Gaston

Version 1.5.6
Hervé Perdry, Claire Dandine-Roulland

February 24, 2020

Introduction

Gaston offers functions for efficient manipulation of large genotype (SNP) matrices, and state-of-the-art implementation of algorithms to fit Linear Mixed Models, that can be used to compute heritability estimates or to perform association tests. Thanks to the packages Rcpp, RcppParallel, RcppEigen, Gaston functions are mainly written in C++. Many are multithreaded.

For better performances, we recommend to build Gaston with clang++. To do so, it is sufficient to create in your home directory a file $\sim / . R /$ Makevars containing CXX1X $=$ clang++ or if you use a version of $R>=$ 3.4.0, CXX11 = clang++

In this vignette, we illustrate Gaston using the included data sets AGT, LCT, and TTN (see the corresponding manual pages for a description). Gaston also includes some example files in the extdata folder. Not all options of the functions are described here, but rather their basic usage. The reader is advised to look at the manual pages for details.

Note that the package name is written gaston when dealing with R commands, but Gaston (with a capital) in human language.

1 Modifying Gaston's behaviour with global options

1.1 Number of threads

The number of threads used by multithreaded functions can be modified through RcppParallel function setThreadOptions. It is advised to try several values for the number of threads, as using too many threads might be counterproductive due to an important overhead. The default value set by RcppParallel is generally too high.

Some functions have a verbose argument, which controls the function verbosity. To mute all functions at once you can use options (gaston. verbose = FALSE).

1.2 Basic statistics computations

Since version 1.4, the behaviour of all functions that output a matrix of genotypes (a bed.matrix, described in the next section) can be modified by setting options (gaston. auto.set.stats = FALSE). The effects of this option is described in section 2.4 below. Note that some examples in the manual pages might not work if you use this option.

1.3 Autosomes, gonosomes, mitochondria

Since version 1.4.7, some functions take into account wether a SNP is autosomal, X or Y linked, or mitochondrial. The ids of the corresponding chromosomes are defined by options gaston.autosomes, gaston.chr.x, gaston.chr.y, gaston.chr.mt. Default values are c(1:22, 25), 23, 24 and 26 , following to Plink convention (in this convention, 25 corresponds to the pseudo-autosomal XY region: we chose to include it in the autosomes).

2 Genotype matrices

An S4 class for genotype matrices is defined, named bed.matrix. Each row correspond to an individual, and each column to a SNP.

2.1 Reading bed.matrices from files

Bed.matrices be read from files using read.bed.matrix. The function read.vcf reads VCF files; it relies on the package WhopGenome.

Gaston includes example files that can be used for illustration:

```
> x <- read.bed.matrix( system.file("extdata", "LCT.bed", package="gaston") )
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/LCT.rds
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/LCT.bed
> X
A bed.matrix with }503\mathrm{ individuals and }607\mathrm{ markers.
snps stats are not set (or incomplete)
ped stats are not set (or incomplete)
```

The folder extdata/ contains files LCT.bed, LCT.rds, LCT.bim and LCT.fam. The .bed, .bim and .fam files follow the PLINK specifications. The .rds file is a R data file; if it is present, the .bim and .fam files are ignored. You can ignore the .rds file using option rds = NULL:

```
> x <- read.bed.matrix( system.file("extdata", "LCT.bed", package="gaston"), rds = NULL )
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/LCT.fam
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/LCT.bim
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/LCT.bed
```

```
ped stats and snps stats have been set.
'p' has been set.
'mu' and 'sigma' have been set.
> X
A bed.matrix with }503\mathrm{ individuals and }607\mathrm{ markers.
snps stats are set
ped stats are set
```

A bed.matrix can be saved using write.bed.matrix. The default behavior is to write .bed, .bim, .fam and .rds files; see the manual page for more details.

2.2 Conversion from and to R objects

A numerical matrix x containing genotype counts ($0,1,2$ or NA) can be transformed in a bed.matrix with as (x, "bed.matrix"). The resulting object will lack individual and SNP informations (if the rownames and colnames of x are set, they will be used as SNP and individual ids respectively).

Conversely, a numerical matrix can be retrieved from a bed.matrix using as.matrix.
The function as.bed.matrix allows to provide data frames corresponding to the .fam and .bim files. They should have colnames famid, id, father, mother, sex, pheno, and chr, id, dist, pos, A1, A2 respectively. This function is widely used in the examples included in manual pages.

```
> data(TTN)
> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
> X
A bed.matrix with }503\mathrm{ individuals and }733\mathrm{ markers.
snps stats are set
ped stats are set
```


2.3 The insides of a bed.matrix

In first approach, a bed.matrix behaves as a "read-only" matrix containing only $0,1,2$ and NAs, unless the genotypes are standardized (use standardize<-). They are stored in a compact form, each genotype being coded on 2 bits (hence 4 genotypes per byte).

Bed.matrices are implemented using S4 classes and methods. Let's have a look on the slots names of the bed.matrix x created above using the dataset LCT.

```
> data(TTN)
> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
> slotNames(x)
[1] "ped" "snps" "bed"
[4] "p" "mu" "sigma"
[7] "standardize_p" "standardize_mu_sigma"
```

The slot x@bed is an external pointer, which indicates where the genetic data are stored in memory. It will be used by the C++ functions called by Gaston.

```
> x@bed
<pointer: 0x55c0b48be800>
```

Let's look at the contents of the slots x@ped and x@snps. The other slots will be commented later.
The slot $x @ p e d$ gives informations on the individuals. The first 6 columns correspond to the contents of a .fam file, or to the first 6 columns of a .ped file (known as linkage format). The other columns are simple descriptive stats that are computed by Gaston, unless options (gaston.auto. set.stats = FALSE) was set (see below section 2.4).

```
> dim(x@ped)
[1] 503 30
> head(x@ped)
        famid id father mother sex pheno NO N1 N2 NAs NO.x N1.x N2.x NAs.x NO.y N1.y
1 HG00096 HGOOO96 0 0 0 0 NA 128 82 523 0 0 0 0 0 0 0 0
2 HGOOOO97 HGOOO97 0 0 0 0 NA 109 81 543 0
```



```
4 HGO0100 HG00100 0 0 0 0 NA 148 86 499 0 0 0 0 0 0 0
5 HGO0101 HG00101 
    N2.y NAs.y NO.mt N1.mt N2.mt NAs.mt callrate hz callrate.x hz.x callrate.y hz.y
llllllllllllll
```

The slot x@snps gives informations on the SNPs. Its first 6 columns corresponds to the contents of a .bim file. The other columns are simple descriptive stats that are computed by Gaston. Again, if the global option options (gaston. auto.set.stats = FALSE) was set (see below), these columns will be absent (see below section 2.4).

```
> dim(x@snps)
[1] 733 17
> head(x@snps)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline chr & id & dist & pos & A1 & A2 & NO & N1 & N2 & NAs & NO.f & N1.f & & NA & callrate \\
\hline 2 & rs7571247 & 0 & 179200322 & C & T & 5 & 88 & 410 & 0 & NA & NA & NA & NA & \\
\hline 2 & rs3813253 & 0 & 179200714 & G & A & 24 & 187 & 292 & 0 & NA & NA & NA & NA & \\
\hline 2 & rs6760059 & 0 & 179200947 & T & C & 11 & 139 & 353 & 0 & NA & NA & NA & NA & \\
\hline 2 & rs16866263 & 0 & 179201048 & T & G & 2 & 53 & 448 & 0 & NA & NA & NA & NA & \\
\hline 2 & rs77946091 & 0 & 179201380 & A & G & 2 & 53 & 448 & 0 & NA & NA & NA & NA & \\
\hline & rs77711640 & & 179201557 & A & G & 2 & & 447 & 0 & NA & NA & NA & NA & \\
\hline
\end{tabular}
                maf hz
1 0.09741551 0.1749503
2 0.23359841 0.3717694
3 0.16003976 0.2763419
4 0.05666004 0.1053678
5 0.05666004 0.1053678
60.05765408 0.1073559
```

Note: We refer to the allele A1 as the reference allele and to A2 as the alternative allele. The choice of the reference allele is arbitrary, it doesn't to be e.g. the major allele. If the matrix is produced by read.bed.matrix, Gaston will keep them in the order they appear in the .bim file, their won"t be any reordering.

2.4 Basic statistics included in a bed.matrix

Some simple descriptive statistics can be added to a bed.matrix with set.stats. Since version 1.4 of gaston, this function is called by default by all functions that create a bed.matrix, unless the global option options(gaston.auto.set.stats = FALSE) was set. This option can be used to gain some time in some particular cases.

We illustrate here the effect of this option:

```
> options(gaston.auto.set.stats = FALSE)
> data(TTN)
> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
> head(x@ped)
    famid id father mother sex pheno
1 HGO0096 HG00096 0 0 0 NA
2 ~ H G 0 0 0 9 7 ~ H G O O O 9 7 ~ 0 ~ 0 ~ 0 ~ N A ~
3 HG00099 HG00099 0 0 0 NA
4 ~ H G 0 0 1 0 0 ~ H G 0 0 1 0 0 ~ 0 ~ 0 ~ 0 ~ N A ~
5 ~ H G 0 0 1 0 1 ~ H G 0 0 1 0 1 ~ 0 ~ 0 ~ 0 ~ N A ~
6 ~ H G 0 0 1 0 2 ~ H G 0 0 1 0 2 ~ 0 ~ 0 ~ 0 ~ N A ~
> head(x@snps)
    chr id dist pos A1 A2
1 2 rs7571247 0 179200322 C T
```

2	2	$r s 3813253$	0	179200714	G	A
3	2	$r s 6760059$	0	179200947	T	C
4	2	rs 16866263	0	179201048	T	G
5	2	rs 77946091	0	179201380	A	G
6	2	rs 77711640	0	179201557	A	G

The reader is invited to compare with what we obtained in the previous section of this document.
The function set.stats can be called to add the missing descriptive statistics to the ped and snps slots:

```
> x <- set.stats(x)
ped stats and snps stats have been set.
'p' has been set.
'mu' and 'sigma' have been set.
> head(x@ped)
        famid id father mother sex pheno NO N1 N2 NAs NO.x N1.x N2.x NAs.x NO.y N1.y
1 HG00096 HG00096 0 0 0 0 NA 128
2 HGO0097 HGOOO97 0 0 0 0 NA 109 81 543 0
```



```
4 HGO0100 HGO0100 0 0 0 0 NA 148 86 499 0 0 0 0 0 0 0 0
5 HG00101 HGO0101 
    N2.y NAs.y NO.mt N1.mt N2.mt NAs.mt callrate hz callrate.x hz.x callrate.y hz.y
1 0 0 0 0 0 0 0 0 1.0000000 0.1118690 NaN NaN NaN NaN
2 0 0 0 0 0 0 0 0 1.0000000 0.1105048 NaN NaN NaN NaN
3 0 0 0 0 0 0 0 0 0.9986357 0.2103825 NaN NaN NaN NaN
40 0 0 0 0 0 0 0 1.0000000 0.1173261 NaN NaN NaN NaN
5 [lllllllllllllll
    callrate.mt hz.mt
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 ~ N a N ~ N a N
5 \mp@code { N a N ~ N a N }
6 NaN NaN
```

The columns NO, N1, N2 and NAs give for each individual the number of autosomal SNPs with a genotype equal to $0,1,2$ (corresponding to A1A1, A1A2 and A2A2) and missing, respectively. The homologous columns with names ending with $. \mathrm{x}, \mathrm{y}$ and. mt give the same for SNPs on the X , Y, and mitochondria (this is why you get only 0 s here).

The columns callrate, callrate.x, callrate.y, callrate.mt give the individual callrate for autosomal, X, Y, mitochondrial SNPs, and similarly, hz, hz.x, hz.y, hz.mt give the individual heterozygosity.

```
> head(x@snps)
    chr id dist pos A1 A2 NO N1 N2 NAs NO.f N1.f N2.f NAs.f callrate
```


The columns NO, N1, N2 and NAs contain the number of genotypes $0,1,2$ and NA for each SNP. For X-linked SNPs only, the homologous columns with names ending with .f give the same, taking only women into account. The callrate is the proportion of non-missing genotypes. In the snps slot, maf is the minor allele frequency, and hz it the heterozygosity rate. Note that the callrate for Y linked SNPs taking only men into account, while the heterozygosity rate for X linked SNPs is computed only on women.

The default is too also also update the slots $x @ p, x @ m u$ and $x @ s i g m a:$

```
> str(x@p)
    num [1:733] 0.903 0.766 0.84 0.943 0.943 ...
> str(x@mu)
    num [1:733] 1.81 1.53 1.68 1.89 1.89 ...
> str(x@sigma)
    num [1:733] 0.421 0.587 0.512 0.33 0.33 ...
```

p contains the alternative allele (A2) frequency; mu is equal to $2 * p$ and is the expected value of the genotype (coded in $0,1,2$); and sigma is the genotype standard error. If the Hardy-Weinberg equilibrium holds, sigma should be close to sqrt ($2 * p(1-p)$). This is illustrated on the figure below.

```
> plot(x@p, x@sigma, xlim=c(0,1))
> t <- seq(0,1,length=101);
> lines(t, sqrt(2*t*(1-t)), col="red")
```


There are also functions set.stats.snps and set.stats.ped to update only x@snps and x@ped.
The option gaston. auto.set.stats can be useful when extracting individuals from bed.matrices (seen next section): if gaston. auto.set.stats = FALSE, the slots @p, @mu and @sigma are left unaltered; in contrast, the default behavior is to call set.stats which recomputes the values of these slots. Note that when using set.stats "manually", one can use options to alter its behavior, allowing to update only some slots. The following code illustrates this (remember that here gaston. auto.set.stats = FALSE) :

```
> head(x@p)
[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459
> y <- x[1:30,]
> head(y@p)
[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459
> y <- set.stats(y, set.p = FALSE)
ped stats and snps stats have been set.
'mu' and 'sigma' have been set.
> head(y@p)
[1] 0.9025845 0.7664016 0.8399602 0.9433400 0.9433400 0.9423459
> y <- set.stats(y)
ped stats and snps stats have been set.
'p' has been set.
'mu' and 'sigma' have been set.
> head(y@p)
[1] 0.8833333 0.8000000 0.8166667 0.9833333 0.9833333 0.9833333
```

Hardy-Weinberg Equilibrium can be tested for all SNPs simply by x <- set.hwe(x). This command adds to the data frame $x @ s n p s$ a column hwe, containing the p-value of the test (both χ^{2} and "exact" tests are available, see the man page).

Note that when writting a bed.matrix x to disk with write.bed.matrix, the .rds file contains all the slots
of x , and thus contains the additionnal variables added by set.stats or set.hwe, which are not saved in the .bim and .fam files.

For the remaining of this vignette, we restore the default behaviour:
> options (gaston. auto.set.stats = TRUE)

2.5 Subsetting bed.matrices

It is possible to subset bed.matrices just as normal matrices, writing e.g. $\mathrm{x}[1: 100$,$] to extract the first 100$ individuals, or $\mathrm{x}[1: 100,10: 19]$ to extract the SNPs 10 to 19 for these 100 individuals:

```
> x[1:100,]
A bed.matrix with }100\mathrm{ individuals and }733\mathrm{ markers.
snps stats are set
ped stats are set
> x[1:100,10:19]
A bed.matrix with }100\mathrm{ individuals and 10 markers.
snps stats are set
ped stats are set
```

The use of logical vectors for subsetting is allowed too. The following code extracts the SNPs with minor allele frequency >0.1 :

```
> x[,x@snps$maf > 0.1]
A bed.matrix with }503\mathrm{ individuals and }501\mathrm{ markers.
snps stats are set
ped stats are set
```

For this kind of selection, Gaston provides the functions select.inds and select.snps, which have a nicer syntax. Hereafter we use the same condition on the minor allele frequency, and we introduce also a condition on the Hardy-Weinberg Equilibrium p-value:

```
> x <- set.hwe(x)
Computing HW chi-square p-values
> select.snps(x, maf > 0.1 & hwe > 1e-3)
A bed.matrix with }503\mathrm{ individuals and 497 markers.
snps stats are set
ped stats are set
```

The conditions in select.snps can use any of the variables defined in the data frame $\mathrm{x} @$ snps, as well as variables defined in the user session.

The function select.inds is similar, using variables of the data frame x@ped. One can for example select individuals with callrate greater than 95% with select.inds (x, callrate > 0.5).

These functions should make basic Quality Control easy.
Note: If options(gaston.auto.set.stats = FALSE) was set, subsetting will erase some or all statistics added by set.stats, except the p, mu and sigma slots.

2.6 Genomic sex

When dealing with genome wide data, the function set.genomic.sex can be use to add a x@ped\$genomic.sex column, determined by clustering on individuals X heterozygosity rate and Y callrate.
x <- select.inds(x, sex == genomic.sex) will then allow to keep only individuals whose sex and genomic sex are concordant.

An other possibility is to use $x @ p e d \$$ sex <- x@ped\$genomic.sex; x <- set.stats (x) to erase the original sex indication and use genomic sex in subsequent analyses.

2.7 Merging bed.matrices

Gaston defines methods rbind and cbind which can be used to merge several bed.matrices. cbind checks that individuals famids and ids are identical ; all remaining columns are taken from the first argument, without further control.

```
> data(AGT)
> x1 <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)
> x1
A bed.matrix with }503\mathrm{ individuals and }361\mathrm{ markers.
snps stats are set
ped stats are set
> data(LCT)
> x2 <- as.bed.matrix(LCT.gen, LCT.fam, LCT.bim)
> x2
A bed.matrix with }503\mathrm{ individuals and }607\mathrm{ markers.
snps stats are set
ped stats are set
> x <- cbind(x1,x2)
> X
A bed.matrix with }503\mathrm{ individuals and }968\mathrm{ markers.
snps stats are set
ped stats are set
```

rbind similarly checks whether the SNP ids are identical, and also if the reference alleles are identical. If needed, it will perform reference allele inversions (changing a SNP A / G to G / A) or allele strand flips (changing A / G to T / C) or both.

```
> x3 <- x[1:10, ]
> x4 <- x[-(1:10), ]
> rbind(x3,x4)
A bed.matrix with }503\mathrm{ individuals and }968\mathrm{ markers.
snps stats are set
ped stats are set
```


3 Standardized matrices

Gaston allows to "standardize" a genotype matrix, replacing each genotype $X_{i j}$ (i is the individual index, j is the SNP index) by

$$
\begin{equation*}
\frac{X_{i j}-\mu_{j}}{\sigma_{j}} \tag{1}
\end{equation*}
$$

where $\mu_{j}=2 p_{j}$ is the mean of the $0,1,2$-coded genotype (p_{j} being the alternative allele frequency), and σ_{j} is either its standard error, or the expected standard error under Hardy-Weinberg Equilibrium, that is $\sqrt{2 p_{j}\left(1-p_{j}\right)}$.

Consider the TTN data set. The unscaled matrix contains $0,1,2$ values:

```
> x <- as.bed.matrix(TTN.gen, TTN.fam, TTN.bim)
> X <- as.matrix(x)
> X[1:5,1:4]
    rs7571247 rs3813253 rs6760059 rs16866263
HG00096 2 2 2 %
HG00097 2 2 2 
HG00099 1 2 2 
HG00100 2 0 0 % 0
```

To scale it using the standard error, use standardize(x) <- "mu_sigma" (or standardize(x) <- "mu", as the function uses match.arg):

```
> standardize(x) <- "mu"
> as.matrix(x) [1:5, 1:4]
        rs7571247 rs3813253 rs6760059 rs16866263
HG00096 0.4629595 0.7953656 0.6254622 0.3437939
HG00097 0.4629595 0.7953656 0.6254622 0.3437939
HG00099 -1.9132512 0.7953656 0.6254622 0.3437939
HGO0100 0.4629595 -2.6094762 -3.2827052 0.3437939
HG00101 0.4629595 0.7953656 0.6254622 0.3437939
```

The result is similar to what would be obtained from the base function scale:

```
> scale(X)[1:5,1:4]
    rs7571247 rs3813253 rs6760059 rs16866263
HG00096 0.4629595 0.7953656 0.6254622 0.3437939
HG00097 0.4629595 0.7953656 0.6254622 0.3437939
HG00099 -1.9132512 0.7953656 0.6254622 0.3437939
HG00100 0.4629595 -2.6094762 -3.2827052 0.3437939
HG00101 0.4629595 0.7953656 0.6254622 0.3437939
```

To use $\sqrt{2 p_{j}\left(1-p_{j}\right)}$ instead of the standard error, use standardize(x) <- "p"; a similar result can again be obtained from scale, with the right options:

```
> standardize(x) <- "p"
> as.matrix(x)[1:5, 1:4]
    rs7571247 rs3813253 rs6760059 rs16866263
HG00096 0.4646063 0.7807675 0.6173047 0.3465926
HG00097 0.4646063 0.7807675 0.6173047 0.3465926
HG00099 -1.9200567 0.7807675 0.6173047 0.3465926
HG00100 0.4646063 -2.5615820 -3.2398911 0.3465926
HG00101 0.4646063 0.7807675 0.6173047 0.3465926
> scale(X, scale = sqrt(2*x@p*(1-x@p)))[1:5,1:4]
    rs7571247 rs3813253 rs6760059 rs16866263
HG00096 0.4646063 0.7807675 0.6173047 0.3465926
HG00097 0.4646063 0.7807675 0.6173047 0.3465926
HGO0099 -1.9200567 0.7807675 0.6173047 0.3465926
HG00100 0.4646063 -2.5615820 -3.2398911 0.3465926
HG00101 0.4646063 0.7807675 0.6173047 0.3465926
```

To go back to the 0,1,2-coded genotypes, use standardize(x) <- "none".
Note: In standardized matrices, the NA values are replaced by zeroes, which amount to impute the missing genotypes by the mean genotype.

3.1 Matrix multiplication

Standardized matrices can be multiplied with numeric vectors or matrices with the operator $\% * \%$.
This feature can be used e.g. to simulate quantitative phenotypes with a genetic component. The following code simulates a phenotype with an effect of the SNP $\# 350$:

```
> y <- x %*% c(rep(0,350),0.25,rep(0,ncol(x)-351)) + rnorm(nrow(x), sd = 1)
```


3.2 Genetic Relationship Matrix and Principal Component Analysis

If X_{s} is a standardized $n \times q$ genotype matrix, a Genetic Relationship Matrix (GRM) of the individuals can be computed as

$$
G R M=\frac{1}{q-1} X_{s} X_{s}^{\prime}
$$

where q is the number of SNPs. This computation is done by the function GRM.
NOTE: Since version 1.4.7, GRM has an argument which. snps which allows to give a logical vector specifying which SNPs to use in the computation. The default is to use only autosomal SNPs (the above formula makes little to no sense for X linked SNPs, unless there are only women in the sample).

The Principal Component Analysis (PCA) of large genomic data sets is used to retrieve population stratification. It can be obtained from the eigen decomposition of the GRM. To illustrate this, we included in the extdata folder a dataset extracted from the 1000 genomes project. This data set comprehend the 503 individuals of european ascent, with 10025 SNPs on the chromosome 2. These SNPs have been selected with the function LD.thin so that they have very low LD with each other ($r^{2}<0.05$). We added in the data frame $x @ p e d$ a variable population which is a factor with levels CEU, FIN, GBR, IBS and TSI.

We can load this data set as follows:

```
> x <- read.bed.matrix( system.file("extdata", "chr2.bed", package="gaston") )
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/chr2.rds
Reading /tmp/Rtmp250kq1/Rinst523c50d10e2d/gaston/extdata/chr2.bed
> x
A bed.matrix with }503\mathrm{ individuals and 10025 markers.
snps stats are not set (or incomplete)
ped stats are not set (or incomplete)
> head(x@ped)
        famid id father mother sex pheno population
1 HG00096 HG00096 0 0 0 -9 GBR
2 HG00097 HG00097 0 0 0 -9 GBR
3 HG00099 HG00099 0 0 0 -9 GBR
4 ~ H G 0 0 1 0 0 ~ H G O 0 1 0 0 ~ 0 ~ 0 ~ 0 ~ - 9 ~ G B R ~
5 \text { HG00101 HG00101 0 0 0 -9 GBR}
6 HG00102 HG00102 0 0 0 -9 GBR
> table(x@ped$population)
CEU FIN GBR IBS TSI
    99 99 91 107 107
```

We compute the Genetic Relationship Matrix, and its eigen decomposition (we don't need to standardize x explicitely: is x isn't standardized, GRM will use standardize $(\mathrm{x})=\mathrm{p}$ "):

```
K <- GRM(x)
>
> eiK <- eigen(K)
> # deal with a small negative eigen value
```

```
> eiK$values[ eiK$values < 0 ] <- 0
```

The eigenvectors are normalized. The Principal Components (PC) can be computed by multiplying them by the square root of the associated eigenvalues. Here we plot the projection of the 503 individuals on the first two PCs, with colors corresponding to their population.

```
> PC <- sweep(eiK$vectors, 2, sqrt(eiK$values), "*")
> plot(PC[,1], PC[,2], col=x@ped$population)
> legend("bottomleft", pch = 1, legend = levels(x@ped$population), col = 1:5)
```


As K can be written

$$
K=\left(\frac{1}{\sqrt{q-1}} X_{s}\right)\left(\frac{1}{\sqrt{q-1}} X_{s}\right)^{\prime}
$$

the PCs are the left singular vectors of $\frac{1}{\sqrt{q-1}} X_{s}$. The vectors of loadings are the right singlar vectors of this matrix. The vector of loadings corresponding to a PC u is the vector v with unit norm, such that $u=\frac{1}{\sqrt{q-1}} X_{s} v$.
They can be retrieved with the function bed.loadings:

```
> # one can use PC[,1:2] instead of eiK£vectors[,1:2] as well
> L <- bed.loadings(x, eiK$vectors[,1:2])
> dim(L)
[1] 10025 2
> head(L)
\begin{tabular}{lrr} 
& [,1] & [,2] \\
rs113106463 & -0.0059549220 & 0.0064476315 \\
rs13390778 & -0.0099678228 & -0.0125720973 \\
rs75011129 & -0.0001122801 & -0.0001181858 \\
rs4637157 & -0.0151318031 & -0.0148076771 \\
rs62116661 & -0.0002977572 & 0.0048268356
\end{tabular}
```

```
rs10170011 0.0185198430-0.0019553326
```

We verify that the loadings have unit norm:

```
> colSums(L**2)
[1] 1 1
```

And that the PCs are retrieved by right multiplying X_{s} by the loadings (here we need to explicitely standardize x):

```
> standardize(x) <- 'p'
> head( (x %*% L) / sqrt(ncol(x)-1) )
            [,1] [,2]
HG00096 0.021410878 -0.12418405
HG00097 -0.014005022 -0.07378042
HG00099 0.001384440 -0.09708206
HG00100 0.020319168 -0.08920824
HG00101 0.002596089 -0.08925960
HG00102 0.010155041 -0.08968428
> head( PC[,1:2] )
    [,1] [,2]
[1,] 0.021410879 -0.12418406
[2,] -0.014005021 -0.07378043
[3,] 0.001384432-0.09708206
[4,] 0.020319162 -0.08920823
[5,] 0.002596078 -0.08925958
[6,] 0.010155029 -0.08968427
```


3.3 Linkage Disequilibrium

Doing the crossproduct in the reverse order produces a moment estimate of the Linkage Disequilibrium (LD):

$$
L D=\frac{1}{n-1} X_{s}^{\prime} X_{s}
$$

where n is the number of individuals. This computation is done by the function LD (usually, only parts of the whole LD matrix is computed). The fonction LD can compute a square symmetric matrix giving the LD for a given region, measured by r^{2} (the default), r or D. It can also compute the LD between two different regions.

```
> data(AGT)
> x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)
>
> ld.x <- LD(x, c(1,ncol(x)))
>
> LD.plot(ld.x, snp.positions = x@snps$pos, write.ld = NULL,
+ max.dist = 20e3, write.snp.id = FALSE, draw.chr = FALSE,
+ pdf = "LD_AGT.pdf")
pdf
    2
```


This method is also used by LD.thin to extract a set of SNPs in low linkage disequilibrium (it is often recommended to perform this operation before computing the GRM). We illustrate this function on the AGT data set:

```
> y <- LD.thin(x, threshold = 0.4, max.dist = 500e3)
>
A bed.matrix with 503 individuals and 48 markers.
snps stats are set
ped stats are set
```

The argument max.dist $=500 \mathrm{e} 3$ is to specify that the LD won't be computed for SNPs more than 500 kb appart. We verify that there is no SNP pair with LD $r^{2}>0.4$ (note that the LD matrix has ones on the diagonal):

```
> ld.y <- LD( y, lim = c(1, ncol(y)) )
> sum( ld.y > 0.4 )
[1] 48
```


4 Linear Mixed Models

Linear Mixed Models are usually written under the form

$$
Y=X \beta+Z_{1} u_{1}+\cdots+Z_{k} u_{k}+\varepsilon
$$

where $Y \in \mathbb{R}^{n}$ is the response vector, and $X \in \mathbb{R}^{n \times p}, Z_{1} \in \mathbb{R}^{n \times q_{1}}, \ldots, Z_{k} \in \mathbb{R}^{n \times q_{k}}$ are design matrices. The vector $\beta \in \mathbb{R}^{p}$ is the vector of fixed effects; the random effects are drawn in normal distributions, $u_{1} \sim \mathcal{N}\left(0, \tau_{1} I_{q_{1}}\right), \ldots, u_{k} \sim \mathcal{N}\left(0, \tau_{k} I_{q_{k}}\right)$, as the residual error $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$.

Here we will use the equivalent form

$$
Y=X \beta+\omega_{1}+\ldots+\omega_{k}+\varepsilon
$$

where $K_{i}=Z_{i} Z_{i}^{\prime}(i=1, \ldots, k)$, the random terms are $\omega_{i} \sim N\left(0, \tau_{i} K_{i}\right)$ for $i \in 1, \ldots, k$ and $\varepsilon \sim N\left(0, \sigma^{2} I_{n}\right)$.
Note that using the R function model.matrix can help you to rewrite a model under this form.
Gaston provides two functions for estimating the model parameters when the model is written in the second form. We are going to illustrate these functions on simulated data.

4.1 Data simulation

We will use the above notations. First generate some (random) design matrices:

```
> set.seed(1)
> n <- 100
> q1 <- 20
> Z1 <- matrix( rnorm(n*q1), nrow = n )
> X <- cbind(1, 5*runif(n))
```

Then the vector of random effects u_{1} and a vector y under the model $Y=X(1,2)^{\prime}+Z u_{1}+\varepsilon$ with $u_{1} \sim$ $\mathcal{N}\left(0,2 I_{q_{1}}\right)$ and $\varepsilon \sim \mathcal{N}\left(0,3 I_{n}\right):$
> u1 <- rnorm(q1, sd $=\operatorname{sqrt}(2))$
$>\mathrm{y}<-\mathrm{X} \% * \% \mathrm{c}(1,2)+\mathrm{Z1} \% * \% \mathrm{u} 1+\operatorname{rnorm}(\mathrm{n}$, sd $=\operatorname{sqrt}(3))$

To illustrate the case where there are several random effects vectors, we generate an other matrix Z_{2}, the corresponding vector of random effects u_{2}, and a vector y_{2} under the model $Y=X(1,2)^{\prime}+Z u_{1}+Z_{2} u_{2}+\varepsilon$.

```
> q2 <- 10
> Z2 <- matrix( rnorm(n*q2), nrow = n )
> u2 <- rnorm(q2, sd = 1)
> y2 <- X %*% c(1,2) + Z1 %*% u1 + Z2 %*% u2 + rnorm(n, sd = sqrt(3))
```


4.2 Model fitting with the AIREML algorithm

lmm.aireml is a function for linear mixed models parameter estimation and BLUP computations.

4.2.1 One random effects vector

Let's start with the simple case (only one random effects vector). As 1 mm . aireml uses the second form of the linear mixed model, and we give it the matrix $K_{1}=Z_{1} Z_{1}^{\prime}$.

```
> K1 <- tcrossprod(Z1)
> fit <- lmm.aireml(y, X, K = K1, verbose = FALSE)
> str(fit)
List of 11
    $ sigma2 : num 3.37
    $ tau : num 1.65
    $ logL : num -150
    $ logL0 : num -231
    $ niter : int 8
    $ norm_grad : num 1.92e-08
    $ Py : num [1:100] 0.509 -0.236 0.11 0.328 -0.291 ...
    $ BLUP_omega: num [1:100] -0.441 -12.618 -1.724 5.052 5.831 ...
$ BLUP_beta : num [1:2] 1.4 1.79
$ varbeta : num [1:2, 1:2] 0.1398 -0.0403 -0.0403 0.0167
$ varXbeta : num 7.61
```

The result is a list giving all kind of information. Here we see that τ is estimated to 1.65 and σ^{2} to 3.37 . The Best Linear Unbiased Predictor (BLUP) for β is in the component BLUP_beta and here it is (1.4, 1.79).

The component BLUP_omega holds the BLUP for $\omega_{1}=Z u_{1}$. The BLUP for u_{1} can be retrieved by the formula $\widehat{u_{1}}=\tau_{1} Z_{1}^{\prime} P y$, the value of $P y$ being in the component Py. The plots below compare the true values of ω_{1} and u_{1} with their BLUPs.

```
> par(mfrow = c(1, 2))
> plot(Z1 %*% u1, fit$BLUP_omega); abline(0, 1, lty = 2, col = 3)
> BLUP_u1 <- fit$tau * t(Z1) %*% fit$Py
> plot(u1, BLUP_u1); abline(0, 1, lty = 2, col = 3)
```


4.2.2 Several random effects vectors

It is sufficient to give to 1 mm . aireml a list with the two matrices K_{1} and K_{2} :

```
> K2 <- tcrossprod(Z2)
> fit2 <- lmm.aireml(y2, X, K = list(K1, K2), verbose = FALSE)
> str(fit2)
List of 10
    $ sigma2 : num 3.04
    $ tau : num [1:2] 1.81 0.821
    $ logL : num -164
    $ logLO : num -244
    $ niter : int 13
    $ norm_grad : num 3.17e-07
    $ Py : num [1:100] -0.353 -0.199 0.879 0.472 0.968 ...
    $ BLUP_omega: num [1:100] 0.342 -15.406 6.239 4.559 4.361 ...
    $ BLUP_beta : num [1:2] 1.1 1.98
    $ varXbeta : num 9.33
```

The component tau now holds the two values τ_{1} and τ_{2}. Note that there is only one BLUP_omega vector. It corresponds to the BLUP for $\omega_{1}+\omega_{2}$. The BLUPs for each ω_{i} can be retrieved using $\widehat{\omega}_{i}=\tau_{i} K_{i} P y$:

```
> par(mfrow = c(1, 2))
> omega1 <- fit2$tau[1] * K1 %*% fit2$Py
> omega2 <- fit2$tau[2] * K2 %*% fit2$Py
> plot(Z1 %*% u1, omega1); abline(0, 1, lty = 2, col = 3)
> plot(Z2 %*% u2, omega2); abline(0, 1, lty = 2, col = 3)
```


The BLUPs for u_{1} and u_{2} can as above be retrieved using $\widehat{u_{i}}=\tau_{i} Z_{i}^{\prime} P y$.

4.3 Model fitting with the diagonalization trick

In the case where there is only one vector of random effects $(k=1)$, the diagonalization trick uses the eigen decomposition of K_{1} to speed up the computation of the restricted likelihood, which allows to use a generic algorithm to maximize it. Of course, the eigen decomposition of K_{1} needs to be computed beforehand, which induces an overhead.

The trick relies on a transformation of the data which leads to a diagonal variance matrix for Y. The computation of a the restricted likelihood involves the computation of the inverse of this matrix, which is then easy to compute. Write the eigen decomposition of K_{1} as $K_{1}=U \Sigma^{2} U^{\prime}$ with Σ^{2} a diagonal matrix of positive eigenvalues, and U an orthogonal matrix. If we let $\tilde{Y}=U^{\prime} Y, \tilde{X}=U^{\prime} X, \tilde{\omega}_{1}=U^{\prime} \omega_{1}$, and $\tilde{\varepsilon}=U^{\prime} \varepsilon$, we have

$$
\tilde{Y}=\tilde{X} \beta+\tilde{\omega}_{1}+\tilde{\varepsilon}
$$

with $\tilde{\omega}_{1} \sim N\left(0, \tau \Sigma^{2}\right)$ and $\tilde{\varepsilon} \sim N\left(0, \sigma^{2} I_{n}\right)$. As stated above, $\operatorname{var}(\tilde{Y})=\tau \Sigma^{2}+\sigma^{2} I_{n}$ is diagonal.
We fit the first model again:

```
> eiK1 <- eigen(K1)
> fit.d <- lmm.diago(y, X, eiK1)
Optimization in interval [0, 1]
Optimizing with p = 0
[Iteration 1] Current point = 0 df = 4301.78
[Iteration 2] Current point = 0.00597137 df = 2202.74
[Iteration 3] Current point = 0.0183343 df = 1073.77
[Iteration 4] Current point = 0.041009 df = 501.592
[Iteration 5] Current point = 0.0785099 df = 224.008
[Iteration 6] Current point = 0.134165 df = 94.4939
[Iteration 7] Current point = 0.206173 df = 36.1315
[Iteration 8] Current point = 0.279987 df = 10.9812
[Iteration 9] Current point = 0.326676 df = 1.82058
[Iteration 10] Current point = 0.337786 df = 0.0676512
[Iteration 11] Too many iterations, using Brent algorithm
[Iteration 11] Brent gives 0.338232
> str(fit.d)
List of 9
    $ sigma2 : num 3.23
    $ tau : num 1.65
$ Py : num [1:100] 0.531 -0.243 0.116 0.34 -0.304 ...
$ BLUP_omega: num [1:100] -0.443 -12.629 -1.73 5.059 5.836 ...
$ BLUP_beta : num [1:2] 1.4 1.79
$ varbeta : num [1:2, 1:2] 0.134 -0.0387 -0.0387 0.016
$ Xbeta : num [1:100] 3.09 5.93 1.65 5.85 9.89 ...
$ varXbeta : num 7.51
$ p : int 0
```

You can check that the result is similar to the result obtained earlier with 1 mm . aireml.
The likelihood computation with the diagonalization trick is fast enough to plot the likelihood:

```
> TAU <- seq(0.5,2.5,length=50)
> S2 <- seq(2.5,4,length=50)
> lik <- lmm.diago.likelihood(tau = TAU, s2 = S2, Y = y, X = X, eigenK = eiK1)
> lik.contour(TAU, S2, lik, heat = TRUE, xlab = "tau", ylab = "sigma^2")
```


4.4 Genomic heritability estimation with Gaston

Heritability estimates based on Genetic Relationship Matrices (GRM) are computed under the following model:

$$
Y=\beta+\omega+\varepsilon
$$

where $\omega \sim \mathcal{N}(0, \tau K)$ and $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)$, K being a GRM computed on whole genome data (e.g. by the function GRM). The heritability is $h^{2}=\frac{\tau}{\tau+\sigma^{2}}$.

Note that as $K=\frac{1}{q-1} X_{s} X_{s}^{\prime}$ with X_{s} a standardized genotype matrix, letting $Z=(q-1)^{-\frac{1}{2}} X_{s}$, this model is equivalent to

$$
Y=\beta+Z u+\varepsilon
$$

with $u \sim \mathcal{N}\left(0, \tau I_{q}\right)$.
The function random.pm generates random positive matrices with eigenvalues roughly similar to those typically observed when using whole genome data. It outputs a list with a member K: a positive matrix, and a member eigen: its eigen decomposition (as the base function eigen would output it).

The function lmm.simu can be used simulate data under the linear mixed model. It uses the eigen decomposition of K. Hereafter we use $\tau=1, \sigma^{2}=2$, hence a 33.3% heritability.

```
set.seed(1)
> n <- 2000
> R <- random.pm(n)
> y <- 2 + lmm.simu(tau = 1, sigma2 = 2, eigenK = R$eigen)$y
```

We can use lmm.diago to estimates the parameters of the model.

```
> fit <- lmm.diago(y, eigenK = R$eigen)
Optimization in interval [0, 1]
Optimizing with p = 0
[Iteration 1] Current point = 0 df = 3.32616
[Iteration 2] Current point = 0.099573 df = 0.0543536
[Iteration 3] Current point = 0.101252 df = 1.2657e-05
```

We have $\widehat{\tau}=0.298$ and $\widehat{\sigma^{2}}=2.65$, hence h^{2} is estimated to 10.1%.
The function 1 mm .diago.likelihood allows to compute a profile likelihood with parameter $h^{2}=\frac{\tau}{\tau+\sigma^{2}}$. It can be useful to get confidence intervals. Here, we simply plot it:

```
> H2 <- seq(0,1,length=51)
> lik <- lmm.diago.likelihood(h2 = H2, Y = y, eigenK = R$eigen)
> plot(H2, exp(lik$likelihood-max(lik$likelihood)), type="l", yaxt="n", ylab="likelihood")
```


It is often advised to include the first few (10 or 20) Principal Components (PC) in the model as fixed effects, to account for a possible population stratification. The function 1 mm . diago has an argument p for the number of PCs to incoporate in the model with fixed effects. We simulate a trait with a large effect of the two first PCs:

```
> PC <- sweep(R$eigen$vectors, 2, sqrt(R$eigen$values), "*")
> y1 <- 2 + PC[,1:2] %*% c(5,5) + lmm.simu(tau = 1, sigma2 = 2, eigenK = R$eigen)$y
```

Here are the heritability estimates with $p=0$ (the default) and $p=10$.

```
> fit0 <- lmm.diago(y1, eigenK = R$eigen)
Optimization in interval [0, 1]
```

```
Optimizing with p = 0
[Iteration 1] Current point = 0 df = 8.47139
[Iteration 2] Current point = 0.239713 df = 0.364915
[Iteration 3] Current point = 0.2509 df = 0.000461187
[Iteration 4] Current point = 0.250914 df = 7.18135e-10
> fit0$tau/(fit0$tau+fit0$sigma2)
[1] 0.2509142
> fit10 <- lmm.diago(y1, eigenK = R$eigen, p = 10)
Optimization in interval [0, 1]
Optimizing with p = 10
[Iteration 1] Current point = 0 df = 4.45003
[Iteration 2] Current point = 0.143356 df = 0.0854252
[Iteration 3] Current point = 0.146209 df = 2.38332e-05
> fit10$tau/(fit10$tau+fit10$sigma2)
[1] 0.1462102
```

As expected, the estimate is inflated when no PCs are incorporated in the model.

5 Association tests

The function association.test performs genome-wide association tests with either (generalized) linear models, or with generalized) linear (mixed) models, for quantitative or binary ($0 / 1$) traits.

5.1 Quantitative trait

When the function association.test is called with parameter method = "lm" it performs a test of association between SNPs and a quantitative trait Y under the model

$$
Y=(X \mid P C) \alpha+G \beta+\varepsilon
$$

where X is the matrix of covariables with fixed effects (including a column of ones for the intercept), G is the vector of genotypes at the SNP under consideratione. A few PCs can be included in the model with fixed effects to correct for population stratification (the parameter p gives the number of PCs to include). The Wald test is performed to test for $\beta=0$.

When the function is called with parameter method $=$ " 1 mm " the following mixed model is used instead:

$$
Y=(X \mid P C) \alpha+G \beta+\omega+\varepsilon
$$

where X and G are as above, and $\omega \sim \mathcal{N}(0, \tau K)$ where K is a Genetic Relationship Matrix (computed on the whole genome).

Three tests are proposed for $\beta=0$: a score test, a Wald test on $\widehat{\beta}$, or a Likelihood Ratio Test.
We illustrate this function on a simple example, built on the AGT data set:

```
> data(AGT)
> x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)
> standardize(x) <- 'p'
```

As the whole genome is not available, we generate a random positive matrix to play the role of the GRM:

```
> set.seed(27)
> R <- random.pm(nrow(x))
```

And we simulate a phenotype with an effect of the SNP $\# 351$, and a polygenic component:

```
> y <- 2 + x %*% c(rep(0,350),0.35,rep(0,ncol(x)-351)) +
+ lmm.simu(tau = 0.3, sigma2 = 1, eigenK=R$eigen)$y
```

The following code performs the association test with a score test and a wald test, and compares the resulting p-values:

```
> t_wald <- association.test(x, y, K = R$K, method = "lm", test = "wald")
> t_wald_mixed <- association.test(x, y, eigenK = R$eigen, method = "lmm", test = "wald")
> plot( t_wald$p, t_wald_mixed$p, log = "xy", xlab = "lm (wald)", ylab = "lmm (wald)")
> abline(0,1,lty=3)
```


We can display the results under the form of a (mini) Manhattan plot:

```
> manhattan(t_wald_mixed, col = ifelse(1:ncol(x) == 351, "red", "black"))
```


We colored the point corresponding to the SNP $\# 351$ in red. Note that when used on genome-wide data, the function manhattan will draw a classical Manhattan plot, alternating colors between chromosomes.

There are other SNPs with low association p-values: these are the SNPs in LD with SNP \#351. We can confirm this by plotting the p-values (again on log scale) as a function of the LD (measured by r^{2}):

```
> lds <- LD(x, 351, c(1,ncol(x)))
> plot(lds, -log10(t_wald_mixed$p), xlab="r^2", ylab="-log(p)")
```


5.2 Binary phenotype

We use the quantitative phenotype previously generated to construct a binary phenotype, and we perform the association test with a logistic model (Wald test) or logistic mixed model (score test).

```
> y1 <- as.numeric(y > mean(y))
> t_binary <- association.test(x, y1, K = R$K, method = "lm", response = "binary", test="wald")
> t_binary_mixed <- association.test(x, y1, K = R$K, method = "lmm", response = "binary")
[Initialization] beta = -0.802666
[Initialization] tau = 0
[Iteration 1] tau = 0
[Iteration 1] beta = -0.802666
(d1 = 8.05606e+302)
(d = 0.24992)
[Iteration 2] gr = 0.31515
[Iteration 2] tau = 0.0197693
[Iteration 2] beta = -0.801582
(d1 = 9.73052e+303)
(d = 0.248699)
[Iteration 3] gr = 0.00204273
[Iteration 3] tau = 0.0198994
[Iteration 3] beta = -0.8016
(d1 = 9.8906e+303)
(d = 0.248691)
[Iteration 4] gr = -1.27022e-06
[Iteration 4] tau = 0.0198993
```

```
[Iteration 4] beta = -0.8016
> plot( t_binary$p, t_binary_mixed$p, log = "xy", xlab = "lm (wald)", ylab = "lmm (score)" )
> abline(0,1,lty=3)
```


6 What you can hope for in later releases

A few things that may be added to the package in the near future:

- Reading .ped files
- Maximum Likelihood Linkage Disequilibrium estimation
- LMM models fitting written in equation form
- More functions and models for association testing
- Anything you asked the maintainer for

