Provides an effective machine learning-based tool that quantifies the gain of passive device installation on wind turbine generators. H. Hwangbo, Y. Ding, and D. Cabezon (2019) <arXiv:1906.05776>.
Version: | 0.1.0 |
Depends: | R (≥ 3.6.0) |
Imports: | fields (≥ 9.0), FNN (≥ 1.1), utils, stats |
Suggests: | knitr, rmarkdown |
Published: | 2019-06-28 |
Author: | Hoon Hwangbo [aut, cre], Yu Ding [aut], Daniel Cabezon [aut], Texas A&M University [cph], EDP Renewables [cph] |
Maintainer: | Hoon Hwangbo <hhwangb1 at utk.edu> |
License: | GPL-3 |
Copyright: | Copyright (c) 2019 Y. Ding, H. Hwangbo, Texas A&M University, D. Cabezon, and EDP Renewables |
NeedsCompilation: | no |
CRAN checks: | gainML results |
Reference manual: | gainML.pdf |
Vignettes: |
Implementation |
Package source: | gainML_0.1.0.tar.gz |
Windows binaries: | r-devel: gainML_0.1.0.zip, r-release: gainML_0.1.0.zip, r-oldrel: gainML_0.1.0.zip |
macOS binaries: | r-release: gainML_0.1.0.tgz, r-oldrel: gainML_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=gainML to link to this page.