Package 'gPCA'

February 19, 2015

Type Package
Title Batch Effect Detection via Guided Principal Components Analysis
Version 1.0
Date 2013-07-25
Author Sarah Reese
Maintainer Sarah Reese <reesese@vcu.edu></reesese@vcu.edu>
Description This package implements guided principal components analysis for the detection of batch effects in high-throughput data.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2013-07-31 17:55:22
R topics documented:
gPCA-package
caseDat
CumulativeVarPlot
gDist
gPCA.batchdetect
PCplot
Index
gPCA-package Batch Effect Detection via Guided Principal Components Analysis
Description

This package implements guided principal components analysis for the detection of batch effects in high-throughput data.

Details

2 caseDat

Package: gPCA Type: Package Version: 1.0

Date: 2013-07-25 License: GPL (>=2)

The function gPCA.batchdetect() is used to perform the batch detection test and outputs the resulting δ statistic and corresponding p-value, along with other useful measures for visualization.

Author(s)

Sarah Reese

Maintainer: Sarah Reese < reesese@vcu.edu>

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

See Also

gPCA.batchdetect

caseDat

Case study copy number variation data

Description

This is a data set of copy number variation data with n=500 observations and p=1000 features. The length n batch vector (first column of caseDat) indicates the batch for each sample.

Usage

```
data(caseDat)
```

Format

A list with two objects:

batch A numeric vector indicating batch for the n=500 samples.

data A matrix of n = 500 samples and p = 1000 features.

Cumulative VarPlot 3

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

Examples

data(caseDat)

CumulativeVarPlot

Plot of the Cumulative Variance due to the Principal Components

Description

The function plots the cumulative variance of the principal components.

Usage

```
CumulativeVarPlot(out, ug = "unguided", ...)
```

Arguments

out object resulting from gPCA.batchdetect() call.

ug "guided" or "unguided". Do you want the cumulative variance from guided or

unguided PCA plotted.

... any other plot calls.

Details

This function plots the cumulative variance of the principal components from guided or unguided PCA calculated as (for the unguided case)

$$Var_{l} = \frac{\sum_{i=1}^{l} (PC_{u})_{i}}{\sum_{i=1}^{n} (PC_{u})_{i}}$$

for the *l*th principal component (l = 1, ..., n).

Author(s)

Sarah Reese < reesese@vcu.edu>

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

gDist

See Also

```
gPCA.batchdetect, gDist, PCplot
```

Examples

```
# CumulativeVarPlot(out,ug="unguided",col="blue")
```

gDist

Density/Distribution Plot for gPCA

Description

This function produces a density plot of the permutation δ_p values.

Usage

gDist(out)

Arguments

out

object resulting from gPCA.batchdetect() call.

Author(s)

Sarah Reese < reesese@vcu.edu>

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

See Also

```
{\tt gPCA.batchdetect,PCplot,CumulativeVarPlot}
```

Examples

```
# gDist(out)
```

gPCA.batchdetect 5

gPCA.batchdetect	Guided Principal Components Analysis

Description

Tests for batch effects an $n \times p$ data set with batch vector given by batch using the δ statistic resulting from guided principal components analysis (gPCA).

Usage

```
gPCA.batchdetect(x, batch, filt = NULL, nperm = 1000, center = FALSE, scaleY=FALSE,
seed = NULL)
```

Arguments

X	an nxp matrix of data where n denotes observations and p denotes the number of features (e.g. probe, gene, SNP, etc.).
batch	a length n vector that indicates batch (group or class) for each observation.
filt	(optional) the number of features to retain after applying a variance filter. If NULL, no filter is applied. Filtering can significantly reduce the processing time in the case of very large data sets.
nperm	the number of permutations to perform for the permutation test, default is 1000.
center	(logical) Is your data x centered? If not, then center=FALSE and gPCA.batchdetect will center it for you.
scaleY	(logical) Do you want to scale the Y matrix by the number of samples in each batch? If not, then center=FALSE (default), otherwise, center=TRUE.
seed	the seed number for set.seed(). Default is NULL.

Details

Guided principal components analysis (gPCA) is an extension of principal components analysis (PCA) that guides the singular value decomposition (SVD) of PCA by applying SVD to $\mathbf{Y}'\mathbf{X}$ where \mathbf{Y} is a $n \times b$ batch indicator matrix of ones when an observation $i(i=1,\ldots,n)$ is in batch b and zeros otherwise.

The test statistic δ along with a one-sided p-value results from a gPCA.batchdetect() call, along with the values of δ_p from the permutation test. The δ_p values can be used to visualize the permutation distribution of your test using the gDist function. For more information on gPCA, please see reese.

Value

delta	test statistic δ from gPCA.
p.val	p -value associated with δ resulting from gPCA.
delta.p	nperm length vector of delta values resulting from the permuation test.

6 gPCA.batchdetect

batch	returns your length n batch vector.	
filt	returns the number of features the variance filter retained.	
n	the number of observations	
р	the number of features	
b	the number of batches	
PCu	principal component matrix from unguided PCA.	
PCg	principal component matrix from gPCA.	
varPCu1	the proportion out of the total variance associated with the first principal component of unguided PCA.	
varPCg1	the proportion out of the total variance associated with the first principal component of gPCA.	
cumulative.var.u		
	length n vector of the cumulative variance of the $i=1,\dots,n$ principal components from unguided PCA.	
cumulative.var.g		
	length b vector of the cumulative variance of the $k=1,\dots,b$ principal components from gPCA.	

Author(s)

Sarah Reese < reesese@vcu.edu>

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

See Also

```
gDist, PCplot, CumulativeVarPlot,
```

Examples

```
data(caseDat)
batch<-caseDat$batch
data<-caseDat$data
out<-gPCA.batchdetect(x=data,batch=batch,center=FALSE,nperm=250)
out$delta; out$p.val

## Plots:
gDist(out)
CumulativeVarPlot(out,ug="unguided",col="blue")
PCplot(out,ug="unguided",type="1v2")
PCplot(out,ug="unguided",type="comp",npcs=4)</pre>
```

PCplot 7

PCplot	Principal Component Plot	
·		

Description

Produces principal component plots from either unguided or guided PCA.

Usage

```
PCplot(out, ug = "unguided", type = "1v2", npcs, ...)
```

Arguments

out	object resulting from gPCA.batchdetect() call.
ug	"guided" or "unguided". Do you want the cumulative variance from guided or unguided PCA plotted.
type	type of plot. Either " $1v2$ " to plot the first two principal components, or "comp" to compare all principal component up to the level of npcs.
npcs	Number of principal compoents to plot when "comp" type is chosen.
	any other plot calls.

Details

This function plots either the first principal component versus the second principal component (type="1v2") from guided or unguided PCA, or compares (type="comp") all combinations of the principal components up to the value of npcs.

Author(s)

Sarah Reese < reesese@vcu.edu>

References

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson, E. J., Vachon, C. M., de Andrade, M., Kocher, J. A., and Eckel-Passow, J. E. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal components analysis. Bioinformatics, (in review).

See Also

```
gPCA.batchdetect, gDist, CumulativeVarPlot
```

Examples

```
# PCplot(out,ug="unguided",type="1v2")
# PCplot(out,ug="unguided",type="comp",npcs=4)
```

Index

```
*Topic \textasciitildekwd1
    CumulativeVarPlot, 3
    gDist, 4
    gPCA.batchdetect, 5
    PCplot, 7
*Topic \textasciitildekwd2
    CumulativeVarPlot, 3
    gDist, 4
    gPCA.batchdetect, 5
    PCplot, 7
*Topic datasets
    caseDat, 2
*Topic package
    gPCA-package, 1
caseDat, 2
CumulativeVarPlot, 3, 4, 6, 7
gDist, 4, 4, 5-7
gPCA (gPCA-package), 1
gPCA-package, 1
gPCA.batchdetect, 2, 4, 5, 7
PCplot, 4, 6, 7
```