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Batch effects are commonly observed systematic non-biological variation between groups
of samples due to experimental artifacts, such as processing date, lab, or technician. Combin-
ing samples from multiple batches can cause the true biological variation in a high-throughput
experiment to be obscured by variation due to batch.

1 Guided Principal Components Analysis

Guided principal components analysis (gPCA) is an extension of principal components anal-
ysis (PCA) that replaces the data X matrix in the singular value decomposition (SVD) of
PCA with Y′X such that

Y′X = UDV′

where Y is an n × b indicator matrix where n denotes sample and b denotes batch. For
k = 1, . . . , b batches, each is comprised of nk observations such that

∑b
k=1 nk = n. The

indicator matrix consists of b blocks with nk rows for k = 1, . . . , b, and k columns where, for
each block,

Yk =

{
1 if k = b
0 otherwise .

Performing SVD on Y′X results in a b × b batch loadings matrix U and a p × p probe
loadings matrix V. Large singular values (the diagonal elements of the q×q matrix D where
q = min(n, p)) imply that the batch is important for the corresponding principal component.
gPCA guides the SVD to look for batch effects in the data based on the batch indicator
matrix Y, which can be defined to indicate any type of potential batch effect, such as time
of hybridization, plate, or other experimental artifact.

In Reese et al. [6], we proposed a test statistic δ that quantifies the proportion of variance
due to batch effects in experimental genomic data. The proportion of total variance due to
batch is taken to be the ratio of the variance of the first principal component from gPCA to
the variance of the first principal component from unguided PCA

δ =
var(XVg1)

var(XVu1)
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where g indicates gPCA and u indicates unguided PCA. V is the matrix of probe loadings
resulting from gPCA or PCA, respectively. Large values of δ (values near 1) imply that the
batch effect is large.

To determine whether δ is significantly larger than would be expected by chance, a p-
value is estimated using a permutation distribution created by permuting the batch vector
M = 1000 times so that δpm is computed form = 1, . . . ,M where p indicates the permutation.
Here δpm is the proportion of the total variance due to the first principal component from the
mth permutation from gPCA to the total variance due to the first principal component from
the mth permutation from unguided PCA. A one-sided p-value (testing H0 : δpm = δ versus
H1 : δpm > δ) is estimated as the proportion of times the observed δ was in the extreme tail
of the permutation distribution

p-value =

∑M
m=1 (δpm > δ)

M
.

For more details on gPCA see Reese et al. [6].

2 R Package

The gPCA package includes four example data sets, the gPCA.batchdetect() function that
produces the δ statistic and corresponding p-value, and additional visualization functions.

2.1 Data

Four data sets are included in the gPCA package, three simulated data sets and one case
study data set. The case study data (data(caseDat)) contains copy number variation data
with n = 500 observations and p = 1000 features that were retained after a variance filter
was applied.

The simulated data represents copy number data under three scenarios: (1) feature data
(here, feature denotes probe) with no phenotypic variable (data(nopheDat)); (2) feature
data with a high variance phenotypic variable (data(highpheDat)); and (3) feature data
with a low variance phenotypic variable (data(lowpheDat)). The feature data were gen-
erated independently from a multivariate normal distribution with 1000 features and 90
observations. Data with two batches and two phenotypes were simulated. Batch mean vec-
tors µb1 = 0 and µb2 = 1 and batch variance σ2

b I where σ2
b = 0.5 were used to simulate the

data. The proportion of features affected by batch was bprop = 0.01 for the no phenotype
scenario and bprop = 0.05 for the high and low variance phenotype scenarios.

For the scenarios with phenotypic effects, the proportion of features affected by phenotype
was pprop = 0.1. The phenotypic mean vectors were µp1 = 0 and µp2 = 1 and the
phenotypic variance was σ2

pI where σ2
p = 2 for the high variance phenotype scenario and

σ2
p = 0.2 for the low variance phenotype scenario. Reese et al. [6] provides an in depth

description of the data simulations.
For all four data sets, the first column of the data frame containing the data contains

the batch vector which indicates batch for the n observations. The rest of the data frame
contains the uncentered feature data.

2



2.2 Application

The δ statistic, corresponding p-value from the permutation test, and various other measures
are output by the gPCA.batchdetect() function. The syntax for this function is

> out<-gPCA.batchdetect(x=data,batch=batch,center=FALSE,

+ scaleY=FALSE,filt=NULL,nperm=1000,seed=NULL)

where x is the n × p matrix of feature data X, batch is a length n vector indicating batch
which is used to calculate the Y matrix for gPCA. The option center is a logical indicating
whether or not data is centered where center=TRUE if the data x is already centered. scaleY
is a logical indicating whether the batch indicator matrix Y is to be scaled by the batch sample
size nk. nperm indicates how many permutations will be used for calculating the permutation
test statistic (defaults to 1000), filt gives the number of features to retain when applying a
variance-based filter to the data (defaults to NULL indicating no filter applied), and seed sets
set.seed(seed). Note that x must be complete data (i.e. contain no missing values) and
the class of x must be "matrix". The function, when run actively, will ask if mean-value
imputation should be performed for any missing values, but when run passively will cause
an error.

The gPCA.batchdetect() function outputs the value of the statistic δ, the associated
p-value, the batch vector batch, the M values of δp resulting from the permutation test, the
proportion of variance associated with the first principal component from unguided (PCu)
and guided (PCg) PCA, as well as the cumulative variance associated with all n principal
components resulting from unguided PCA (cumulative.var.x) and the cumulative variance
associated with all b principal components resulting from gPCA (cumulative.var.g).

The gPCA package also has three functions to visualize the data. The function gDist

produces a density plot of the δp values output by the gPCA.batchdetect function. The
function PCplot produces principal component plots of either the unguided or guided princi-
pal components and allows for either directly comparing the first two principal components,
or comparing the first npcs principal components. Finally, the function CumulativeVarPlot

produces a plot of the cumulative variance from guided or unguided PCA.

> gDist(out)

> PCplot(out,ug="guided",type="1v2")

> PCplot(out,ug="guided",type="comp",npcs=3)

> CumulativeVarPlot(out,ug="unguided",col="blue")

3 Example

We will discuss a brief example using caseDat data from the gPCA package. We first load the
data caseDat and assign the first column to batch. The rest of the data frame is the feature
data, so we assign that to dat and re-classify it as a matrix. Since the caseDat feature
data is already centered, we set center=TRUE. The value of the test statistic δ and the
corresponding p-value are easily printed and the percent of total variation that is explained
by batch is calculated.
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> data(caseDat)

> batch<-caseDat$batch

> data<-caseDat$data

> out<-gPCA.batchdetect(x=data,batch=batch,center=TRUE)

> out$delta ; out$p.val

[1] 0.5723698

[1] "<0.001"

> ((out$varPCg1-out$varPCu1)/out$varPCg1)*100

[1] 96.29305

We can also plot the distribution of the δp values from the permutation test and see where
our test statistic δ (represented by the red dashed line) falls in comparison (Figure 1).
Plots of the first versus the second principal components from gPCA can be plotted (Figure
2) as well as a sample of the first few principal comparisons (Figure 3).

4 Conclusion

The gPCA package provides functionality to test for batch effects in high-throughput genomic
data using the function gPCA.batchdetect(). The ability to detect batch effects in genomic
data allows further batch correction procedures such as batch mean-centering [7], distance
weighted discrimination (DWD) [1, 2, 3, 5], or empirical Bayes [4], to be employed to attempt
to remove the unwanted variation due to batch effects. However, correcting for batch when
there is no significant batch effect may result in removing biological variation instead of
the systematic non-biological variation due to batch. This package provides the ability to
perform a test to detect batch effects.

5 Session Info

> sessionInfo()

R version 3.0.1 (2013-05-16)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:
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> gDist(out)
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Figure 1: Distribution plot of δp values
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> par(mai=c(0.8,0.8,0.1,0.1),cex=0.8)

> PCplot(out,ug="guided",type="1v2")
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Figure 2: Principal components plot of first two principal components from gPCA
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> par(mai=c(0.65,0.65,0.1,0.1),cex=0.8)

> PCplot(out,ug="guided",type="comp",npcs=3)
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Figure 3: Principal components plots of the first three principal components with density
plots of the principal components on the diagonal.
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[1] gPCA_1.0

loaded via a namespace (and not attached):

[1] tools_3.0.1
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