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fuzzySim-package Fuzzy Similarity in Species Distributions

Description

Functions to calculate fuzzy versions of species occurrence patterns based on presence-absence
data (including inverse distance interpolation, trend surface analysis, and prevalence-independent
favourability, obtained from probability of presence), as well as pair-wise fuzzy similarity (based on
fuzzy logical versions of commonly used similarity indices) among those occurrence patterns. In-
cludes also functions for data preparation, such as obtaining unique abbreviations of species names,
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gridding point occurrence data onto raster maps, converting species lists (long format) to presence-
absence tables (wide format), transposing part of a data frame, selecting relevant variables for mod-
els, assessing the false discovery rate, or analysing and dealing with multicollinearity. Includes also
sample datasets for providing practical examples. A step-by-step illustrated tutorial is available
from the package homepage (http://fuzzysim.r-forge.r-project.org).

Details

Package: fuzzySim
Type: Package
Version: 3.0
Date: 2020-02-03
License: GPL-3

Author(s)

A. Marcia Barbosa

Maintainer: A. Marcia Barbosa <ana.marcia.barbosa@gmail.com>

References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

Examples

data(rotifers)

head(rotifers)

# add column with species name abbreviations:

rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0)

head(rotifers)

# convert species list (long format) to presence-absence table
# (wide format):

rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4",
sp.col = "spcode", keep.n = FALSE)

head(rotifers.presabs)
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# get 3rd-degree spatial trend surface for some species distributions:

data(rotif.env)

names(rotif.env)

rotifers.tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(rotifers.tsa)

# get inverse squared distance to presence for each species:

rotifers.isqd <- distPres(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2, inv = TRUE)

head(rotifers.isqd)

# get prevalence-independent environmental favourability models
# for each species:

data(rotif.env)

names(rotif.env)

rotifers.fav <- multGLM(data = rotif.env, sp.cols = 18:20,
var.cols = 5:17, id.col = 1, step = FALSE, trim = TRUE,
Favourability = TRUE)

# get matrix of fuzzy similarity between species distributions:

# either based on inverse squared distance to presence:
rot.fuz.sim.mat <- simMat(rotifers.isqd[ , -1], method = "Jaccard")

# or on environmental favourability for presence:
rot.fuz.sim.mat <- simMat(rotifers.fav$predictions[ , 5:7],
method = "Jaccard")

head(rot.fuz.sim.mat)

# transpose fuzzy rotifer distribution data to compare
# regional species composition rather than species' distributions:

names(rotifers.isqd)

rot.fuz.reg <- transpose(rotifers.fav$predictions, sp.cols = 5:7,
reg.names = 1)
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head(rot.fuz.reg)

# get matrix of fuzzy similarity between (some) regions'
# species compositions:

reg.fuz.sim.mat <- simMat(rot.fuz.reg[ , 1:10], method = "Jaccard")

head(reg.fuz.sim.mat)

bioThreat Biotic threat of a stronger over a weaker species based on their
favourability values

Description

This function takes two vectors of Favourability values at different localities for, respectively, a
stronger and a weaker species (e.g., a superior vs. an inferior competitor, or an invasive predator vs.
an unadapted native prey), and calculates the level of threat that the former may potentially pose to
the latter in each locality.

Usage

bioThreat(strong_F, weak_F, character = FALSE, ...)

Arguments

strong_F a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM) for the stronger species.

weak_F a numeric vector of favourability values for the weaker species. Must be of the
same lenght and in the same order as ’strong_F’.

character logical value indicating whether the result should be returned in character rather
numeric form. Defaults to FALSE.

... additional arguments to pass to favClass, namely the breaks for separating
favourability values into low, intermediate and high (see Details).

Details

Based on the notion of "favorableness" by Richerson & Lum (1980), according to which compet-
ing species may or may not be able to coexist depending on their relative environmental fitnesses,
Acevedo et al. (2010, 2012) and some subsequent studies (e.g. Romero et al. 2014, Munoz et al.
2015, Chamorro et al. 2019) proposed possible biotic interaction outcomes of different combina-
tions of favourability values for two species. Favourability has the advantage, in contrast with other
types of potential distribution metrics, of being directly comparable among diferent species, inde-
pendently of their relative occurrence frequencies (see Fav). This function builds on those proposals
by including additional possible combinations of higher, intermediate or low favourability values
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(following Munoz & Real 2006), producing the following classification of biotic threat across a set
of analysed localities:

0 (’white’): areas where favourability is low for at least one of the species (abiotic exclusion), so
biotic threat does not apply.

1 (’green’): areas where favourability is high for both species, so they should both be able to thrive
and therefore co-occur (sympatric coexistence), hence biotic threat is low.

2 (’yellow’): areas where favourability is high for the weaker species and intermediate for the
stronger species, so the level of threat is moderate.

3 (’orange’): areas where favourability is intermediate for both species, so the stronger one poten-
tially prevails and the level of threat is high.

4 (’red’): areas where favourability is high for the stronger species and intermediate for the weaker
species, in which case the level of threat is very high (biotic exclusion).

Value

This function returns either an integer or a character vector (following the ’character’ argument,
which is set to FALSE by default) of the same length as ’strong_F’ and ’weak_F’, classifying each
locality with the level of biotic threat posed by the former on the latter (see Details).

Author(s)

A. Marcia Barbosa

References

Acevedo P., Ward A.I., Real R. & Smith G.C. (2010) Assessing biogeographical relationships of
ecologically related species using favourability functions: a case study on British deer. Diversity
and Distributions, 16: 515-528

Acevedo P., Jimenez-Valverde A., Melo-Ferreira J., Real R. & Alves, P.C. (2012) Parapatric species
and the implications for climate change studies: a case study on hares in Europe. Global Change
Biology, 18: 1509-1519

Chamorro D., Munoz A.R., Martinez-Freiria F. & Real R. (2019) Using the fuzzy logic in the dis-
tribution modelling of competitive interactions. Poster, IBS Malaga 2019 - 9th Biennial Conference
of the International Biogeography Society

Munoz A.R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet
in Spain. Diversity and Distributions, 12: 656-665

Munoz A.R., Real R. & Marquez A.L. (2015) Interacciones a escala nacional entre rapaces rupi-
colas en base a modelos de distribucion espacial. Los casos del buitre leonado, alimoche y aguila
perdicera. Informe tecnico, Universidad de Malaga & Fundacion EDP

Richerson P.J. & Lum K. (1980) Patterns of plant species diversity in California: relation to weather
and topography. American Naturalist, 116:504-536

Romero D., Baez J.C., Ferri-Yanez F., Bellido J. & Real R. (2014) Modelling favourability for
invasive species encroachment to identify areas of native species vulnerability. The Scientific World
Journal, 2014: 519710
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See Also

sharedFav, Fav, favClass

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[ , 3:4]
threat <- bioThreat(strong_F = favs[,1], weak_F = favs[,2])
threat_chr <- bioThreat(strong_F = favs[,1], weak_F = favs[,2], char = TRUE)
data.frame(favs, threat = threat, threat_col = threat_chr)

corSelect Select among correlated variables based on a given criterion

Description

This function calculates pairwise correlations among the variables in a dataset and, among each
pair of variables correlated above a given threshold, excludes the variable with either the highest
variance inflation factor (VIF), or the least significant or least informative bivariate (individual)
relationship with the response variable (if supplied), according to a specified criterion.

Usage

corSelect(data, sp.cols = NULL, var.cols, cor.thresh = 0.8,
select = "p.value", ...)

Arguments

data a data frame containing the response and predictor variables.

sp.cols index number of the column of ’data’ that contains the response (e.g. species)
variable. Currently, only one ’sp.cols’ can be used at a time, so an error message
is returned if length(sp.cols) > 1. If sp.cols = NULL (the default), the function
returns only the pairs of variables that are correlated over the given threshold,
without selecting those that are more relevant for a target species.

var.cols index numbers of the columns of ’data’ that contain the predictor variables.

cor.thresh threshold value of correlation coefficient above which (or below which, for neg-
ative correlations) predictor variables should be excluded. The default is 0.8.

select character value indicating the criterion for excluding variables among those that
are correlated. Can be "p.value" (the default), "AIC", "BIC", or "VIF" (see
Details).

... additional arguments to pass to cor, namely the ’method’ to use (either "pear-
son", "kendall" or "spearman" correlation coefficient; the first is the default)
and the way to deal with missing values (use = "everything", "all.obs", "com-
plete.obs", "na.or.complete", or "pairwise.complete.obs").
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Details

Correlations among variables are problematic in multivariate models, as they inflate the variance
of coefficients and thus may bias the interpretation of the effects of those variables on the response
(Legendre & Legendre 2012). One of the strategies to circumvent this problem is to eliminate
one from each pair of correlated variables, but it is not always straightforward to choose the right
variable to exclude a priori.

This function selects among correlated variables, based either on their variance inflation factor
(VIF: Marquardt 1970; Mansfield & Helms 1982) within the variables dataset (obtained with the
multicol function and recalculated iteratively after each variable exclusion); or on their relation-
ship with the response, by building a bivariate model of each individual variable against the re-
sponse and excluding, among each of two correlated variables, the one with the largest (worst)
p-value, AIC (Akaike’s Information Criterion: Akaike, 1973) or BIC (Bayesian Information Crite-
rion, also known as Schwarz criterion, SBC or SBIC: Schwarz, 1978), which it calculates with the
FDR function.

If ’sp.cols’ is left NULL and the ’select’ criterion is other than "VIF", the function returns only
the pairs of variables that are correlated above the given threshold. If the ’select’ criterion requires
assessing bivariate relationships and ’sp.cols’ is provided, the function uses only the rows of the
dataset where this column (used as the response variable) contains finite values against which the
predictor variables can be modelled; rows with NA or NaN in ’sp.cols’ are thus excluded from the
calculation of correlations among predictor variables.

Value

This function returns a list of 7 elements, unless ’sp.cols = NULL’, in which case it returns only the
first of these elements:

high.correlations

data frame showing the pairs of input variables that are correlated beyond the
given threshold, and their correlation coefficient.

bivariate.significance

data frame with the individual p-value, AIC and BIC (if one of these was the
’select’ criterion) of each of the highly correlated variables against the response
variable.

excluded.vars character vector containing the names of the variables to be excluded (i.e., from
each highly correlated pair, the variable with the worse ’select’ score.

selected.vars character vector containing the names of the variables to be selected (i.e., the
non-correlated variables and, from each correlated pair, the variable with the
better ’select’ score).

selected.var.cols

integer vector containing the column indices of the selected variables in ’data’.

strongest.remaining.corr

numerical value indicating the strongest correlation coefficient among the se-
lected variables.

remaining.multicollinearity

data frame showing the multicollinearity among the selected variables.
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Author(s)

A. Marcia Barbosa

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Legendre P. & Legendre L. (2012) Numerical ecology (3rd edition). Elsevier, Amsterdam: 990 pp.

Marquardt D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and non-
linear estimation. Technometrics 12: 591-612.

Mansfield E.R. & Helms B.P. (1982) Detecting multicollinearity. The American Statistician 36:
158-160.

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

multicol, FDR, cor

Examples

data(rotif.env)

corSelect(rotif.env, var.cols = 5:17)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, cor.thresh = 0.7)

corSelect(rotif.env, sp.cols = 46, var.cols = 5:17, method = "spearman")

distPres (Inverse) distance to the nearest presence

Description

This function takes a matrix or data frame containing species presence (1) and absence (0) data and
their spatial coordinates (optionally also a pre-calculated distance matrix between all localities), and
calculates the (inverse) distance from each locality to the nearest presence locality for each species.

Usage

distPres(data, sp.cols, coord.cols = NULL, id.col = NULL,
dist.mat = NULL, method = "euclidian", suffix = "_D", p = 1,
inv = TRUE)



10 distPres

Arguments

data a matrix or data frame containing, at least, two columns with spatial coordinates,
and one column per species containing their presence (1) and absence (0) data,
with localities in rows.

sp.cols names or index numbers of the columns containing the species presences and
absences in data. It must contain only zeros (0) for absences and ones (1) for
presences.

coord.cols names or index numbers of the columns containing the spatial coordinates in
data (in this order, x and y, or longitude and latitude).

id.col optionally, the name or index number of a column (to be included in the output)
containing locality identifiers in data.

dist.mat optionally, if you do not want distances calculated with any of the methods avail-
able in dist, you may provide a distance matrix calculated elsewhere for the
localities in data.

method the method with which to calculate distances between localities. Available op-
tions are those of dist. The default is "euclidian".

suffix character indicating the suffix to add to the distance columns in the resulting
data frame. The default is "_D".

p the power to which distance should be raised. The default is 1; use 2 or higher
if you want more conservative distances.

inv logical value indicating whether distance should be inverted, i.e. standardized
to vary between 0 and 1 and then subtracted from 1, so that it varies between
0 and 1 and higher values mean closer to presence. The default is TRUE, which
is adequate as a fuzzy version of presence-absence (for using e.g. with fuzSim
and simMat). In this case, presences maintain the value 1, and inverse distance
to presence is calculated only for absence localities.

Details

This function can be used to calculate a simple spatial interpolation model of a species’ distribution
(e.g. Barbosa 2015, Areias-Guerreiro et al. 2016).

Value

This function returns a matrix or data frame containing the identifier column (if provided in ’id.col’)
and one column per species containing the distance (inverse by default) from each locality to the
nearest presence of that species.

Author(s)

A. Marcia Barbosa

References

Areias-Guerreiro J., Mira A. & Barbosa A.M. (2016) How well can models predict changes in
species distributions? A 13-year-old otter model revisited. Hystrix - Italian Journal of Mammalogy,
in press. DOI: http://dx.doi.org/10.4404/hystrix-27.1-11867
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Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858

See Also

dist

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

# calculate plain distance to presence:

rotifers.dist <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 1,
inv = FALSE, suffix = "_D")

head(rotifers.dist)

# calculate inverse squared distance to presence:

rotifers.invd2 <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, p = 2,
inv = TRUE, suffix = "_iDsq")

head(rotifers.invd2)

Fav Favourability

Description

Environmental (prevalence-independent) favourability for a species’ presence

Usage

Fav(model = NULL, obs = NULL, pred = NULL, n1n0 = NULL,
sample.preval = NULL, method = "RBV", true.preval = NULL)
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Arguments

model a model object of class "glm" and binomial family.
obs a vector of the 1 and 0 values of the modelled binary variable. This argument is

ignored if ’model’ is provided.
pred a vector of predicted probability values for ’obs’, given e.g. by logistic regres-

sion. This argument is ignored if ’model’ is provided.
n1n0 alternatively to ’obs’, an integer vector of length 2 providing the total numbers of

modelled ones and zeros, in this order. Ignored if ’obs’ or ’model’ is provided.
sample.preval alternatively to ’obs’ or ’n1n0’, the prevalence (proportion of positive cases)

of the modelled binary variable in the modelled data. Ignored if ’model’ is
provided.

method either "RBV" for the original Real, Barbosa & Vargas (2006) procedure, or "AT"
if you want to try out the modification proposed by Albert & Thuiller (2008) (but
see Details).

true.preval the true prevalence (as opposed to sample prevalence), necessary if you want to
use the "AT" method.

Details

Logistic regression (Generalised Linear Model with binomial error distribution and a logit link) is
widely used for modelling species’ potential distributions using presence/absence data and a set
of categorical or continuous predictor variables. However, this GLM incorporates the prevalence
(proportion of presences) of the species in the training sample, which affects the probability values
produced. Barbosa (2006) and Real, Barbosa & Vargas (2006) proposed an environmental favoura-
bility function which is based on logistic regression but cancels out uneven proportions of presences
and absences in the modelled data. Favourability thus assesses the extent to which the environmen-
tal conditions change the probability of occurrence of a species with respect to its overall prevalence
in the study area. Model predictions become, therefore, directly comparable among species with
different prevalences. The favourability function is implemented in the fuzzySim package and is
also in the SAM (Spatial Analysis in Macroecology) software (Rangel et al. 2010).

Using simulated data, Albert & Thuiller (2008) proposed a modification to the favourability func-
tion, but it requires knowing the true prevalence of the species (not just the prevalence in the studied
sample), which is rarely possible in real-world modelling. Besides, this suggestion was based on the
misunderstanding that the favourability function was a way to obtain the probability of occurrence
when prevalence differs from 50%, which is incorrect (see Acevedo & Real 2012).

To get environmental favourability with either the Real, Barbosa & Vargas ("RBV") or the Albert
& Thuiller ("AT") method, you just need to get a probabilistic model (e.g. logistic regression)
from your data and then use the ’Fav’ function. Input data for this function are either a model
object resulting from the glm function, or the presences-absences (1-0) of your species and the
corresponding presence probability values, obtained e.g. with predict(mymodel, mydata, type =
"response"). Alternatively to the presences-absences, you can provide either the sample prevalence
or the numbers of presences and absences. In case you want to use the "AT" method, you also need
to provide the true (absolute) prevalence of your species.

Value

A numeric vector of the favourability values corresponding to the input probability values.
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Author(s)

A. Marcia Barbosa

References

Acevedo P. & Real R. (2012) Favourability: concept, distinctive characteristics and potential use-
fulness. Naturwissenschaften 99: 515-522

Albert C.H. & Thuiller W. (2008) Favourability functions versus probability of presence: advan-
tages and misuses. Ecography 31: 417-422.

Barbosa A.M.E. (2006) Modelacion de relaciones biogeograficas entre predadores, presas y par-
asitos: implicaciones para la conservacion de mamiferos en la Peninsula Iberica. PhD Thesis,
University of Malaga (Spain).

Rangel T.F.L.V.B, Diniz-Filho J.A.F & Bini L.M. (2010) SAM: a comprehensive application for
Spatial Analysis in Macroecology. Ecography 33: 46-50.

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

See Also

glm, multGLM

Examples

# obtain a probability model and its predictions:

data(rotif.env)

names(rotif.env)

mod <- with(rotif.env, glm(Abrigh ~ Area + Altitude +
AltitudeRange + HabitatDiversity + HumanPopulation,
family = binomial))

prob <- predict(mod, data = rotif.env, type = "response")

# obtain predicted favourability in different ways:

Fav(model = mod)

Fav(obs = rotif.env$Abrigh, pred = prob)

Fav(pred = mod$fitted.values, n1n0 = c(112, 179))

Fav(pred = mod$fitted.values, sample.preval = 0.38)
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favClass Classify favourability into 3 categories (low, intermediate, high)

Description

This function takes a vector of Favourability values and reclassifies them into 3 increasing cate-
gories: low, intermediate or high. By default, the breaks between these classes are 0.2 and 0.8 (see
Details), although these can be changed by the user.

Usage

favClass(fav, breaks = c(0.2, 0.8), character = FALSE)

Arguments

fav a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM).

breaks a numeric vector of length 2 containing the two values which will divide fav
into the 3 classes. Defaults to c(0.2, 0.8) following the literature (see Details).

character logical value indicating whether the result should be returned in character rather
numeric form. Defaults to FALSE.

Details

Some applications of species distribution models imply setting a threshold to separate areas with
high and low probability or favourability for occurrence (see, e.g., bioThreat). However, it makes
little sense to establish as markedly different areas with, for example, 0.49 and 0.51 favourability
values (Hosmer & Lemeshow, 1989). It may thus be wiser to open a gap between values considered
as clearly favourable and clearly unfavourable. When this option is taken in the literature, com-
monly used breaks are 0.8 as a threshold to classify highly favourable values, as the odds are more
than 4:1 favourable to the species; 0.2 as a threshold below which to consider highly unfavourable
values, as odds are less than 1:4; and classifying the remaining values as intermediate favourability
(e.g., Munoz & Real 2006, Olivero et al. 2016).

Value

This function returns either an integer or a character vector (following the ’character’ argument,
which is set to FALSE by default), of the same length as fav, reclassifying it into 3 categories: 1
(’low’), 2 (’intermediate’), or 3 (’high’).

Author(s)

A. Marcia Barbosa
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References

Hosmer D.W. Jr & Lemeshow S. (1989) Applied logistic regression. John Wiley & Sons, New York

Munoz A.R. & Real R. (2006) Assessing the potential range expansion of the exotic monk parakeet
in Spain. Diversity and Distributions, 12: 656-665

Olivero J., Fa J.E., Real R., Farfan M.A., Marquez A.L., Vargas J.M., Gonzalez J.P., Cunningham
A.A. & Nasi R. (2017) Mammalian biogeography and the Ebola virus in Africa. Mammal Review,
47: 24-37

See Also

Fav, multGLM

Examples

data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 20, var.cols = 5:17)
fav <- mods$predictions[ , 2]
data.frame(fav = fav, favcl_num = favClass(fav),
favcl_chr = favClass(fav, character = TRUE))

FDR False Discovery Rate

Description

Calculate the false discovery rate (type I error) under repeated testing and determine which variables
to select and to exclude from multivariate analysis.

Usage

FDR(data = NULL, sp.cols = NULL, var.cols = NULL, pvalues = NULL,
model.type = NULL, family = "auto", correction = "fdr", q = 0.05,
verbose = TRUE, simplif = FALSE)

Arguments

data a data frame containing the response and predictor variables (one in each col-
umn).

sp.cols index number of the column containing the response variable (currently imple-
mented for only one response variable at a time).

var.cols index numbers of the columns containing the predictor variables.

pvalues optionally, instead of ’data’, ’sp.cols’ and ’var.cols’, a data frame with the names
of the predictor variables in the first column and their bivariate p-values (ob-
tained elsewhere) in the second column. Example: pvalues <- data.frame(var =
letters[1:5], pval = c(0.02, 0.004, 0.07, 0.03, 0.05)).
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model.type this argument (previously a character value, either "LM" or "GLM") is now
deprecated and ignored with a warning if provided. This information is now
included in argument ’family’ – e.g., if you want linear models (LM), you can
set ’family = "gaussian"’.

family The error distribution and (optionally) the link function to use (see glm or family
for details). The default "auto" automatically uses "binomial" family for re-
sponse variables containing only values of 0 and 1; "poisson" for positive integer
responses (i.e. count data); and "gaussian" (i.e., linear models) otherwise.

correction the correction procedure to apply to the p-values; see p.adjust.methods for
available options and p.adjust for more information. The default is "fdr".

q the threshold value of FDR-corrected significance above which to reject vari-
ables. Defaults to 0.05.

verbose logical value indicating whether to display messages.

simplif logical value indicating if simplified results should be provided (see Value).

Details

It is common in ecology to search for statistical relationships between species’ occurrence and
a set of predictor variables. However, when a large number of variables is analysed (compared
to the number of observations), false findings may arise due to repeated testing. Garcia (2003)
recommended controlling the false discovery rate (FDR; Benjamini & Hochberg 1995) in ecological
studies. The p.adjust R function performs this and other corrections to the significance (p) values
of variables under repeated testing. The ’FDR’ function performs repeated regressions (either linear
or binary logistic) or uses already-obtained p values for a set of variables; calculates the FDR with
’p.adjust’; and shows which variables should be retained for or excluded from further multivariate
analysis according to their corrected p values (see, for example, Barbosa, Real & Vargas 2009).

The FDR function uses the Benjamini & Hochberg ("BH", alias "fdr") correction by default, but
check the p.adjust documentation for other available methods, namely "BY", which allows for
non-independent data. Input data may be the response variable (for example, the presence-absence
or abundance of a species) and the predictors (a table with one independent variable in each column,
with the same number of rows and in the same order as the response); there should be no missing
values in the data. Alternatively, you may already have performed the univariate regressions and
have a set of variables and corresponding p values which you want to correct with FDR; in this case,
get a table with your variables’ names in the first column and their p values in the second column,
and supply it as the ’pvalues’ argument (no need to provide response or predictors in this case).

Value

If simplif = TRUE, this function returns a data frame with the variables’ names as row names and
4 columns containing, respectively, their individual (bivariate) coefficients against the response,
their individual AIC (Akaike’s Information Criterion; Akaike, 1973), BIC (Bayesian Information
Criterion, also known as Schwarz criterion, SBC, SBIC; Schwarz, 1978), p-value and adjusted p-
value according to the applied ’correction’. If simplif = FALSE (the default), the result is a list of
two such data frames:

exclude with the variables to exclude.

select with the variables to select (under the given ’q’ value).
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Author(s)

A. Marcia Barbosa

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Barbosa A.M., Real R. & Vargas J.M (2009) Transferability of environmental favourability models
in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain.
Ecological Modelling 220: 747-754

Benjamini Y. & Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289-300

Garcia L.V. (2003) Controlling the false discovery rate in ecological research. Trends in Ecology
and Evolution 18: 553-554

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

p.adjust

Examples

data(rotif.env)

names(rotif.env)

FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17)

FDR(data = rotif.env, sp.cols = 18, var.cols = 5:17, simplif = TRUE)

fuzSim Fuzzy similarity

Description

This function calculates fuzzy similarity, based on a fuzzy version of the binary similarity index
specified in method, between two binary (0 or 1) or fuzzy (between 0 and 1) variables.

Usage

fuzSim(x, y, method, na.rm = TRUE)
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Arguments

x a vector of (optionally fuzzy) presence-absence data, with 1 meaning presence, 0
meaning absence, and values in between meaning fuzzy presence (or the degree
to which each locality belongs to the set of species presences, or to which each
species belongs to the locality; Zadeh, 1965). Fuzzy presence-absence can be
obtained, for example, with functions multGLM, multTSA or distPres in this
package.

y a vector similar to ’x’, of the same length and in the same order.

method the similarity index to use. Currently available options are "Jaccard", "Sorensen",
"Simpson" and "Baroni" (see Details).

na.rm logical value indicating whether NA values should be ignored. The default is
TRUE.

Details

Similarity between ecological communities, beta diversity patterns, biotic regions, and distribu-
tional relationships among species are commonly determined based on pair-wise (dis)similarities in
species’ occurrence patterns. Some of the most commonly employed similarity indices are those
of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are
here implemented in their fuzzy versions (Barbosa, 2015), able to deal with both binary and fuzzy
data. Jaccard’s and Baroni’s indices have associated tables of significant values (Baroni-Urbani &
Buser 1976, Real & Vargas 1996, Real 1999).

Value

The function returns a value between 0 and 1 representing the fuzzy similarity between the provided
’x’ and ’y’ vectors. Note, for example, that Jaccard similarity can be converted to dissimilarity
(or Jaccard distance) if subtracted from 1, while 1-Sorensen is not a proper distance metric as it
lacks the property of triangle inequality (see http://en.wikipedia.org/wiki/S%C3%B8rensen%
E2%80%93Dice_coefficient).

Note

The formulas used in this function may look slighty different from some of their published versions
(e.g. Baroni-Urbani & Buser 1976), not only because the letters are switched, but because here the
A and B are the numbers of attributes present in each element, whether or not they are also present
in the other one. Thus, our ’A+B’ is equivalent to ’A+B+C’ in formulas where A and B are the
numbers of attributes present in one but not the other element, and our A+B-C is equivalent to their
A+B+C. The formulas used here (adapted from Olivero et al. 1998) are faster to calculate, visibly
for large datasets.

Author(s)

A. Marcia Barbosa

http://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
http://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
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Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Olivero J., Real R. & Vargas J.M. (1998) Distribution of breeding, wintering and resident waterbirds
in Europe: biotic regions and the macroclimate. Ornis Fennica, 75: 153-175

Real R. (1999) Tables of significant values of Jaccard’s index of similarity. Miscellania Zoologica
22: 29:40

Real R. & Vargas J.M (1996) The probabilistic basis of Jaccard’s index of similarity. Systematic
Biology 45: 380-385

Simpson, G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8: 338-353

See Also

simMat; modOverlap

Examples

data(rotif.env)

names(rotif.env)

# you can calculate similarity between binary species occurrence patterns:

fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Jaccard")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Sorensen")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Simpson")
fuzSim(rotif.env[, "Abrigh"], rotif.env[, "Afissa"], method = "Baroni")

# or you can model environmental favourability for these species
# and calculate fuzzy similarity between their environmental predictions
# which goes beyond the strict coincidence of their occurrence records:

fav <- multGLM(rotif.env, sp.cols = 18:19, var.cols = 5:17, step = TRUE,
FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $ predictions

fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Jaccard")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Sorensen")
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fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Simpson")
fuzSim(fav[, "Abrigh_F"], fav[, "Afissa_F"], method = "Baroni")

fuzzyOverlay Row-wise overlay operations based on fuzzy logic

Description

Logical and set operations are useful for comparative distribution modelling, to assess consensus
or mismatches between the predictions of different models, and to quantify differences between
models obtained for different time periods. Fuzzy set theory (Zadeh 1965, Barbosa & Real 2012)
allows performing such operations without converting model predictions from continuous to binary,
thus avoiding the application of arbitrary thresholds and the distortion or over-simplification of those
predictions. The result is a continuous numerical value quantifying the intersection, union, sum, or
other operation among model predictions, whether binary or continuous.

Usage

fuzzyOverlay(data, overlay.cols = 1:ncol(data), op = "intersection",
na.rm = FALSE, round.digits = 2)

Arguments

data matrix or data frame containing the model predictions to compare.

overlay.cols vector of the names or index numbers of the columns to compare. The default is
all columns in data.

op character value indicating the operation to perform between the prediction columns
in ’data’. Can be "consensus" for the arithmetic mean of predictions (or the
fuzzy equivalent of the proportion of models that agree that the species occurs
at each site), "fuzzy_and" or "intersection" for fuzzy intersection; "fuzzy_or" or
"union" for fuzzy union; "prob_and" or "prob_or" for probabilistic and/or, re-
spectively (see Details); "maintenance" for the values where all predictions for
the same row (rounded to the number of digits specified in the next argument)
are the same. If ’data’ has only two columns to compare, you can also calcu-
late"xor" for exclusive ’or’, "AnotB"" for the the occurrence of the species in
column 1 in detriment of that in column 2, "expansion" for the prediction in-
crease in rows where column 2 has higher values than column 1, "contraction"
for the prediction decrease in rows where column 2 has lower values than col-
umn 1, or "change" for a mix of the latter two, with positive values where there
has been an increase and negative values where there was decrease in favoura-
bility from columns 1 to 2. For expansion, contraction and maintenance, rows
where the values do not satisfy the condition (i.e. second column larger, smaller,
or roughly equal to the first column) get a value of zero.

na.rm logical value indicating if NA values should be ignored. The default is FALSE,
so rows with NA in any of the prediction columns get NA as a result.

round.digits integer value indicating the number of decimal places to be used if op = "main-
tenance". The default is 2.
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Details

If your predictions are probabilities, "prob_and" (probabilistic ’and’) gives the probability of all
species in ’data’ occurring simultaneously by multiplying all probabilities; and "prob_or" (proba-
bilistic ’or’) gives the probability of any of them occurring at each site. These can be quite restric-
tive, though; probabilistic "and" can give particularly irrealistically small values.

If you have (or convert your probabilities to) favourability predictions, which can be used directly
with fuzzy logic (Real et al. 2006; see Fav function), you can use "fuzzy_and" or "intersection"
to get the favourability for all species co-occurring at each site, and "fuzzy_or" or "union" to get
favourability for any of them to occur at each site (Barbosa & Real 2012).

Value

This function returns a vector, with length equal to the number of rows in data, containing the
row-wise result of the operation performed.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Real R. (2012) Applying fuzzy logic to comparative distribution modelling: a case
study with two sympatric amphibians. The Scientific World Journal, 2012, Article ID 428206

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

Zadeh, L.A. (1965) Fuzzy sets. Information and Control, 8: 338-353

See Also

fuzSim, modOverlap and fuzzyRangeChange for overall (not row-wise) comparisons among model
predictions.

Examples

data(rotif.env)

names(rotif.env)

# get model predictions for 3 of the species in rotif.env:

mods <- multGLM(rotif.env, sp.cols = 18:20, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE)

preds <- mods$predictions[ , c("Abrigh_F", "Afissa_F", "Apriod_F")]

# calculate intersection and union among those predictions:
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preds$intersect <- fuzzyOverlay(preds, op = "intersection")

preds$union <- fuzzyOverlay(preds, op = "union")

head(preds)

# imagine you have a model prediction for species 'Abrigh' in a future time
# (here we will create one by randomly jittering the current predictions)

preds$Abrigh_imag <- jitter(preds[ , "Abrigh_F"], amount = 0.2)
preds$Abrigh_imag[preds$Abrigh_imag < 0] <- 0
preds$Abrigh_imag[preds$Abrigh_imag > 1] <- 1

# you can calculate row-wise prediction changes from Abrigh to Abrigh_imag:

preds$Abrigh_exp <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "expansion")

preds$Abrigh_contr <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "contraction")

preds$Abrigh_chg <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "change")

preds$Abrigh_maint <- fuzzyOverlay(preds, overlay.cols = c("Abrigh_F",
"Abrigh_imag"), op = "maintenance")

head(preds)

fuzzyRangeChange Range change based on continuous (fuzzy) values

Description

This function quantifies overall range change (expansion, contraction, maintenance and balance)
based on either presence-absence data or the continuous predictions of two models.

Usage

fuzzyRangeChange(pred1, pred2, number = TRUE, prop = TRUE,
na.rm = TRUE, round.digits = 2, measures = c("Gain", "Loss",
"Stable presence", "Stable absence", "Balance"), plot = TRUE, ...)

Arguments

pred1 numeric vector containing the predictions (between 0 and 1) of the model that
will serve as reference.
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pred2 numeric vector containing the predictions (between 0 and 1) of the model whose
change will be calculated. Must be of the same length and in the same order as
’pred1’.

number logical value indicating if results should include the fuzzy number of cases. The
default is TRUE.

prop logical value indicating if results should include the proportion of the total num-
ber of cases. The default is TRUE.

na.rm logical value indicating whether NA values should be ignored. The default is
TRUE.

round.digits argument to pass to fuzzyOverlay, indicating the number of decimal places to
which to round ’pred’ for calculating ’maintenance’ or ’stability’. The default is
2.

measures character vector listing the range change measures to calculate. The default is
all available measures.

plot logical value indicating whether to make a barplot with the results. The default
is TRUE.

... additional arguments to be passed to the barplot function (if plot = TRUE.

Value

This function returns a data frame with the following values in different rows (among those that are
included in ’measures’):

Gain sum of the predicted values that have increased from ’pred1’ to ’pred2’ (fuzzy
equivalent of the number of gained presences)

Loss sum of the predicted values that have decreased from ’pred1’ to ’pred2’ (fuzzy
equivalent of the number of lost presences)

Stable_presence

fuzzy equivalent of the number of predicted presences that have remained as
such (when rounded to ’round.digits’) between ’pred1’ and ’pred2’

Stable_absence fuzzy equivalent of the number of predicted absences that have remained as such
(when rounded to ’round.digits’) between ’pred1’ and ’pred2’)

Balance sum of the change in predicted values from ’pred1’ to ’pred2’ (fuzzy equivalent
of the balance of gained and lost presences)

If prop = TRUE (the default), there is an additional column named "Proportion" in which these
values are divided by the total number of reference values (i.e., the fuzzy range or non-range size).
If plot = TRUE (the default), a barplot is also produced representing the last column of the result
data frame.

Author(s)

A. Marcia Barbosa

See Also

fuzSim, modOverlap for other ways to compare models; fuzzyOverlay for row-wise model com-
parisons
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Examples

# get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17,
step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $
predictions

# imagine you have a model prediction for this species in a future time
# (here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

# calculate range change given by current and imaginary future predictions:

fuzzyRangeChange(fav_current, fav_imag)

fuzzyRangeChange(fav_current, fav_imag, number = FALSE)

fuzzyRangeChange(fav_current, fav_imag, ylim = c(-1, 1),
ylab = "Proportional change")

getPreds Get model predictions

Description

This function allows getting the predictions of multiple models when applied to a given dataset. It
can be useful if you have a list of model objects (e.g. resulting from multGLM) and want to apply
them to a new data set containing the same variables for another region or time period. There are
options to include the logit link (’Y’) and/or ’Favourability’ (see Fav).

Usage

getPreds(data, models, id.col = NULL, Y = FALSE, P = TRUE,
Favourability = TRUE, incl.input = FALSE)

Arguments

data an object of class either ’data.frame’ or ’RasterStack’ to which to apply the
’models’ (below) to get their predictions; must contain all variables (with the
same names, case-sensitive) included in any of the ’models’.
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models an object of class ’list’ containing one or more model objects, obtained e.g. with
function glm or multGLM.

id.col optionally, the index number of a column of ’data’ containing row identifiers, to
be included in the result. Ignored if incl.input = TRUE, or if ’data’ is a Raster-
Stack rather than a data frame.

Y logical, whether to include the logit link (y) value in the predictions.

P logical, whether to include the probability value in the predictions.

Favourability logical, whether to include Favourability in the predictions (see Fav).

incl.input logical, whether to include input columns in the output data frame (if the ’data’
input is a data frame as well). The default is FALSE.

Value

This function returns the model predictions in an object of the same class as the input ’data’, i.e.
either a data frame or a RasterStack.

Author(s)

A. Marcia Barbosa

See Also

multGLM, predict

Examples

data(rotif.env)

names(rotif.env)

# identify rotifer data in the Eastern and Western hemispheres:

unique(rotif.env$CONTINENT)

rotif.env$HEMISPHERE <- "Eastern"

rotif.env$HEMISPHERE[rotif.env$CONTINENT %in%
c("NORTHERN_AMERICA", "SOUTHERN_AMERICA")] <- "Western"

head(rotif.env)

# separate the rotifer data into hemispheres

east.hem <- rotif.env[rotif.env$HEMISPHERE == "Eastern", ]
west.hem <- rotif.env[rotif.env$HEMISPHERE == "Western", ]

# make models for 3 of the species in rotif.env based on their distribution
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# in the Eastern hemisphere:

mods <- multGLM(east.hem, sp.cols = 18:20, var.cols = 5:17,
id.col = 1, step = FALSE, FDR = FALSE, trim = FALSE)

# get the models' predictions for the Western hemisphere dataset:

preds <- getPreds(west.hem, models = mods$models, P = TRUE,
Favourability = TRUE)

head(preds)

gridRecords Grid point occurrence records onto a raster

Description

This function takes a raster stack and a set of spatial coordinates of a species’ presence (and op-
tionally absence) records, and returns a data frame with the presences and absences, as well as
the corresponding values of the rasters in the grid of pixels (cells). If absence coordinates are not
supplied, all pixels without any presence point will be returned as absences.

Usage

gridRecords(rst, pres.coords, abs.coords = NULL, na.rm = TRUE)

Arguments

rst a Raster* object with the desired spatial resolution and extent for the species
presence-absence data, and the layer(s) whose values to extract for those data.
The raster should be masked so that pixels have values only in relevant and
reasonably surveyed areas.

pres.coords a matrix or data frame with two columns containing, respectively, the x and y,
or longitude and latitude coordinates (in this order, and in the same coordinate
reference system as ’rst’) of the points where species presence was detected.

abs.coords same as ’pres.coords’ but for points where the species was not detected. If
NULL (the default), all pixels that are not intersected by ’pres.coords’ will be
output as absence cells.

na.rm Logical value indicating whether pixels without values in any of the ’rst’ layers
should be removed from the resulting data frame. The default is TRUE.

Details

This function was used e.g. in Baez et al. (2020) to get unique presences and absences from point
occurrence data at the spatial resolution of marine raster variables.
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Value

This function returns a data frame with the following columns:

’presence’ integer, 1 for the cells with at least one presence point, and 0 for the cells with
absence points (if provided) AND with no presence points

’x’, ’y’ centroid coordinates of each pixel (cell)

’cellnumber’ the pixel identifier in ’rst’
one column for each layer in ’rst’

with the value of each pixel for that layer.

Note

This function requires the raster package.

Author(s)

A. Marcia Barbosa

References

Baez J.C., Barbosa A.M., Pascual P., Ramos M.L. & Abascal F. (2020) Ensemble modelling of the
potential distribution of the whale shark in the Atlantic Ocean. Ecology and Evolution, 10: 175-184

See Also

’extract’ in package raster

Examples

## Not run:

# you can run the following code if you have the 'raster' and 'sp' packages installed

# import a system raster with 3 layers and crop it to a smaller extent:
require(raster)
rst <- stack(system.file("external/rlogo.grd", package = "raster"))
ext <- extent(c(0, 15, 25, 40))
rst <- crop(rst, ext)
plot(rst)
plot(rst[[1]])

# generate some random presence and absence points:
set.seed(123)
presences <- sp::spsample(as(ext, "SpatialPolygons"), 50, type = "random")
absences <- sp::spsample(as(ext, "SpatialPolygons"), 50, type = "random")
points(presences, pch = 20, cex = 0.2, col = "black")
points(absences, pch = 20, cex = 0.2, col = "white")

# use 'gridRecords' on these random points:
gridded_pts <- gridRecords(rst, coordinates(presences), coordinates(absences))
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head(gridded_pts) # 'red', 'green' and 'blue' are the names of the layers in 'rst'

# plot them to check the result:
pres_coords <- gridded_pts[gridded_pts$presence == 1, c("x", "y")]
abs_coords <- gridded_pts[gridded_pts$presence == 0, c("x", "y")]
points(gridded_pts[ , c("x", "y")], pch = 4, cex = 0.6, col = gridded_pts$presence)

# you can also do it with only presence (no absence) records:
gridded_pres <- gridRecords(rst, coordinates(presences))
head(gridded_pres)
plot(rst[[1]])
points(presences, pch = 20, cex = 0.2, col = "black")
pres_coords <- gridded_pres[gridded_pres$presence == 1, c("x", "y")]
abs_coords <- gridded_pres[gridded_pres$presence == 0, c("x", "y")]
points(gridded_pres[ , c("x", "y")], pch = 4, cex = 0.6, col = gridded_pres$presence)

## End(Not run)

integerCols Classify integer columns

Description

This function detects which numeric columns in a data frame contain only whole numbers, and
converts those columns to integer class, so that they take up less space.

Usage

integerCols(data)

Arguments

data a data frame containing possibly integer columns classified as "numeric".

Value

The function returns a data frame with the same columns as ’data’, but with those that are numeric
and contain only whole numbers (possibly including NA) now classified as "integer".

Author(s)

A. Marcia Barbosa

See Also

is.integer, as.integer, multConvert
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Examples

dat <- data.frame(
var1 = 1:10,
var2 = as.numeric(1:10),
var3 = as.numeric(c(1:4, NA, 6:10)),
var4 = as.numeric(c(1:3, NaN, 5, Inf, 7, -Inf, 9:10)),
var5 = as.character(1:10),
var6 = seq(0.1, 1, by = 0.1),
var7 = letters[1:10]

) # creates a sample data frame

dat

str(dat)
# var2 classified as "numeric" but contains only whole numbers
# var3 same as var2 but containing also NA values
# var4 same as var2 but containing also NaN and infinite values
# var5 contains only whole numbers but initially classified as factor

dat <- integerCols(dat)

str(dat)
# var2 and var3 now classified as "integer"
# var4 remains as numeric because contains infinite and NaN
# (not integer) values
# var5 remains as factor

modelTrim Trim off non-significant variables from a model

Description

This function performs a stepwise removal of non-significant variables from a model.

Usage

modelTrim(model, method = "summary", alpha = 0.05)

Arguments

model a model object.

method the method for getting the individual p-values. Can be either "summary" for the
p-values of the coefficient estimates, or "anova" for the p-values of the variables
themselves (see Details).

alpha the p-value above which a variable is removed.
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Details

Stepwise variable selection is a common procedure for simplifying models. It maximizes predictive
efficiency in an objective and reproducible way, and is useful when the individual importance of
the predictors is not known a priori (Hosmer & Lemeshow, 2000). The step R function performs
such procedure using an information criterion (AIC) to select the variables, but it often leaves
variables that are not significant in the model. Such variables can be subsequently removed with
a manual stepwise procedure (e.g. Crawley 2007, p. 442; Barbosa & Real 2010, 2012; Estrada &
Arroyo 2012). The ’modelTrim’ function performs such removal automatically until all remaining
variables are significant. It can also be applied to a full model (i.e., without previous use of the step
function), as it serves as a backward stepwise selection procedure based on the significance of the
coefficients (if method = "summary", the default) or on the significance of the variables themselves
(if method = "anova", better when there are categorical variables in the model).

Value

The input model object after removal of non-significant variables.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Real R. (2010) Favourable areas for expansion and reintroduction of Iberian lynx
accounting for distribution trends and genetic diversity of the European rabbit. Wildlife Biology in
Practice 6: 34-47

Barbosa A.M. & Real R. (2012) Applying fuzzy logic to comparative distribution modelling: a case
study with two sympatric amphibians. The Scientific World Journal, Article ID 428206

Crawley M.J. (2007) The R Book. John Wiley & Sons, Chichester (UK)

Estrada A. & Arroyo B. (2012) Occurrence vs abundance models: Differences between species with
varying aggregation patterns. Biological Conservation, 152: 37-45

Hosmer D. W. & Lemeshow S. (2000) Applied Logistic Regression (2nd ed). John Wiley and Sons,
New York

See Also

step

Examples

# load sample data:

data(rotif.env)

names(rotif.env)

# build a stepwise model of a species' occurrence based on
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# some of the variables:

mod <- with(rotif.env, step(glm(Abrigh ~ Area + Altitude + AltitudeRange +
HabitatDiversity + HumanPopulation, family = binomial)))

# examine the model:

summary(mod) # contains non-significant variables

# use modelTrim to get rid of non-significan effects:

mod <- modelTrim(mod)

summary(mod) # only significant variables now

modOverlap Overall overlap between model predictions

Description

This function calculates the degree of overlap between the predictions of two models, using niche
comparison metrics such as Schoener’s D, Hellinger distance and Warren’s I.

Usage

modOverlap(pred1, pred2, na.rm = TRUE)

Arguments

pred1 numeric vector of the predictions of a generalized linear model (values between
0 and 1).

pred2 numeric vector of the predictions of another generalized linear model; must be
of the same length and in the same order as ’pred1’.

na.rm logical value indicating whether NA values should be removed prior to calcula-
tion. The default is TRUE.

Details

See Warren et al. (2008).

Value

This function returns a list of 3 metrics:

SchoenerD Schoener’s (1968) D statistic for niche overlap, varying between 0 (no overlap)
and 1 (identical niches).
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WarrenI the I index of Warren et al. (2008), based on Hellinger distance (below) but
re-formulated to also vary between 0 (no overlap) and 1 (identical niches).

HellingerDist Hellinger distance (as in van der Vaart 1998, p. 211) between probability distri-
butions, varying between 0 and 2.

Note

Thanks to Heidi K. Mod for reporting a typo in a previous version of the function. Another function
providing similar measures, niche.overlap, is available in package phyloclim, but it requires
complex and software-specific input data formats.

Author(s)

A. Marcia Barbosa

References

Schoener T.W. (1968) Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology
49: 704-726

van der Vaart A.W. (1998) Asymptotic statistics. Cambridge Univ. Press, Cambridge (UK)

Warren D.L., Glor R.E. & Turelli M. (2008) Environmental niche equivalency versus conservatism:
quantitative approaches to niche evolution. Evolution, 62: 2868-83 (and further ERRATUM)

See Also

fuzSim; niche.overlap in package phyloclim

Examples

# get an environmental favourability model for a rotifer species:

data(rotif.env)

names(rotif.env)

fav_current <- multGLM(rotif.env, sp.cols = 18, var.cols = 5:17,
step = TRUE, FDR = TRUE, trim = TRUE, P = FALSE, Fav = TRUE) $
predictions

# imagine you have a model prediction for this species in a future time
# (here we will create one by randomly jittering the current predictions)

fav_imag <- jitter(fav_current, amount = 0.2)
fav_imag[fav_imag < 0] <- 0
fav_imag[fav_imag > 1] <- 1

# calculate niche overlap between current and imaginary future predictions:

modOverlap(fav_current, fav_imag)



multConvert 33

multConvert Multiple conversion

Description

This function can simultaneously convert multiple columns of a matrix or data frame.

Usage

multConvert(data, conversion, cols = 1:ncol(data))

Arguments

data A matrix or data frame containing columns that need to be converted

conversion the conversion to apply, e.g. as.factor or a custom-made function

cols the columns of ’data’ to convert

Details

Sometimes we need to change the data type (class, mode) of a variable in R. There are various
possible conversions, performed by functions like as.integer, as.factor or as.character. If
we need to perform the same conversion on a number of variables (columns) in a data frame, we
can convert them all simultaneously using this function. By default it converts all columns in ’data’,
but you can specify just some of those. ’multConvert’ can also be used to apply other kinds of
transformations – for example, if you need to divide some of your columns by 100, just write a
function to do this and then use ’multConvert’ to apply this function to any group of columns.

Value

The input data with the specified columns converted as specified in ’conversion’.

Author(s)

A. Marcia Barbosa

Examples

data(rotif.env)

str(rotif.env)

# convert the first 4 columns to character:
converted.rotif.env <- multConvert(data = rotif.env,
conversion = as.character, cols = 1:4)

str(converted.rotif.env)
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names(rotif.env)

# divide some columns by 100:

div100 <- function(x) x / 100

rotif.env.cent <- multConvert(data = rotif.env,
conversion = div100, cols = c(6:10, 12:17))

head(rotif.env.cent)

multGLM GLMs with variable selection for multiple species

Description

This function performs selection of variables and calculates generalized linear models for a set
of (species) presence/absence records in a data frame, with a range of options for data partition,
variable selection, and output form.

Usage

multGLM(data, sp.cols, var.cols, id.col = NULL, family = "binomial",
test.sample = 0, FDR = FALSE, correction = "fdr", corSelect = FALSE,
cor.thresh = 0.8, step = TRUE, trace = 0, start = "null.model",
direction = "both", select = "AIC", trim = TRUE, Y.prediction = FALSE,
P.prediction = TRUE, Favourability = TRUE, group.preds = TRUE,
TSA = FALSE, coord.cols = NULL, degree = 3, verbosity = 2, ...)

Arguments

data a data frame in wide format (see splist2presabs) containing, in separate columns,
your species’ binary (0/1) occurrence data and the predictor variables.

sp.cols names or index numbers of the columns containing the species data to be mod-
elled.

var.cols names or index numbers of the columns containing the predictor variables to be
used for modelling.

id.col (optional) name or index number of column containing the row identifiers (if
defined, it will be included in the output ’predictions’ data frame).

family argument to be passed to the glm function; currently, only ’binomial’ is imple-
mented here.

test.sample a subset of data to set aside for subsequent model testing. Can be a value be-
tween 0 and 1 for a proportion of the data to choose randomly (e.g. 0.2 for
20%); or an integer number for a particular number of cases to choose randomly
among the records in ’data’; or a vector of integers for the index numbers of
the particular rows to set aside; or "Huberty" for his rule of thumb based on the
number of variables (Huberty 1994, Fielding & Bell 1997).
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FDR logical value indicating whether to do a preliminary exclusion of variables based
on the false discovery rate (see FDR). The default is FALSE.

correction argument to pass to the FDR function if FDR = TRUE. The default is "fdr", but
see p.adjust for other options.

corSelect logical value indicating whether to do a preliminary exclusion of highly corre-
lated variables (see corSelect). The default is FALSE.

cor.thresh numerical value indicating the correlation threshold to pass to corSelect (used
only if corSelect = TRUE).

step logical, whether to use the step function to perform a stepwise variable selection
(based on AIC or BIC).

trace if positive, information is printed during the running of step. Larger values may
give more detailed information.

start character string specifying whether to start with the ’null.model’ (so that vari-
able selection starts forward) or with the ’full.model’ (so selection starts back-
ward). Used only if step = TRUE.

direction argument to be passed to step specifying the direction of variable selection
(’forward’, ’backward’ or ’both’). Used only if step = TRUE.

select character string specifying the criterion for stepwise selection of variables. Op-
tions are "AIC" (Akaike’s Information Criterion; Akaike, 1973), the default; or
BIC (Bayesian Information Criterion, also known as Schwarz criterion, SBC or
SBIC; Schwarz, 1978). Used only if step = TRUE.

trim logical indicating whether to trim off non-significant variables from the models
using modelTrim function. Can be used whether or not step = TRUE. Works as
a backward variable elimination procedure based on statistical significance.

Y.prediction logical, whether to include output predictions in the scale of the predictor vari-
ables (type = "link" in predict.glm).

P.prediction logical, whether to include output predictions in the scale of the response vari-
able, i.e. probability (type = "response" in predict.glm).

Favourability logical, whether to apply the Favourability function to remove the effect of
prevalence on predicted probability (Real et al. 2006) and include its results
in the output.

group.preds logical, whether to group together predictions of similar type (’Y’, ’P’ or ’F’)
in the output ’predictions’ table (e.g. if FALSE: sp1_Y, sp1_P, sp1_F, sp2_Y,
sp2_P, sp2_F; if TRUE: sp1_Y, , sp2_Y, sp1_P, sp2_P, sp1_F, sp2_F).

TSA logical, whether to add a trend surface analysis (calculated individually for each
species) as a spatial variable in each model. See multTSA for more details. The
default is FALSE.

coord.cols argument to pass to multTSA (if TSA = TRUE).

degree argument to pass to multTSA (if TSA = TRUE).

verbosity integer value indicating the amount of messages to display; currently imple-
mented values are from 0, 1, and 2 (the default).

... additional arguments to be passed to modelTrim.
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Details

This function automatically calculates binomial GLMs for one or more species (or other binary
variables) in a data frame. The function can optionally perform stepwise variable selection (and
it does so by default) instead of forcing all variables into the models, starting from either the null
model (the default, so selection starts forward) or from the full model (so selection starts backward)
and using Akaike’s information criterion (AIC) as a variable selection criterion. Instead or subse-
quently, it can also perform stepwise removal of non-significant variables from the models using
the modelTrim function.

There is also an optional preliminary selection of non-correlated variables, and/or of variables with
a significant bivariate relationship with the response, based on the false discovery rate (FDR). Note,
however, that some variables can be significant in a multivariate model even if they would not have
been selected by FDR.

Favourability is also calculated, removing the effect of species prevalence from occurrence proba-
bility and thus allowing direct comparisons between models (Real et al. 2006).

By default, all data are used in model training, but you can define an optional ’test.sample’ to be re-
served for model testing afterwards. You may also want to do a previous check for multicollinearity
among variables, e.g. the variance inflation factor (VIF), using multicol.

The ’multGLM’ function will create a list of the resulting models (each with the name of the corre-
sponding species column) and a data frame with their predictions (’Y’, ’P’ and/or ’F’, all of which
are optional). If you plan on representing these predictions in a GIS based on .dbf tables, remem-
ber that dbf only allows up to 10 characters in column names; ’multGLM’ predictions will add 2
characters (_Y, _P and/or _F) to each of your species column names, so use species names/codes
with up to 8 characters in the data set that you are modelling. You can create (sub)species name
abbreviations with the spCodes function.

Value

This function returns a list with the following components:

predictions a data frame with the model predictions (if either of Y.prediction, P.prediction
or Favourability are TRUE).

models a list of the resulting model objects.

variables a list of character vectors naming the variables finally included in each model
according to the specified selection criteria.

Author(s)

A. Marcia Barbosa

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In:
Petrov B.N. & Csaki F., 2nd International Symposium on Information Theory, Tsahkadsor, Arme-
nia, USSR, September 2-8, 1971, Budapest: Akademiai Kiado, p. 267-281.

Fielding A.H. & Bell J.F. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49
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Huberty C.J. (1994) Applied Discriminant Analysis. Wiley, New York, 466 pp. Schaafsma W.
& van Vark G.N. (1979) Classification and discrimination problems with applications. Part IIa.
Statistica Neerlandica 33: 91-126

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

Schwarz, G.E. (1978) Estimating the dimension of a model. Annals of Statistics, 6 (2): 461-464.

See Also

glm, Fav, step, modelTrim, multicol, corSelect

Examples

data(rotif.env)

names(rotif.env)

# make models for 2 of the species in rotif.env:

mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE)

names(mods)
head(mods$predictions)
names(mods$models)
mods$models[[1]]
mods$models[["Ttetra"]]

# include each species' spatial trend in the models:

mods <- multGLM(rotif.env, sp.cols = 46:47, var.cols = 5:17, id.col = 1,
step = TRUE, FDR = TRUE, trim = TRUE, TSA = TRUE, coord.cols = c(11, 10))

mods$models[[1]]
mods$models[["Ttetra"]]

mods$variables
# you can then use these selected variables elsewhere

multicol Analyse multicollinearity in a dataset, including VIF

Description

This function analyses multicollinearity in a set of variables or in a model, including the R-squared,
tolerance and variance inflation factor (VIF).
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Usage

multicol(vars = NULL, model = NULL, reorder = TRUE)

Arguments

vars A matrix or data frame containing the numeric variables for which to calculate
multicollinearity. Only the ’independent’ (predictor, explanatory, right hand
side) variables should be entered, as the result obtained for each variable de-
pends on all the other variables present in the analysed data set.

model Alternatively to ’vars’, a model object of class "glm" to calculate ’multicol’
among the included variables.

reorder logical, whether variables should be output in decreasing order or VIF value
rather than in their input order. The default is TRUE.

Details

Testing collinearity among covariates is a recommended step of data exploration before applying a
statistical model (Zuur et al. 2010). However, you can also calculate multicollinearity among the
variables already included in a model.

The multicol function calculates the degree of multicollinearity in a set of numeric variables, using
three closely related measures: R squared (the coefficient of determination of a linear regression of
each predictor variable on all other predictor variables, i.e., the amount of variation in each variable
that is accounted for by other variables in the dataset); tolerance (1 - R squared), i.e. the amount of
variation in each variable that is not included in the remaining variables; and the variance inflation
factor: VIF = 1 / (1 - R squared), which, in a linear model with these variables as predictors, reflects
the degree to which the variance of an estimated regression coefficient is increased due only to the
correlations among covariates (Marquardt 1970; Mansfield & Helms 1982).

Value

The function returns a matrix with one row per analysed variable, the names of the variables as row
names, and 3 columns: R-squared, Tolerance and VIF.

Author(s)

A. Marcia Barbosa

References

Marquardt D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and non-
linear estimation. Technometrics 12: 591-612.

Mansfield E.R. & Helms B.P. (1982) Detecting multicollinearity. The American Statistician 36:
158-160.

Zuur A.F., Ieno E.N. & Elphick C.S. (2010) A protocol for data exploration to avoid common
statistical problems. Methods in Ecology and Evolution 1: 3-14.
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See Also

vif in package HH, vif in package usdm

Examples

data(rotif.env)
names(rotif.env)

# calculate multicollinearity among the predictor variables:
multicol(rotif.env[ , 5:17], reorder = FALSE)
multicol(rotif.env[ , 5:17])

# you can also calculate multicol among the variables included in a model:
mod <- step(glm(Abrigh ~ Area + Altitude + AltitudeRange +
HabitatDiversity + HumanPopulation + Latitude + Longitude +
Precipitation + PrecipitationSeasonality + TemperatureAnnualRange
+ Temperature + TemperatureSeasonality + UrbanArea,
data = rotif.env))
multicol(model = mod)

# more examples using R datasets:
multicol(trees)

# you'll get a warning and some NA results if any of the variables
# is not numeric:
multicol(OrchardSprays)

# so define the subset of numeric 'vars' to calculate 'multicol' for:
multicol(OrchardSprays[ , 1:3])

multTSA Trend Surface Analysis for multiple species

Description

This function performs trend surface analysis for one or more species at a time. It converts cate-
gorical presence-absence (1-0) data into continuous surfaces denoting the spatial trend in species’
occurrence patterns.

Usage

multTSA(data, sp.cols, coord.cols, id.col = NULL, degree = 3,
step = TRUE, criterion = "AIC", type = "P", Favourability = FALSE,
suffix = "_TS", save.models = FALSE, ...)
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Arguments

data a matrix or data frame containing, at least, two columns with spatial coordinates,
and one column per species containing their presence (1) and absence (0) data,
with localities in rows.

sp.cols names or index numbers of the columns containing the species presences and
absences in data. Must contain only zeros (0) for absences and ones (1) for
presences.

coord.cols names or index numbers of the columns containing the spatial coordinates in
data (x and y, or longitude and latitude, in this order!).

id.col optionally, the name or index number of a column (to be included in the output)
containing locality identifiers in data.

degree the degree of the spatial polynomial to use (see Details). The default is 3.

step logical value indicating whether the regression of presence-absence on the spa-
tial polynomial should do a stepwise inclusion of the polynomial terms (using
the step function with default settings, namely backward AIC selection), rather
than forcing all terms into the equation. The default is TRUE.

criterion character value indicating whether the backward stepwise selection of variables
(if step = TRUE) should be made according to "AIC" (the default, using the
step function) or to "significance" (using the modelTrim function).

type the type of trend surface to obtain. Can be either "Y" for the raw polynomial
equation (i.e. in the scale of the predictors, e.g. if you want to use the spatial
trend as a predictor variable in a model), "P" for the logit-transformed proba-
bility (e.g. if you want to use the output as a prediction of presence probability
based on spatial trend alone), or "F" for spatial favourability, i.e., prevalence-
independent probability (see Fav).

Favourability deprecated argument; linktype should now be used instead, although (at least for
the timebeing) this argument will still be accepted (with Favourability = TRUE
internally resulting in type = "F") for back-compatibility.

suffix character indicating the suffix to add to the trend surface columns in the resulting
data frame. The default is "_TS".

save.models logical value indicating whether the models obtained from the regressions should
be saved and included in the output. The default is FALSE.

... additional arguments to be passed to modelTrim (if step = TRUE and criterion
= "significance").

Details

Trend Surface Analysis is a way to model the spatial structure in species’ distributions by regressing
occurrence data on the spatial coordinates x and y, for a linear trend, or on polynomial terms of these
coordinates (x^2, y^2, x*y, etc.), for curvilinear trends (Legendre & Legendre, 1998; Borcard et al.,
2011). Second- and third-degree polynomials are often used. ’multTSA’ allows specifying the
degree of the spatial polynomial to use. By default, it uses a 3rd-degree polynomial and performs
stepwise AIC selection of the polynomial terms to include.
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Value

This function returns a matrix or data frame containing the identifier column (if provided in ’id.col’)
and one column per species containing the value predicted by the trend surface analysis. If save.models
= TRUE, the output is a list containing this dataframe plus a list of the model objects.

Author(s)

A. Marcia Barbosa

References

Borcard D., Gillet F. & Legendre P. (2011) Numerical Ecology with R. Springer, New York.

Legendre P. & Legendre L. (1998) Numerical Ecology. Elsevier, Amsterdam.

See Also

distPres, poly, multGLM

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

tsa <- multTSA(rotif.env, sp.cols = 18:20,
coord.cols = c("Longitude", "Latitude"), id.col = 1)

head(tsa)

pairwiseRangemaps Pairwise intersection (and union) of range maps

Description

This function takes a set of rangemaps and returns a matrix containing the areas of their pairwise
intersections; optionally, also their individual areas and/our their areas of pairwise unions.

Usage

pairwiseRangemaps(rangemaps, projection, diag = TRUE, unions = TRUE,
verbosity = 2, Ncpu = 1, nchunks = 1, subchunks = NULL,
filename = "rangemap_matrix.csv")
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Arguments

rangemaps a character vector of rangemap filenames, including folder paths if not in the
woorking directory. ESRI shapefile (.shp) is currently the only accepted format.
Specifying the extension is optional.

projection argument to be passed to function ’importShapefile’ of package PBSmapping
diag logical, whether to fill the diagonal of the resulting matrix with the area of each

rangemap. The default is TRUE, and it is also automatically set to TRUE (as it
is necessary) if unions = TRUE.

unions logical, whether to fill the upper triangle of the resulting matrix with the area
of union of each pair of rangemaps. The default is TRUE. It is not as computa-
tionally intensive as the intersection, as it is calculated not with spatial but with
algebraic operations within the matrix (union = area1 + area2 - intersection).

verbosity integer number indicating the amount of progress messages to display.
Ncpu integer indicating the number of CPUs (central processing units) to employ if

parallel computing is to be used. The default is 1 CPU, which implies no parallel
computing, but you may want to increase this if you have many and/or large
rangemaps and your machine has more cores that can be used simultaneously.
You can find out the total number of cores in you machine with the detectCores
function of the parallel package; a usually wise option is to use all cores except
one (i.e., Ncpu = parallel::detectCores()-1).

nchunks either an integer indicating the number of chunks of rows in which to divide
the results matrix for calculations, or character "decreasing" to indicate that the
matrix should be divided into chunks of decreasing number of rows (as intersec-
tions are calculated in the lower triangle, rows further down the matrix have an
increasing number of intersections to compute). Note, however, that rangemap
size, not rangemap number, is the main determinant of computation time. The
default is 1 (no division of the matrix) but, if you have many rangemaps, the pro-
cess can get clogged. With chunks, each set of rows of the matrix is calculated
and saved to disk, and the memory is cleaned before the next chunk begins.

subchunks optional integer vector specifying which chunks to actually calculate. This is
useful if a previous, time-consuming run of pairwiseRangemaps was interrupted
(e.g. by a power outage) and you want to calculate only the remaining chunks.

filename optional character vector indicating the name of the file to save the resulting
matrix to.

Details

This calculation can be very intensive and slow, especially if you have many and/or large rangemaps,
due to the time needed for spatial operations between maps. You can set nchunks = "decreasing"
for the matrix to be calculated in parts and the memory cleaned between one part and the next; and,
if your computer has more than one core that you can use, you can increase ’Ncpu’ to get parallel
computing.

Value

This function returns a square matrix containing, in the lower triangle, the area of the pair-wise
intersections among the input ’rangemaps’; in the diagonal (if diag = TRUE or union = TRUE), the
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area of each rangemap; and in the upper triangle (if union = TRUE), the area of the pair-wise unions
among the rangemaps.

Note

This function uses the PBSmapping package to import and intersect the polygon rangemaps and
to calculate areas. Remember to use projected rangemaps, preferably with an equal-area reference
system, so that calculations are correct.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Estrada A. (2016) Calcular corotipos sin dividir el territorio en OGUs: una adapta-
cion de los indices de similitud para su utilizacion directa sobre areas de distribucion. In: Gomez
Zotano J., Arias Garcia J., Olmedo Cobo J.A. & Serrano Montes J.L. (eds.), Avances en Bio-
geografia. Areas de Distribucion: Entre Puentes y Barreras, pp. 157-163. Editorial Universidad
de Granada & Tundra Ediciones, Granada (Spain)

See Also

rangemapSim

percentTestData Percent test data

Description

Based on the work of Schaafsma & van Vark (1979), Huberty (1994) provided a heuristic ("rule
of thumb") for determining an adequate proportion of data to set aside for testing species pres-
ence/absence models, based on the number of predictor variables that are used (Fielding & Bell
1997). The ’percentTestData’ function calculates this proportion as a percentage.

Usage

percentTestData(nvar)

Arguments

nvar the number of variables in the model.

Value

A numeric value of the percentage of data to leave out of the model for further model testing.
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Author(s)

A. Marcia Barbosa

References

Huberty C.J. (1994) Applied Discriminant Analysis. Wiley, New York, 466 pp.

Schaafsma W. & van Vark G.N. (1979) Classification and discrimination problems with applica-
tions. Part IIa. Statistica Neerlandica 33: 91-126

Fielding A.H. & Bell J.F. (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environmental Conservation 24: 38-49

See Also

multGLM

Examples

# say you're building a model with 15 variables:

percentTestData(15)

# the result tells you that 21% is an appropriate percentage of data
# to set aside for testing your model, so train it with 79% of the data

rangemapSim Pairwise similarity between rangemaps

Description

Calculate pairwise similarity among rangemaps from a matrix of their areas of intersection and
union

Usage

rangemapSim(rangemap.matrix, total.area,
method = c("Jaccard", "Sorensen", "Simpson", "Baroni"),
diag = FALSE, upper = FALSE, verbosity = 2)

Arguments

rangemap.matrix

a matrix like the one produced by function pairwiseRangemaps, containing the
areas of pairwise intersection among rangemaps in the lower triangle, individual
rangemap areas in the diagonal, and pairwise union areas in the upper diagonal.

total.area numeric value indicating the total size of the study area, in the same units as the
areas in the rangemap.matrix. Used only if ’method’ uses shared absences (as
is the case of "Baroni")
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method character value indicating the similarity index to use. Currently implemented
indices are "Jaccard", "Sorensen", "Simpson" and "Baroni". The default is the
first one.

diag logical value indicating if the diagonal of the resulting matrix should be filled

upper logical value indicating if the upper triangle of the resulting matrix should be
filled (symmetrical to the lower triangle)

verbosity integer number indicating the amount of messages to display.

Details

Distributional relationships among species are commonly determined based on pair-wise (dis)similarities
in species’ occurrence patterns. Some of the most commonly employed similarity indices are those
of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-Urbani & Buser (1976), which are
here implemented for comparing rangemaps based on their areas of intersection and union (Barbosa
& Estrada, in press).

Value

This function returns a square matrix of pairwise similarities between the rangemaps in ’rangemap.matrix’,
calculated with the (first) similarity index specified in ’method’.

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. & Estrada A. (in press) Calcular corotipos sin dividir el territorio en OGUs: una
adaptacion de los indices de similitud para su utilizacion directa sobre areas de distribucion. In:
Areas de distribucion: entre puentes y barreras. Universidad de Granada, Spain.

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
259

Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Simpson G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

See Also

pairwiseRangemaps; simFromSetOps; simMat
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rotif.env Rotifers and environmental variables on TDWG level 4 regions of the
world

Description

These data were extracted from a database of monogonont rotifer species presence records on the
geographical units used by the Biodiversity Information Standards (formerly Taxonomic Database
Working Group, TDWG: https://www.tdwg.org) and a few environmental (including human and
spatial) variables on the same spatial units. The original data were compiled and published by
Fontaneto et al. (2012) in long (narrow, stacked) format. Here they are presented in wide or un-
stacked format (presence-absence table, obtained with the splist2presabs function), reduced to
the species recorded in at least 100 (roughly one third) different TDWG level 4 units, and with
abbreviations of the species’ names (obtained with the spCodes function). Mind that this is not a
complete picture of these species’ distributions, due to insufficient sampling in many regions.

Usage

data(rotif.env)

Format

A data frame with 291 observations on the following 47 variables.

TDWG4 a factor with 291 levels indicating the abbreviation code of each TDWG4 region

LEVEL_NAME a factor with 291 levels indicating the name of each TDWG4 region

REGION_NAME a factor with 47 levels indicating the name of the main geographical region to which
each TDWG4 level belongs

CONTINENT a factor with 9 levels indicating the continent to which each TDWG4 level belongs

Area a numeric vector

Altitude a numeric vector

AltitudeRange a numeric vector

HabitatDiversity a numeric vector

HumanPopulation a numeric vector

Latitude a numeric vector

Longitude a numeric vector

Precipitation a numeric vector

PrecipitationSeasonality a numeric vector

TemperatureAnnualRange a numeric vector

Temperature a numeric vector

TemperatureSeasonality a numeric vector

UrbanArea a numeric vector

https://www.tdwg.org
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Abrigh a numeric vector

Afissa a numeric vector

Apriod a numeric vector

Bangul a numeric vector

Bcalyc a numeric vector

Bplica a numeric vector

Bquadr a numeric vector

Burceo a numeric vector

Cgibba a numeric vector

Edilat a numeric vector

Flongi a numeric vector

Kcochl a numeric vector

Kquadr a numeric vector

Ktropi a numeric vector

Lbulla a numeric vector

Lclost a numeric vector

Lhamat a numeric vector

Lluna a numeric vector

Llunar a numeric vector

Lovali a numeric vector

Lpatel a numeric vector

Lquadr a numeric vector

Mventr a numeric vector

Ppatul a numeric vector

Pquadr a numeric vector

Pvulga a numeric vector

Specti a numeric vector

Tpatin a numeric vector

Tsimil a numeric vector

Ttetra a numeric vector

Source

Fontaneto D., Barbosa A.M., Segers H. & Pautasso M. (2012) The ’rotiferologist’ effect and other
global correlates of species richness in monogonont rotifers. Ecography, 35: 174-182.

Examples

data(rotif.env)

head(rotif.env)
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rotifers Rotifer species on TDWG level 4 regions of the world

Description

These data were extracted from a database of monogonont rotifer species records on the geograph-
ical units used by the Biodiversity Information Standards (formerly Taxonomic Database Work-
ing Group, TDWG: https://www.tdwg.org). The original data were compiled and published by
Fontaneto et al. (2012) for all TDWG levels. Here they are reduced to the TDWG - level 4 units
and to the species recorded in at least 100 (roughly one third) of these units. Mind that this is not a
complete picture of these species’ distributions, due to insufficient sampling in many regions.

Usage

data("rotifers")

Format

A data frame with 3865 observations on the following 2 variables.

TDWG4 a factor with 274 levels corresponding to the code names of the TDWG level 4 regions in
which the records were taken

species a factor with 30 levels corresponding to the names of the (sub)species recorded in at least
100 different TDWG level 4 regions

Source

Fontaneto D., Barbosa A.M., Segers H. & Pautasso M. (2012) The ’rotiferologist’ effect and other
global correlates of species richness in monogonont rotifers. Ecography, 35: 174-182.

Examples

data(rotifers)

head(rotifers, 10)

sharedFav Shared favourability for two competing species

Description

This function implements the graphical analyses of Acevedo et al. (2010, 2012) on biogeographical
interactions. It takes two vectors of favourability values at different localities for, respectively,
a stronger and a weaker competing species (or two equally strong competitors), and plots their
favourableness or shared favourability to assess potential competitive interactions.

https://www.tdwg.org
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Usage

sharedFav(strong_F, weak_F, conf = 0.95, main = "Shared favourability")

Arguments

strong_F a numeric vector of favourability values (obtained, e.g., with functions Fav or
multGLM) for the stronger species.

weak_F a numeric vector of favourability values for the weaker species. Must be of the
same lenght and in the same order as strong_F.

conf Confidence level for the confidence intervals in the plot. Defaults to 0.95.

main Character indicating a title for the plot.

Details

This function implements biogeographic analyses of Acevedo et al. (2010, 2012) assessing the
trends of environmental favourability across a range of favourability intersection values between
two competing species. It first calculates the fuzzy intersection (minimum value) between the two
species’ favourability values at each locality (i.e., the favourability for occurrence of at least one of
the species); it groups these values into 10 bins of width 0.1; and calculates the mean favourability
(together with the confidence interval) within each interval for each of two species.

According to the notion of "favorableness" by Richerson & Lum (1980), competing species may or
may not be able to coexist depending on their relative environmental fitnesses; competition between
species increases and competitive exclusion decreases as their favourability intersection increases
(Acevedo et al., 2010, 2012). The shaded area in the shared favourability plot, where at least one
of the species is at intermediate favourability, is the area where competitive interactions may limit
species occurrence. Outside this shaded area, where favourability is either very low for at least one
of the species (left) or very high for both species (right side of the plot), competition is not limiting
(see also bioThreat for details).

Value

This function provides the shared favourability plot, with circles and a continuous line representing
favourability for the stronger species, and squares and a dashed lines representing favourability for
the weaker species; and it returns the numeric value of the fuzzy overlap index (Acevedo et al.,
2010, 2012).

Author(s)

A. Marcia Barbosa

References

Acevedo P., Ward A.I., Real R. & Smith G.C. (2010) Assessing biogeographical relationships of
ecologically related species using favourability functions: a case study on British deer. Diversity
and Distributions, 16: 515-528

Acevedo P., Jimenez-Valverde A., Melo-Ferreira J., Real R. & Alves, P.C. (2012) Parapatric species
and the implications for climate change studies: a case study on hares in Europe. Global Change
Biology, 18: 1509-1519
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Richerson P.J. & Lum K. (1980) Patterns of plant species and diversity in California: relation to
weather and topography. American Naturalist 116: 504-536

See Also

bioThreat, Fav

Examples

# get favourability model predictions for two species:
data(rotif.env)
mods <- multGLM(rotif.env, sp.cols = 19:20, var.cols = 5:17)
head(mods$predictions)
favs <- mods$predictions[ , 3:4]

# get shared favourability:
sharedFav(strong_F = favs[,1], weak_F = favs[,2])

simFromSetOps Calculate similarity from set operations

Description

This function calculates pair-wise similarity based on the results of set operations (intersection,
union) among the subjects.

Usage

simFromSetOps(size1, size2, intersection, union, total.size = NULL,
method = c("Jaccard", "Sorensen", "Simpson", "Baroni"),
verbosity = 1)

Arguments

size1 size of subject 1 (e.g., area of the distribution range of a species, or its number
of presences within a grid). Not needed if method = "Jaccard".

size2 the same for subject 2.

intersection size of the intersection among subjects 1 and 2 (area of the intersection among
their distribution ranges, or number of grid cells in which they co-occur).

union size of the union of subjects 1 and 2.

total.size total size of the study area. Needed only when calculating a similarity index that
takes shared absences into account (i.e., method = "Baroni").

method the similarity index to use. Currently implemented options are "Jaccard", "Sorensen",
"Simpson" or "Baroni".

verbosity integer indicating whether to display messages.



simFromSetOps 51

Details

Similarities among ecological communities, beta diversity patterns, biotic regions, and distribu-
tional relationships among species are commonly determined based on pair-wise (dis)similarities
in species’ occurrence patterns. This function implements some of the most commonly employed
similarity indices, namely those of Jaccard (1901), Sorensen (1948), Simpson (1960) and Baroni-
Urbani & Buser (1976), based on the amount of occupied and overlap area between two species.

Value

The numeric value of similarity among subjects 1 and 2.

Author(s)

A. Marcia Barbosa

References

Baroni-Urbani C. & Buser M.W. (1976) Similarity of Binary Data. Systematic Zoology, 25: 251-
259

Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Memoires de la Societe Vaudoise des Sciences Naturelles, 37: 547-579

Simpson, G.G. (1960) Notes on the measurement of faunal resemblance. Amer. J. Sci. 258A,
300-311

Sorensen T. (1948) A method of establishing groups of equal amplitude in plant sociology based
on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab, 5(4): 1-34

See Also

fuzSim, simMat

Examples

# take two species which occur in 22 and 35 area units, respectively
# and which overlap in 8 of those units:

sp1 <- 22
sp2 <- 35
int <- 8
uni <- sp1 + sp2 - int

# calculate similarity between their distributions based on
# different indices:

simFromSetOps(intersection = int, union = uni, method = "Jaccard")

simFromSetOps(sp1, sp2, int, uni, method = "Sorensen")
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simFromSetOps(sp1, sp2, int, uni, method = "Simpson")

# if you want Baroni-Urbani & Buser's index
# you need to provide also the total size of your study area:

simFromSetOps(sp1, sp2, int, uni, total = 100, method = "Baroni")

simMat Pair-wise (fuzzy) similarity matrix

Description

simMat takes a matrix or data frame containing species occurrence data or regional species com-
position, either categorical (0 or 1) or fuzzy (between 0 and 1), and uses the fuzSim function to
calculate a square matrix of pair-wise similarities between them, using a fuzzy logic version (Bar-
bosa, 2015) of the specified similarity index.

Usage

simMat(data, method, diag = TRUE, upper = TRUE)

Arguments

data a matrix or data frame containing (optionally fuzzy) species presence-absence
data (in wide format, i.e. one column per species), with 1 meaning presence,
0 meaning absence, and values in between for fuzzy presence (or the degree to
which each locality belongs to the set of species presences; see Zadeh, 1965).
Fuzzy presence-absence can be obtained, for example, with multGLM, distPres
or multTSA. These data can also be transposed for comparing regional species
compositions.

method the similarity index whose fuzzy version to use. See fuzSim for available op-
tions.

diag logical value indicating whether the diagonal of the matrix should be filled (with
ones). Defaults to TRUE.

upper logical value indicating whether the upper triangle of the matrix (symmetric to
the lower triangle) should be filled. Defaults to TRUE.

Details

The fuzzy versions of species occurrence data and of binary similarity indices introduce tolerance
for small spatial differences in species’ occurrence localities, allow for uncertainty about species
occurrence, and may compensate for under-sampling and geo-referencing errors (Barbosa, 2015).
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Value

This function returns a square matrix of pair-wise similarities among the species distributions
(columns) in data. Similarity is calculated with the fuzzy version of the index specified in method,
which yields traditional binary similarity if the data are binary (0 or 1), or fuzzy similarity if the
data are fuzzy (between 0 and 1) (Barbosa, 2015).

Author(s)

A. Marcia Barbosa

References

Barbosa A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Meth-
ods in Ecology and Evolution, 6: 853-858.

See Also

fuzSim

Examples

# load and look at the rotif.env presence-absence data:

data(rotif.env)

head(rotif.env)

names(rotif.env)

# build a matrix of similarity among these binary data
# using e.g. Jaccard's index:

bin.sim.mat <- simMat(rotif.env[ , 18:47], method = "Jaccard")

head(bin.sim.mat)

# calculate a fuzzy version of the presence-absence data
# based on inverse distance to presences:

rotifers.invd <- distPres(rotif.env, sp.cols = 18:47,
coord.cols = c("Longitude", "Latitude"), id.col = 1, suffix = ".d",
p = 1, inv = TRUE)

head(rotifers.invd)

# build a matrix of fuzzy similarity among these fuzzy
# distribution data, using the fuzzy version of Jaccard's index:
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fuz.sim.mat <- simMat(rotifers.invd[ , -1], method = "Jaccard")

head(fuz.sim.mat)

# plot the similarity matrices as colours:

image(x = 1:ncol(bin.sim.mat), y = 1:nrow(bin.sim.mat),
z = bin.sim.mat, col = rev(heat.colors(256)), xlab = "", ylab = "",
axes = FALSE, main = "Binary similarity")
axis(side = 1, at = 1:ncol(bin.sim.mat), tick = FALSE,
labels = colnames(bin.sim.mat), las = 2)
axis(side = 2, at = 1:nrow(bin.sim.mat), tick = FALSE,
labels = rownames(bin.sim.mat), las = 2)

image(x = 1:ncol(fuz.sim.mat), y = 1:nrow(fuz.sim.mat),
z = fuz.sim.mat, col = rev(heat.colors(256)), xlab = "", ylab = "",
axes = FALSE, main = "Fuzzy similarity")
axis(side = 1, at = 1:ncol(fuz.sim.mat), tick = FALSE,
labels = colnames(fuz.sim.mat), las = 2, cex = 0.5)
axis(side = 2, at = 1:nrow(fuz.sim.mat), tick = FALSE,
labels = rownames(fuz.sim.mat), las = 2)

# plot a UPGMA dendrogram from each similarity matrix:

plot(hclust(as.dist(1 - bin.sim.mat), method = "average"),
main = "Binary cluster dendrogram")

plot(hclust(as.dist(1 - fuz.sim.mat), method = "average"),
main = "Fuzzy cluster dendrogram")

# you can get fuzzy chorotypes from these similarity matrices
# (or fuzzy biotic regions if you transpose 'data'),
# so that localities are in columns and species in rows)
# using the RMACOQUI package (Olivero et al. 2011)

spCodes Obtain unique abbreviations of species names

Description

This function takes a vector of species names and converts them to abbreviated species codes con-
taining the specified numbers of characters from the genus, the specific and optionally also the
subspecific name. Separators can be specified by the user. The function checks that the resulting
codes are unique.
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Usage

spCodes(species, nchar.gen = 3, nchar.sp = 3, nchar.ssp = 0,
sep.species = " ", sep.spcode = "")

Arguments

species a character vector containig the species names to be abbreviated.

nchar.gen the number of characters from the genus name to be included in the resulting
species code.

nchar.sp the number of characters from the specific name to be included in the resulting
species code.

nchar.ssp optionally, the number of characters from the subspecific name to be included in
the resulting species code. Set it to 0 if you have subspecific names in ’species’
but do not want them included in the resulting species codes.

sep.species the character that separates genus, specific and subspecific names in ’species’.
The default is a white space.

sep.spcode the character you want separating genus and species abbreviations in the result-
ing species codes. The default is an empty character (no separator).

Value

This function returns a character vector containing the species codes resulting from the abbreviation.
If the numbers of characters specified do not make for unique codes, an error message is displayed
showing which ’species’ names caused it, so that you can try again with different ’nchar.gen’,
’nchar.sp’ and/or ’nchar.ssp’.

Author(s)

A. Marcia Barbosa

See Also

substr, strsplit

Examples

data(rotifers)

head(rotifers)

## add a column to 'rotifers' with shorter versions of the species names:

## Not run:
rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 4, nchar.ssp = 0, sep.spcode = ".")

# this produces an error due to resulting species codes not being unique

## End(Not run)
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rotifers$spcode <- spCodes(rotifers$species, sep.species = "_",
nchar.gen = 1, nchar.sp = 5, nchar.ssp = 0, sep.spcode = ".")

# with a larger number of characters from the specific name,
# resulting codes are now unique

## check out the result:
head(rotifers)

splist2presabs Convert a species list to a presence-absence table

Description

This function takes a locality+species dataset in long (stacked) format, i.e., a matrix or data frame
containing localities in one column and their recorded species in another column, and converts them
to a presence-absence table (wide format) suitable for mapping and for computing distributional
similarities (see e.g. simMat). Try out the Examples below for an illustration).

Usage

splist2presabs(data, sites.col, sp.col, keep.n = FALSE)

Arguments

data a matrix or data frame with localities in one column and species in another
column. Type or paste ’data(rotifers); head(rotifers)’ (without the quote marks)
in the R console for an example.

sites.col the name or index number of the column containing the localities in ’data’.

sp.col the name or index number of the column containing the species names or codes
in ’data’.

keep.n logical value indicating whether to get in the resulting table the number of times
each species appears in each locality; if FALSE (the default), only presence (1)
or absence (0) is recorded.

Value

A data frame containing the localities in the first column and then one column per species indicating
their presence or absence (or their number of records if keep.n = TRUE). Type ’data(rotif.env);
head(rotif.env[,18:47])’ (without the quote marks) in the R console for an example.

Author(s)

A. Marcia Barbosa
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See Also

table

Examples

data(rotifers)

head(rotifers)

rotifers.presabs <- splist2presabs(rotifers, sites.col = "TDWG4",
sp.col = "species", keep.n = FALSE)

head(rotifers.presabs)

stepByStep Analyse and compare stepwise model predictions

Description

This function builds a generalized linear model with forward stepwise inclusion of variables, us-
ing AIC as the selection criterion, and provides the values predicted at each step, as well as their
correlation with the final model predictions.

Usage

stepByStep(data, sp.col, var.cols, family = binomial(link = "logit"),
Favourability = FALSE, trace = 0, cor.method = "pearson")

Arguments

data a data frame containing your target and predictor variables.

sp.col index number of the column of ’data’ that contains the target variable.

var.cols index numbers of the columns of ’data’ that contain the predictor variables.

family argument to be passed to the glm function indicating the family (and error distri-
bution) to use in modelling. The default is binomial distribution with logit link
(for binary target variables).

Favourability logical, whether to apply the Favourability function to remove the effect of
prevalence from predicted probability (Real et al. 2006). Applicable only to
binomial GLMs. Defaults to FALSE.

trace argument to pass to the step function. If positive, information is printed during
the stepwise procedure. Larger values may give more detailed information. The
default is 0 (silent).

cor.method character string to pass to function cor indicating which coefficient should be
used for correlating predictions at each step with those of the final model. Can
be "pearson" (the default), "kendall", or "spearman".



58 stepByStep

Details

Stepwise variable selection often includes more variables than would a model selected after exam-
ining all possible combinations of the variables (e.g. with packages MuMIn and glmulti). The
’stepByStep’ function can be useful to assess if a stepwise model with just the first few variables
could already provide predictions very close to the final ones (see e.g. Fig. 3 in Munoz et al.,
2005). It can also be useful to see which variables determine the more general trends in the model
predictions, and which just add (local) additional nuances.

Value

This function returns a list of the following components:

predictions a data frame with the model’s fitted values at each step of the variable selection.

correlations a numeric vector of the correlation between the predictions at each step and
those of the final model.

variables a character vector of the variables in the final model, named with the step at
which each was included.

model the resulting model object.

Author(s)

A. Marcia Barbosa

References

Munoz, A.R., Real R., BARBOSA A.M. & Vargas J.M. (2005) Modelling the distribution of
Bonelli’s Eagle in Spain: Implications for conservation planning. Diversity and Distributions 11:
477-486

Real R., Barbosa A.M. & Vargas J.M. (2006) Obtaining environmental favourability functions from
logistic regression. Environmental and Ecological Statistics 13: 237-245.

See Also

step, glm, modelTrim

Examples

data(rotif.env)

stepByStep(data = rotif.env, sp.col = 18, var.cols = 5:17,
cor.method = "spearman")

stepByStep(data = rotif.env, sp.col = 18, var.cols = 5:17,
cor.method = "spearman", Favourability = TRUE)

stepByStep(data = rotif.env, sp.col = 9, var.cols = c(5:8, 10:17),
family = poisson)
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timer Timer

Description

Reporting of time elapsed since a given start time. This function is used internally by other functions
in the package.

Usage

timer(start.time)

Arguments

start.time A date-time object of class POSIXct, e.g. as given by Sys.time.

Value

The function returns a message informing of the time elapsed since the input ’start.time’.

Author(s)

A. Marcia Barbosa

See Also

Sys.time, proc.time, difftime

Examples

# get starting time:
start <- Sys.time()

# do some random analysis:
sapply(rnorm(50000), function(x) x*5)

# see how long it took:
timer(start)



60 transpose

transpose Transpose (part of) a matrix or dataframe

Description

This function transposes (a specified part of) a matrix or data frame, optionally using one of its
columns as column names for the transposed result. It can be useful for turning a species presence-
absence table into a regional species composition table.

Usage

transpose(data, sp.cols = 1:ncol(data), reg.names = NULL)

Arguments

data a matrix or data frame containing the species occurrence data to transpose.

sp.cols names or index numbers of the columns containing the species occurrences in
’data’ which are meant to be transposed.

reg.names name or index number of the column in ’data’ containing the region names, to
be used as column names in the transposed result.

Value

This function returns the transposed ’sp.cols’ of ’data’, with the column specified in ’reg.names’ as
column names.

Author(s)

A. Marcia Barbosa

See Also

t

Examples

data(rotif.env)

head(rotif.env)

names(rotif.env)

rotif.reg <- transpose(rotif.env, sp.cols = 18:47, reg.names = 1)

head(rotif.reg)
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triMatInd Triangular matrix indices

Description

This function outputs the indices of one triangle (the lower one by default) of an input square matrix.
It is used by simMat and, for large matrices, makes it faster than e.g. with lower.tri or upper.tri.

Usage

triMatInd(mat, lower = TRUE, list = FALSE)

Arguments

mat a square matrix.

lower logical indicating whether the indices should correspond to the lower triangle.
The default is TRUE; FALSE produces the upper triangle indices.

list logical indicating whether the results should be output as a list instead of a ma-
trix. The default is FALSE.

Value

The indices (row, column) of the elements of the matrix that belong to the requested triangle.

Author(s)

A. Marcia Barbosa

References

http://stackoverflow.com/questions/20898684/how-to-efficiently-generate-lower-triangle-indices-of-
a-symmetric-matrix

See Also

lower.tri, upper.tri

Examples

mat <- matrix(nrow = 4, ncol = 4)
mat
triMatInd(mat)
triMatInd(mat, list = TRUE)
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POSIXct, 59
predict, 25
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rangemapSim, 43, 44
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