Package ‘gamlss.nl’

February 19, 2015

Type Package

Title Fitting non linear parametric GAMLSS models
Version 4.1-0

Date 2012-02-15

Author Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>, Bob
Rigby <r.rigby@londonmet.ac.uk> with contributions from
Philippe Lambert.

Maintainer Mikis Stasinopoulos <d.stasinopoulos@londonmet.ac.uk>
LazyLoad yes
Depends R (>=2.2.1), gamlss, survival

Description This is an add on package to GAMLSS. It allows one extra
method for fitting GAMLSS models. The main function nlgamlss()
can fit any parametric (up to four parameter) GAMLSS
distribution.

License GPL-2 | GPL-3

URL http://www.gamlss.org/
Repository CRAN
Date/Publication 2012-02-15 12:56:58

NeedsCompilation no

R topics documented:

gamlss-nl-package L 2
finterp 3
la e e 8
Nl L e e 9
NL.control o 11
nlgamlss L e e e e 13
Index 17

http://www.gamlss.org/

2 gamlss-nl-package

gamlss-nl-package The GAMLSS add on package for fiting parametric non linear models

Description

The main purpose of this package is to allow non-linear fitting within a GAMLSS model. The main
function nlgamlss() can fit any parametric (up to four distribution parameters) GAMLSS family

of distributions.
Details
Package: gamlss-nl
Type: Package
Version: 1.5.0
Date: 2005-12-12
License: GPL (version 2 or later)
Author(s)

Mikis Stasinopoulos <d.stasinopoulos @londonmet.ac.uk>, Bob Rigby <r.rigby @londonmet.ac.uk>
based on work of Jim Lindsey and Philippe Lambert.

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
shape, (with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the
GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.com/).

See Also

gamlss

Examples

data(la)

fitting the Johnson's Su distribtion to the data

modJSU <- nlgamlss(y=PET60, mu.fo= ~bflow*(1-pl*exp(-p2/bflow)), sigma.formula=~1,
nu.fo=~1, mu.start = c(.6, 110), sigma.start= 3, nu.start=1,
tau.start=0.6, family=JSU, data=la)

plot(modJSU)

summary (modJSU)

vcov(modJSU)

http://www.gamlss.com/

finterp 3

finterp Formula Interpreter

Description

This function is taken from Jim Lindsey’s R package rmutil.

What follows is taken from the help file of rmutil. Note that not all the functionalities of finterp
are implemented in nlgamlss.

finterp translates a model formula into a function of the unknown parameters or of a vector of
them. Such language formulae can either be in Wilkinson and Rogers notation or be expressions
containing both known (existing) covariates and unknown (not existing) parameters. In the latter,
factor variables cannot be used and parameters must be scalars.

The covariates in the formula are sought in the environment or in the data object provided. If the
data object has class, ’'repeated’ or 'response’, then the key words, times’ will use the response
times from the data object as a covariate, ’individuals’ will use the index for individuals as a factor
covariate, and 'nesting’ the index for nesting as a factor covariate. The latter two only work for
W&R notation.

Note that, in parameter displays, formulae in Wilkinson and Rogers notation use variable names
whereas those with unknowns use the names of these parameters, as given in the formulae, and that
the meaning of operators (*, /, :, etc.) is different in the two cases.

The function fmobj inspects a formula and returns a list containing the objects referred to, with
indicators as to which are unknown parameters, covariates, factor variables, and functions.

Usage

Default S3 method:
finterp(.z, .envir = parent.frame(), .formula =
.vector = TRUE, .args = NULL, .start =1,
.name = NULL, .expand = TRUE, .intercept = TRUE,
.0old = NULL, .response = FALSE, ...)
S3 method for class 'data.frame'
finterp(.z, .envir = NULL, .formula = FALSE, .vector = TRUE,
.args = NULL, .start = 1, .name NULL, .expand = NULL, .intercept = TRUE,
.old = NULL, ...)
finterp(.z, ...)
fmobj(z, envir = parent.frame())

FALSE,

Arguments
.z A model formula beginning with \~, either in Wilkinson and Rogers notation or
containing unknown parameters. If it contains unknown parameters, it can have
several lines so that, for example, local variables can be assigned temporary
values. In this case, enclose the formula in curly brackets
.envir The environment in which the formula is to be interpreted or a data object of

class, 'repeated’, 'tccov’, or “tvcov’.

.formula

.vector

.args

.start

.hame

.expand

.intercept

.old

.response

envir

Value

finterp

If TRUE and the formula is in Wilkinson and Rogers notation, just returns the
formula.

If FALSE and the formula contains unknown parameters, the function returned
has them as separate arguments. If TRUE, it has one argument, the unknowns as
a vector, unless certain parameter names are specified in *.args’. Always TRUE
if *.envir’ is a data object.

If ’.vector’ is TRUE, names of parameters that are to be function arguments and
not included in the vector.

The starting index value of the parameter vector in the function returned when
*.vector’ is TRUE.

Character string giving the name of the data object specified by ’.envir’. Ignored
unless the latter is such an object and only necessary when ’finterp’ is called
within other functions.

If TRUE, expand functions with only time-constant covariates to return one
value per observation instead of one value per individual. Ignored unless *.envir’
is an object of class, 'repeated’.

If W&R notation is supplied and ’.intercept=F’, a model function without inter-
cept is returned.

The name of an existing object of class *formulafn’ which has common pa-
rameters with the one being created, or a list of such objects. Only used if
*.vector’=TRUE. The value of ’.start’ should ensure that there is no conflict in
indexing the vector.

If TRUE, any response variable can be used in the function. If FALSE, checks
are made that the response is not also used as a covariate.

A model formula beginning with ~, either in Wilkinson and Rogers notation or
containing unknown parameters.

The environment in which the formula is to be interpreted.

for extra arguments

A function, of class formulafn, of the unknown parameters or of a vector of them is returned.
Its attributes give the formula supplied, the model function produced, the covariate names, the
parameter names, and the range of values of the index of the parameter vector. If 'formula’ is
TRUE and a Wilkinson and Rogers formula was supplied, it is simply returned instead of creating

a function.

For fmobj a list, of class "fmobj’, containing a character vector ("objects’) with the names of the
objects used in a formula, and logical vectors indicating which are unknown parameters (’parame-
ters’), covariates (’covariates’), factor variables (’factors’), and functions (’functions’) is returned.

Author(s)
J.K. Lindsey

finterp

References

http://popgen.unimaas.nl/~jlindsey/index.html:JimLindseywebpage

Examples

From Jim Lindsey

x1 <- rpois(20,2)

x2 <= rnorm(20)

#

Wilkinson and Rogers formula with three parameters
fnl <- finterp(~x1+x2)

nil

fn1(rep(2,3))

the same formula with unknowns

fn2 <- finterp(~b@+b1xx1+b2*x2)

fn2

fn2(rep(2,3))

#

nonlinear formulae with unknowns

log link

fn2a <- finterp(~exp(b@+b1xx1+b2*x2))
fn2a

fn2a(rep(0.2,3))

parameters common to two functions

fn2b <- finterp(~cO+clxexp(b@+b1*x1+b2xx2), .old=fn2a, .start=4)

fn2b

function returned also depends on values of another function

fn2c <- finterp(~fn2+cl*xexp(b0+b1xx1+b2*x2), .old=fn2a,
.start=4, .args="fn2")

fn2c

args(fn2c)

fn2c(rep(0.2,4),fn2(rep(2,3)))

#

compartment model

times <- 1:20

exp() parameters to ensure that they are positive

fn3 <- finterp(~exp(absorption-volume)/(exp(absorption)-
exp(elimination))*(exp(-exp(elimination)xtimes)-
exp(-exp(absorption)*times)))

fn3

fn3(log(c(0.3,3,0.2)))

a more efficient way

(note that parameters do not appear in the same order)

form <- ~{
ka <- exp(absorption)
ke <- exp(elimination)
ka*exp(-volume)/(ka-ke)*(exp(-ke*times)-exp(-ka*times))}

fn3a <- finterp(form)

fn3a(log(c(0.3,0.2,3)))

#

Poisson density

y <- rpois(20,5)

http://popgen.unimaas.nl/~jlindsey/index.html: Jim Lindsey web page

finterp

fn4 <- finterp(~mu*y*exp(-mu)/gamma(y+1))
fn4

fn4(5)

dpois(y,5)

#

Poisson likelihood

mean parameter

fn5 <- finterp(~-y*log(mu)+mu+lgamma(y+1),.vector=FALSE)
fn5

likefn1 <- function(p) sum(fn5(mu=p))
nlm(likefn1,p=1)

mean(y)

canonical parameter

fn5a <- finterp(~-y*thetat+exp(theta)+lgamma(y+1),.vector=FALSE)
fn5a

likefnla <- function(p) sum(fn5a(theta=p))
nlm(likefnla,p=1)

#

likelihood for Poisson log linear regression
y <- rpois(20,fn2a(c(0.2,1,0.4)))
nlm(likefn1,p=1)

mean(y)

likefn2 <- function(p) sum(fn5(mu=fn2a(p)))
nlm(likefn2,p=c(1,0,0))

or

likefn2a <- function(p) sum(fn5a(theta=fn2(p)))
nlm(likefn2a,p=c(1,0,0))

#

likelihood for Poisson nonlinear regression
y <~ rpois(20,fn3(log(c(3,0.3,0.2))))
nlm(likefn1,p=1)

mean(y)

likefn3 <- function(p) sum(fn5(mu=fn3(p)))
nlm(likefn3,p=log(c(1,0.4,0.1)))

#

envir as data objects

y <- matrix(rnorm(20),ncol=5)

#y[3,3] <- y[2,2] <- NA

#x1 <- 1:4

#x2 <= c("a","b","c","d")

#resp <- restovec(y)

#xx <- tcctomat(x1)

#xx2 <- tcctomat(data.frame(x1,x2))

#z1 <- matrix(rnorm(20),ncol=5)

#z2 <- matrix(rnorm(20),ncol=5)

#z3 <- matrix(rnorm(20),ncol=5)

#zz <- tvctomat(z1l)

#zz <- tvctomat(z2,o0ld=zz)

#reps <- rmna(resp, ccov=xx, tvcov=zz)
#reps2 <- rmna(resp, ccov=xx2, tvcov=zz)
#rm(y, x1, x2 , z1, z2)

#

repeated objects

finterp

#

time-constant covariates

Wilkinson and Rogers notation

#forml <- ~x1

#print(fnl <- finterp(forml, .envir=reps))
#fn1(2:3)

#print(fnla <- finterp(forml, .envir=xx))
#fn1a(2:3)

#formlb <- ~x1+x2

#print(fnlb <- finterp(formlb, .envir=reps2))
#fn1b(2:6)

#print(fnic <- finterp(formlb, .envir=xx2))
#fn1c(2:6)

with unknown parameters

#form2 <- ~at+bxx1

#print(fn2 <- finterp(form2, .envir=reps))
#fn2(2:3)

#print(fn2a <- finterp(form2, .envir=xx))
#fn2a(2:3)

#

time-varying covariates

Wilkinson and Rogers notation

#form3 <- ~z1+z2

#print(fn3 <- finterp(form3, .envir=reps))
#fn3(2:4)

#print(fn3a <- finterp(form3, .envir=zz))
#fn3a(2:4)

with unknown parameters

#form4 <- ~atbxzl+cxz2

#print(fn4 <- finterp(form4, .envir=reps))
#fn4(2:4)

#print(fnda <- finterp(form4, .envir=zz))
#fnd4a(2:4)

#

note: lengths of x1 and z2 differ

Wilkinson and Rogers notation

#form5 <- ~x1+z2

#print(fn5 <- finterp(form5, .envir=reps))
#fn5(2:4)

with unknown parameters

#form6 <- ~atb*x1+cxz2

#print(fné <- finterp(form6, .envir=reps))
#fn6(2:4)

#

with times

Wilkinson and Rogers notation

#form7 <- ~x1+z2+times

#print(fn7 <- finterp(form7, .envir=reps))
#fn7(2:5)

#form7a <- ~x1+x2+z2+times

#print(fn7a <- finterp(form7a, .envir=reps2))
#fn7a(2:8)

with unknown parameters

8 la

#form8 <- ~atb*x1+cxz2+e*times

#print(fn8 <- finterp(form8, .envir=reps))
#fn8(2:5)

#

with a variable not in the data object
#form9 <- ~atbxzl+cxz2+e*z3

#print(fn9 <- finterp(form9, .envir=reps))

#fn9(2:5)

z3 assumed to be an unknown parameter:
#fn9(2:6)

#

multiline formula

#form1o <- ~{

tmp <- exp(b)

attmp*xz1+cxz2+d*times}
#print(fn1@ <- finterp(form1@, .envir=reps))
#fn10(2:5)

for fmobj

x1 <- rpois(20,2)

X2 <= rnorm(20)

x3 <- gl(2,10)

#

W&R formula

fmobj (~x1+x2+x3)

#

formula with unknowns
fmobj (~b0+b1*x1+b2xx2)

#

nonlinear formulae with unknowns
log link
fmobj(~exp(b@+b1xx1+b2*x2))

la The blood flow dataset.

Description

The blood flow dataset.

Usage
data(la)

Format
A data frame with 251 observations on the following 4 variables.

bflow the blood flow measured invasively using radioactively labelled micro-spheres

PET60 is the blood flow measured non-invasively by positron emission tomography using a scan up
to 60 seconds

nl 9

PETother ?

PET510 is the blood flow measured non-invasively by positron emission tomography using a scan
up to 510 seconds

Details

The blood flow data were analyzed by Lange et al. (1989), Jones and Faddy (2003) and Rigby and
Stasinopoulos (2006). As response variables y the variables PET60, PETother, PET510 can be used
representing blood flow measured non-invasively by positron emission tomography using a scan
up to 60 seconds (PET60) or 510 second (PET510) respectively. The explanatory variable x is the
blood flow measured invasively using radioactively labelled micro-spheres. The distribution of y has
previously been modelled by a normal (NO) and a ¢ family distribution (TF), Lange ef al. (1989),
and by a skew ¢ distribution (ST), Jones and Faddy (2003) and by Rigby and Stasinopoulos (2006)
using several three and four parameter distributions, including the Box-Cox power exponential
(BCPE), Rigby and Stasinopoulos (2004) and the Box-Cox t diastribution (BCT) .

References

Jones, M. C. and Faddy, M. J. (2003). A skew extension of the t distribution, with applications. J.
Roy. Statist. Soc B, 65, 159-174.

Lange, K. L., Little, R. J. A. and Taylor, J. M. G. (1989). Robust statistical modelling using the t
distribution. J. Am. Statist. Ass., 84, 881-896.

Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox ¢ distribution in GAMLSS to mode
skewnees and and kurtosis. to appear in Statistical Modelling.

Examples

data(la)
plot (PET60~bflow,data=1a)

nl Functions to fit nonlinear additive models in GAMLSS

Description

The function nl.obs generate a nonlinear object which can be used to fit a nonlinear additive
model within the gamlss algorithm. The function nl takes the nonlinear object created by nl.obs
and returns it with several attributes which are used in the function gamlss.nl() which is doing the
actual fitting within the backfitting function additive. fit. The actual fit is done by the R function
nlm. The function gamlss.nl() is never used on its own).

Usage

nl.obj(formula, start, data)
nl(obj)
gamlss.nl(x, y, w, xeval = NULL)

10 nl

Arguments
formula a non linear formula or function
start starting values for the parameters in the formula
data data where the formula can be interpreted
obj a non linear object created by nl1.obj
X the nl object from nl
iterative y variable
iterative weights
xeval used in prediction if implemented
Details

The function gamlss.nl() is an internal function of GAMLSS allowing the use of the n1m function
to be used within the backfitting cycle of gamlss, and should be not used on its own.

Value

The function nl. obs returns a non linear object by using the Jim Lindsey’s function finterp found
in the R package rmutil.

The function nl returns a vector with values zero to be included in the design matrix but with
attributes useful in the fitting the non linear model.

Author(s)

Mikis Stasinopoulos <d. stasinopoulos@londonmet.ac.uk>, Bob Rigby <b.rigbhy@londonmet.ac.uk
>

References

http://popgen.unimaas.nl/~jlindsey/index.html: Jim Lindsey web page

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the
GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.com/).

See Also

nlgamlss

Examples

data(la)
nlo<-nl.obj(formula=~bflowx(1-(1-exp(p1))*exp(-p2/bflow)), start=c(-.9, 90), data=la)
mod1<-gamlss(PET60~nl(nlo)-1, data=la)

http://popgen.unimaas.nl/~jlindsey/index.html
http://www.gamlss.com/

NL.control 11

NL.control Auxiliary for Controlling non linear GAMLSS Fitting

Description

This ia an auxiliary function used to control the iterations for nlgamlss fitting. Typically only used
when calling nlgamlss function with the option control. Since the nlgamlss uses nlm for fitting
all of the NL. control argument are passed to nlm.

Usage

NL.control(fscale = 1, typsize = NULL, stepmax = NULL, iterlim = 100,
ndigit = 10, steptol = 1e-05,
gradtol = 1e-05, print.level = 0@, check.analyticals = TRUE,
hessian = TRUE)

Arguments

fscale an estimate of the size of log-likelihood at the minimum with default equal 1.

typsize this argument is passed to nlm and it is an estimate of the size of each parameter
at the minimum. If its value is NULL (the default value) the typsizeis set within
the nlgamlss function to typsize=abs(p@) where p@ is the vector containing
the starting values of all the parameters to be maximized. p@ is defined within
nlgamlss

stepmax this argument is passed to nlm and it is a positive scalar which gives the max-
imum allowable scaled step length. stepmax is used to prevent steps which
would cause the optimization function to overflow, to prevent the algorithm
from leaving the area of interest in parameter space, or to detect divergence
in the algorithm. stepmax would be chosen small enough to prevent the first
two of these occurrences, but should be larger than any anticipated reasonable
step. If its value is NULL (the default value) it is defined within nlgamlss as
stepmax=sqrt(p@ %*% p0)

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated. The default is 100

ndigit the number of significant digits in the log-likelihood function. The default is 10

steptol A positive scalar providing the minimum allowable relative step length. The
defaults is 1e-05

gradtol a positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in log-likelihood in each direction ’p[i]’ divided by the
relative change in *p[i]’. The default is le-05

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of 0’ means that no printing occurs, a value
of ’1” means that initial and final details are printed and a value of 2 means that
full tracing information is printed.

12 NL.control

check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians, if they
are supplied, should be checked against numerical derivatives at the initial pa-
rameter values. This can help detect incorrectly formulated gradients or Hes-
sians.

hessian if TRUE, the hessian of the log likelihood at the maximum is returned ,the default
is hessian=TRUE

Details

See the R function n1m and the fist two refernces below for details of the algotithm.

Value

A list with the arguments as components.

Note

This functions supports the function nlgamlss

Author(s)

Mikis Stasinopoulos <d. stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet. ac.uk>

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for uncon-
strained minimization. ACM Trans. Math. Software, 11, 419-440.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the
GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.com/).

See Also

nlgamlss, nlm

http://www.gamlss.com/

nlgamlss

13

nlgamlss

Fitting non linear Generalized Additive Models for Location Scale and
Shape (GAMLSS)

Description

This function is an additional method for fitting GAMLSS models. It suitable to fit linear or non
linear parametric models using distributions available in the GAMLSS package. It is based on
the function stablereg() of the R package stable created by Philippe Lambert and Jim Lindsey
which can be found in Jim Lindsey’s web page http://popgen.unimaas.nl/~jlindsey/index.
html (see also Lambert, P. and Lindsey, J.K. (1999)). The method is very general but requires
starting values for all the parameters. For parametric models it can also be used to give the exact
(that is taking into the account the correlation between the distributional parameters) asymptotic

standard errors.

Usage

nlgamlss(y = NULL, mu.formula = ~1, sigma.formula

~‘|,

nu.formula = ~1, tau.formula = ~1,

mu.fix
nu.fix

= FALSE, sigma.fix = FALSE,
= FALSE, tau.fix = FALSE, all.fix = FALSE,

mu.start = NULL, sigma.start = NULL,
nu.start = NULL, tau.start = NULL,

family

= NO(), weights = 1,

exact = FALSE, delta =1,

data =

parent.frame(),

control = NL.control(),
1lik.output = FALSE)

Arguments

y

mu.formula

sigma.formula

the response variable y. Note the difference between gamlss and nlgamss in
declaring the y variable In gamlss, y~x is used for modelling the location pa-
rameters while here you need y=y and mu. fo=x

a formula object for fitting a model to the location mu parameter, e.g. mu. fo=~x
The mu. formula is a linear or nonlinear language expression beginning with ~
or an R function, describing the regression function for the predictor of the loca-
tion parameter (i.e. after transformation of mu by its link function). mu.start is
a vector of initial conditions for the parameters in the regression for this param-
eter. mu.fix is a boolean indicating if an optimization of the likelihood has to
be carried out on these parameters. If no optimization is desired on the location
parameters mu, i.e. when the likelihood has to be evaluated or optimized at a
fixed location, then mu. fix=TRUE has to be explicitly specified with mu.start
indicating the fixed value for the predictor of mu.

a formula object for fitting a model to the sigma parameter, as in the mu. formula
above, e.g. sigma. formula=~x1+x2. It can be abbreviated to sigma. fo=~x1+x2.

http://popgen.unimaas.nl/~jlindsey/index.html
http://popgen.unimaas.nl/~jlindsey/index.html

14

nu.formula
tau.formula

mu.fix

sigma.fix

nu.fix

tau.fix

all.fix

mu.start
sigma.start
nu.start
tau.start
family
weights

exact

delta

data

control

1lik.output

Value

nlgamlss

a formula object for fitting a model to the nu parameter, e.g. nu. fo=~x
a formula object for fitting a model to the tau parameter, e.g. tau. fo=~x

whether the mu parameter should be kept fixed in the fitting processes e.g.
mu. fix=FALSE

whether the sigma parameter should be kept fixed in the fitting processes e.g.
sigma.fix=FALSE

whether the nu parameter should be kept fixed in the fitting processes e.g. nu. fix=FALSE

whether the tau parameter should be kept fixed in the fitting processes e.g.
tau. fix=FALSE

whether all the parameters should be fixed at their starting values. This is a way
of evaluating the likelihood function

vector or scalar of initial values for the location parameter mu e.g. mu. start=4
vector or scalar of initial values for the scale parameter sigmae.g. sigma.start=1
vector or scalar of initial values for the parameter nu e.g. nu.start=3

vector or scalar of initial values for the location parameter tau e.g. tau.start=2
the distribution family of the gamlss object (see gamlss.family)

a vector of weights. Here weights can be used to weight out observations (like in
subset) or for a weighted likelihood analysis where the contribution of the ob-
servations to the likelihood differs according to weights. The length of weights
must be the same as the number of observations in the data. By default, the
weight is set to one. To set weights to vector w use weights=w

If TRUE, fits the exact likelihood function for continuous data by integration
over y observation intervals usually determined by the rounding used in the mea-
surement of y, see delta below

Scalar or vector giving the unit of measurement for each response value, set
to unity by default. For example, if a response is measured to two decimals,
delta=0.01. If the response is transformed, this must be multiplied by the Ja-
cobian. For example, with a log transformation, delta=1/y. The transforma-
tion cannot contain unknown parameters. The delta values are used only if
exact=TRUE

a data frame containing the variables occurring in the formula. If this is missing,
the variables should be on the search list. e.g. data=aids

this sets the control parameters for the nlm() iterations algorithm. The default
setting is the NL. control function

is TRUE when the likelihood has to be displayed at each iteration of the opti-
mization

Returns a nlgamlss object with components

family

parameters

the distribution family of the nlgamlss object (see gamlss.family)

the name of the fitted parameters i.e. mu, sigma, nu, tau

nlgamlss

call

y

control

weights

G.deviance

N

rqres

iter

type

method

aic

sbc
df.residual

df.fit

converged

iter

residuals

coefficients

se

cov

corr

mu

mu.

mu

mu

mu

mu

mu

.fv

1p

.link

.formula

.coefficients

.coefficients

.df

15

the call of the nlgamlss function

the response variable

the nlgamlss fit control settings

the vector of weights

the global deviance

the number of observations in the fit

a function to calculate the normalized (randomized) quantile residuals of the
object

the number of external iterations in the fitting process

the type of the distribution or the response variable (continuous , discrete or
mixture)

which algorithm is used for the fit, JL() in this case

the Akaike information criterion

the Schwatz Bayesian information criterion

the residual degrees of freedom left after the model is fitted
the total degrees of freedom use by the model

whether the model fitting has have converged as in n1m()

the number of iterations as in n1Im()

the normalized (randomized) quantile residuals of the model
all the fitted coefficients of the model

the standard errors of all the fitted coefficients of the model
the covariance matrix of all the fitted coefficients of the model
the correlation matrix of all the fitted coefficients of the model

the fitted values of the mu model, also sigma.fv, nu.fv, tau.fv for the other pa-
rameters if present

the linear predictor of the mu model, also sigma.lp, nu.lp, tau.lp for the other
parameters if present

the link function for the mu model, also sigma.link, nu.link, tau.link for the other
parameters if present

the formula for the mu model, also sigma.formula, nu.formula, tau.formula for
the other parameters if present

the estimated coefficients of the mu model, also sigma.coefficients, nu.coefficients,
tau.coefficients for the other parameters if present

the standard errors of the coefficients of the mu model, also sigma.coefficients,
nu.coefficients, tau.coefficients for the other parameters if present

the mu degrees of freedom also sigma.df, nu.df, tau.df for the other parameters
if present

16 nlgamlss

Note

The following generic functions can be used with a GAMLSS object: print, fitted, coef,
residuals, update, plot, deviance, formula

Author(s)

Mikis Stasinopoulos <d. stasinopoulos@londonmet.ac.uk>, Bob Rigby <r.rigby@londonmet.ac.uk>

References

http://popgen.unimaas.nl/~jlindsey/index.html : Jim Lindsey web page

Lambert, P. and Lindsey, J.K. (1999) Analysing financial returns using regression models based on
non-symmetric stable distributions. Applied Statistics 48, 409-424.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and
shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox ¢ distribution in GAMLSS to mode
skewnees and and kurtosis. to appear in Statistical Modelling.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the
GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see
also http://www.gamlss.com/).

See Also

gamlss, gamlss.family

Examples

data(la)

fitting a BCPE distribtion to the data

modBCPE<- nlgamlss(y=PET6@, mu.fo=~bflow*(1-(1-exp(p1))*exp(-p2/bflow)),
sigma.formula=~1, mu.start = c(-.9, 90),
sigma.start= -2.3, nu.start=0, tau.start=log(2.5),
family=BCPE, data=la)

modBCPE

plot(modBCPE)

http://popgen.unimaas.nl/~jlindsey/index.html
http://www.gamlss.com/

Index

+Topic datasets
1a, 8
xTopic package
gamlss-nl-package, 2
+Topic regression
finterp, 3
nl, 9
NL.control, 11
nlgamlss, 13

finterp, 3
fmobj (finterp), 3

gamlss, 2, 16

gamlss-nl (gamlss-nl-package), 2
gamlss-nl-package, 2
gamlss.family, 14, 16
gamlss.nl, 9

gamlss.nl (nl),9

1a, 8

nl, 9
NL.control, 11
nlgamlss, 10, 12, 13
nlm, /2

17

	gamlss-nl-package
	finterp
	la
	nl
	NL.control
	nlgamlss
	Index

