
Bayesian networks in R with the gRain package

Søren Højsgaard
Aalborg University, Denmark

gRain version 1.3-6 as of 2020-07-29

Contents

1 Introduction 1

2 Example: Chest clinic 2
2.1 Building a network . 3
2.2 Queries to networks . 3

3 A one–minute version of gRain 3
3.1 Specifying a network . 3
3.2 Querying a network . 5
3.3 Conditioning on evidence with zero probability . 6
3.4 Brute force computations and why they fail . 7

4 Hard and virtual (likelihood) evidence 9
4.1 An excerpt of the chest clinic network . 9
4.2 Specifying hard evidence . 10
4.3 What is virtual evidence (also called likelihood evidence) ? 11
4.4 Specifying virtual evidence . 12
4.5 A mixture of a discrete and a continuous variable 12

5 Building networks from data 12
5.1 Extracting information from tables . 13
5.2 Using smooth . 14
5.3 Extracting tables . 15

1 Introduction

The gRain package implements Bayesian Networks (hereafter often abbreviated BNs). The name
gRain is an acronym for [gra]phical [i]ndependence [n]etworks. The main reference for gRain to
cite is Højsgaard (2012), see also

citation("gRain")

##

To cite gRain in publications use:

##

Søren Højsgaard (2012). Graphical Independence Networks with the gRain

Package for R. Journal of Statistical Software, 46(10), 1-26. URL

http://www.jstatsoft.org/v46/i10/.

##

1

●asia

●tub ●smoke

●lung

●bronc

●either

●xray ●dysp

Figure 1: Chest clinic example from Lauritzen and Spiegelhalter (1988).

A BibTeX entry for LaTeX users is

##

@Article{,

title = {Graphical Independence Networks with the {gRain} Package for {R}},

author = {S{\o}ren H{\o}jsgaard},

journal = {Journal of Statistical Software},

year = {2012},

volume = {46},

number = {10},

pages = {1--26},

doi = {10.18637/jss.v046.i10},

url = {http://www.jstatsoft.org/v46/i10/},

}

Moreover, Højsgaard et al. (2012) gives a broad treatment of graphical models (including Bayesian
networks) More information about the package, other graphical modelling packages and develop-
ment versions is available from

http://people.math.aau.dk/~sorenh/software/gR

2 Example: Chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988) (illustrated
in Figure 1) and shows one way of specifying the model in gRain. Lauritzen and Spiegelhalter
(1988) motivate the chest clinic example with the following narrative:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X–ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

2

2.1 Building a network

The description above involves the following binary variables: α = asia, σ = smoker, τ =
tuberculosis, λ = lung cancer, β = bronchitis, ε = either tuberculosis or lung cancer, δ = dyspnoea
and ξ = xray. Each variable is binary and can take the values “yes” and “no”: Note that ε is a
logical variable which is true (yes) if either τ or λ are true (yes) and false (no) otherwise. The
connection between the variables is displayed by the DAG (directed acyclic graph) in Figure 1.

A joint probability density factorising accoring to a DAG with nodes V can be constructed as
follows: Each node v ∈ V has a set pa(v) of parents and each node v ∈ V has a finite set of states.
A joint distribution over the variables V can be given as

p(V) =
∏
v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that
∑

v∗ p(v =
v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v), the sum over the levels of
v equals one. Hence p(v|pa(v)) becomes the conditional distribution of v given pa(v). In practice
p(v|pa(v)) is specified as a table called a conditional probability table or a CPT for short. Thus,
a Bayesian network can be regarded as a complex stochastic model built up by putting together
simple components (conditional probability distributions). A joint probability density for all eight
variables in Figure 1 can be constructed as

p(V) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ε|τ, λ)p(δ|ε, β)p(ξ|ε). (2)

2.2 Queries to networks

Suppose we are given the evidence (sometimes also called “finding”) that a set of variables E ⊂ V
have a specific value e∗. With this evidence, we are often interested in the conditional distribution
p(v|E = e∗) for some of the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E. Interest
might also be in calculating the probability of a specific event, e.g. the probability of seeing a
specific evidence, i.e. p(E = e∗). Other types of evidence (called soft evidence, virtual evidence or
likelihood evidence) are discussed in Section 4.

For example that a person has recently visited Asia and suffers from dyspnoea, i.e. α = yes and
δ = yes. In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or possibly
in the joint (conditional) distribution p(λ, τ, β|e∗).

3 A one–minute version of gRain

3.1 Specifying a network

A simple way of specifying the model for the chest clinic example is as follows.

1. Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter
(1988)) (there are other ways of specifying conditional probability tables, see the package
documentation):

yn <- c("yes", "no")

a <- cptable(~asia, values=c(1, 99), levels=yn)

t.a <- cptable(~tub|asia, values=c(5, 95, 1, 99), levels=yn)

s <- cptable(~smoke, values=c(5, 5), levels=yn)

l.s <- cptable(~lung|smoke, values=c(1, 9, 1, 99), levels=yn)

3

b.s <- cptable(~bronc|smoke, values=c(6, 4, 3, 7), levels=yn)

e.lt <- cptable(~either|lung:tub, values=c(1, 0, 1, 0, 1, 0, 0, 1), levels=yn)

x.e <- cptable(~xray|either, values=c(98, 2, 5, 95), levels=yn)

d.be <- cptable(~dysp|bronc:either, values=c(9, 1, 7, 3, 8, 2, 1, 9), levels=yn)

2. Compile list of conditional probability tables.

chest_cpt <- compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

summary(chest_cpt)

Length Class Mode

asia 2 -none- numeric

tub 4 -none- numeric

smoke 2 -none- numeric

lung 4 -none- numeric

bronc 4 -none- numeric

either 8 -none- numeric

xray 4 -none- numeric

dysp 8 -none- numeric

The components are arrays, but coercion into dataframes sometimes makes it easier to digest
the components.

chest_cpt$tub

asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

chest_cpt$tub %>% as.data.frame.table

tub asia Freq

1 yes yes 0.05

2 no yes 0.95

3 yes no 0.01

4 no no 0.99

Notice: either is a logical node

chest_cpt$either %>% as.data.frame.table

either lung tub Freq

1 yes yes yes 1

2 no yes yes 0

3 yes no yes 1

4 no no yes 0

5 yes yes no 1

6 no yes no 0

7 yes no no 0

8 no no no 1

3. Create the network:1

1SH: Rethink print method

4

chest_bn <- grain(chest_cpt)

chest_bn

Independence network: Compiled: TRUE Propagated: FALSE

Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" "dysp"

Compile the network (see references for details about this):2

chest_bn <- compile(chest_bn)

3.2 Querying a network

1. The network can be queried to give marginal probabilities:3

querygrain(chest_bn, nodes=c("lung", "bronc"), type="marginal")

$lung

lung

yes no

0.055 0.945

##

$bronc

bronc

yes no

0.45 0.55

2. Likewise, a joint distribution can be obtained:

querygrain(chest_bn, nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes 0.0315 0.0235

no 0.4185 0.5265

3. Evidence can be entered in one of these two equivalent forms:

chest_bn2 <- setEvidence(chest_bn, evidence=list(asia="yes", dysp="yes"))

chest_bn2 <- setEvidence(chest_bn,

nodes=c("asia", "dysp"), states=c("yes", "yes"))

4. The probability of observing this evidence under the model is

pEvidence(chest_bn2)

[1] 0.004501375

5. The network can be queried again:4

2SH: Maybe change so that default is that a network is compiled on creation time.
3querygrain() can be abbreviated qgrain().
4SH: FIXME; joint is wrong

5

querygrain(chest_bn2, nodes=c("lung", "bronc"))

$lung

lung

yes no

0.09952515 0.90047485

##

$bronc

bronc

yes no

0.8114021 0.1885979

querygrain(chest_bn2, nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes 0.06298076 0.03654439

no 0.74842132 0.15205354

Notice a small shortcut: A common usage of a Bayesian network is to enter evidence and then ask
for the conditional distribtion of some variables: This can be accomplished in one simple step as
follows:5

querygrain(chest_bn, evidence=list(asia="yes", dysp="yes"),

nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes 0.06298076 0.03654439

no 0.74842132 0.15205354

3.3 Conditioning on evidence with zero probability

Consider setting the evidence

chest_bn3 <- setEvidence(chest_bn, evidence=list(either="no", tub="yes"))

Under the model, this specific evidence has zero probability: either is true if tub is true or lung is
true (or both). Hence the specific evidence is impossible and therefore, all conditional probabilities
are (under the model) undefined:

pEvidence(chest_bn3)

[1] 0

querygrain(chest_bn3, nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes NaN NaN

no NaN NaN

Zero probailities (or almost zero probabilities) also arise in a different in a different setting. Con-
sider this example

5SH: FIXME

6

yn <- c("yes","no")

eps <- 1e-100

a <- cptable(~a, values=c(1, eps), levels=yn)

b.a <- cptable(~b+a, values=c(1, eps, eps, 1), levels=yn)

c.b <- cptable(~c+b, values=c(1, eps, eps, 1), levels=yn)

plist <- compileCPT(list(a, b.a, c.b))

bn <- grain(plist)

tt <- querygrain(bn, type="joint")

ftable(tt)

c yes no

a b

yes yes 1e+00 1e-100

no 1e-200 1e-100

no yes 1e-200 1e-300

no 1e-200 1e-100

querygrain(setEvidence(bn, evidence=list(a="no", c="yes")))

$b

b

yes no

0.5 0.5

No problem so far, but if eps is made smaller numerical problems arise:6

eps <- 1e-200

a <- cptable(~a, values=c(1, eps),levels=yn)

b.a <- cptable(~b+a, values=c(1, eps, eps, 1),levels=yn)

c.b <- cptable(~c+b, values=c(1, eps, eps, 1),levels=yn)

plist <- compileCPT(list(a, b.a, c.b))

bn <- grain(plist)

tt <- querygrain(bn, type="joint")

ftable(tt)

c yes no

a b

yes yes 1e+00 1e-200

no 0e+00 1e-200

no yes 0e+00 0e+00

no 0e+00 1e-200

querygrain(setEvidence(bn, evidence=list(a="no", c="yes")))

$b

b

yes no

NaN NaN

3.4 Brute force computations and why they fail

The gRain package makes computations as those outlined above in a very efficient way; please
see the references. However, it is in this small example also possible to make the computations
directly: We can construct the joint distribution (an array with 28 = 256 entries) directly as:

6Her vil det netop vaere smart at laegge tabeller ind separat!!

7

joint <- tabListMult(chest_cpt)

dim(joint)

[1] 2 2 2 2 2 2 2 2

joint %>% as.data.frame.table %>% head

xray asia smoke tub lung dysp bronc either Freq

1 yes yes yes yes yes yes yes yes 1.32300e-05

2 no yes yes yes yes yes yes yes 2.70000e-07

3 yes no yes yes yes yes yes yes 2.61954e-04

4 no no yes yes yes yes yes yes 5.34600e-06

5 yes yes no yes yes yes yes yes 6.61500e-07

6 no yes no yes yes yes yes yes 1.35000e-08

This will clearly fail even moderate size problems: For example, a model with 80 nodes each with
10 levels will give a joint state space with 1080 states; that is about the number of atoms in the
universe. Similarly, 265 binary variables will result in a joint state space of about the same size.
Yet, gRain has been used succesfully in models with tens of thousand variables. The “trick” in
gRain is to make all computations without ever forming the joint distribution.

However, we can do all the computations by brute force methods as we will illustrate here:

Marginal distributions are

tabMarg(joint, "lung")

lung

yes no

0.055 0.945

tabMarg(joint, "bronc")

bronc

yes no

0.45 0.55

Conditioning on evidence can be done in different ways: The conditional density is a 6–way slice
of the original 8–way joint distribution:

ev <- list(asia="yes", dysp="yes")

cond1 <- tabSlice(joint, slice=ev)

cond1 <- cond1 / sum(cond1)

dim(cond1)

[1] 2 2 2 2 2 2

tabMarg(cond1, "lung")

lung

yes no

0.09952515 0.90047485

tabMarg(cond1, "bronc")

bronc

yes no

0.8114021 0.1885979

Alternatively, multiply all entries not consistent by zero and all other entries by one and then
marginalize:

cond2 <- tabSliceMult(joint, slice=ev)

cond2 <- cond2 / sum(cond2)

dim(cond2)

8

[1] 2 2 2 2 2 2 2 2

tabMarg(cond2, "lung")

lung

yes no

0.09952515 0.90047485

tabMarg(cond2, "bronc")

bronc

yes no

0.8114021 0.1885979

4 Hard and virtual (likelihood) evidence

Below we describe how to work with virtual evidence (also known as likelihood evidence) in gRain.
This is done via the function setEvidence().

The clique potential representation in a Bayesian network gives

p(x) ∝ ψ(x) =
∏
C

ψC(xC)

where we recall that the whole idea in computations with Bayesian networks is to avoid calculation
the product on the right hand side. Instead computations are based on propagation (multiplying,
dividing and summing clique potentials ψC in an appropriate order, and such an appropriate
order comes from a junction tree). The normalizing constant, say c =

∑
x ψ(x), comes out of

propagation as a “by product”.

Suppose a set of nodes E are known to have a specific value, i.e. xE = x∗E . This is called hard
evidence. The probability of the event xE = x∗E is

p(xE = x∗E) = Ep{I(xE = x∗E)} =
∑
x

I(xE = x∗E)p(x) =
1

c

∑
x

I(xE = x∗E)ψ(x)

The computations are based on modifying the clique potentials ψC by giving value zero to states
in ψC which are not consistent with xE = x∗E . This can be achieved with an indicator function,

say LC(xC) such that we obtain a set of new potentials ψ̃C = LC(xC)ψC(xC). Propagation with
these new potentials gives, as a by product, c̃ =

∑
ψ̃(x) where ψ̃(x) =

∏
C ψ̃C(xC). Consequently,

we have p(xE = x∗E) = c̃/c.

In a more general setting we may have non–negative weights L(x) for each value of x. We may
calculate

Ep{L(X)} =
∑
x

L(x)p(x)

If L(X) factorizes as L(X) = LC(XC) then the computations are carried out as outlined above,
i.e. by the message passing scheme.

4.1 An excerpt of the chest clinic network

Consider the following excerpt of the chest clinic network which is described in the paper mentioned
above.

yn <- c("yes","no")

a <- cptable(~asia, values=c(1,99),levels=yn)

9

t.a <- cptable(~tub|asia, values=c(5,95,1,99),levels=yn)

(plist1 <- compileCPT(list(a, t.a)))

cpt_spec with probabilities:

P(asia)

P(tub | asia)

plist1[[1]]

asia

yes no

0.01 0.99

plist1[[2]]

asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

(chest1 <- grain(plist1))

Independence network: Compiled: TRUE Propagated: FALSE

Nodes: chr [1:2] "asia" "tub"

querygrain(chest1)

$asia

asia

yes no

0.01 0.99

##

$tub

tub

yes no

0.0104 0.9896

4.2 Specifying hard evidence

Suppose we want to make a diagnosis about tuberculosis given the evidence that a person has
recently been to Asia. The functions setFinding() (which has been in gRain for years) and
setEvidence() (which is a recent addition to gRain) can both be used for this purpose. The
following forms are equivalent (setFinding() is kept in gRain for backward compatibility):

setEvidence(chest1, evidence=list(asia="yes"))

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:2] "asia" "tub"

Evidence:

nodes is.hard.evidence hard.state

1 asia TRUE yes

pEvidence: 0.010000

setEvidence(chest1, nodes="asia", states="yes")

Independence network: Compiled: TRUE Propagated: TRUE

Nodes: chr [1:2] "asia" "tub"

Evidence:

nodes is.hard.evidence hard.state

1 asia TRUE yes

pEvidence: 0.010000

setFinding(chest1, nodes="asia", states="yes")

10

querygrain(setEvidence(chest1, evidence=list(asia="yes")))

$tub

tub

yes no

0.05 0.95

4.3 What is virtual evidence (also called likelihood evidence) ?

Suppose we do not know with certainty whether a patient has recently been to Asia (perhaps the
patient is too ill to tell). However the patient (if he/she is Caucasian) may be unusually tanned
and this lends support to the hypothesis of a recent visit to Asia.

To accommodate we create an extended network with an extra node for which we enter evidence.
However, it is NOT necessary to do so in practice, because we may equivalently enter the virtual
evidence in the original network.

We can then introduce a new variable guess.asia with asia as its only parent.7

g.a <- parray(c("guess.asia", "asia"), levels=list(yn, yn),

values=c(.8,.2, .1,.9))

This reflects the assumption that for patients who have recently been to Asia we would guess so
in 80% of the cases, whereas for patients who have not recently been to A we would (erroneously)
guess that they have recently been to Asia in 10% of the cases.

(plist2 <- compileCPT(list(a, t.a, g.a)))

cpt_spec with probabilities:

P(asia)

P(tub | asia)

P(guess.asia | asia)

(chest2 <- grain(plist2))

Independence network: Compiled: TRUE Propagated: FALSE

Nodes: chr [1:3] "asia" "tub" "guess.asia"

querygrain(chest2)

$asia

asia

yes no

0.01 0.99

##

$tub

tub

yes no

0.0104 0.9896

##

$guess.asia

guess.asia

yes no

0.107 0.893

Now specify the guess or judgment, that the person has recently been to Asia:

7FIXME: Hvorfor vil parray ikke gaa vaek...

11

querygrain(setEvidence(chest2, evidence=list(guess.asia="yes")))

$asia

asia

yes no

0.07476636 0.92523364

##

$tub

tub

yes no

0.01299065 0.98700935

4.4 Specifying virtual evidence

The same guess or judgment can be specified as virtual evidence (also called likelihood evidence)
for the original network:

querygrain(setEvidence(chest1, evidence=list(asia=c(.8, .1))))

$tub

tub

yes no

0.01299065 0.98700935

This also means that specifying that specifying asia=’yes’ can be done as

querygrain(setEvidence(chest1, evidence=list(asia=c(1, 0))))

$tub

tub

yes no

0.05 0.95

4.5 A mixture of a discrete and a continuous variable

gRain only handles discrete variables with a finite state space, but using likelihood evidence it
is possible to work with networks with both discrete and continuous variables (or other types of
variables). This is possible only when he networks have a specific structure. This is possible when
no discrete variable has non–discrete parents.8

Take a simple example: x is a discrete variable with levels 1 and 2; y1|x = k ∼ N(µk, σ
2
k) and

y2|x = k ∼ Poi(λk) where k = 1, 2. The joint distribution is

p(x, y1, y2) = p(x)p(y1|x)p(y2|x)

Suppose the interest is in the distribution of x given y1 = y∗1 and y2 = y∗2 . We then have

p(x|y∗1 , y∗2) ∝ p(x)p(y∗1 |x)p(y∗2 |x) = p(x)L1(x)L2(x)

5 Building networks from data

The following two graphs specify the same model:

8SH: Expand this.

12

dG <- dag(~A:B + B:C)

uG <- ug(~A:B + B:C)

par(mfrow=c(1,2)); plot(dG); plot(uG)

A

B

C A

B

C
Suppose data is

dat <- tabNew(c("A", "B", "C"), levels=c(2, 2, 2), values=c(0, 0, 2, 3, 1, 2, 1, 4))

class(dat)

[1] "array"

A network can be built from data using:

gr.dG <- compile(grain(dG, data=dat))

gr.uG <- compile(grain(uG, data=dat))

However, when there are zeros in the table, care must be taken.

5.1 Extracting information from tables

In the process of creating networks, conditional probability tables are extracted when the graph is
a dag and clique potentials are extracted when the graph is a chordal (i.e. triangulated) undirected
graph. This takes place as follows (internally):

extractCPT(dat, dG)

$A

B

A B1 B2

A1 0.3333333 0.3

A2 0.6666667 0.7

##

$B

C

B C1 C2

B1 0 0.375

B2 1 0.625

##

$C

C

13

C1 C2

0.3846154 0.6153846

##

attr(,"graph")

A graphNEL graph with directed edges

Number of Nodes = 3

Number of Edges = 2

attr(,"class")

[1] "cpt_rep"

c(extractPOT(dat, uG))

[[1]]

A

B A1 A2

B1 0.07692308 0.1538462

B2 0.23076923 0.5384615

##

[[2]]

B

C B1 B2

C1 0 0.5

C2 1 0.5

The conditional probability table P (A|B) contains NaNs because

P (A|B = B1) =
n(A,B = B1)∑
A n(A,B = B1)

=
0

0
= NaN

For this reason the network gr.dG above will fail to compile whereas gr.uG will work, but it may
not give the expected results.

5.2 Using smooth

To illustrate what goes on, we can extract the distributions from data as follows:9

p.A.g.B <- tableDiv(dat, tableMargin(dat, "B"))

p.B <- tableMargin(dat, "B") / sum(dat)

p.AB <- tableMult(p.A.g.B, p.B)

However, the result is slightly misleading because tableDiv sets 0/0 = 0.

In grain there is a smooth argument that will add a small number to the cell entries before
extracting tables, i.e.

P (A|B = B1) =
n(A,B = B1) + ε∑
A(n(A,B = B1) + ε)

=
ε

2ε
= 0.5

and

P (B) =

∑
A(n(A,B) + ε)∑
AB(n(A,B) + ε)

We can mimic this as follows:

9SH: FIXME Use new functions from gRbase.

14

e <- 1e-2

(dat.e <- dat + e)

, , C = C1

##

B

A B1 B2

A1 0.01 2.01

A2 0.01 3.01

##

, , C = C2

##

B

A B1 B2

A1 1.01 1.01

A2 2.01 4.01

pe.A.g.B <- tableDiv(dat.e, tableMargin(dat, "B"))

pe.B <- tableMargin(dat.e, "B")/sum(dat.e)

pe.AB <- tableMult(pe.A.g.B, pe.B)

However this resulting joint distribution is different from what is obtained from the adjusted table
itself

dat.e / sum(dat.e)

, , C = C1

##

B

A B1 B2

A1 0.000764526 0.1536697

A2 0.000764526 0.2301223

##

, , C = C2

##

B

A B1 B2

A1 0.07721713 0.07721713

A2 0.15366972 0.30657492

This difference appears in the gRain networks.

5.3 Extracting tables

One can do

gr.dG <- compile(grain(dG, data=dat, smooth=e))

which (internally) corresponds to

extractCPT(dat, dG, smooth=e)

$A

B

15

A B1 B2

A1 0.3344371 0.3003992

A2 0.6655629 0.6996008

##

$B

C

B C1 C2

B1 0.001992032 0.3753117

B2 0.998007968 0.6246883

##

$C

C

C1 C2

0.3847926 0.6152074

##

attr(,"graph")

A graphNEL graph with directed edges

Number of Nodes = 3

Number of Edges = 2

attr(,"class")

[1] "cpt_rep"

We get

querygrain(gr.dG)

$A

A

A1 A2

0.3082845 0.6917155

##

$B

B

B1 B2

0.2316611 0.7683389

##

$C

C

C1 C2

0.3847926 0.6152074

querygrain(gr.uG)

$B

B

B1 B2

0.2307692 0.7692308

##

$A

A

A1 A2

0.3076923 0.6923077

##

$C

C

C1 C2

16

0.3846154 0.6153846

However, if we condition on B=B1 we get:

querygrain(setFinding(gr.dG, nodes="B", states="B1"))

$A

A

A1 A2

0.3344371 0.6655629

##

$C

C

C1 C2

0.003308796 0.996691204

querygrain(setFinding(gr.uG, nodes="B", states="B1"))

$A

A

A1 A2

0.3333333 0.6666667

##

$C

C

C1 C2

0 1

so the “problem” with zero entries shows up in a different place. However, the answer is not
necessarily wrong; the answer simply states that P (A|B = B1) is undefined. To “remedy” we can
use the smooth argument:

gr.uG <- compile(grain(uG, data=dat, smooth=e))

which (internally) corresponds to

c(extractPOT(dat, uG, smooth=e))

[[1]]

A

B A1 A2

B1 0.07745399 0.1541411

B2 0.23082822 0.5375767

##

[[2]]

B

C B1 B2

C1 0.003311258 0.5

C2 0.996688742 0.5

Notice that the results are not exactly identical:

querygrain(gr.uG)

$B

B

B1 B2

17

0.2315951 0.7684049

##

$A

A

A1 A2

0.3082822 0.6917178

##

$C

C

C1 C2

0.3849693 0.6150307

querygrain(gr.dG)

$A

A

A1 A2

0.3082845 0.6917155

##

$B

B

B1 B2

0.2316611 0.7683389

##

$C

C

C1 C2

0.3847926 0.6152074

querygrain(setFinding(gr.uG, nodes="B", states="B1"))

$A

A

A1 A2

0.3344371 0.6655629

##

$C

C

C1 C2

0.003311258 0.996688742

querygrain(setFinding(gr.dG, nodes="B", states="B1"))

$A

A

A1 A2

0.3344371 0.6655629

##

$C

C

C1 C2

0.003308796 0.996691204

18

References

Søren Højsgaard. Graphical independence networks with the gRain package for R. Journal of
Statistical Software, 46(10):1–26, 2012. URL http://www.jstatsoft.org/v46/i10/.

Søren Højsgaard, David Edwards, and Steffen L. Lauritzen. Graphical Models with R. Springer,
2012. ISBN 978-1-4614-2299-0.

Steffen L. Lauritzen and David Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J. Roy. Stat. Soc. Ser. B, 50(2):157–224,
1988.

19

