band can also
be set to "mask,1" (or just "mask") to mean the mask band of the first band of
the input dataset.

mask Numeric. (GDAL >= 1.8.0) Select an input band band to create output dataset
mask band. Bands are numbered from 1. band can be set to "none" to avoid
copying the global mask of the input dataset if it exists. Otherwise it is copied
by default ("auto"), unless the mask is an alpha channel, or if it is explicitly used
to be a regular band of the output dataset ("-b mask"). band can also be set to
"mask,1" (or just "mask") to mean the mask band of the 1st band of the input
dataset.

expand Character. ("gray"|"rgb"|"rgba"). (From GDAL 1.6.0) To expose a dataset with
1 band with a color table as a dataset with 3 (RGB) or 4 (RGBA) bands. Useful
for output drivers such as JPEG, JPEG2000, MrSID, ECW that don’t support
color indexed datasets. The ’gray’ value (from GDAL 1.7.0) enables to expand
a dataset with a color table that only contains gray levels to a gray indexed
dataset.

outsize Numeric. (c(xsize[percentage],ysize[percentage])). Set the size of the output
file. Outsize is in pixels and lines unless ’%’ is attached in which case it is as a
fraction of the input image size.

tr Numeric. c(xres,yres). (starting with GDAL 2.0) set target resolution. The
values must be expressed in georeferenced units. Both must be positive values.
This is exclusive with -outsize and -a_ullr.

r Character. resampling_method. ("nearest"|"bilinear"|"cubic"|"cubicspline"|"lanczos"|"average"|"mode")
(GDAL >= 2.0) Select a resampling algorithm.

scale Numeric, Matrix or List. (c(src_min,src_max,dst_min,dst_max)). Rescale the
input pixels values from the range src_min to src_max to the range dst_min to
dst_max. If omitted the output range is 0 to 255. If omitted the input range is
automatically computed from the source data.

gdal_translate 51

exponent Numeric. (From GDAL 1.11) To apply non-linear scaling with a power function.
exp_val is the exponent of the power function (must be postive). This option
must be used with the -scale option. If specified only once, -exponent applies to
all bands of the output image. It can be repeated several times so as to specify
per band parameters. It is also possible to use the "-exponent_bn" syntax where
bn is a band number (e.g. "-exponent_2" for the 2nd band of the output dataset)
to specify the parameters of one or several specific bands.

unscale Logical. Apply the scale/offset metadata for the bands to convert scaled values
to unscaled values. It is also often necessary to reset the output datatype with
the -ot switch.

srcwin Numeric. (c(xoff,yoff,xsize,ysize)). Selects a subwindow from the source image
for copying based on pixel/line location.

projwin Numeric. (c(ulx,uly,lrx,lry)). Selects a subwindow from the source image for
copying (like -srcwin) but with the corners given in georeferenced coordinates.

projwin_srs Character. srs_def. (GDAL >= 2.0) Specifies the SRS in which to interpret
the coordinates given with -projwin. The srs_def may be any of the usual
GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the
WKT. Note that this does not cause reprojection of the dataset to the specified
SRS.

epo Logical. (Error when Partially Outside) (GDAL >= 1.10) If this option is set,
-srcwin or -projwin values that falls partially outside the source raster extent will
be considered as an error. The default behaviour starting with GDAL 1.10 is to
accept such requests, when they were considered as an error before.

eco Logical. (Error when Completely Outside) (GDAL >= 1.10) Same as -epo, ex-
cept that the criterion for erroring out is when the request falls completely out-
side the source raster extent.

a_srs Character. Override the projection for the output file. The srs_def may be any
of the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file con-
taining the WKT.

a_ullr Numeric. (c(ulx,uly,lrx,lry)). Assign/override the georeferenced bounds of the
output file. This assigns georeferenced bounds to the output file, ignoring what
would have been derived from the source file.

a_nodata Numeric. Assign a specified nodata value to output bands. Starting with GDAL
1.8.0, can be set to none to avoid setting a nodata value to the output file if one
exists for the source file

mo Character. ("META-TAG=VALUE"). Passes a metadata key and value to set on
the output dataset if possible.

co Character. ("NAME=VALUE"). Passes a creation option to the output format
driver. Multiple -co options may be listed. See format specific documentation
for legal creation options for each format.

gcp Matrix. Add the indicated ground control point to the output dataset. This op-
tion may be provided multiple times to provide a set of GCPs. Columns rep-
resent pixel,line,easting,northing and (optionally) elevation, in that order, and
rows represent each individual gcp.

q Logical. Suppress progress monitor and other non-error output.

52 gdal_translate

sds Logical. Copy all subdatasets of this file to individual output files. Use with
formats like HDF or OGDI that have subdatasets.

stats Logical. (GDAL >= 1.8.0) Force (re)computation of statistics.

norat Logical. (GDAL >= 1.11) Do not copy source RAT into destination dataset.

oo Character. NAME=VALUE. (starting with GDAL 2.0) Dataset open option (for-
mat specific)

sd_index Numeric. If the file is an HDF4 or HDF5 file, which subdataset should be re-
turned (1 to the number of subdatasets)? If this flag is used, src_dataset should
be the filename of the multipart file. This parameter only works if the subdataset
names follow the SUBDATASET_n_NAME convention.

config Character. Sets runtime configuration options for GDAL. See https://trac.osgeo.org/gdal/wiki/ConfigOptions
for more information.

output_Raster Logical. Return output dst_dataset as a RasterBrick?
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

... Additional arguments.

Details

This is an R wrapper for the ’gdal_translate’ function that is part of the Geospatial Data Abstrac-
tion Library (GDAL). It follows the parameter naming conventions of the original function, with
some modifications to allow for more R-like parameters. For all parameters, the user can use a sin-
gle character string following, precisely, the gdal_translate format (http://www.gdal.org/gdal_
translate.html), or, in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL that has
the right drivers as specified with the "of" (output format) parameter.

The user can choose to (optionally) return a RasterBrick of the output file (assuming raster/rgdal
supports the particular output format).

Value

NULL or if(output_Raster), a RasterBrick.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/gdal_translate.html

http://www.gdal.org/gdal_translate.html
http://www.gdal.org/gdal_translate.html
http://www.gdal.org/gdal_translate.html

get_subdatasets 53

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
outdir <- tempdir()
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
Example from the original gdal_translate documentation:
src_dataset <- system.file("external/tahoe_highrez.tif", package="gdalUtils")
Original gdal_translate call:
gdal_translate -of GTiff -co "TILED=YES" tahoe_highrez.tif tahoe_highrez_tiled.tif
gdal_translate(src_dataset,file.path(outdir,"tahoe_highrez_tiled.tif"),of="GTiff",
co="TILED=YES",verbose=TRUE)
Pull out a chunk and return as a raster:
gdal_translate(src_dataset,file.path(outdir,"tahoe_highrez_tiled.tif"),of="GTiff",
srcwin=c(1,1,100,100),output_Raster=TRUE,verbose=TRUE)
Notice this is the equivalent, but follows gdal_translate's parameter format:
gdal_translate(src_dataset,file.path(outdir,"tahoe_highrez_tiled.tif"),of="GTiff",
srcwin="1 1 100 100",output_Raster=TRUE,verbose=TRUE)
}
Not run:
Extract the first subdataset from an HDF4 file:
hdf4_dataset <- system.file("external/test_modis.hdf", package="gdalUtils")
gdal_translate(hdf4_dataset,file.path(outdir,"test_modis_sd1.tif"),sd_index=1)

End(Not run)

get_subdatasets get_subdatasets

Description

Returns HDF4, HDF5, and NetCDF subdataset names for standardized files.

Usage

get_subdatasets(
datasetname,
names_only = TRUE,
normalizePath = FALSE,
verbose = FALSE

)

54 is.Raster

Arguments

datasetname Character. Input HDF4/5 or NetCDF file.

names_only Logical. Return subdataset names only? Default=TRUE.

normalizePath Logical. Normalize the file path? Default=FALSE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

Currently, this only returns the subdataset names of HDF4, HDF5, and NetCDF files, assuming they
follow the SUBDATASET_n_NAME convention. This can be used with gdal_translate to extract a
single subdataset (or with gdal_translate(...,sd_index=n)

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

character vector of subdataset names that can be used in gdal_translate.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) and Matteo Mattiuzzi (wrapper) and Frank
Warmerdam (GDAL lead developer).

References

http://www.gdal.org/gdalinfo.html

Examples

Not run:
hdf4_dataset <- system.file("external/test_modis.hdf", package="gdalUtils")
get_subdatasets(hdf4_dataset)

End(Not run)

is.Raster Tests if an input is a RasterLayer, RasterBrick, or a RasterStack.

Description

Tests if an input is a RasterLayer, RasterBrick, or a RasterStack.

Usage

is.Raster(x)

http://www.gdal.org/gdalinfo.html

mosaic_rasters 55

Arguments

x an R Object.

Value

A logical vector.

Author(s)

Jonathan A. Greenberg

Examples

if(require(raster) && require(rgdal))
{
tahoe_highrez <- brick(system.file("external/tahoe_highrez.tif", package="gdalUtils"))
is.Raster(tahoe_highrez)
tahoe_lidar_bareearth <-
raster(system.file("external/tahoe_lidar_bareearth.tif", package="gdalUtils"))
is.Raster(tahoe_lidar_bareearth)
is.Raster("character")
}

mosaic_rasters Mosaic raster files using GDAL Utilities

Description

Mosaic raster files using GDAL Utilities

Usage

mosaic_rasters(
gdalfile,
dst_dataset,
output.vrt = NULL,
output_Raster = FALSE,
separate = FALSE,
trim_margins = NULL,
gdalwarp_index = 1,
gdalwarp_params = list(r = "near"),
force_ot = NULL,
verbose = FALSE,
...

)

56 mosaic_rasters

Arguments

gdalfile Character. Input files (as a character vector) or a wildcard search term (e.g.
"*.tif")

dst_dataset Character. The destination file name.

output.vrt Character. Output VRT file. If NULL a temporary .vrt file will be created.

output_Raster Logical. Return output dst_dataset as a RasterBrick?

separate Logical. (starting with GDAL 1.7.0) Place each input file into a separate stacked
band. Unlike gdalbuildvrt, the full stack is placed in the mosaic, not just the first
band.

trim_margins Numeric. Pre-crop the input tiles by a fixed number of pixels before mosaicking.
Can be a single value or four values representing the left, top, right, and bottom
margins, respectively.

gdalwarp_index Numeric. If gdalwarp_index is numeric, the value is used as the index of the
gdalfile to match projections and resolutions against when file projections don’t
match. The default = 1 (the first input file).

gdalwarp_params

List. Set gdalwarp parameters if input file projections don’t match. t_srs and
tr set here will override those chosen by gdalwarp_index. In general, the only
thing you would set here is the resampling algorithm, which defaults to nearest
neighbor ("near").

force_ot Character. ("Byte"/"Int16"/"UInt16"/"UInt32"/"Int32"/"Float32"/"Float64"/"CInt16"/"CInt32"/"CFloat32"/"CFloat64")
Forces all bands to be the same datatype. This is helpful if you are using input
files of different data types and output formats (e.g. GTiff) that don’t support
mixed datatypes.

verbose Logical. Enable verbose execution? Default is FALSE.

... Parameters to pass to gdalbuildvrt or gdal_translate.

Details

This function mosaics a set of input rasters (gdalfile) using parameters found in gdalbuildvrt
and subsequently exports the mosaic to an output file (dst_dataset) using parameters found in
gdal_translate. The user can choose to preserve the intermediate output.vrt file, but in general
this is not needed.

Value

Either a list of NULLs or a list of RasterBricks depending on whether output_Raster is set to TRUE.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>)

See Also

gdalbuildvrt, gdal_translate

nearblack 57

Examples

We'll pre-check to make sure there is a valid GDAL install
and that raster and rgdal are also installed.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
outdir <- tempdir()
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(raster) && require(rgdal) && valid_install)
{
layer1 <- system.file("external/tahoe_lidar_bareearth.tif", package="gdalUtils")
layer2 <- system.file("external/tahoe_lidar_highesthit.tif", package="gdalUtils")
mosaic_rasters(gdalfile=c(layer1,layer2),dst_dataset=file.path(outdir,"test_mosaic.envi"),
separate=TRUE,of="ENVI",verbose=TRUE)
gdalinfo("test_mosaic.envi")
}

nearblack nearblack

Description

R wrapper for nearblack: convert nearly black/white borders to black

Usage

nearblack(
infile,
o,
of,
co,
white,
color,
near,
nb,
setalpha,
setmask,
q,
output_Raster = FALSE,
overwrite = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

infile Character. The input file. Any GDAL supported format, any number of bands,
normally 8bit Byte bands.

58 nearblack

o Character. outfile. The name of the output file to be created. Newly created files
are created with the HFA driver by default (Erdas Imagine - .img)

of Character. format. (GDAL 1.8.0 or later) Select the output format. Use the short
format name (GTiff for GeoTIFF for example).

co Character. "NAME=VALUE". (GDAL 1.8.0 or later) Passes a creation option
to the output format driver. Multiple -co options may be listed. See format
specific documentation for legal creation options for each format. Only valid
when creating a new file.

white Logical. Search for nearly white (255) pixels instead of nearly black pixels.

color Numeric. c1,c2,c3...cn. (GDAL >= 1.9.0) Search for pixels near the specified
color. May be specified multiple times. When -color is specified, the pixels that
are considered as the collar are set to 0.

near Numeric. dist. Select how far from black, white or custom colors the pixel
values can be and still considered near black, white or custom color. Defaults to
15.

nb Numeric. non_black_pixels. number of non-black pixels that can be encoun-
tered before the giving up search inwards. Defaults to 2.

setalpha Logical. (GDAL 1.8.0 or later) Adds an alpha band if the output file is specified
and the input file has 3 bands, or sets the alpha band of the output file if it is
specified and the input file has 4 bands, or sets the alpha band of the input file
if it has 4 bands and no output file is specified. The alpha band is set to 0 in the
image collar and to 255 elsewhere.

setmask Logical. (GDAL 1.8.0 or later) Adds a mask band to the output file, or adds a
mask band to the input file if it does not already have one and no output file is
specified. The mask band is set to 0 in the image collar and to 255 elsewhere.

q Logical. (GDAL 1.8.0 or later) Suppress progress monitor and other non-error
output.

output_Raster Logical. Return outfile as a RasterBrick?

overwrite Logical. If output file exists, OR if output file is not set (which would defualt to
overwriting the input file), allow overwriting?

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

#’ This is an R wrapper for the ’nearblack’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/nearblack.html),
or, in some cases, can use R vectors to achieve the same end.

This utility will scan an image and try to set all pixels that are nearly or exactly black, white or
one or more custom colors around the collar to black or white. This is often used to "fix up" lossy
compressed airphotos so that color pixels can be treated as transparent when mosaicking.

http://gdal.org/nearblack.html

ogr2ogr 59

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/nearblack.html

Examples

None available at present.

ogr2ogr ogr2ogr

Description

R wrapper for ogr2ogr: converts simple features data between file formats

Usage

ogr2ogr(
src_datasource_name,
dst_datasource_name,
layer,
f,
append,
overwrite,
update,
select,
progress,
sql,
dialect,
where,
skipfailures,
spat,
spat_srs,
geomfield,
dsco,
lco,
nln,
nlt,
dim,

http://www.gdal.org/nearblack.html

60 ogr2ogr

a_srs,
t_srs,
s_srs,
preserve_fid,
fid,
oo,
doo,
gt,
ds_transaction,
clipsrc,
clipsrcsql,
clipsrclayer,
clipsrcwhere,
clipdst,
clipdstsql,
clipdstlayer,
clipdstwhere,
wrapdateline,
datelineoffset,
simplify,
segmentize,
fieldTypeToString,
mapFieldType,
unsetFieldWidth,
splitlistfields,
maxsubfields,
explodecollections,
zfield,
gcp,
order,
tps,
fieldmap,
addfields,
relaxedFieldNameMatch,
forceNullable,
unsetDefault,
unsetFid,
nomd,
mo,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

src_datasource_name

Character. Input vector file or input directory.
dst_datasource_name

Character. Output vector file or input directory.

ogr2ogr 61

layer Character. Layer to use.

f Character. output file format name (default is ESRI Shapefile), some possible
values are: "ESRI Shapefile", "TIGER", "MapInfo File", "GML", "PostgreSQL"

append Logical. Append to existing layer instead of creating new

overwrite Logical. Delete the output layer and recreate it empty.

update Logical. Open existing output datasource in update mode rather than trying to
create a new one

select Character. Comma-delimited list of fields from input layer to copy to the new
layer. A field is skipped if mentioned previously in the list even if the input layer
has duplicate field names. (Defaults to all; any field is skipped if a subsequent
field with same name is found.) Starting with OGR 2.0, geometry fields can also
be specified in the list.

progress Logical. (starting with GDAL 1.7.0) Display progress on terminal. Only works
if input layers have the "fast feature count" capability.

sql Character. SQL statement to execute. The resulting table/layer will be saved to
the output.

dialect Character. SQL dialect. In some cases can be used to use (unoptimized) OGR
SQL instead of the native SQL of an RDBMS by passing OGRSQL. Starting
with GDAL 1.10, the "SQLITE" dialect can also be used with any datasource.

where Character. Attribute query (like SQL WHERE).

skipfailures Logical. Continue after a failure, skipping the failed feature.

spat Numeric. c(xmin,ymin,xmax,ymax) spatial query extents. Only features whose
geometry intersects the extents will be selected. The geometries will not be
clipped unless -clipsrc is specified

spat_srs Character. srs_def. (OGR >= 2.0) Override spatial filter SRS.

geomfield Character. (OGR >= 1.11) Name of the geometry field on which the spatial filter
operates on.

dsco Character. Dataset creation option (format specific).

lco Character. Layer creation option (format specific).

nln Character. Assign an alternate name to the new layer.

nlt Character. Define the geometry type for the created layer. One of NONE, GE-
OMETRY, POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION,
MULTIPOINT, MULTIPOLYGON or MULTILINESTRING. Add "25D" to the
name to get 2.5D versions. Starting with GDAL 1.10, PROMOTE_TO_MULTI
can be used to automatically promote layers that mix polygon or multipolygons
to multipolygons, and layers that mix linestrings or multilinestrings to multi-
linestrings. Can be usefull when converting shapefiles to PostGIS (and other
target drivers) that implements strict checks for geometry type.

dim Numeric. (starting with GDAL 1.10) Force the coordinate dimension to val
(valid values are 2 or 3). This affects both the layer geometry type, and feature
geometries. Starting with GDAL 2.0, the value can be set to "layer_dim" to
instruct feature geometries to be promoted to the coordinate dimension declared
by the layer.

62 ogr2ogr

a_srs Character. Assign an output SRS.
t_srs Character. Reproject/transform to this SRS on output.
s_srs Character. Override source SRS.
preserve_fid Logical. Use the FID of the source features instead of letting the output driver

to automatically assign a new one.
fid Character. If provided, only the feature with this feature id will be reported.

Operates exclusive of the spatial or attribute queries. Note: if you want to select
several features based on their feature id, you can also use the fact the ’fid’ is a
special field recognized by OGR SQL. So, ’-where "fid in (1,3,5)"’ would select
features 1, 3 and 5.

oo Character. "NAME=VALUE". (starting with GDAL 2.0) Input dataset open
option (format specific).

doo Character. "NAME=VALUE". (starting with GDAL 2.0) Destination dataset
open option (format specific), only valid in -update mode.

gt Numeric. group n features per transaction (default 200). Increase the value
for better performance when writing into DBMS drivers that have transaction
support.

ds_transaction Logical. (starting with GDAL 2.0) Force the use of a dataset level transac-
tion (for drivers that support such mechanism), especially for drivers such as
FileGDB that only support dataset level transaction in emulation mode.

clipsrc Character. [xmin ymin xmax ymax]|WKT|datasource|spat_extent: (starting with
GDAL 1.7.0) clip geometries to the specified bounding box (expressed in source
SRS), WKT geometry (POLYGON or MULTIPOLYGON), from a datasource
or to the spatial extent of the -spat option if you use the spat_extent keyword.
When specifying a datasource, you will generally want to use it in combination
of the -clipsrclayer, -clipsrcwhere or -clipsrcsql options

clipsrcsql Character. Select desired geometries using an SQL query instead.
clipsrclayer Character. Select the named layer from the source clip datasource.
clipsrcwhere Character. Restrict desired geometries based on attribute query.
clipdst Character. (starting with GDAL 1.7.0) clip geometries after reprojection to the

specified bounding box (expressed in dest SRS), WKT geometry (POLYGON or
MULTIPOLYGON) or from a datasource. When specifying a datasource, you
will generally want to use it in combination of the -clipdstlayer, -clipdstwhere
or -clipdstsql options

clipdstsql Character. Select desired geometries using an SQL query instead.
clipdstlayer Character. Select the named layer from the destination clip datasource.
clipdstwhere Character. Restrict desired geometries based on attribute query.
wrapdateline Logical. (starting with GDAL 1.7.0) split geometries crossing the dateline merid-

ian (long. = +/- 180deg).
datelineoffset Logical. (starting with GDAL 1.10) offset from dateline in degrees (default long.

= +/- 10deg, geometries within 170deg to -170deg will be splited)
simplify Numeric. (starting with GDAL 1.9.0) distance tolerance for simplification. Note:

the algorithm used preserves topology per feature, in particular for polygon ge-
ometries, but not for a whole layer.

ogr2ogr 63

segmentize Numeric. (starting with GDAL 1.6.0) maximum distance between 2 nodes.
Used to create intermediate points

fieldTypeToString

Character. (starting with GDAL 1.7.0) converts any field of the specified type
to a field of type string in the destination layer. Valid types are : Integer, Real,
String, Date, Time, DateTime, Binary, IntegerList, RealList, StringList. Special
value All can be used to convert all fields to strings. This is an alternate way
to using the CAST operator of OGR SQL, that may avoid typing a long SQL
query.

mapFieldType Character. srctype|All=dsttype,... (starting with GDAL 2.0) converts any field
of the specified type to another type. Valid types are : Integer, Integer64,
Real, String, Date, Time, DateTime, Binary, IntegerList, Integer64List, Real-
List, StringList. Types can also include subtype between parenthesis, such as
Integer(Boolean), Real(Float32), ... Special value All can be used to convert all
fields to another type. This is an alternate way to using the CAST operator of
OGR SQL, that may avoid typing a long SQL query. This is a generalization of
-fieldTypeToString. Note that this does not influence the field types used by the
source driver, and is only an afterwards conversion.

unsetFieldWidth

Logical. (starting with GDAL 2.0) set field width and precision to 0.

splitlistfields

Logical. (starting with GDAL 1.8.0) split fields of type StringList, RealList or
IntegerList into as many fields of type String, Real or Integer as necessary.

maxsubfields Numeric. To be combined with -splitlistfields to limit the number of subfields
created for each split field.

explodecollections

Logical. (starting with GDAL 1.8.0) produce one feature for each geometry in
any kind of geometry collection in the source file.

zfield Character. (starting with GDAL 1.8.0) Uses the specified field to fill the Z coor-
dinate of geometries.

gcp Numeric. c(ungeoref_x,ungeoref_y,georef_x georef_y,elevation) (starting with
GDAL 1.10.0) Add the indicated ground control point. This option may be
provided multiple times to provide a set of GCPs.

order Numeric. (starting with GDAL 1.10.0) order of polynomial used for warping (1
to 3). The default is to select a polynomial order based on the number of GCPs.

tps Logical. (starting with GDAL 1.10.0) Force use of thin plate spline transformer
based on available GCPs.

fieldmap Character. (starting with GDAL 1.10.0) Specifies the list of field indexes to be
copied from the source to the destination. The (n)th value specified in the list is
the index of the field in the target layer definition in which the n(th) field of the
source layer must be copied. Index count starts at zero. There must be exactly
as many values in the list as the count of the fields in the source layer. We can
use the ’identity’ setting to specify that the fields should be transferred by using
the same order. This setting should be used along with the -append setting.

64 ogr2ogr

addfields Logical. (starting with GDAL 2.0) This is a specialized version of -append.
Contrary to -append, -addfields has the effect of adding, to existing target lay-
ers, the new fields found in source layers. This option is usefull when merging
files that have non-strictly identical structures. This might not work for output
formats that don’t support adding fields to existing non-empty layers.

relaxedFieldNameMatch

Logical. (starting with GDAL 1.11) Do field name matching between source
and existing target layer in a more relaxed way if the target driver has an imple-
mentation for it. [-relaxedFieldNameMatch] [-forceNullable]

forceNullable Logical. (starting with GDAL 2.0) Do not propagate not-nullable constraints to
target layer if they exist in source layer.

unsetDefault Logical. (starting with GDAL 2.0) Do not propagate default field values to target
layer if they exist in source layer.

unsetFid Logical. (starting with GDAL 2.0) Can be specify to prevent the new default
behaviour that consists in, if the output driver has a FID layer creation option
and we are not in append mode, to preserve the name of the source FID column
and source feature IDs.

nomd Logical. (starting with GDAL 2.0) To disable copying of metadata from source
dataset and layers into target dataset and layers, when supported by output driver.

mo Character. "META-TAG=VALUE". (starting with GDAL 2.0) Passes a metadata
key and value to set on the output dataset, when supported by output driver.

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’ogr2ogr’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/ogrinfo.html), or,
in some cases, can use R vectors to achieve the same end.

PERFORMANCE HINTS

When writing into transactional DBMS (SQLite/PostgreSQL,MySQL, etc...), it might be benefi-
cial to increase the number of INSERT statements executed between BEGIN TRANSACTION and
COMMIT TRANSACTION statements. This number is specified with the -gt option. For exam-
ple, for SQLite, explicitly defining -gt 65536 ensures optimal performance while populating some
table containing many hundredth thousand or million rows. However, note that if there are failed
insertions, the scope of -skipfailures is a whole transaction.

For PostgreSQL, the PG_USE_COPY config option can be set to YES for significantly insertion
performance boot. See the PG driver documentation page.

More generally, consult the documentation page of the input and output drivers for performance
hints.

http://gdal.org/ogrinfo.html

ogrinfo 65

NOTE FOR SQL USERS: When using SQL statements via the sql="some sql statement", be aware
the src_datasource_name and dst_datasource_name should still be set. src_datasource_name is
treated as the path to the tables/vectors called in the SQL statement, and dst_datasource_name will
be the folder the outputs will be stored in.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

character

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/ogr2ogr.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
src_datasource_name <- system.file("external/tahoe_highrez_training.shp", package="gdalUtils")
dst_datasource_name <- paste(tempfile(),".shp",sep="")
ogrinfo(src_datasource_name,"tahoe_highrez_training")
reproject the input to mercator
ogr2ogr(src_datasource_name,dst_datasource_name,t_srs="EPSG:3395",verbose=TRUE)
ogrinfo(dirname(dst_datasource_name),layer=remove_file_extension(basename(dst_datasource_name)))
}

ogrinfo ogrinfo

Description

R wrapper for ogrinfo: lists information about an OGR supported data source

http://www.gdal.org/ogr2ogr.html

66 ogrinfo

Usage

ogrinfo(
datasource_name,
layer,
ro,
q,
where,
spat,
geomfield,
fid,
sql,
dialect,
al,
so,
fields,
geom,
oo,
nomd,
listmdd,
mdd,
nocount,
noextent,
formats,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

datasource_name

Character. The data source to open. May be a filename, directory or other virtual
name. See the OGR Vector Formats list for supported datasources.

layer Character. One or more layer names may be reported.
ro Logical. Open the data source in read-only mode.
q Logical. Quiet verbose reporting of various information, including coordinate

system, layer schema, extents, and feature count.
where Character. An attribute query in a restricted form of the queries used in the SQL

WHERE statement. Only features matching the attribute query will be reported.
spat Numeric. c(xmin,ymin,xmax,ymax) The area of interest. Only features within

the rectangle will be reported.
geomfield Character. (OGR >= 2.0) Name of the geometry field on which the spatial filter

operates on.
fid Numeric. If provided, only the feature with this feature id will be reported.

Operates exclusive of the spatial or attribute queries. Note: if you want to select
several features based on their feature id, you can also use the fact the ’fid’ is a
special field recognized by OGR SQL. So, ’-where "fid in (1,3,5)"’ would select
features 1, 3 and 5.

ogrinfo 67

sql Character. Execute the indicated SQL statement and return the result.

dialect Character. SQL dialect. In some cases can be used to use (unoptimized) OGR
SQL instead of the native SQL of an RDBMS by passing OGRSQL. Starting
with GDAL 1.10, the "SQLITE" dialect can also be used with any datasource.

al Logical. List all features of all layers (used instead of having to give layer names
as arguments).

so Logical. Summary Only: supress listing of features, show only the summary
information like projection, schema, feature count and extents.

fields Character. ("YES"|"NO") (starting with GDAL 1.6.0) If set to NO, the feature
dump will not display field values. Default value is YES.

geom Character. ("YES"|"NO"|"SUMMARY") (starting with GDAL 1.6.0) If set to
NO, the feature dump will not display the geometry. If set to SUMMARY, only
a summary of the geometry will be displayed. If set to YES, the geometry will
be reported in full OGC WKT format. Default value is YES.

oo Character. "NAME=VALUE". (starting with GDAL 2.0) Dataset open option
(format specific).

nomd Logical. (starting with GDAL 2.0) Suppress metadata printing. Some datasets
may contain a lot of metadata strings.

listmdd Logical. (starting with GDAL 2.0) List all metadata domains available for the
dataset.

mdd Character. (starting with GDAL 2.0) Report metadata for the specified domain.
"all" can be used to report metadata in all domains.

nocount Logical. (starting with GDAL 2.0) Suppress feature count printing.

noextent Logical. (starting with GDAL 2.0) Suppress spatial extent printing.

formats Logical. List the format drivers that are enabled.
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’ogrinfo’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/ogrinfo.html), or,
in some cases, can use R vectors to achieve the same end.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

character

http://gdal.org/ogrinfo.html

68 ogrlineref

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/ogrinfo.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(valid_install)
{
datasource_name <- system.file("external/tahoe_highrez_training.shp", package="gdalUtils")
Display all available formats:
Command-line ogrinfo call:
ogrinfo --formats
ogrinfo(formats=TRUE)

Get info on an entire shapefile:
ogrinfo tahoe_highrez_training.shp
ogrinfo(datasource_name)

Get info on the layer of the shapefile:
ogrinfo tahoe_highrez_training.shp tahoe_highrez_training
ogrinfo(datasource_name,"tahoe_highrez_training")
}

ogrlineref ogrlineref

Description

R wrapper for ogrlineref: create a linear reference

Usage

ogrlineref(
help_general,
progress,
quiet,
f,
dsco,
lco,

http://www.gdal.org/ogrinfo.html

ogrlineref 69

create,
l,
ln,
lf,
p,
pn,
pm,
pf,
r,
rn,
o,
on,
of,
s,
get_pos,
x,
y,
get_coord,
m,
get_subline,
mb,
me,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

help_general Logical. Show the usage.

progress Logical. Show progress.

quiet Logical. Suppress all messages except errors and results.

f Character. format_name. Select an output format name. The default is to create
a shapefile.

dsco Character. "NAME=VALUE". Dataset creation option (format specific).

lco Character. "NAME=VALUE". Layer creation option (format specific).

create Logical. Create the linear reference file (linestring of parts).

l Character. src_line_datasource_name. The path to input linestring datasource
(e.g. the road)

ln Character. layer_name. The layer name in datasource

lf Character. field_name. The field name of uniq values to separate the input lines
(e.g. the set of roads)

p Character. src_repers_datasource_name. The path to linear references points
(e.g. the road mile-stones)

pn Character. layer_name. The layer name in datasource.

pm Character. pos_field_name.The field name of distances along path (e.g. mile-
stones values)

70 ogrlineref

pf Character. field_name. The field name of uniq values to map input reference
points to lines

r Character. src_parts_datasource_name. The path to linear reference file

rn Character. layer_name. The layer name in datasource.

o Character. dst_datasource_name. The path to output linear reference file (linestring
datasource)

on Character. layer_name. The layer name in datasource.

of Character. field_name. The field name for storing the uniq values of input lines

s Numeric. step. The part size in linear units.

get_pos Logical. Return linear referenced postion for input X, Y

x Numeric. long. Input X coordinate

y Numeric. lat. Input Y coordinate

get_coord Logical. Return point on path for input linear distance.

m Numeric. position. The input linear distance

get_subline Logical. Return the portion of the input path from and to input linear positions

mb Numeric. position. The input begin linear distance.

me Numeric. position. The input end linear distance
ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’ogrlineref’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/ogrlineref.html),
or, in some cases, can use R vectors to achieve the same end.

The utility can be used for:

• create linear reference file from input data

• return the "linear referenced" distance for the projection of the input coordinates (point) on
the path

• return the coordinates (point) on the path according to the "linear referenced" distance

• return the portion of the path according to the "linear referenced" begin and end distances

The ogrlineref program can be used to create a linear reference - a file containing a segments of
special length (e.g. 1 km in reference units) and get coordinates, linear referenced distances or
sublines (subpaths) from this file. The utility not required the M or Z values in geometry. The
results can be stored in any OGR supported format. Also some information writed to the stdout.

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

http://gdal.org/ogrlineref.html

ogrtindex 71

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

References

http://www.gdal.org/ogrlineref.html

Examples

No examples ATM for this function.

ogrtindex ogrtindex

Description

R wrapper for ogrtindex: creates a tileindex

Usage

ogrtindex(
output_dataset,
src_dataset,
lnum,
lname,
f,
tileindex,
write_absolute_path,
skip_different_projection,
accept_different_schemas,
output_Vector = FALSE,
ignore.full_scan = TRUE,
verbose = FALSE

)

Arguments

output_dataset Character. Output tile index.

src_dataset Character. Input geospatial files.

lnum Numeric. n. Add layer number ’n’ from each source file in the tile index.

lname Character. name. Add the layer named ’name’ from each source file in the tile
index.

f Character. output_format. Select an output format name. The default is to create
a shapefile.

http://www.gdal.org/ogrlineref.html

72 ogrtindex

tileindex Character. file_name. The name to use for the dataset name. Defaults to LO-
CATION.

write_absolute_path

Logical. Filenames are written with absolute paths.
skip_different_projection

Logical. Only layers with same projection ref as layers already inserted in the
tileindex will be inserted.

accept_different_schemas

Logical. By default ogrtindex checks that all layers inserted into the index have
the same attribute schemas. If you specify this option, this test will be disabled.
Be aware that resulting index may be incompatible with MapServer!

output_Vector Logical. Return output output_dataset as a Spatial* object. Currently only
works with f="ESRI Shapefile".

ignore.full_scan

Logical. If FALSE, perform a brute-force scan if other installs are not found.
Default is TRUE.

verbose Logical. Enable verbose execution? Default is FALSE.

Details

This is an R wrapper for the ’ogrtindex’ function that is part of the Geospatial Data Abstraction
Library (GDAL). It follows the parameter naming conventions of the original function, with some
modifications to allow for more R-like parameters. For all parameters, the user can use a single
character string following, precisely, the gdalinfo format (http://gdal.org/ogrtindex.html),
or, in some cases, can use R vectors to achieve the same end.

The ogrtindex program can be used to create a tileindex - a file containing a list of the identities of
a bunch of other files along with there spatial extents. This is primarily intended to be used with
MapServer for tiled access to layers using the OGR connection type.

If no -lnum or -lname arguments are given it is assumed that all layers in source datasets should be
added to the tile index as independent records.

If the tile index already exists it will be appended to, otherwise it will be created.

It is a flaw of the current ogrtindex program that no attempt is made to copy the coordinate system
definition from the source datasets to the tile index (as is expected by MapServer when PROJEC-
TION AUTO is in use).

This function assumes the user has a working GDAL on their system. If the "gdalUtils_gdalPath"
option has been set (usually by gdal_setInstallation), the GDAL found in that path will be used. If
nothing is found, gdal_setInstallation will be executed to attempt to find a working GDAL.

Value

NULL or SpatialPolygonsDataFrame

Author(s)

Jonathan A. Greenberg (<gdalUtils@estarcion.net>) (wrapper) and Frank Warmerdam (GDAL
lead developer).

http://gdal.org/ogrtindex.html

qm 73

References

http://www.gdal.org/ogrtindex.html

Examples

We'll pre-check to make sure there is a valid GDAL install.
Note this isn't strictly neccessary, as executing the function will
force a search for a valid GDAL install.
gdal_setInstallation()
valid_install <- !is.null(getOption("gdalUtils_gdalPath"))
if(require(rgdal) && valid_install)
{
tempindex <- tempfile(fileext=".shp")
src_dir <- system.file("external/", package="gdalUtils")
src_files <- list.files(src_dir,pattern=".shp",full.names=TRUE)
ogrtindex(output_dataset=tempindex,src_dataset=src_files,
accept_different_schemas=TRUE,output_Vector=TRUE)
}

qm qm

Description

Wraps an input in quotation marks.

Usage

qm(x)

Arguments

x Character or Numeric.

Value

A character string that begins and ends with quotation marks.

Author(s)

Jonathan A. Greenberg

Examples

{
qm("Hi!")
qm(42)
}

http://www.gdal.org/ogrtindex.html

74 tahoe_highrez_training

remove_file_extension remove_file_extension

Description

Strips a file extension from a filename.

Usage

remove_file_extension(filename, extension_delimiter = ".")

Arguments

filename Character. The input filename.

extension_delimiter

Character. The extension or extension delimiter (default ".") to remove.

Author(s)

Jonathan A. Greenberg <spatial.tools@estarcion.net>

Examples

myfilename="my.file.gri"
remove_file_extension(myfilename,".")
remove_file_extension(myfilename,".file.gri")

tahoe_highrez_training

Point and polygon files for use with gdalUtils

Description

Point and polygon files for use with gdalUtils

Author(s)

Jonathan A. Greenberg <gdalUtils@estarcion.net>

tahoe_lidar_bareearth.tif 75

Examples

Not run:
tahoe_highrez_training_polygons <- readOGR(
dsn=system.file("external", package="gdalUtils"),layer="tahoe_highrez_training")
spplot(tahoe_highrez_training_polygons,zcol="Class")
tahoe_highrez_training_points <- readOGR(
dsn=system.file("external", package="gdalUtils"),layer="tahoe_highrez_training_points")
spplot(tahoe_highrez_training_points,zcol="SPECIES")

End(Not run)

tahoe_lidar_bareearth.tif

Lidar-derived bare earth digital elevation model from the Lake Tahoe
Basin.

Description

Lidar-derived bare earth digital elevation model from the Lake Tahoe Basin.

Author(s)

Jonathan A. Greenberg <gdalUtils@estarcion.net>

Examples

Not run:
tahoe_lidar_bareearth <-
raster(system.file("external/tahoe_lidar_bareearth.tif", package="gdalUtils"))
plot(tahoe_lidar_bareearth)

End(Not run)

tahoe_lidar_highesthit.tif

Lidar-derived highest hit (aka canopy) digital elevation model from
the Lake Tahoe Basin.

Description

Lidar-derived highest hit (aka canopy) digital elevation model from the Lake Tahoe Basin.

Author(s)

Jonathan A. Greenberg <gdalUtils@estarcion.net>

76 test_modis.hdf

Examples

Not run:
tahoe_lidar_highesthit <-
raster(system.file("external/tahoe_lidar_highesthit.tif", package="gdalUtils"))
plot(tahoe_lidar_highesthit)

End(Not run)

test_modis.hdf MODIS HDF4 file

Description

MODIS HDF4 file

Author(s)

Jonathan A. Greenberg <gdalUtils@estarcion.net>

Examples

Not run:
gdalinfo(system.file("external/test_modis.hdf", package="gdalUtils"))

End(Not run)

Index

∗Topic data
tahoe_highrez_training, 74
tahoe_lidar_bareearth.tif, 75
tahoe_lidar_highesthit.tif, 75
test_modis.hdf, 76

align_rasters, 2

batch_gdal_translate, 3

gdal_chooseInstallation, 32
gdal_cmd_builder, 33
gdal_contour, 36
gdal_grid, 38
gdal_rasterize, 44
gdal_setInstallation, 47
gdal_translate, 4, 49, 56
gdaladdo, 5
gdalbuildvrt, 7, 56
gdaldem, 10
gdalinfo, 13
gdallocationinfo, 16
gdalmanage, 19
gdalsrsinfo, 21
gdaltindex, 23
gdaltransform, 25
gdalwarp, 3, 27
get_subdatasets, 53

is.Raster, 54

list.files, 4

mosaic_rasters, 55

nearblack, 57

ogr2ogr, 59
ogrinfo, 65
ogrlineref, 68
ogrtindex, 71

qm, 73

remove_file_extension, 74

tahoe_highrez_training, 74
tahoe_lidar_bareearth.tif, 75
tahoe_lidar_highesthit.tif, 75
test_modis.hdf, 76

77

	align_rasters
	batch_gdal_translate
	gdaladdo
	gdalbuildvrt
	gdaldem
	gdalinfo
	gdallocationinfo
	gdalmanage
	gdalsrsinfo
	gdaltindex
	gdaltransform
	gdalwarp
	gdal_chooseInstallation
	gdal_cmd_builder
	gdal_contour
	gdal_grid
	gdal_rasterize
	gdal_setInstallation
	gdal_translate
	get_subdatasets
	is.Raster
	mosaic_rasters
	nearblack
	ogr2ogr
	ogrinfo
	ogrlineref
	ogrtindex
	qm
	remove_file_extension
	tahoe_highrez_training
	tahoe_lidar_bareearth.tif
	tahoe_lidar_highesthit.tif
	test_modis.hdf
	Index

