
Package ‘games’
February 23, 2015

Title Statistical Estimation of Game-Theoretic Models

Version 1.1.2

Date 2015-02-22

Description Provides estimation and analysis functions for
strategic statistical models.

License GPL (>= 2)

Depends maxLik (>= 0.7-0), Formula (>= 0.2-0), MASS

Imports stringr

Suggests testthat

Author Curtis S. Signorino [aut],
Brenton Kenkel [aut, cre]

Maintainer Brenton Kenkel <brenton.kenkel@gmail.com>

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-23 00:24:37

R topics documented:
games-package . 2
data_122 . 2
data_123 . 3
data_ult . 4
egame12 . 4
egame122 . 8
egame123 . 11
latexTable . 13
leblang2003 . 14
LW . 16
makeFormulas . 17
Mode . 20
plot.predProbs . 21
plot.profile.game . 22

1

2 data_122

predict.game . 23
predProbs . 25
print.game . 27
print.summary.game . 28
profile.game . 28
student_offers . 30
summary.game . 31
ultimatum . 32
vuong . 34
war1800 . 36

Index 38

games-package A package for estimating strategic statistical models.

Description

A package for estimating strategic statistical models.

Acknowledgements

We thank the Wallis Institute of Political Economy for financial support.

References

Brenton Kenkel and Curtis S. Signorino. 2014. "Estimating Extensive Form Games in R." Journal
of Statistical Software 56(8):1–27.

Curtis S. Signorino. 2003. "Structure and Uncertainty in Discrete Choice Models." Political Anal-
ysis 11:316–344.

data_122 Simulated egame122 data

Description

Simulated data for illustrating egame122.

Usage

data(data_122)

data_123 3

Details

The variables are:

f1, f2 Factors with levels "a", "b", "c"

x1–x5 Numeric variables entering Player 1’s utilities

z1–z3 Numeric variables entering Player 2’s utilities

a1 Indicator for Player 1’s move (L or R)

a2 Indicator for Player 2’s move (L or R)

y Factor containing outcome

See Also

egame122

data_123 Simulated egame123 data

Description

Simulated data for illustrating egame123.

Usage

data(data_123)

Details

The variables are:

x1–x8 Regressors

a1 Indicator for Player 1’s move (L or R)

a2 Indicator for Player 2’s move (L or R)

a3 Indicator for Player 3’s move (L or R)

y Numeric variable containing outcome number: 1, 3, 5, or 6, corresponding to labels in the game
tree in the egame123 documentation.

See Also

egame123

4 egame12

data_ult Simulated ultimatum data

Description

Simulated data for illustrating ultimatum.

Usage

data(data_ult)

Details

The variables are:

offer The offer made by Player 1

accept Whether Player 2 accepted the offer (0 for rejection, 1 for acceptance)

w1, w2 Variables entering both players’ reservation values

x1–x4 Variables entering Player 1’s reservation value

z1–z4 Variables entering Player 2’s reservation value

The maximum offer size is 15.

See Also

ultimatum

egame12 Strategic model with 2 players, 3 terminal nodes

Description

Fits a strategic model with two players and three terminal nodes, as in the game illustrated below in
"Details".

Usage

egame12(formulas, data, subset, na.action, link = c("probit", "logit"),
type = c("agent", "private"), startvals = c("sbi", "unif", "zero"),
fixedUtils = NULL, sdformula = NULL, sdByPlayer = FALSE, boot = 0,
bootreport = TRUE, profile, method = "BFGS", ...)

egame12 5

Arguments

formulas a list of four formulas, or a Formula object with four right-hand sides. See
"Details" and the examples below.

data a data frame containing the variables in the model.
subset optional logical expression specifying which observations from data to use in

fitting.
na.action how to deal with NAs in data. Defaults to the na.action setting of options.

See na.omit.
link whether to use a probit (default) or logit link structure,
type whether to use an agent-error ("agent", default) or private-information ("pri-

vate") stochastic structure.
startvals whether to calculate starting values for the optimization using statistical back-

wards induction ("sbi", default), draw them from a uniform distribution ("unif"),
or to set them all to 0 ("zero")

fixedUtils numeric vector of values to fix for u11, u13, u14, and u24 respectively. NULL
(the default) indicates that these should be estimated with regressors rather than
fixed.

sdformula an optional list of formulas or a Formula containing a regression equation for
the scale parameter. The formula(s) should have nothing on the left-hand side;
the right-hand side should have one equation if sdByPlayer is FALSE and two
equations if sdByPlayer is TRUE. See the examples below for how to specify
sdformula.

sdByPlayer logical: if scale parameters are being estimated (i.e., sdformula or fixedUtils
is non-NULL), should a separate one be estimated for each player? This option is
ignored unless fixedUtils or sdformula is specified.

boot integer: number of bootstrap iterations to perform (if any).
bootreport logical: whether to print status bar when performing bootstrap iterations.
profile output from running profile.game on a previous fit of the model, used to gen-

erate starting values for refitting when an earlier fit converged to a non-global
maximum.

method character string specifying which optimization routine to use (see maxLik)
... other arguments to pass to the fitting function (see maxLik).

Details

The model corresponds to the following extensive-form game, described in Signorino (2003):

. 1

. /\

. / \

. / \ 2

. u11 /\

. / \

. / \

. u13 u14

. 0 u24

6 egame12

If Player 1 chooses L, the game ends and Player 1 receives payoffs of u11. (Player 2’s utilities in
this case cannot be identified in a statistical model.) If Player 1 chooses L, then Player 2 can choose
L, resulting in payoffs of u13 for Player 1 and 0 for Player 2, or R, with payoffs of u14 for 1 and
u24 for 2.

The four equations specified in the function’s formulas argument correspond to the regressors to
be placed in u11, u13, u14, and u24 respectively. If there is any regressor (including the constant)
placed in all of u11, u13, and u14, egame12 will stop and issue an error message, because the model
is then unidentified (see Lewis and Schultz 2003). There are two equivalent ways to express the
formulas passed to this argument. One is to use a list of four formulas, where the first contains the
response variable(s) (discussed below) on the left-hand side and the other three are one-sided. For
instance, suppose:

• u11 is a function of x1, x2, and a constant

• u13 is set to 0

• u14 is a function of x3 and a constant

• u24 is a function of z and a constant.

The list notation would be formulas = list(y ~ x1 + x2, ~ 0, ~ x3, ~ z). The other
method is to use the Formula syntax, with one left-hand side and four right-hand sides (separated
by vertical bars). This notation would be formulas = y ~ x1 + x2 | 0 | x3 | z.

To fix a utility at 0, just use 0 as its equation, as in the example just given. To estimate only a
constant for a particular utility, use 1 as its equation.

There are three equivalent ways to specify the outcome in formulas. One is to use a numeric vector
with three unique values, with their values (from lowest to highest) corresponding with the terminal
nodes of the game tree illustrated above (from left to right). The second is to use a factor, with the
levels (in order as given by levels(y)) corresponding to the terminal nodes. The final way is to use
two indicator variables, with the first standing for whether Player 1 moves L (0) or R (1), the second
standing for Player 2’s choice if Player 1 moves R. (The values of the second when Player 1 moves
L should be set to 0 or 1, not NA, in order to ensure that observations are not dropped from the data
when na.action = na.omit.) The way to specify formulas when using indicator variables is, for
example, y1 + y2 ~ x1 + x2 | 0 | x3 | z.

If fixedUtils or sdformula is specified, the estimated parameters will include terms labeled
log(sigma) (for probit links) or log(lambda). These are the scale parameters of the stochastic
components of the players’ utility. If sdByPlayer is FALSE, then the variance of error terms (or the
equation describing it, if sdformula contains non-constant regressors) is assumed to be common
across all players. If sdByPlayer is TRUE, then two variances (or equations) are estimated: one
for each player. For more on the interpretation of the scale parameters in these models and how it
differs between the agent error and private information models, see Signorino (2003).

The model is fit using maxLik, using the BFGS optimization method by default (see maxBFGS). Use
the method argument to specify an alternative from among those supplied by maxLik.

Value

An object of class c("game", "egame12"). A game object is a list containing:

coefficients estimated parameters of the model.

egame12 7

vcov estimated variance-covariance matrix. Cells referring to a fixed parameter (e.g., a utility when
fixedUtils is specified) will contain NAs.

log.likelihood vector of individual log likelihoods (left unsummed for use with non-nested
model tests).

call the call used to produce the model.

convergence a list containing the optimization method used (see argument method), the number
of iterations to convergence, the convergence code and message returned by maxLik, and an
indicator for whether the (analytic) gradient was used in fitting.

formulas the final Formula object passed to model.frame (including anything specified for the
scale parameters).

link the specified link function.

type the specified stochastic structure (i.e., agent error or private information).

model the model frame containing all variables used in fitting.

xlevels a record of the levels of any factor regressors.

y the dependent variable, represented as a factor.

equations names of each separate equation (e.g., "u1(sq)", "u1(cap)", etc.).

fixed logical vector specifying which parameter values, if any, were fixed in the estimation proce-
dure.

boot.matrix if boot was non-zero, a matrix of bootstrap parameter estimates (otherwise NULL).

localID an indicator for whether the Hessian matrix is negative definite, a sufficient condition for
local identification of the model parameters.

The second class of the returned object, egame12, is for use in generation of predicted probabilities.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>) and Curtis S. Signorino

References

Jeffrey B. Lewis and Kenneth A Schultz. 2003. "Revealing Preferences: Empirical Estimation of a
Crisis Bargaining Game with Incomplete Information." Political Analysis 11:345–367.

Curtis S. Signorino. 2003. "Structure and Uncertainty in Discrete Choice Models." Political Anal-
ysis 11:316–344.

See Also

summary.game and predProbs for postestimation analysis; makeFormulas for formula specifica-
tion.

8 egame122

Examples

data("war1800")

Model formula:
f1 <- esc + war ~ s_wt_re1 + revis1 | 0 | regime1 | balanc + regime2
^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^ ^^^^^^^ ^^^^^^^^^^^^^^^^
y u11 u13 u14 u24

m1 <- egame12(f1, data = war1800)
summary(m1)

m2 <- egame12(f1, data = war1800, link = "logit")
summary(m2)

m3 <- egame12(f1, data = war1800, subset = year >= 1850)
summary(m3)

m4 <- egame12(f1, data = war1800, boot = 10)
summary(m4)
summary(m4, useboot = FALSE)

Estimating scale parameters under fixed utilities
utils <- c(-1, 0, -1.4, 0.1)
m5 <- egame12(esc + war ~ 1, data = war1800, fixedUtils = utils)
summary(m5)

m6 <- egame12(esc + war ~ 1, data = war1800, fixedUtils = utils, sdByPlayer = TRUE)
summary(m6)

Estimating scale parameters with regressors
m7 <- egame12(f1, data = war1800, sdformula = ~ balanc - 1)
summary(m7)

Using a factor outcome
y <- ifelse(war1800$esc == 1, ifelse(war1800$war == 1, "war", "cap"), "sq")
war1800$y <- factor(y, levels = c("sq", "cap", "war"))
f2 <- update(Formula(f1), y ~ .)

m8 <- egame12(f2, data = war1800)
summary(m8)

egame122 Strategic model with 2 players, 4 terminal nodes

Description

Fits a strategic model with two players and four terminal nodes, as in the game illustrated below in
"Details".

egame122 9

Usage

egame122(formulas, data, subset, na.action, link = c("probit", "logit"),
type = c("agent", "private"), startvals = c("sbi", "unif", "zero"),
fixedUtils = NULL, sdformula = NULL, sdByPlayer = FALSE, boot = 0,
bootreport = TRUE, profile, method = "BFGS", ...)

Arguments

formulas a list of six formulas, or a Formula object with six right-hand sides. See "De-
tails" and "Examples".

data a data frame.

subset an optional logical vector specifying which observations from data to use in
fitting.

na.action how to deal with NAs in data. Defaults to the na.action setting of options.
See na.omit

link whether to use a probit (default) or logit link structure,

type whether to use an agent-error ("agent", default) or private-information ("pri-
vate") stochastic structure.

startvals whether to calculate starting values for the optimization from statistical back-
wards induction ("sbi", default), draw them from a uniform distribution ("unif"),
or to set them all to 0 ("zero")

fixedUtils numeric vector of values to fix for u11, u12, u13, u14, u22, and u24. NULL (the
default) indicates that these should be estimated with regressors, not fixed.

sdformula an optional list of formulas or a Formula containing a regression equation for
the scale parameter. See egame12 for details.

sdByPlayer logical: if scale parameters are being estimated (i.e., sdformula or fixedUtils
is non-NULL), should a separate one be estimated for each player? This option is
ignored unless fixedUtils or sdformula is specified.

boot integer: number of bootstrap iterations to perform (if any).

bootreport logical: whether to print status bar during bootstrapping.

profile output from running profile.game on a previous fit of the model, used to gen-
erate starting values for refitting when an earlier fit converged to a non-global
maximum.

method character string specifying which optimization routine to use (see maxLik)

... other arguments to pass to the fitting function (see maxLik).

Details

The model corresponds to the following extensive-form game:

. ___ 1 ___

. / \

. / \

. 2 / \ 2

10 egame122

. / \ / \

. / \ / \

. / \ / \

. u11 u12 u13 u14

. 0 u22 0 u24

For additional details on any of the function arguments or options, see egame12. The only difference
is that the right-hand side of formulas must have six components (rather than four) in this case.

Ways to specify the dependent variable in egame122:

• Numeric vector y, numbered 1 through 4, corresponding to the outcomes as labeled in the
game tree above.

• Factor y, where y has four levels, corresponding in order to the outcomes as labeled above.

• Indicator variables y1 + y2, where y1 indicates whether Player 1 moves left or right, and y2
indicates whether Player 2 moves left or right.

• Indicator variables y1 + y2 + y3, where y1 indicates whether Player 1 moves left or right,
y2 indicates Player 2’s move in case Player 1 moved left, and y3 indicates Player 2’s move in
case Player 1 moved right. Non-observed values of y2 and y3 should be set to 0, not NA, to
ensure that observations are not dropped when na.action = na.omit.

Value

An object of class c("game", "egame122"). See egame12 for a description of the game class.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>) and Curtis S. Signorino

Examples

data("data_122")

Model formula:
fr1 <- y ~ x1 + x2 | x3 + f1 | 0 | x4 + x5 | z1 + z2 | z3 + f2
^ ^^^^^^^ ^^^^^^^ ^ ^^^^^^^ ^^^^^^^ ^^^^^^^
y u11 u12 u13 u14 u22 u24

m1 <- egame122(fr1, data = data_122)
summary(m1)

Dummy specification of the dependent variable
fr2 <- update(Formula(fr1), a1 + a2 ~ .)
m2 <- egame122(fr2, data = data_122)
summary(m2)

egame123 11

egame123 Strategic model with 3 players, 4 terminal nodes

Description

Fits a strategic model with three players and four terminal nodes, as in the game illustrated below
in "Details".

Usage

egame123(formulas, data, subset, na.action, link = c("probit", "logit"),
type = c("agent", "private"), startvals = c("sbi", "unif", "zero"),
fixedUtils = NULL, sdformula = NULL, sdByPlayer = FALSE, boot = 0,
bootreport = TRUE, profile, method = "BFGS", ...)

Arguments

formulas a list of eight formulas, or a Formula object with eight right-hand sides. See
"Details" and "Examples".

data a data frame.
subset an optional logical vector specifying which observations from data to use in

fitting.
na.action how to deal with NAs in data. Defaults to the na.action setting of options.

See na.omit

link whether to use a probit (default) or logit link structure,
type whether to use an agent-error ("agent", default) or private-information ("pri-

vate") stochastic structure.
startvals whether to calculate starting values for the optimization from statistical back-

wards induction ("sbi", default), draw them from a uniform distribution ("unif"),
or to set them all to 0 ("zero")

fixedUtils numeric vector of values to fix for u11, u13, u15, u16, u23, u25, u26, and u36.
NULL (the default) indicates that these should be estimated with regressors, not
fixed.

sdformula an optional list of formulas or a Formula containing a regression equation for
the scale parameter. See egame12 for details.

sdByPlayer logical: if scale parameters are being estimated (i.e., sdformula or fixedUtils
is non-NULL), should a separate one be estimated for each player? This option is
ignored unless fixedUtils or sdformula is specified.

boot integer: number of bootstrap iterations to perform (if any).
bootreport logical: whether to print status bar during bootstrapping.
profile output from running profile.game on a previous fit of the model, used to gen-

erate starting values for refitting when an earlier fit converged to a non-global
maximum.

method character string specifying which optimization routine to use (see maxLik)
... other arguments to pass to the fitting function (see odemaxLik).

12 egame123

Details

The model corresponds to the following extensive-form game:

. 1

. /\

. / \

. / \ 2

. u11 /\

. / \

. / \

. u13 \ 3

. u23 /\

. / \

. / \

. u15 u16

. u25 u26

. 0 u36

For additional details on any of the function arguments or options, see egame12. The only difference
is that the right-hand side of formulas must have eight components (rather than four) in this case.

Ways to specify the dependent variable in egame123:

• Numeric vector y containing 4 unique values, corresponding to the outcomes (in order from
left to right) as labeled in the game tree above.

• Factor y, where y has four levels, corresponding in order to the outcomes as labeled above.

• Indicator variables y1 + y2 + y3, where y1 indicates whether Player 1 moves left or right,
y2 indicates Player 2’s move, and y3 indicates Player 3’s move. Non-observed values of y2
and y3 (where the game ended before the move could be made) should be set to 0, not NA, to
ensure that observations are not dropped when na.action = na.omit.

Value

An object of class c("game", "egame123"). See egame12 for a description of the game class.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

Examples

data("data_123")

Model formula:
f1 <- y ~ x1 + x2 | 0 | x3 | x4 + x5 | 0 | x6 | x7 | x8
^ ^^^^^^^ ^ ^^ ^^^^^^^ ^ ^^ ^^ ^^
y u11 u13 u15 u16 u23 u25 u26 u36

m1 <- egame123(f1, data = data_123, link = "probit", type = "private")
summary(m1)

latexTable 13

Dummy specification of the dependent variable
f2 <- update(Formula(f1), a1 + a2 + a3 ~ .)
m2 <- egame123(f2, data = data_123, link = "probit", type = "private")
summary(m2)

latexTable LaTeX table for strategic models

Description

Makes a LaTeX table of strategic model results.

Usage

latexTable(x, digits = max(3, getOption("digits") - 2), scientific = NA,
blankfill = "", math.style.negative = TRUE, file = "",
floatplace = "htbp", caption = NULL, label = NULL, rowsep = 2,
useboot = TRUE)

Arguments

x a fitted model of class game.

digits number of digits to print.

scientific logical or integer value to control use of scientific notation. See format.

blankfill text to fill empty cells (those where a certain variable did not enter the given
equation).

math.style.negative

whether negative signs should be "math style" or plain hyphens. Defaults to
TRUE.

file file to save the output in. Defaults to "", which prints the table to the R console.

floatplace where to place the table float; e.g., for \begin{table}[htp], use floatplace = "htp".

caption caption to use (none if NULL)

label reference label to use (none if NULL)

rowsep amount of space (in points) to put between rows.

useboot logical: use bootstrap estimates (if available) to calculate standard errors?

Details

latexTable prints LaTeX code for the presentation of results from a strategic model. Each row
contains one regressor, and each column contains one of the utility (or variance term) equations in
the model. For example, in a model fit with egame12, the four columns will be u11, u13, u14, and
u24 respectively. Each cell contains the estimated parameter, atop its standard error in parentheses.
Cells that are empty because a regressor is not included in a particular equation are filled with the

14 leblang2003

string specified in the option blankfill. Signorino and Tarar (2006, p. 593) contains a table of this
variety.

The table generated depends on the multirow package for LaTeX, so make sure to include \usepackage{multirow}
in the preamble of your document.

The digits option does not yet work seamlessly; you may have to resort to trial and error.

Value

x, invisibly.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

References

Curtis S. Signorino and Ahmer Tarar. 2006. "A Unified Theory and Test of Extended Immediate
Deterrence." American Journal of Political Science 50(3):586–605.

Examples

data("war1800")
f1 <- esc + war ~ s_wt_re1 + revis1 | 0 | balanc + revis1 | balanc
m1 <- egame12(f1, data = war1800)

latexTable(m1)
latexTable(m1, digits = 8)
latexTable(m1, blankfill = "--") ## Dashes in blank cells

Not run:
latexTable(m1, file = "my_table.tex") ## Write to file

End(Not run)

leblang2003 Currency attacks

Description

Data on speculative currency attacks and devaluation decisions for 90 countries from 1985 to 1998.

Usage

data(leblang2003)

leblang2003 15

Details

The dataset is taken from Leblang (2003). The unit of observation is the country-month, and the
variables are:

outcome Whether the country faced no speculative attack, defended its currency against an attack,
or devalued in response to an attack in the given month

preelec Indicator for being in the three months prior to an election

postelec Indicator for being in the three months following an election

rightgov Indicator for a right-wing party being in power

unifgov Indicator for unified government: in presidential systems, the same party controlling the
presidency and the lower house of the legislature; in parliamentary systems, one party/coalition
having a majority of seats

lreserves Logged ratio of currency reserves to base money in the previous month

realinterest Domestic real interest rate in the previous month

lexports Logged ratio of exports to GDP in the previous month

capcont Indicator for capital controls in the previous year

overval Overvaluation of the real exchange rate

creditgrow Domestic credit growth in the previous month

service External debt service (as percentage of exports) paid in previous month

USinterest U.S. domestic interest rates in the previous month

contagion Number of other countries experiencing speculative attacks in the same month

prioratt Number of prior speculative attacks experienced by the country

nation Country name

month Month of observation

year Year of observation

All of the non-binary variables other than nation, month, and year are standardized to have mean
0 and unit variance.

We are grateful to David Leblang for allowing us to redistribute his data. The original replication
file is available in Stata format at https://sites.google.com/site/davidaleblang/data-1 (as
of 2015-02-22).

References

David Leblang. 2003. "To Defend or Devalue: The Political Economy of Exchange Rate Policy."
International Studies Quarterly 47: 533–559.

See Also

egame12

https://sites.google.com/site/davidaleblang/data-1

16 LW

Examples

Replicate analysis in Leblang (2003)
data("leblang2003")

NOTE: Convergence tolerance is set to 1e-4 to reduce testing runtime on
CRAN; do not reduce tolerance in real applications!
m1 <- egame12(outcome ~

capcont + lreserves + overval + creditgrow + USinterest + service
+ contagion + prioratt - 1 |
1 |
1 |
unifgov + lexports + preelec + postelec + rightgov + realinterest
+ capcont + lreserves,
data = leblang2003,
link = "probit",
type = "private",
reltol = 1e-4)

summary(m1)

LW Lambert’s W

Description

Solves for W in the equation WeW = x.

Usage

LW(x)

Arguments

x vector of values to solve for.

Details

The function is based on the code given in Barry et al. (1995). It is used to calculate fitted values
for the ultimatum model.

If negative values of x are supplied, NaNs will likely be returned.

Value

Solutions to Lambert’s W for each value in x.

Author(s)

Curt Signorino (<curt.signorino@rochester.edu>)

makeFormulas 17

References

D.A. Barry, P.J. Culligan-Hensley, and S.J. Barry. 1995. "Real Values of the W-Function." ACM
Transactions on Mathematical Software 21(2):161–171.

Examples

x <- rexp(10)
w <- LW(x)
all.equal(x, w * exp(w))

makeFormulas Model formula construction

Description

Interactive prompt for constructing model formulas.

Usage

makeFormulas(model, outcomes)

Arguments

model name of the model (must be from the games package) for which to make a
formula.

outcomes character vector with descriptions of the possible outcomes of the game (see
"Details" for a more precise explanation)

Details

All of the staistical models in the games package require the specification of multiple model formu-
las, as each player’s utility is a function of potentially different regressors. The number of equations
to specify ranges from two in ultimatum to eight in egame123. makeFormulas is an interactive tool
to simplify the specification process.

To use makeFormulas, specify the model you want to fit (model) and descriptions of the outcomes
of the game (outcomes). The order of the descriptions in outcomes should match the numbering in
the game tree in the help page for model. For example, with egame122, the order is:

1. Player 1 moves Left, Player 2 moves Left

2. Player 1 moves Left, Player 2 moves Right

3. Player 1 moves Right, Player 2 moves Left

4. Player 1 moves Right, Player 2 moves Right

18 makeFormulas

If the dependent variable in the dataset (dat) is a factor (y) whose levels contain the descriptions,
then either outcomes = dat$y or outcomes = levels(dat$y) will work.

As an example, consider the following use of egame122. Player 1 is the legislature, which can pro-
pose budget cuts (left on the game tree) or increases (right). Player 2 is the president, who can sign
or veto the legislature’s budget proposal (left and right respectively). The variables of interest are the
president’s party (presparty), the legislature’s party (legparty), and the year’s percentage GDP
growth (growth). To construct the formulas for this case, run makeFormulas(egame122, outcomes = c("budget cuts passed","budget cuts vetoed", "budget increase passed", "budget increase vetoed")).
The first set of options that appears is

Equation for player 1's utility from budget cuts passed:

1: fix to 0
2: intercept only
3: regressors, no intercept
4: regressors with intercept

To specify this utility as a function of a constant, the legislature’s party, and GDP growth, select
option 4 and enter legparty growth at the prompt. makeFormulas will then move on to ask about
Player 1’s utility for the other three outcomes, followed by Player 2’s utility for the outcomes for
which her utility is not fixed to 0 (see egame122). See "Examples" below for a full example of the
input and constructed formula in this case.

It is not necessary to use makeFormulas to specify model formulas. See the help file of each model
for examples of "manually" making the formula.

Value

An object of class "Formula", typically to be used as the formulas argument in a statistical model
from the games package.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

See Also

Formula (and the Formula package generally) for the details of how games deals with multiple
model formulas.

Examples

Not run:
R> f1 <- makeFormulas(egame122, outcomes = c("budget cuts passed",
"budget cuts vetoed", "budget increase passed", "budget increase vetoed"))

Equation for player 1's utility from budget cuts passed:

1: fix to 0
2: intercept only
3: regressors, no intercept

makeFormulas 19

4: regressors with intercept

Selection: 4

Enter variable names (separated by spaces):
legparty growth

Equation for player 1's utility from budget cuts vetoed:

1: fix to 0
2: intercept only
3: regressors, no intercept
4: regressors with intercept

Selection: 2

Equation for player 1's utility from budget increase passed:

1: fix to 0
2: intercept only
3: regressors, no intercept
4: regressors with intercept

Selection: 4

Enter variable names (separated by spaces):
legparty growth

Equation for player 1's utility from budget increase vetoed:

1: fix to 0
2: regressors, no intercept

Selection: 1

Equation for player 2's utility from budget cuts vetoed:

1: fix to 0
2: intercept only
3: regressors, no intercept
4: regressors with intercept

Selection: 4

Enter variable names (separated by spaces):
presparty growth

Equation for player 2's utility from budget increase vetoed:

20 Mode

1: fix to 0
2: intercept only
3: regressors, no intercept
4: regressors with intercept

Selection: 4

Enter variable names (separated by spaces):
presparty growth

What is the name of the dependent variable in the dataset? (If stored as
action indicators/dummies, separate their names with spaces.)
budgincrease veto
R> f1
budgincrease + veto ~ legparty + growth | 1 | legparty + growth |

0 | presparty + growth | presparty + growth

End(Not run)

Mode Mode of a vector

Description

Finds the modal value of a vector of any class.

Usage

Mode(x, na.rm = FALSE)

Arguments

x a vector (lists and arrays will be flattened).

na.rm logical: strip NA values?

Details

Based on the Stack Overflow answer http://stackoverflow.com/a/8189441/143383

Value

The value of x that occurs most often. If there is a tie, the one that appears first (among those tied)
is chosen.

Author(s)

Ken Williams (on Stack Overflow)

http://stackoverflow.com/a/8189441/143383

plot.predProbs 21

Examples

x <- c(1, 3, 3, 4)
Mode(x) # 3
x.char <- letters[x]
Mode(x.char) # "c"
x.factor <- as.factor(x.char)
Mode(x.factor) # "c", with levels "a", "c", "d"
x.logical <- x > 3
Mode(x.logical) # FALSE

Behavior with ties
y <- c(3, 3, 1, 1, 2)
Mode(y) # 3
z <- c(2, 1, 1, 3, 3)
Mode(z) # 1

plot.predProbs Plot predicted probabilities

Description

Plots predicted probabilities and associated confidence bands, using the data returned from a call to
predProbs.

Usage

S3 method for class 'predProbs'
plot(x, which = NULL, ask = FALSE, ...)

Arguments

x an object of class predProbs (i.e., a data frame returned by predProbs).
which optional integer specifying which plot (as numbered in the menu displayed when

ask == TRUE) to make. If none is given, all available plots are printed in
succession.

ask logical: display interactive menu with options for which plot to make?
... further arguments to pass to the plotting function. See plot.default (when the

variable on the x-axis is continuous) or bxp (when it is discrete).

Details

Most predProbs objects will be associated with multiple plots: one for each outcome in the esti-
mated model. These are the three or four terminal nodes for a egame12 or egame122 model respec-
tively; for an ultimatum model, these are the expected offer and the probability of acceptance. By
default, plot.predProbs produces plots for all of them, so only the last will be visible unless the
graphics device is set to have multiple figures (e.g., by setting par(mfrow = ...)). The argument
ask displays a menu to select among the possible plots for a given object, and which allows for this
to be done non-interactively.

22 plot.profile.game

Value

an object of class preplot.predProbs, invisibly. This contains the raw information used by lower-
level plotting functions.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

Examples

data("war1800")
f1 <- esc + war ~ s_wt_re1 + revis1 | 0 | regime1 | balanc + regime2
m1 <- egame12(f1, data = war1800, boot = 10)
pp1 <- predProbs(m1, x = "balanc", n = 5)
pp2 <- predProbs(m1, x = "regime1")

if "ask" is FALSE and "which" isn't specified, all plots are printed
op <- par(mfrow = c(2, 2))
plot(pp1)
par(op)

Not run:
plot(pp1, ask = TRUE)

Make a plot selection (or 0 to exit):
1: plot: Pr(~esc)
2: plot: Pr(esc,~war)
3: plot: Pr(esc,war)
4: plot all terms

End(Not run)

To change line type for confidence bounds, use argument `lty.ci`
plot(pp1, which = 3, lty.ci = 3)

All the standard plotting options work too
plot(pp1, which = 3, xlab = "Capabilities", ylab = "Probability", main = "Title")

Discrete `x` variables are plotted via R's boxplot functionality
plot(pp2, which = 3)

plot.profile.game Plot profiles of strategic model log-likelihoods

Description

Plot output of profile.game.

predict.game 23

Usage

S3 method for class 'profile.game'
plot(x, show.pts = FALSE, ...)

Arguments

x an object of class profile.game, typically created by running profile.game
on a fitted game model

show.pts logical: plot a point for the log-likelihood of each profiled model?

... other arguments, currently ignored

Details

This method provides plots for a quick assessment of whether game models have failed to converge
to a global maximum. For each parameter profiled (see profile.game for details of the profiling
process), a spline interpolation of the log-likelihood profile is provided, with an "x" marking the
value at the original parameter estimate.

Sometimes the plot will seem to indicate that the original fit did not reach the global maximum, even
though profile.game did not issue the non-covergence warning. This is an artifact of the interpola-
tion, which can be confirmed by re-running plot.profile.game with the argument show.pts = TRUE.

Value

x, invisibly

Author(s)

Brenton Kenkel

See Also

profile.game

predict.game Predicted probabilities for strategic models

Description

Makes predicted probabilities from a strategic model.

24 predict.game

Usage

S3 method for class 'game'
predict(object, ...)

S3 method for class 'egame12'
predict(object, newdata, type=c("outcome", "action"), na.action = na.pass, ...)
S3 method for class 'egame122'
predict(object, newdata, type=c("outcome", "action"), na.action = na.pass, ...)
S3 method for class 'egame123'
predict(object, newdata, type=c("outcome", "action"), na.action = na.pass, ...)
S3 method for class 'ultimatum'
predict(object, newdata, na.action = na.pass, n.sim = 1000, ...)

Arguments

object a fitted model of class game.
... other arguments, currently ignored.
newdata data frame of values to make the predicted probabilities for. If this is left empty,

the original dataset is used.
type whether to provide probabilities for outcomes (e.g., L, RL, or RR in egame12)

or for actions (e.g., whether 2 moves L or R given that 1 moved R).
na.action how to deal with NAs in newdata

n.sim number of simulation draws to use per observation for ultimatum models (see
Details).

Details

This method uses a fitted strategic model to make predictions for a new set of data. This is useful
for cross-validating or for graphical analysis. For many uses, such as analyzing the marginal effect
of a particular independent variable, the function predProbs will be more convenient.

In the ultimatum model, there is not an analytic expression for the expected value of Player 1’s
offer. Therefore, predicted values are instead generating via simulation by drawing errors from a
logistic distribution. The number of draws per observation can be controlled via the n.sim argu-
ment. For replicability, we recommend seeding the random number generator via set.seed before
using predict.ultimatum.

Value

A data frame of predicted probabilities.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

See Also

predProbs provides a more full-featured and user-friendly wrapper, including plots and confidence
bands.

predProbs 25

predProbs User-friendly predicted probability analysis

Description

Easy generation and plotting of predicted probabilities from a fitted strategic model.

Usage

predProbs(model, x, xlim = c(min(x), max(x)), n = 100, ci = 0.95,
type = c("outcome", "action"), makePlots = FALSE, report = TRUE, ...)

Arguments

model a fitted model of class game.

x character string giving the name of the variable to place "on the x-axis" while
all others are held constant. Partial matches are accepted.

xlim numeric, length 2: the range that x should be varied over (if x is continuous).
Defaults to the observed range of x.

n integer: the number of observations to generate (if x is continuous).

ci numeric: width of the confidence interval to estimate around each predicted
probability. Set to 0 to estimate no confidence intervals.

type whether to generate predicted values for outcomes (the default) or actions

makePlots logical: whether to automatically make the default plot for the returned object.
See plot.predProbs.

report logical: whether to print a status bar while obtaining the confidence intervals for
the predicted probabilities.

... used to set values for variables other than x in the profile of observations. See
"Details" and "Examples".

Details

predProbs provides an easy way to analyze the estimated marginal effect of an independent variable
on the probability of particular outcomes, using the estimates returned by a strategic model. The
procedure is designed so that, for a preliminary analysis, the user can simply specify the fitted
model and the independent variable of interest, and quickly obtain plots of predicted probabilities.
However, it is flexible enough to allow for finely tuned analysis as well.

The procedure works by varying x, the variable of interest, across its observed range (or one spec-
ified by the user in xlim) while holding all other independent variables in the model fixed. The
profile created by default is as follows (the same defaults as in the sim function in the Zelig pack-
age):

• numeric, non-binary variables are fixed at their means

• ordered variables are fixed at their medians

26 predProbs

• all others are fixed at their modes (see Mode)

However, it is possible to override these defaults for any or all variables. For example, to set a vari-
able named polity to its lower quartile, call predProbs with the argument polity = quantile(polity, 0.25).
To set a factor variable to a particular level, provide the name of the level as a character string (in
quotes). (Also see the examples below.)

Confidence intervals for each predicted point are generated by bootstrap. If model has a non-null
boot.matrix element (i.e., a bootstrap was performed with the model fitting), then these results
are used to make the confidence intervals. Otherwise, a parametric bootstrap sample is generated
by sampling from a multivariate normal distribution around the parameter estimates. In this case, a
warning is issued.

For information on plotting the predicted probabilities, see plot.predProbs. The plots are made
with base graphics. If you prefer to use an alternative graphics package, all the information neces-
sary to make the plots is included in the data frame returned.

Value

An object of class predProbs. This is a data frame containing each hypothetical observation’s
predicted probability, the upper and lower bounds of the confidence interval, and the value of each
regressor.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>). Code for escaping special regex characters was
taken from the Hmisc package’s function escapeRegex, written by Charles Dupont.

See Also

predict.game for somewhat more flexible (but fussier) generation of predicted probabilities.

Examples

data("war1800")
f1 <- esc + war ~ s_wt_re1 + revis1 | 0 | regime1 | balanc + regime2
m1 <- egame12(f1, data = war1800, boot = 10)

pp1 <- predProbs(m1, x = "s_wt_re1", n = 5)
print(pp1) ## Hypothetical observations and their predicted probs
plot(pp1, which = 2) ## See ?plot.predProbs for more plot examples

Changing the profile used
pp2 <- predProbs(m1, x = "s_wt_re1", n = 5, revis1 = 1, balanc = 0.7)
pp3 <- predProbs(m1, x = "s_wt_re1", n = 5, regime1 = "dem")
pp4 <- predProbs(m1, x = "s_wt_re1", n = 5, balanc = median(balanc))

Variable names (other than `x`) must match exactly!
Not run:

pp5 <- predProbs(m1, x = "s_wt_re1", bal = 0.7) ## Error will result

End(Not run)

print.game 27

`x` can be a factor too
pp6 <- predProbs(m1, x = "regime1")

Action probabilities
pp7 <- predProbs(m1, x = "regime1", type = "action")

print.game Print a strategic model object

Description

The default method for printing a game object.

Usage

S3 method for class 'game'
print(x, ...)

Arguments

x a fitted model of class game

... other arguments, currently ignored

Details

Prints the call and coefficients of a fitted strategic model.

Value

x, invisibly

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

28 profile.game

print.summary.game Print strategic model summary

Description

Print output from summary.game

Usage

S3 method for class 'summary.game'
print(x, ...)

Arguments

x an object of class summary.game, typically produced by running summary on a
fitted model of class game

... other arguments, currently ignored

Details

Prints the standard regression results table from a fitted strategic model, along with the log-likelihood,
AIC, and number of observations.

Value

x, invisibly.

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

See Also

summary.game

profile.game Likelihood profiles for fitted strategic models

Description

Calculate profile likelihood to assess convergence of a model.

Usage

S3 method for class 'game'
profile(fitted, which = 1:p, steps = 5, dist = 3,
use.se = TRUE, report = TRUE, ...)

profile.game 29

Arguments

fitted a fitted model of class game.

which integer vector giving the indices of the parameters to be profiled. The default is
to use all parameters. Parameters that were held fixed in the original fitting are
ignored if selected.

steps number of steps to take (in each direction) from the original value for each pa-
rameter to be profiled.

dist distance the last step should be from the original parameter value (in terms of
standard errors if use.se is TRUE; absolute value otherwise). Should be a nu-
meric vector of length equal to 1 or length(coef(fitted)).

use.se logical: whether dist refers to standard errors

report logical: whether to print status bar (for complex models or those with many
parameters, profiling can be lengthy)

... other arguments to be passed to the fitting function (see odemaxLik).

Details

Likelihood profiling can help determine if a model fit failed to reach a global maximum, which
can be an issue (especially for the ultimatum model). The process of profiling is as follows: a
parameter selected to be profiled is fixed at certain values spaced around its originally estimated
value, while the log-likelihood is maximized with respect to the other parameters in the model.
For models with large numbers of observations or parameters, profiling may take a long time, as
p× (2s+ 1) models will be fit (p: number of parameters; s: number of steps).

The function will issue a warning if a model fit in profiling has a log-likelihood exceeding that of the
original model. This means the original fit failed to reach a global maximum, and any inferences
based on the fitted model are invalid. If this occurs, refit the model, passing the profile.game
output to the fitting function’s profile argument (as in the example below). The new fit will use
the coefficients from the profile fit with the highest log-likelihood as starting values.

The function is based loosely on profile.glm in the MASS package. However, that function
focuses on the calculation of exact confidence intervals for regression coefficients, whereas this
one is for diagnosing non-convergence. Future versions of the games package may incorporate the
confidence interval functionality as well.

Value

A list of data frames, each containing the estimated coefficients across the profiled values for a
particular parameter. The first column of each data frame is the log-likelihood for the given fits.
The returned object is of class c("profile.game", "profile").

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

See Also

plot.profile.game for plotting profiled likelihoods

30 student_offers

Examples

data("student_offers")

A model that does not converge to global max
f1 <- offer + accept ~ gender1 | gender2
m1 <- ultimatum(f1, maxOffer = 100, data = student_offers, s2 = 1)

p1 <- profile(m1) ## Issues warning
plot(p1)

Refit model with better starting values
m2 <- ultimatum(f1, maxOffer = 100, data = student_offers, s2 = 1, profile = p1)
p2 <- profile(m2)
plot(p2)

logLik(m1)
logLik(m2) ## Improved

student_offers Data from students playing the ultimatum game

Description

Data from a trial of the ultimatum game with graduate students.

Usage

data(student_offers)

Details

The variables are:

offer The offer made by Player 1

accept Whether Player 2 accepted the offer (0 for rejection, 1 for acceptance)

gender1 Whether Player 1 is female

gender2 Whether Player 2 is female

The maximum offer size is 100.

See Also

ultimatum

summary.game 31

summary.game Summarize a strategic model object

Description

The default method for summarizing a game object.

Usage

S3 method for class 'game'
summary(object, useboot = TRUE, ...)

Arguments

object a fitted model of class game

useboot logical: use bootstrap estimates (if present) to construct standard error esti-
mates?

... other arguments, currently ignored

Details

Forms the standard regression results table from a fitted strategic model. Normally used interac-
tively, in conjunction with print.summary.game.

Value

an object of class summary.game, containing the coefficient matrix and other information needed
for printing

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

See Also

print.summary.game

32 ultimatum

ultimatum Statistical ultimatum game

Description

Estimates the statistical ultimatum game described in Ramsay and Signorino (2009), illustrated
below in "Details".

Usage

ultimatum(formulas, data, subset, na.action, minOffer = 0, maxOffer,
offertol = sqrt(.Machine$double.eps), s1 = NULL, s2 = NULL,
outcome = c("both", "offer"), boot = 0, bootreport = TRUE, profile,
method = "BFGS", ..., reltol = 1e-12)

Arguments

formulas a list of two formulas, or a Formula object with two right-hand sides. See "De-
tails" and the examples below.

data data frame containing the variables in the model.
subset optional logical expression specifying which observations from data to use in

fitting.
na.action how to deal with NAs in data. Defaults to the na.action setting of options.

See na.omit.
minOffer numeric: the lowest offer Player 1 could feasibly make (default 0).
maxOffer numeric: the highest offer Player 1 could feasibly make.
offertol numeric: offers within offertol of minOffer/maxOffer will be considered to

be at the minimum/maximum. (This is used to prevent floating-point problems
and need not be changed in most applications.)

s1 numeric: scale parameter for Player 1. If NULL (the default), the parameter will
be estimated.

s2 numeric: scale parameter for Player 2. If NULL (the default), the parameter will
be estimated.

outcome the outcome of interest: just Player 1’s offer ("offer") or both the offer and its
acceptance ("both"). See "Details".

boot integer: number of bootstrap iterations to perform (if any).
bootreport logical: whether to print status bar when performing bootstrap iterations.
profile output from running profile.game on a previous fit of the model, used to gen-

erate starting values for refitting when an earlier fit converged to a non-global
maximum.

method character string specifying which optimization routine to use (see maxLik)
... other arguments to pass to the fitting function (see maxLik).
reltol numeric: relative convergence tolerance level (see optim). Use of values higher

than the default is discouraged.

ultimatum 33

Details

The model corresponds to the following extensive-form game, described in Ramsay and Signorino
(2009):

. 1

. / \

. / \

. / \ y in [0, Q]

. / \

. ---------

. /\ 2

. / \

. / \

. / \

. Q - y R1

. y R2

Q refers to the maximum feasible offer (the argument maxOffer).

The two equations on the right-hand side of formulas refer to Player 1’s and Player 2’s reservation
values respectively. The left-hand side should take the form offer + acceptance, where outcome
contains the numeric value of the offer made and acceptance is an indicator for whether it was
accepted. (If outcome is set to "offer", the acceptance indicator can be omitted. See below for
more.)

The outcome argument refers to whether the outcome of interest is just the level of the offer made,
or both the level of the offer and whether it was accepted. If acceptance was unobserved, then
outcome should be set to "offer". If so, the estimates for Player 2’s reservation value should be
interpreted as Player 1’s expectations about these parameters. It may also be useful to set outcome
to "offer" even if acceptance data are available, for the purpose of comparing the strategic model
to other models of offer levels (as in Ramsay and Signorino 2009). If an acceptance variable is
specified but outcome is set to "offer", the acceptance data will be used for starting values but not
in the actual fitting.

Numerical instability is not uncommon in the statistical ultimatum game, especially when the scale
parameters are being estimated.

Value

An object of class c("game", "ultimatum"). For details on the game class, see egame12. The
ultimatum class is just for use in the generation of predicted values (see predProbs) and profiling
(see profile.game).

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>) and Curtis S. Signorino

References

Kristopher W. Ramsay and Curtis S. Signorino. 2009. "A Statistical Model of the Ultimatum
Game." Available online at http://www.rochester.edu/college/psc/signorino/research/
RamsaySignorino_Ultimatum.pdf.

http://www.rochester.edu/college/psc/signorino/research/RamsaySignorino_Ultimatum.pdf
http://www.rochester.edu/college/psc/signorino/research/RamsaySignorino_Ultimatum.pdf

34 vuong

Examples

data(data_ult)

Model formula:
f1 <- offer + accept ~ x1 + x2 + x3 + x4 + w1 + w2 | z1 + z2 + z3 + z4 + w1 + w2
^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^
R1 R2

m1 <- ultimatum(f1, data = data_ult, maxOffer = 15)
summary(m1)

Estimating offer size only
f2 <- update(Formula(f1), offer ~ .)
m2 <- ultimatum(f2, data = data_ult, maxOffer = 15, outcome = "offer")
summary(m2)

Fixing scale terms
m3 <- ultimatum(f1, data = data_ult, maxOffer = 15, s1 = 5, s2 = 1)
summary(m3)

vuong Non-nested model tests

Description

Perform Vuong’s (1989) or Clarke’s (2007) test for non-nested model selection.

Usage

vuong(model1, model2, outcome1=NULL, outcome2=NULL, level=0.05,
digits=2)

clarke(model1, model2, outcome1=NULL, outcome2=NULL, level=0.05, digits=2)

Arguments

model1 A fitted statistical model of class "game", "lm", or "glm"
model2 A fitted statistical model of class "game", "lm", or "glm" whose dependent

variable is the same as that of model1
outcome1 Optional: if model1 is of class "game", specify an integer to restrict attention to

a particular binary outcome (the corresponding column of predict(model1)).
For ultimatum models, "offer" or "accept" may also be used. See "Details"
below for more information on when to specify an outcome. If model1 is not of
class "game" and outcome1 is non-NULL, it will be ignored and a warning will
be issued.

outcome2 Optional: same as outcome1, but corresponding to model2.
level Numeric: significance level for the test.
digits Integer: number of digits to print

vuong 35

Details

These tests are for comparing two statistical models that have the same dependent variable, where
neither model can be expressed as a special case of the other (i.e., they are non-nested). The null hy-
pothesis is that the estimated models are the same Kullback-Leibler distance from the true model.
To adjust for potential differences in the dimensionality of the models, the test statistic for both
vuong and clarke is corrected using the Bayesian information criterion (see Clarke 2007 for de-
tails).

It is crucial that the dependent variable be exactly the same between the two models being tested,
including the order the observations are placed in. The vuong and clarke functions check for such
discrepancies, and stop with an error if any is found. Models with non-null weights are not yet
supported.

When comparing a strategic model to a (generalized) linear model, you must take care to ensure
that the dependent variable is truly the same between models. This is where the outcome arguments
come into play. For example, in an ultimatum model where acceptance is observed, the dependent
variable for each observation is the vector consisting of the offer size and an indicator for whether
it was accepted. This is not the same as the dependent variable in a least-squares regression of offer
size, which is a scalar for each observation. Therefore, for a proper comparison of model1 of class
"ultimatum" and model2 of class "lm", it is necessary to specify outcome1 = "offer". Similarly,
consider an egame12 model on the war1800 data, where player 1 chooses whether to escalate the
crisis and player 2 chooses whether to go to war. The dependent variable for each observation in
this model is the vector of each player’s choice. By contrast, in a logistic regression where the
dependent variable is whether war occurs, the dependent variable for each observation is a scalar.
To compare these models, it is necessary to specify outcome1 = 3.

Value

Typical use will be to run the function interactively and examine the printed output. The functions
return an object of class "nonnest.test", which is a list containing:

stat The test statistic

test The type of test ("vuong" or "clarke")

level Significance level for the test

digits Number of digits to print

loglik1 Vector of observationwise log-likelihoods for model1

loglik2 Vector of observationwise log-likelihoods for model2

nparams Integer vector containing the number of parameters fitted in model1 and model2 respec-
tively

nobs Number of observations of the dependent variable being modeled

Author(s)

Brenton Kenkel (<brenton.kenkel@gmail.com>)

36 war1800

References

Quang H. Vuong. 1989. "Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses."
Econometrica 57(2): 307–333.

Kevin Clarke. 2007. "A Simple Distribution-Free Test for Nonnested Hypotheses." Political Anal-
ysis 15(3): 347–363.

Examples

data("war1800")

Balance of power model
f1 <- esc + war ~ balanc + s_wt_re1 | 0 | balanc | balanc + s_wt_re1
m1 <- egame12(f1, data = war1800, subset = !is.na(regime1) & !is.na(regime2))

Regime type model
f2 <- esc + war ~ regime1 | 0 | regime1 + regime2 | regime1 + regime2
m2 <- egame12(f2, data = war1800)

Comparing two strategic models
vuong(model1 = m1, model2 = m2)
clarke(model1 = m1, model2 = m2)

Comparing strategic model to logit - must specify `outcome1` appropriately
logit1 <- glm(war ~ balanc + s_wt_re1, data = m1$model, family=binomial)
vuong(model1 = m1, outcome1 = 3, model2 = logit1)
clarke(model1 = m1, outcome1 = 3, model2 = logit1)

logit2 <- glm(sq ~ regime1 + regime2, data = war1800, family=binomial)
vuong(model1 = m2, outcome1 = 1, model2 = logit2)
clarke(model1 = m2, outcome1 = 1, model2 = logit2)

Ultimatum model
data(data_ult)
f3 <- offer + accept ~ w1 + w2 + x1 + x2 | w1 + w2 + z1 + z2
m3 <- ultimatum(f3, maxOffer = 15, data = data_ult)
ols1 <- lm(offer ~ w1 + w2 + x1 + x2 + z1 + z2, data = data_ult)
vuong(model1 = m3, outcome1 = "offer", model2 = ols1)
clarke(model1 = m3, outcome1 = "offer", model2 = ols1)

war1800 19th-century international disputes

Description

Dataset of militarized international disputes between 1816 and 1899.

Usage

data(war1800)

war1800 37

Details

The dataset is taken from the Correlates of War project. The unit of observation is the dyad-year,
and the variables are:

ccode1 Initiator’s COW country code

ccode2 Respondent’s COW country code

year Year of dispute

cap_1 Initiator’s military capabilities (as percent of total system capabilities)

cap_2 Respondent’s military capabilities (as percent of total system capabilities)

balanc Balance of dyadic capabilities possessed by the initiator (i.e., cap_1 / (cap_1 + cap_2))

s_wt_re1 Dyadic S-score (see Signorino and Ritter 1998), weighted by initiator’s region

s_wt_re2 Dyadic S-score, weighted by respondent’s region

dem1 Initiator’s Polity score

dem2 Respondent’s Polity score

distance Distance (in miles) between initiator and respondent

peaceyrs Years since last dispute in this dyad

midnum Dispute’s number in the MID data set

revis1 Whether the initiator had "revisionist" aims

revis2 Whether the respondent had "revisionist" aims

sq Indicator for status quo outcome

capit Indicator for capitulation outcome

war Indicator for war outcome

esc Indicator for escalation (i.e., either capitulation or war occurs)

regime1 Initiator’s regime type (calculated from dem1)

regime2 Respondent’s regime type (calculated from dem2)

References

Daniel M. Jones, Stuart A. Bremer and J. David Singer. 1996. "Militarized Interstate Disputes,
1816-1992: Rationale, Coding Rules, and Empirical Patterns." Conflict Management and Peace
Science 15(2): 163–213.

See Also

egame12

Index

∗Topic data
data_122, 2
data_123, 3
data_ult, 4
leblang2003, 14
student_offers, 30
war1800, 36

bxp, 21

clarke (vuong), 34

data_122, 2
data_123, 3
data_ult, 4

egame12, 4, 9–13, 15, 21, 33, 35, 37
egame122, 2, 3, 8, 17, 18, 21
egame123, 3, 11, 17

format, 13
Formula, 5, 6, 9, 11, 18, 32

games-package, 2

latexTable, 13
leblang2003, 14
LW, 16

makeFormulas, 7, 17
maxBFGS, 6
maxLik, 5–7, 9, 11, 29, 32
Mode, 20, 26

na.omit, 5, 9, 11, 32

optim, 32
options, 5, 9, 11, 32
ordered, 25

plot.default, 21
plot.predProbs, 21, 25, 26

plot.profile.game, 22, 29
predict.egame12 (predict.game), 23
predict.egame122 (predict.game), 23
predict.egame123 (predict.game), 23
predict.game, 23, 26
predict.ultimatum (predict.game), 23
predProbs, 7, 21, 24, 25, 33
print.game, 27
print.summary.game, 28, 31
profile.game, 5, 9, 11, 22, 23, 28, 32, 33
profile.glm, 29

set.seed, 24
student_offers, 30
summary.game, 7, 28, 31

ultimatum, 4, 16, 17, 21, 24, 29, 30, 32, 34, 35

vuong, 34

war1800, 35, 36

38

	games-package
	data_122
	data_123
	data_ult
	egame12
	egame122
	egame123
	latexTable
	leblang2003
	LW
	makeFormulas
	Mode
	plot.predProbs
	plot.profile.game
	predict.game
	predProbs
	print.game
	print.summary.game
	profile.game
	student_offers
	summary.game
	ultimatum
	vuong
	war1800
	Index

