
Package ‘gargle’
May 6, 2020

Title Utilities for Working with Google APIs

Version 0.5.0

Description Provides utilities for working with Google APIs
<https://developers.google.com/apis-explorer>. This includes
functions and classes for handling common credential types and for
preparing, executing, and processing HTTP requests.

License MIT + file LICENSE

URL https://gargle.r-lib.org, https://github.com/r-lib/gargle

BugReports https://github.com/r-lib/gargle/issues

Depends R (>= 3.2)

Imports fs (>= 1.3.1), glue (>= 1.3.0), httr (>= 1.4.0), jsonlite,
rlang (>= 0.4.2), stats, withr

Suggests covr, knitr, rmarkdown, sodium, spelling, testthat (>= 2.3.2)

VignetteBuilder knitr

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.1.0

NeedsCompilation no

Author Jennifer Bryan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>),
Craig Citro [aut],
Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Google Inc [cph],
RStudio [cph, fnd]

Maintainer Jennifer Bryan <jenny@rstudio.com>

Repository CRAN

Date/Publication 2020-05-06 06:30:17 UTC

1

https://gargle.r-lib.org
https://github.com/r-lib/gargle
https://github.com/r-lib/gargle/issues

2 AuthState-class

R topics documented:
AuthState-class . 2
credentials_app_default . 5
credentials_byo_oauth2 . 6
credentials_gce . 7
credentials_service_account . 8
credentials_user_oauth2 . 9
cred_funs . 11
field_mask . 13
gargle2.0_token . 14
gargle_app . 15
gargle_oauth_sitrep . 16
gargle_options . 16
GceToken . 18
init_AuthState . 19
oauth_app_from_json . 20
request_develop . 21
request_make . 24
response_process . 25
token-info . 27
token_fetch . 28

Index 30

AuthState-class Authorization state

Description

An AuthState object manages an authorization state, typically on behalf of a client package that
makes requests to a Google API.

The How to use gargle for auth in a client package vignette describes a design for wrapper packages
that relies on an AuthState object. This state can then be incorporated into the package’s requests
for tokens and can control the inclusion of tokens in requests to the target API.

• api_key is the simplest way to associate a request with a specific Google Cloud Platform
project. A few calls to certain APIs, e.g. reading a public Sheet, can succeed with an API key,
but this is the exception.

• app is an OAuth app associated with a specific Google Cloud Platform project. This is used
in the OAuth flow, in which an authenticated user authorizes the app to access or manipulate
data on their behalf.

• auth_active reflects whether outgoing requests will be authorized by an authenticated user
or are unauthorized requests for public resources. These two states correspond to sending a
request with a token versus an API key, respectively.

https://gargle.r-lib.org/articles/gargle-auth-in-client-package.html
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#projects
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#projects

AuthState-class 3

• cred is where the current token is cached within a session, once one has been fetched. It is
generally assumed to be an instance of httr::TokenServiceAccount or httr::Token2.0
(or a subclass thereof), probably obtained via token_fetch() (or one of its constituent cre-
dential fetching functions).

An AuthState should be created through the constructor function init_AuthState(), which has
more details on the arguments.

Public fields

package Package name.

app An OAuth consumer application.

api_key An API key.

auth_active Logical, indicating whether auth is active.

cred Credentials.

Methods

Public methods:
• AuthState$new()

• AuthState$print()

• AuthState$set_app()

• AuthState$set_api_key()

• AuthState$set_auth_active()

• AuthState$set_cred()

• AuthState$clear_cred()

• AuthState$get_cred()

• AuthState$has_cred()

• AuthState$clone()

Method new(): Create a new AuthState

Usage:
AuthState$new(
package = NA_character_,
app = NULL,
api_key = NULL,
auth_active = TRUE,
cred = NULL

)

Arguments:
package Package name.
app An OAuth consumer application.
api_key An API key.
auth_active Logical, indicating whether auth is active.
cred Credentials.

4 AuthState-class

Details: For more details on the parameters, see init_AuthState()

Method print(): Print an AuthState

Usage:
AuthState$print(...)

Arguments:

... Not used.

Method set_app(): Set the OAuth app

Usage:
AuthState$set_app(app)

Arguments:

app An OAuth consumer application.

Method set_api_key(): Set the API key

Usage:
AuthState$set_api_key(value)

Arguments:

value An API key.

Method set_auth_active(): Set whether auth is (in)active

Usage:
AuthState$set_auth_active(value)

Arguments:

value Logical, indicating whether to send requests authorized with user credentials.

Method set_cred(): Set credentials

Usage:
AuthState$set_cred(cred)

Arguments:

cred User credentials.

Method clear_cred(): Clear credentials

Usage:
AuthState$clear_cred()

Method get_cred(): Get credentials

Usage:
AuthState$get_cred()

Method has_cred(): Report if we have credentials

Usage:
AuthState$has_cred()

credentials_app_default 5

Method clone(): The objects of this class are cloneable with this method.
Usage:
AuthState$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

credentials_app_default

Load Application Default Credentials

Description

Loads credentials from a file identified via a search strategy known as Application Default Cre-
dentials (ADC). The hope is to make auth "just work" for someone working on Google-provided
infrastructure or who has used Google tooling to get started. A sequence of paths is consulted, which
we describe here, with some abuse of notation. ALL_CAPS represents the value of an environment
variable and %||% is used in the spirit of a null coalescing operator.

GOOGLE_APPLICATION_CREDENTIALS
CLOUDSDK_CONFIG/application_default_credentials.json
on Windows:
(APPDATA %||% SystemDrive %||% C:)\gcloud\application_default_credentials.json
on not-Windows:
~/.config/gcloud/application_default_credentials.json

If the above search successfully identifies a JSON file, it is parsed and ingested either as a service
account token or a user OAuth2 credential.

Usage

credentials_app_default(scopes = NULL, ..., subject = NULL)

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

... Additional arguments passed to all credential functions.
subject An optional subject claim. Use for a service account which has been granted

domain-wide authority by an administrator. Such delegation of domain-wide au-
thority means that the service account is permitted to act on behalf of users, with-
out their consent. Identify the user to impersonate via their email, e.g. subject
= "user@example.com".

https://en.wikipedia.org/wiki/Null_coalescing_operator
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

6 credentials_byo_oauth2

Value

An httr::TokenServiceAccount or an httr::Token2.0 or NULL.

See Also

https://cloud.google.com/docs/authentication/production#providing_credentials_to_
your_application

https://cloud.google.com/sdk/docs/

Other credential functions: credentials_byo_oauth2(), credentials_gce(), credentials_service_account(),
credentials_user_oauth2(), token_fetch()

Examples

Not run:
credentials_app_default()

End(Not run)

credentials_byo_oauth2

Load a user-provided token

Description

This function does very little when called directly with a token:

• If input has class request, i.e. it is a token that has been prepared with httr::config(),
the auth_token component is extracted. For example, such input could be produced by
googledrive::drive_token() or bigrquery::bq_token().

• Checks that the input appears to be a Google OAuth token, based on the embedded oauth_endpoint.

• Refreshes the token, if it’s refreshable.

• Returns its input.

There is no point providing scopes. They are ignored because the scopes associated with the token
have already been baked in to the token itself and gargle does not support incremental authorization.
The main point of credentials_byo_oauth2() is to allow token_fetch() (and packages that
wrap it) to accommodate a "bring your own token" workflow.

This also makes it possible to obtain a token with one package and then register it for use with
another package. For example, the default scope requested by googledrive is also sufficient for
operations available in googlesheets4. You could use a shared token like so:

library(googledrive)
library(googlesheets4)
drive_auth(email = "jane_doe@example.com")
sheets_auth(token = drive_token())
work with both packages freely now

https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application
https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application
https://cloud.google.com/sdk/docs/

credentials_gce 7

Usage

credentials_byo_oauth2(scopes = NULL, token, ...)

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

token A token with class Token2.0 or an object of httr’s class request, i.e. a token that
has been prepared with httr::config() and has a Token2.0 in the auth_token
component.

... Additional arguments passed to all credential functions.

Value

An Token2.0.

See Also

Other credential functions: credentials_app_default(), credentials_gce(), credentials_service_account(),
credentials_user_oauth2(), token_fetch()

Examples

Not run:
assume `my_token` is a Token2.0 object returned by a function such as
httr::oauth2.0_token() or gargle::gargle2.0_token()
credentials_byo_oauth2(token = my_token)

End(Not run)

credentials_gce Get a token for Google Compute Engine

Description

Uses the metadata service available on GCE VMs to fetch an access token.

Usage

credentials_gce(
scopes = "https://www.googleapis.com/auth/cloud-platform",
service_account = "default",
...

)

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

8 credentials_service_account

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.

For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

service_account

Name of the GCE service account to use.

... Additional arguments passed to all credential functions.

Value

A GceToken() or NULL.

See Also

https://cloud.google.com/compute/docs/storing-retrieving-metadata

Other credential functions: credentials_app_default(), credentials_byo_oauth2(), credentials_service_account(),
credentials_user_oauth2(), token_fetch()

Examples

Not run:
credentials_gce()

End(Not run)

credentials_service_account

Load a service account token

Description

Load a service account token

Usage

credentials_service_account(scopes = NULL, path = "", ..., subject = NULL)

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes
https://cloud.google.com/compute/docs/storing-retrieving-metadata

credentials_user_oauth2 9

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

path JSON identifying the service account, in one of the forms supported for the txt
argument of jsonlite::fromJSON() (typically, a file path or JSON string).

... Additional arguments passed to all credential functions.

subject An optional subject claim. Use for a service account which has been granted
domain-wide authority by an administrator. Such delegation of domain-wide au-
thority means that the service account is permitted to act on behalf of users, with-
out their consent. Identify the user to impersonate via their email, e.g. subject
= "user@example.com".

Value

An httr::TokenServiceAccount or NULL.

See Also

Additional reading on delegation of domain-wide authority:

• https://developers.google.com/identity/protocols/oauth2/service-account#delegatingauthority

Other credential functions: credentials_app_default(), credentials_byo_oauth2(), credentials_gce(),
credentials_user_oauth2(), token_fetch()

Examples

Not run:
token <- credentials_service_account(

scopes = "https://www.googleapis.com/auth/userinfo.email",
path = "/path/to/your/service-account.json"

)

End(Not run)

credentials_user_oauth2

Get an OAuth token for a user

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/oauth2/service-account#delegatingauthority

10 credentials_user_oauth2

Description

Consults the token cache for a suitable OAuth token and, if unsuccessful, gets a token via the
browser flow. A cached token is suitable if it’s compatible with the user’s request in this sense:

• OAuth app must be same.

• Scopes must be same.

• Email, if provided, must be same.

gargle is very conservative about using OAuth tokens discovered in the user’s cache and will gen-
erally seek interactive confirmation. Therefore, in a non-interactive setting, it’s important to ex-
plicitly specify the "email" of the target account or to explicitly authorize automatic discovery.
See gargle2.0_token(), which this function wraps, for more. Non-interactive use also suggests it
might be time to use a service account token.

Usage

credentials_user_oauth2(
scopes = NULL,
app = gargle_app(),
package = "gargle",
...

)

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

app An OAuth consumer application, created by httr::oauth_app().

package Name of the package requesting a token. Used in messages.

... Arguments passed on to gargle2.0_token

email Optional. Allows user to target a specific Google identity. If specified,
this is used for token lookup, i.e. to determine if a suitable token is already
available in the cache. If no such token is found, email is used to pre-
select the targetted Google identity in the OAuth chooser. Note, however,
that the email associated with a token when it’s cached is always deter-
mined from the token itself, never from this argument. Use NA or FALSE
to match nothing and force the OAuth dance in the browser. Use TRUE to
allow email auto-discovery, if exactly one matching token is found in the
cache. Defaults to the option named "gargle_oauth_email", retrieved by
gargle::gargle_oauth_email().

use_oob Whether to prefer "out of band" authentication. Defaults to the option
named "gargle_oob_default", retrieved via gargle::gargle_oob_default().

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

cred_funs 11

cache Specifies the OAuth token cache. Defaults to the option named "gar-
gle_oauth_cache", retrieved via gargle::gargle_oauth_cache().

user_params Named list holding endpoint specific parameters to pass to the
server when posting the request for obtaining or refreshing the access token.

type content type used to override incorrect server response
credentials Advanced use only: allows you to completely customise token

generation.

Value

A Gargle2.0 token.

See Also

Other credential functions: credentials_app_default(), credentials_byo_oauth2(), credentials_gce(),
credentials_service_account(), token_fetch()

Examples

Not run:
Drive scope, built-in gargle demo app
scopes <- "https://www.googleapis.com/auth/drive"
credentials_user_oauth2(scopes, app = gargle_app())

bring your own app
app <- httr::oauth_app(

appname = "my_awesome_app",
key = "keykeykeykeykeykey",
secret = "secretsecretsecret"

)
credentials_user_oauth2(scopes, app)

End(Not run)

cred_funs Credential function registry

Description

Functions to query or manipulate the registry of credential functions consulted by token_fetch().

Usage

cred_funs_list()

cred_funs_add(...)

cred_funs_set(ls)

12 cred_funs

cred_funs_clear()

cred_funs_set_default()

Arguments

... One or more functions with the right signature: its first argument is named
scopes, and it includes ... as an argument.

ls A list of credential functions.

Value

A list of credential functions or NULL.

Functions

• cred_funs_list: Get the list of registered credential functions.

• cred_funs_add: Register one or more new credential fetching functions. Function(s) are
added to the front of the list. So:

* "First registered, last tried."
* "Last registered, first tried."

• cred_funs_set: Register a list of credential fetching functions.

• cred_funs_clear: Clear the credential function registry.

• cred_funs_set_default: Reset the registry to the gargle default.

See Also

token_fetch(), which is where the registry is actually used.

Examples

names(cred_funs_list())

creds_one <- function(scopes, ...) {}
cred_funs_add(creds_one)
cred_funs_add(one = creds_one)
cred_funs_add(one = creds_one, two = creds_one)
cred_funs_add(one = creds_one, creds_one)

undo all of the above and return to default
cred_funs_set_default()

field_mask 13

field_mask Generate a field mask

Description

Many Google API requests take a field mask, via a fields parameter, in the URL and/or in the
body. field_mask() generates such a field mask from an R list, typically a list that is destined to
be part of the body of a request that writes or updates a resource. field_mask() is designed to
help in the common case where the attributes you wish to modify are exactly the ones represented
in the object. It is possible to use a "larger" field mask, that is either less specific or that explicitly
includes other attributes, in which case the attributes covered by the mask but absent from the object
are reset to default values. This is not exactly the use case field_mask() is designed for, but its
output could still be useful as a first step in constructing such a mask.

Usage

field_mask(x)

Arguments

x A named R list, where the requirement for names applies at all levels, i.e. recur-
sively.

Value

A Google API field mask, as a string.

See Also

The documentation for the JSON encoding of a Protocol Buffers FieldMask.

Examples

x <- list(sheetId = 1234, title = "my_favorite_worksheet")
field_mask(x)

x <- list(
userEnteredFormat = list(

backgroundColor = list(
red = 159 / 255, green = 183 / 255, blue = 196 / 255

)
)

)
field_mask(x)

x <- list(
sheetId = 1234,
gridProperties = list(rowCount = 5, columnCount = 3)

)
field_mask(x)

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#json-encoding-of-field-masks

14 gargle2.0_token

gargle2.0_token Generate a gargle token

Description

Constructor function for objects of class Gargle2.0.

Usage

gargle2.0_token(
email = gargle_oauth_email(),
app = gargle_app(),
package = "gargle",
scope = NULL,
user_params = NULL,
type = NULL,
use_oob = gargle_oob_default(),
credentials = NULL,
cache = if (is.null(credentials)) gargle_oauth_cache() else FALSE,
...

)

Arguments

email Optional. Allows user to target a specific Google identity. If specified, this
is used for token lookup, i.e. to determine if a suitable token is already avail-
able in the cache. If no such token is found, email is used to pre-select the
targetted Google identity in the OAuth chooser. Note, however, that the email
associated with a token when it’s cached is always determined from the token
itself, never from this argument. Use NA or FALSE to match nothing and force
the OAuth dance in the browser. Use TRUE to allow email auto-discovery, if ex-
actly one matching token is found in the cache. Defaults to the option named
"gargle_oauth_email", retrieved by gargle::gargle_oauth_email().

app An OAuth consumer application, created by httr::oauth_app().

package Name of the package requesting a token. Used in messages.

scope A character vector of scopes to request.

user_params Named list holding endpoint specific parameters to pass to the server when post-
ing the request for obtaining or refreshing the access token.

type content type used to override incorrect server response

use_oob Whether to prefer "out of band" authentication. Defaults to the option named
"gargle_oob_default", retrieved via gargle::gargle_oob_default().

credentials Advanced use only: allows you to completely customise token generation.

cache Specifies the OAuth token cache. Defaults to the option named "gargle_oauth_cache",
retrieved via gargle::gargle_oauth_cache().

... Absorbs arguments intended for use by other credential functions. Not used.

gargle_app 15

Value

An object of class Gargle2.0, either new or loaded from the cache.

Examples

Not run:
gargle2.0_token()

End(Not run)

gargle_app OAuth app for demonstration purposes

Description

Invisibly returns an OAuth app that can be used to test drive gargle before obtaining your own client
ID and secret. This OAuth app may be deleted or rotated at any time. There are no guarantees
about which APIs are enabled. DO NOT USE THIS IN A PACKAGE or for anything other than
interactive, small-scale experimentation.

You can get your own OAuth app (client ID and secret), without these limitations. See the How to
get your own API credentials vignette for more details.

Usage

gargle_app()

Value

An OAuth consumer application, produced by httr::oauth_app(), invisibly.

Examples

Not run:
gargle_app()

End(Not run)

https://gargle.r-lib.org/articles/get-api-credentials.html
https://gargle.r-lib.org/articles/get-api-credentials.html

16 gargle_options

gargle_oauth_sitrep OAuth token situation report

Description

Get a human-oriented overview of the existing gargle OAuth tokens:

• Filepath of the current cache

• Number of tokens found there

• Compact summary of the associated

– Email = Google identity
– OAuth app (actually, just its nickname)
– Scopes
– Hash (actually, just the first 7 characters) Mostly useful for the development of gargle and

client packages.

Usage

gargle_oauth_sitrep(cache = NULL)

Arguments

cache Specifies the OAuth token cache. Defaults to the option named "gargle_oauth_cache",
retrieved via gargle::gargle_oauth_cache().

Value

A data frame with one row per cached token, invisibly.

Examples

gargle_oauth_sitrep()

gargle_options Options consulted by gargle

Description

Wrapper functions around options consulted by gargle, which provide:

• A place to hang documentation.

• The mechanism for setting a default.

If the built-in defaults don’t suit you, set one or more of these options. Typically, this is done in the
.Rprofile startup file, with code along these lines:

gargle_options 17

options(
gargle_oauth_email = "jane@example.com",
gargle_oauth_cache = "/path/to/folder/that/does/not/sync/to/cloud"

)

Usage

gargle_oauth_email()

gargle_oob_default()

gargle_oauth_cache()

gargle_quiet()

gargle_oauth_email

gargle_oauth_email() returns the option named "gargle_oauth_email", which is undefined by
default. If set, this option should be one of:

• An actual email address corresponding to your preferred Google identity. Example:janedoe@gmail.com.

• TRUE to allow email and OAuth token auto-discovery, if exactly one suitable token is found in
the cache.

• FALSE or NA to force the OAuth dance in the browser.

gargle_oob_default

gargle_oob_default() returns the option named "gargle_oob_default", falls back to the option
named "httr_oob_default", and eventually defaults to FALSE. This controls whether to prefer "out of
band" authentication. This is ultimately passed to httr::init_oauth2.0() as use_oob. If FALSE
(and httpuv is installed), a local webserver is used for the OAuth dance. Otherwise, user gets a URL
and prompt for a validation code.

Read more about "out of band" authentication in the vignette Auth when using R in the browser.

gargle_oauth_cache

gargle_oauth_cache() returns the option named "gargle_oauth_cache", defaulting to NA. If de-
fined, the option must be set to a logical value or a string. TRUE means to cache using the default
user-level cache file, ~/.R/gargle/gargle-oauth, FALSE means don’t cache, and NA means to guess
using some sensible heuristics.

gargle_quiet

gargle_quiet() returns the option named "gargle_quiet", which defaults to TRUE. Set this option
to FALSE to see more info about gargle’s activities, which can be helpful for troubleshooting.

https://gargle.r-lib.org/articles/auth-from-web.html

18 GceToken

Examples

gargle_oauth_email()
gargle_oob_default()
gargle_oauth_cache()
gargle_quiet()

GceToken Token for use on Google Compute Engine instances

Description

Token for use on Google Compute Engine instances

Token for use on Google Compute Engine instances

Details

This class uses the metadata service available on GCE VMs to fetch access tokens. Not intended
for direct use. See credentials_gce() instead.

Super classes

httr::Token -> httr::Token2.0 -> GceToken

Methods

Public methods:
• GceToken$print()

• GceToken$init_credentials()

• GceToken$cache()

• GceToken$load_from_cache()

• GceToken$can_refresh()

• GceToken$refresh()

• GceToken$revoke()

• GceToken$clone()

Method print(): Print token

Usage:
GceToken$print(...)

Arguments:

... Not used.

Method init_credentials(): Placeholder implementation of required method

Usage:
GceToken$init_credentials()

init_AuthState 19

Method cache(): Placeholder implementation of required method
Usage:
GceToken$cache(...)

Arguments:
... Not used.

Method load_from_cache(): Placeholder implementation of required method
Usage:
GceToken$load_from_cache(...)

Arguments:
... Not used.

Method can_refresh(): Placeholder implementation of required method
Usage:
GceToken$can_refresh()

Method refresh(): Refresh a GCE token
Usage:
GceToken$refresh()

Method revoke(): Placeholder implementation of required method
Usage:
GceToken$revoke()

Method clone(): The objects of this class are cloneable with this method.
Usage:
GceToken$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

init_AuthState Create an AuthState

Description

Constructor function for objects of class AuthState.

Usage

init_AuthState(
package = NA_character_,
app = NULL,
api_key = NULL,
auth_active = TRUE,
cred = NULL

)

20 oauth_app_from_json

Arguments

package Package name, an optional string. The associated package will generally by im-
plied by the namespace within which the AuthState is defined. But it’s possible
to record the package name explicitly and seems like a good practice.

app Optional. An OAuth consumer application, as produced by httr::oauth_app().

api_key Optional. API key (a string). Some APIs accept unauthorized, "token-free"
requests for public resources, but only if the request includes an API key.

auth_active Logical. TRUE means requests should include a token (and probably not an API
key). FALSE means requests should include an API key (and probably not a
token).

cred Credentials. Typically populated indirectly via token_fetch().

Value

An object of class AuthState.

Examples

my_app <- httr::oauth_app(
appname = "my_package",
key = "keykeykeykeykeykey",
secret = "secretsecretsecret"

)

init_AuthState(
package = "my_package",
app = my_app,
api_key = "api_key_api_key_api_key",

)

oauth_app_from_json Create an OAuth app from JSON

Description

Essentially a wrapper around httr::oauth_app() that extracts the necessary info from JSON ob-
tained from Google Cloud Platform Console. If no appname is given, the "project_id" from the
JSON is used.

Usage

oauth_app_from_json(path, appname = NULL)

https://console.cloud.google.com

request_develop 21

Arguments

path JSON downloaded from Google Cloud Platform Console, containing a client
id (aka key) and secret, in one of the forms supported for the txt argument of
jsonlite::fromJSON() (typically, a file path or JSON string).

appname name of the application. This is not used for OAuth, but is used to make it easier
to identify different applications.

Examples

Not run:
oauth_app(

path = "/path/to/the/JSON/you/downloaded/from/gcp/console.json"
)

End(Not run)

request_develop Build a Google API request

Description

Intended primarily for internal use in client packages that provide high-level wrappers for users.
The vignette Request helper functions describes how one might use these functions inside a wrapper
package.

Usage

request_develop(
endpoint,
params = list(),
base_url = "https://www.googleapis.com"

)

request_build(
method = "GET",
path = "",
params = list(),
body = list(),
token = NULL,
key = NULL,
base_url = "https://www.googleapis.com"

)

https://gargle.r-lib.org/articles/request-helper-functions.html

22 request_develop

Arguments

endpoint List of information about the target endpoint or, in Google’s vocabulary, the
target "method". Presumably prepared from the Discovery Document for the
target API.

params Named list. Values destined for URL substitution, the query, or, for request_develop()
only, the body. For request_build(), body parameters must be passed via the
body argument.

base_url Character.

method Character. An HTTP verb, such as GET or POST.

path Character. Path to the resource, not including the API’s base_url. Examples:
drive/v3/about or drive/v3/files/{fileId}. The path can be a template,
i.e. it can include variables inside curly brackets, such as {fileId} in the ex-
ample. Such variables are substituted by request_build(), using named pa-
rameters found in params.

body List. Values to send in the API request body.

token Token, ready for inclusion in a request, i.e. prepared with httr::config().

key API key. Needed for requests that don’t contain a token. For more, see Google’s
document Credentials, access, security, and identity. A key can be passed as a
named component of params, but note that the formal argument key will clobber
it, if non-NULL.

Value

request_develop(): list() with components method, path, params, body, and base_url.

request_build(): list() with components method, path (post-substitution), query (the input
params not used in URL substitution), body, token, url (the full URL, post-substitution, including
the query).

request_develop()

Combines user input (params) with information about an API endpoint. endpoint should contain
these components:

• path: See documentation for argument.

• method: See documentation for argument.

• parameters: Compared with params supplied by user. An error is thrown if user-supplied
params aren’t named in endpoint$parameters or if user fails to supply all required pa-
rameters. In the return value, body parameters are separated from those destined for path
substitution or the query.

The return value is typically used as input to request_build().

https://developers.google.com/discovery/v1/getting_started#background-resources
https://support.google.com/googleapi/answer/6158857?hl=en&ref_topic=7013279

request_develop 23

request_build()

Builds a request, in a purely mechanical sense. This function does nothing specific to any particular
Google API or endpoint.

• Use with the output of request_develop() or with hand-crafted input.

• params are used for variable substitution in path. Leftover params that are not bound by the
path template automatically become HTTP query parameters.

• Adds an API key to the query iff token = NULL and removes the API key otherwise. Client
packages should generally pass their own API key in, but note that gargle_api_key() is
available for small-scale experimentation.

See googledrive::generate_request() for an example of usage in a client package. googledrive
has an internal list of selected endpoints, derived from the Drive API Discovery Document, exposed
via googledrive::drive_endpoints(). An element from such a list is the expected input for
endpoint. googledrive::generate_request() is a wrapper around request_develop() and
request_build() that inserts a googledrive-managed API key and some logic about Team Drives.
All user-facing functions use googledrive::generate_request() under the hood.

See Also

Other requests and responses: request_make(), response_process()

Examples

Not run:
Example with a prepared endpoint
ept <- googledrive::drive_endpoints("drive.files.update")[[1]]
req <- request_develop(

ept,
params = list(
fileId = "abc",
addParents = "123",
description = "Exciting File"

)
)
req

req <- request_build(
method = req$method,
path = req$path,
params = req$params,
body = req$body,
token = "PRETEND_I_AM_A_TOKEN"

)
req

Example with no previous knowledge of the endpoint
List a file's comments
https://developers.google.com/drive/v3/reference/comments/list
req <- request_build(

method = "GET",

https://www.googleapis.com/discovery/v1/apis/drive/v3/rest

24 request_make

path = "drive/v3/files/{fileId}/comments",
params = list(

fileId = "your-file-id-goes-here",
fields = "*"

),
token = "PRETEND_I_AM_A_TOKEN"

)
req

Example with no previous knowledge of the endpoint and no token
use an API key for which the Places API is enabled!
API_KEY <- "1234567890"

get restaurants close to a location in Vancouver, BC
req <- request_build(

method = "GET",
path = "maps/api/place/nearbysearch/json",
params = list(

location = "49.268682,-123.167117",
radius = 100,
type = "restaurant"

),
key = API_KEY,
base_url = "https://maps.googleapis.com"

)
resp <- request_make(req)
out <- response_process(resp)
vapply(out$results, function(x) x$name, character(1))

End(Not run)

request_make Make a Google API request

Description

Intended primarily for internal use in client packages that provide high-level wrappers for users.
request_make() does relatively little:

• Calls an HTTP method.

• Adds a user agent.

• Enforces "json" as the default for encode. This differs from httr’s default behaviour, but
aligns better with Google APIs.

Typically the input is created with request_build() and the output is processed with response_process().

Usage

request_make(x, ..., encode = "json", user_agent = gargle_user_agent())

response_process 25

Arguments

x List. Holds the components for an HTTP request, presumably created with
request_develop() or request_build(). Must contain a method and url.
If present, body and token are used.

... Optional arguments passed through to the HTTP method. Currently neither gar-
gle nor httr checks that all are used, so be aware that unused arguments may be
silently ignored.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file().
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

user_agent A user agent string, prepared by httr::user_agent(). When in doubt, a client
package should have an internal function that extends gargle_user_agent()
by prepending its return value with the client package’s name and version.

Value

Object of class response from httr.

See Also

Other requests and responses: request_develop(), response_process()

Examples

Not run:
req <- gargle::request_build(

method = "GET",
path = "path/to/the/resource",
token = "PRETEND_I_AM_TOKEN"

)
gargle::request_make(req)

End(Not run)

response_process Process a Google API response

26 response_process

Description

response_process() is intended primarily for internal use in client packages that provide high-
level wrappers for users. Typically applied as the final step in this sequence of calls:

• Request prepared with request_build().

• Request made with request_make().

• Response processed with response_process().

All that’s needed for a successful request is to parse the JSON extracted via httr::content().
Therefore, the main point of response_process() is to handle less happy outcomes:

• Status codes in the 400s (client error) and 500s (server error). The structure of the error
payload varies across Google APIs and we try to create a useful message for all variants we
know about.

• Non-JSON content type, such as HTML.

• Status code in the 100s (information) or 300s (redirection). These are unexpected.

Usage

response_process(resp, error_message = gargle_error_message)

response_as_json(resp)

gargle_error_message(resp)

Arguments

resp Object of class response from httr.

error_message Function that produces an informative error message from the primary input,
resp. It must return a character vector.

Details

If process_response() results in an error, a redacted version of the resp input is returned in the
condition (auth tokens are removed). Use functions such as rlang::last_error() or rlang::catch_cnd()
to capture the condition and do a more detailed forensic examination.

The response_as_json() helper is exported only as an aid to maintainers who wish to use their
own error_message function, instead of gargle’s built-in gargle_error_message(). When im-
plementing a custom error_message function, call response_as_json() immediately on the in-
put in order to inherit gargle’s handling of non-JSON input.

Value

The content of the request, as a list. An HTTP status code of 204 (No content) is a special case
returning TRUE.

See Also

Other requests and responses: request_develop(), request_make()

token-info 27

Examples

Not run:
get an OAuth2 token with 'userinfo.email' scope
token <- token_fetch(scopes = "https://www.googleapis.com/auth/userinfo.email")

see the email associated with this token
req <- gargle::request_build(

method = "GET",
path = "v1/userinfo",
token = token,
base_url = "https://openidconnect.googleapis.com"

)
resp <- gargle::request_make(req)
response_process(resp)

make a bad request (this token has incorrect scope)
req <- gargle::request_build(

method = "GET",
path = "fitness/v1/users/{userId}/dataSources",
token = token,
params = list(userId = 12345)

)
resp <- gargle::request_make(req)
response_process(resp)

End(Not run)

token-info Get info from a token

Description

These functions send the token to Google endpoints that return info about a token or a user.

Usage

token_userinfo(token)

token_email(token)

token_tokeninfo(token)

Arguments

token A token with class Token2.0 or an object of httr’s class request, i.e. a token that
has been prepared with httr::config() and has a Token2.0 in the auth_token
component.

28 token_fetch

Details

It’s hard to say exactly what info will be returned by the "userinfo" endpoint targetted by token_userinfo().
It depends on the token’s scopes. OAuth2 tokens obtained via the gargle package include the
https://www.googleapis.com/auth/userinfo.email scope, which guarantees we can learn the email
associated with the token. If the token has the https://www.googleapis.com/auth/userinfo.profile
scope, there will be even more information available. But for a token with unknown or arbitrary
scopes, we can’t make any promises about what information will be returned.

Value

A list containing:

• token_userinfo(): user info

• token_email(): user’s email (obtained from a call to token_userinfo())

• token_tokeninfo(): token info

Examples

Not run:
with service account token
t <- token_fetch(

scopes = "https://www.googleapis.com/auth/drive",
path = "path/to/service/account/token/blah-blah-blah.json"

)
or with an OAuth token
t <- token_fetch(

scopes = "https://www.googleapis.com/auth/drive",
email = "janedoe@example.com"

)
token_userinfo(t)
token_email(t)
tokens_tokeninfo(t)

End(Not run)

token_fetch Fetch a token for the given scopes

Description

This is a rather magical function that calls a series of concrete credential-fetching functions, each
wrapped in a tryCatch(). token_fetch() keeps trying until it succeeds or there are no more
functions to try. Use cred_funs_list() to see the current registry, in order. See the vignette How
gargle gets tokens for a full description of token_fetch().

Usage

token_fetch(scopes = NULL, ...)

https://gargle.r-lib.org/articles/how-gargle-gets-tokens.html
https://gargle.r-lib.org/articles/how-gargle-gets-tokens.html

token_fetch 29

Arguments

scopes A character vector of scopes to request. Pick from those listed at https://
developers.google.com/identity/protocols/googlescopes.
For certain token flows, the "https://www.googleapis.com/auth/userinfo.email"
scope is unconditionally included. This grants permission to retrieve the email
address associated with a token; gargle uses this to index cached OAuth tokens.
This grants no permission to view or send email. It is considered a low value
scope and does not appear on the consent screen.

... Additional arguments passed to all credential functions.

Value

An httr::Token or NULL.

See Also

Other credential functions: credentials_app_default(), credentials_byo_oauth2(), credentials_gce(),
credentials_service_account(), credentials_user_oauth2()

Examples

Not run:
token_fetch(scopes = "https://www.googleapis.com/auth/userinfo.email")

End(Not run)

https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

Index

AuthState, 19, 20
AuthState (AuthState-class), 2
AuthState-class, 2

content_type(), 25
cred_funs, 11
cred_funs_add (cred_funs), 11
cred_funs_clear (cred_funs), 11
cred_funs_list (cred_funs), 11
cred_funs_list(), 28
cred_funs_set (cred_funs), 11
cred_funs_set_default (cred_funs), 11
credentials_app_default, 5, 7–9, 11, 29
credentials_byo_oauth2, 6, 6, 8, 9, 11, 29
credentials_gce, 6, 7, 7, 9, 11, 29
credentials_gce(), 18
credentials_service_account, 6–8, 8, 11,

29
credentials_user_oauth2, 6–9, 9, 29

field_mask, 13

Gargle2.0, 11, 14, 15
gargle2.0_token, 10, 14
gargle2.0_token(), 10
gargle::gargle_oauth_cache(), 11, 14, 16
gargle::gargle_oauth_email(), 10, 14
gargle::gargle_oob_default(), 10, 14
gargle_api_key(), 23
gargle_app, 15
gargle_error_message

(response_process), 25
gargle_oauth_cache (gargle_options), 16
gargle_oauth_email (gargle_options), 16
gargle_oauth_sitrep, 16
gargle_oob_default (gargle_options), 16
gargle_options, 16
gargle_quiet (gargle_options), 16
GceToken, 18
GceToken(), 8

httr, 25, 26
httr::config(), 6, 7, 22, 27
httr::init_oauth2.0(), 17
httr::oauth_app(), 10, 14, 15, 20
httr::Token, 18, 29
httr::Token2.0, 3, 6, 18
httr::TokenServiceAccount, 3, 6, 9
httr::user_agent(), 25

init_AuthState, 19
init_AuthState(), 3, 4

jsonlite::fromJSON(), 9, 21

oauth_app_from_json, 20

request_build (request_develop), 21
request_build(), 24–26
request_develop, 21, 25, 26
request_develop(), 25
request_make, 23, 24, 26
request_make(), 26
response_as_json (response_process), 25
response_process, 23, 25, 25
response_process(), 24

service account token, 10

token-info, 27
Token2.0, 7, 27
token_email (token-info), 27
token_fetch, 6–9, 11, 28
token_fetch(), 3, 11, 12, 20
token_tokeninfo (token-info), 27
token_userinfo (token-info), 27

upload_file(), 25

30

	AuthState-class
	credentials_app_default
	credentials_byo_oauth2
	credentials_gce
	credentials_service_account
	credentials_user_oauth2
	cred_funs
	field_mask
	gargle2.0_token
	gargle_app
	gargle_oauth_sitrep
	gargle_options
	GceToken
	init_AuthState
	oauth_app_from_json
	request_develop
	request_make
	response_process
	token-info
	token_fetch
	Index

