Package ‘future’

July 9, 2020

Version 1.18.0
Title Unified Parallel and Distributed Processing in R for Everyone

Imports digest, globals (>= 0.12.5), listenv (>= 0.8.0), parallel,

utils

Suggests RhpcBLASctl, R.rsp, markdown

VignetteBuilder R.rsp

Description The purpose of this package is to provide a lightweight and

unified Future API for sequential and parallel processing of R
expression via futures. The simplest way to evaluate an expression

in parallel is to use “x %<-% { expression }* with “plan(multiprocess)".
This package implements sequential, multicore, multisession, and
cluster futures. With these, R expressions can be evaluated on the
local machine, in parallel a set of local machines, or distributed

on a mix of local and remote machines.

Extensions to this package implement additional backends for
processing futures via compute cluster schedulers etc.

Because of its unified API, there is no need to modify any code in order
switch from sequential on the local machine to, say, distributed
processing on a remote compute cluster.

Another strength of this package is that global variables and functions
are automatically identified and exported as needed, making it
straightforward to tweak existing code to make use of futures.

License LGPL (>=2.1)
Lazyl.oad TRUE
ByteCompile TRUE

URL https://github.com/HenrikBengtsson/future

BugReports https://github.com/HenrikBengtsson/future/issues

RoxygenNote 7.1.1

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph]

Maintainer Henrik Bengtsson <henrikb@braju.com>

1

https://github.com/HenrikBengtsson/future
https://github.com/HenrikBengtsson/future/issues

2 backtrace

Repository CRAN
Date/Publication 2020-07-09 05:40:03 UTC

R topics documented:

backtrace e 2
cluster e e e 3
clusterExportSticky 6
future L e e e e 6
futureOf e 12
futures e e e e 13
makeClusterMPI 14
makeClusterPSOCK e 15
multiCcore e e e e e 24
MultiSESSION e e e e e e e e e e e e e e e e e e 26
nbrOfWorkers 29
plan . .o 29
TEMOLE . & v v v v o e e e e e e e e e e e e e e e e e 32
IESOLVE e e e 35
resolved e 36
sequential L L e e e 37
signalConditions 39
tweak e e e e 40
value.Future e e 40
values e e e 41
JoconditionS%o e e e e e 41
Joglobals% e 42
Plabel% e 42
DIazZYTo . . . o e e e e e e e e e e e e e e 43
GoplanTo e e 43
Joseed%o e 44
Postdout% e e e e 44
Totweak% e e e e e 45
Index 46
backtrace Back trace the expressions evaluated when an error was caught
Description

Back trace the expressions evaluated when an error was caught

Usage

backtrace(future, envir = parent.frame(), ...)

cluster 3

Arguments
future A future with a caught error.
envir the environment where to locate the future.
Not used.
Value

A list with the future’s call stack that led up to the error.

Examples

my_log <- function(x) log(x)
foo <- function(...) my_log(...)

f <- future({ foo("a") })
res <- tryCatch({
v <- value(f)
}, error = function(ex) {
t <- backtrace(f)

print(t)
»
cluster Create a cluster future whose value will be resolved asynchronously in
a parallel process
Description

A cluster future is a future that uses cluster evaluation, which means that its value is computed and
resolved in parallel in another process.

Usage

cluster(
expr,
envir = parent.frame(),
substitute = TRUE,
lazy = FALSE,
seed = NULL,
globals = TRUE,
persistent = FALSE,
workers = availableWorkers(),
user = NULL,
revtunnel = TRUE,
homogeneous = TRUE,

4 cluster

gc = FALSE,
earlySignal = FALSE,
label = NULL,

Arguments

expr
envir
substitute

lazy

seed

globals

persistent

workers

user

revtunnel

homogeneous

gc

earlySignal

An R expression.
The environment from where global objects should be identified.
If TRUE, argument expr is substitute():ed, otherwise not.

If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.

(optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.

(optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().

If FALSE, the evaluation environment is cleared from objects prior to the eval-
uation of the future.

A cluster object, a character vector of host names, a positive numeric scalar, or
a function. If a character vector or a numeric scalar, a cluster object is created
using makeClusterPSOCK (workers). If a function, it is called without argu-
ments when the future is created and its value is used to configure the workers.
The function should return any of the above types.

(optional) The user name to be used when communicating with another host.

If TRUE, reverse SSH tunneling is used for the PSOCK cluster nodes to connect
back to the master R process. This avoids the hassle of firewalls, port forwarding
and having to know the internal / public IP address of the master R session.

If TRUE, all cluster nodes is assumed to use the same path to ‘Rscript’ as the
main R session. If FALSE, the it is assumed to be on the PATH for each node.

If TRUE, the garbage collector run (in the process that evaluated the future) only
after the value of the future is collected. Exactly when the values are collected
may depend on various factors such as number of free workers and whether
earlySignal is TRUE (more frequently) or FALSE (less frequently). Some
types of futures ignore this argument.

Specified whether conditions should be signaled as soon as possible or not.

cluster 5

label An optional character string label attached to the future.

Additional named elements passed to ClusterFuture().

Details

This function will block if all available R cluster nodes are occupied and will be unblocked as soon
as one of the already running cluster futures is resolved.

The preferred way to create an cluster future is not to call this function directly, but to register it via
plan(cluster) such that it becomes the default mechanism for all futures. After this future()
and %<-% will create cluster futures.

Value

A ClusterFuture.

Examples

Use cluster futures
cl <- parallel::makeCluster(2L, timeout = 60)
plan(cluster, workers = cl)

A global variable
a<-0

Create future (explicitly)
f <- future({

b <-3

c<-2

ax*xbxc
»

A cluster future is evaluated in a separate process.

Regardless, changing the value of a global variable will
not affect the result of the future.

a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == 0)

CLEANUP
parallel::stopCluster(cl)

6 future

clusterExportSticky Export globals to the sticky-globals environment of the cluster nodes

Description

Export globals to the sticky-globals environment of the cluster nodes

Usage

clusterExportSticky(cl, globals)

Arguments
cl (cluster) A cluster object as returned by parallel: :makeCluster().
globals (list) A named list of sticky globals to be exported.

Details

This requires that the future package is installed on the cluster nodes.

Value

(invisible; cluster) The cluster object.

future Create a future

Description

Creates a future that evaluates an R expression or a future that calls an R function with a set of
arguments. How, when, and where these futures are evaluated can be configured using plan() such
that it is evaluated in parallel on, for instance, the current machine, on a remote machine, or via a
job queue on a compute cluster. Importantly, any R code using futures remains the same regardless
on these settings and there is no need to modify the code when switching from, say, sequential to
parallel processing.

Usage

future(
expr,
envir = parent.frame(),
substitute = TRUE,
globals = TRUE,
packages = NULL,
seed = FALSE,

future

lazy = FALSE,
)
futureAssign(
X’
value,

envir = parent.frame(),
substitute = TRUE,

lazy = FALSE,

seed = NULL,

globals = TRUE,
assign.env = envir

)

X %<-% value

futureCall(
FUN,
args = list(),
envir = parent.frame(),
lazy = FALSE,
seed = NULL,
globals = TRUE,
packages = NULL,

Arguments

expr, value
envir
substitute

globals

packages

seed

An R expression.
The environment from where global objects should be identified.
If TRUE, argument expr is substitute():ed, otherwise not.

(optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().

(optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.

(optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative

8 future

warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.

lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.

Reserved for internal use only.

X the name of a future variable, which will hold the value of the future expression
(as a promise).
assign.env The environment to which the variable should be assigned.
FUN A function to be evaluated.
args A list of arguments passed to function FUN.
Details

The state of a future is either unresolved or resolved. The value of a future can be retrieved using
v <-value(f). Querying the value of a non-resolved future will block the call until the future is
resolved. It is possible to check whether a future is resolved or not without blocking by using
resolved(f).

For a future created via a future assignment (x %<-% value or futureAssign("x",value)), the
value is bound to a promise, which when queried will internally call value() on the future and
which will then be resolved into a regular variable bound to that value. For example, with future
assignment x %<-% value, the first time variable x is queried the call blocks if (and only if) the
future is not yet resolved. As soon as it is resolved, and any succeeding queries, querying x will
immediately give the value.

The future assignment construct x %<-% value is not a formal assignment per se, but a binary infix
operator on objects x and expression value. However, by using non-standard evaluation, this con-
structs can emulate an assignment operator similar to x <-value. Due to R’s precedence rules of
operators, future expressions often need to be explicitly bracketed, e.g. x %<-% { a+b }.

The futureCall() function works analogously to do.call(), which calls a function with a set of
arguments. The difference is that do.call() returns the value of the call whereas futureCall()
returns a future.

Value

f <-future(expr) creates a Future f that evaluates expression expr, the value of the future is
retrieved using v <-value(f).

x %<-% value (a future assignment) and futureAssign("x",value) create a Future that evaluates
expression expr and binds its value (as a promise) to a variable x. The value of the future is
automatically retrieved when the assigned variable (promise) is queried. The future itself is returned
invisibly, e.g. f <-futureAssign("x",expr) and f <-(x %<-% expr). Alternatively, the future of
a future variable x can be retrieved without blocking using f <-futureOf(x). Both the future and
the variable (promise) are assigned to environment assign.env where the name of the future is
future_<name>.

f <-futureCall(FUN,args) creates a Future f that calls function FUN with arguments args, where
the value of the future is retrieved using x <-value(f).

future 9

Eager or lazy evaluation

By default, a future is resolved using eager evaluation (lazy = FALSE). This means that the expres-
sion starts to be evaluated as soon as the future is created.

As an alternative, the future can be resolved using lazy evaluation (lazy = TRUE). This means that
the expression will only be evaluated when the value of the future is requested. Note that this
means that the expression may not be evaluated at all - it is guaranteed to be evaluated if the value
is requested.

For future assignments, lazy evaluation can be controlled via the %lazy% operator, e.g. X %<-% {
expr } %lazy% TRUE.

Globals used by future expressions

Global objects (short globals) are objects (e.g. variables and functions) that are needed in order for
the future expression to be evaluated while not being local objects that are defined by the future
expression. For example, in

a <- 42
f <= future({ b <-2; a*b })

variable a is a global of future assignment f whereas b is a local variable. In order for the future to
be resolved successfully (and correctly), all globals need to be gathered when the future is created
such that they are available whenever and wherever the future is resolved.

The default behavior (globals = TRUE), is that globals are automatically identified and gathered.
More precisely, globals are identified via code inspection of the future expression expr and their
values are retrieved with environment envir as the starting point (basically via get(global,envir
=envir,inherits = TRUE)). In most cases, such automatic collection of globals is sufficient and
less tedious and error prone than if they are manually specified.

However, for full control, it is also possible to explicitly specify exactly which the globals are by
providing their names as a character vector. In the above example, we could use

a <- 42
f <= future({ b <- 2; a * b }, globals = "a")

Yet another alternative is to explicitly specify also their values using a named list as in

a <- 42
f <- future({ b <- 2; a x b }, globals = list(a = a))

or

f <= future({ b <- 2; a * b }, globals

list(a = 42))

Specifying globals explicitly avoids the overhead added from automatically identifying the globals
and gathering their values. Furthermore, if we know that the future expression does not make use

of any global variables, we can disable the automatic search for globals by using

f <- future({ a <- 42; b <- 2; a * b }, globals = FALSE)

10 future

Future expressions often make use of functions from one or more packages. As long as these
functions are part of the set of globals, the future package will make sure that those packages are
attached when the future is resolved. Because there is no need for such globals to be frozen or
exported, the future package will not export them, which reduces the amount of transferred objects.
For example, in

X <= rnorm(1000)
f <= future({ median(x) 3})

variable x and median() are globals, but only x is exported whereas median(), which is part of the
stats package, is not exported. Instead it is made sure that the stats package is on the search path
when the future expression is evaluated. Effectively, the above becomes

X <= rnorm(1000)

f <- future({
library("stats")
median(x)

D)
To manually specify this, one can either do

X <= rnorm(1000)
f <- future({
median(x)
}, globals = list(x = x, median = stats::median)

or

X <= rnorm(1000)

f <- future({
library("stats")
median(x)

}, globals = list(x = x))

Both are effectively the same.

Although rarely needed, a combination of automatic identification and manual specification of glob-
als is supported via attributes add (to add false negatives) and ignore (to ignore false positives) on
value TRUE. For example, with globals = structure(TRUE, ignore = "b"”,add = "a") any globals
automatically identified except b will be used in addition to global a.

When using future assignments, globals can be specified analogously using the %globals% operator,
e.g.

X <= rnorm(1000)
y %<-% { median(x) } %globals% list(x = x, median = stats::median)

See Also

How, when and where futures are resolved is given by the future strategy, which can be set by the
end user using the plan() function. The future strategy must not be set by the developer, e.g. it
must not be called within a package.

future 11

Examples

Evaluate futures in parallel
plan(multisession)

Data

x <= rnorm(100)

y <=2 *x + 0.2 + rnorm(100)
w<-1+x"2

EXAMPLE: Regular assignments (evaluated sequentially)

fitA <- Im(y ~ x, weights = w) ## with offset
fitB <- Im(y ~ x - 1, weights = w) ## without offset
fitC <- {

w <- 1 + abs(x) ## Different weights
Im(y ~ x, weights = w)

3

print(fitA)

print(fitB)

print(fitC)

EXAMPLE: Future assignments (evaluated in parallel)
fitA %<-% Im(y ~ x, weights = w) ## with offset
fitB %<-% lm(y ~ x - 1, weights = w) ## without offset
fitC %<-% {

w <- 1 + abs(x)

Im(y ~ x, weights = w)
3
print(fitA)
print(fitB)
print(fitC)

EXAMPLE: Explicitly create futures (evaluated in parallel)
and retrieve their values
fA <- future(Im(y ~ x, weights = w))
fB <- future(Im(y ~ x - 1, weights = w))
fC <- future({
w <- 1 + abs(x)
Im(y ~ x, weights = w)
»
fitA <- value(fA)
fitB <- value(fB)
fitC <- value(fC)
print(fitA)
print(fitB)
print(fitC)

EXAMPLE: futureCall() and do.call()
X <= 1:100

12 futureOf

y0 <- do.call(sum, args = list(x))
print(ye)

f1 <- futureCall(sum, args = list(x))
y1 <- value(f1)
print(y1)

futureOf Get the future of a future variable

Description

Get the future of a future variable that has been created directly or indirectly via future().

Usage

futureOf (
var = NULL,
envir = parent.frame(),
mustExist = TRUE,

default = NA,
drop = FALSE
)
Arguments
var the variable. If NULL, all futures in the environment are returned.
envir the environment where to search from.
mustExist If TRUE and the variable does not exists, then an informative error is thrown,
otherwise NA is returned.
default the default value if future was not found.
drop if TRUE and var is NULL, then returned list only contains futures, otherwise
also default values.
Value

A Future (or default). If var is NULL, then a named list of Future:s are returned.
Examples
a %w<-% {173}

f <- futureOf(a)
print(f)

b %<-% { 2 }

futures 13

f <- futureOf(b)
print(f)

All futures
fs <~ future0f()
print(fs)

Futures part of environment
env <- new.env()
env$c %<-% { 3 }

f <- futureOf(envs$c)
print(f)

f2 <- futureOf(c, envir = env)
print(f2)

3 <- futureOf("c”, envir = env)
print(f3)

fs <- futureOf(envir = env)
print(fs)

futures Get all futures in a container

Description

Gets all futures in an environment, a list, or a list environment and returns an object of the same
class (and dimensions). Non-future elements are returned as is.

Usage
futures(x, ...)
Arguments
X An environment, a list, or a list environment.
Not used.
Details

This function is useful for retrieve futures that were created via future assignments (%<-%) and
therefore stored as promises. This function turns such promises into standard Future objects.

Value

An object of same type as x and with the same names and/or dimensions, if set.

14 makeClusterMPI

makeClusterMPI Create a Message Passing Interface (MPI) cluster of R workers for
parallel processing

Description

The makeClusterMPI() function creates an MPI cluster of R workers for parallel processing. This
function utilizes makeCluster(. .., type = "MPI") of the parallel package and tweaks the cluster
in an attempt to avoid stopCluster() from hanging (1). WARNING: This function is very much in
a beta version and should only be used if parallel: :makeCluster(..., type = "MPI") fails.

Usage

makeClusterMPI(
workers,

autoStop = FALSE,
verbose = getOption("future.debug"”, FALSE)

)
Arguments
workers The number workers (as a positive integer).
Optional arguments passed to makeCluster (workers, type = "MPI",...).
autoStop If TRUE, the cluster will be automatically stopped
verbose If TRUE, informative messages are outputted.
Details

Creating MPI clusters requires the Rmpi package.

Value
An object of class c("RichMPIcluster”, "MPIcluster”, "cluster”) consisting of alist of "MPInode"
workers.

References

1. R-sig-hpc thread Rmpi: mpi.close.Rslaves() *hangs’ on 2017-09-28.

See Also

makeClusterPSOCK() and parallel::makeCluster().

https://stat.ethz.ch/pipermail/r-sig-hpc/2017-September/002065.html

makeClusterPSOCK 15

makeClusterPSOCK Create a PSOCK cluster of R workers for parallel processing

Description

The makeClusterPSOCK() function creates a cluster of R workers for parallel processing. These R
workers may be background R sessions on the current machine, R sessions on external machines
(local or remote), or a mix of such. For external workers, the default is to use SSH to connect to
those external machines. This function works similarly to makePSOCKcluster() of the parallel
package, but provides additional and more flexibility options for controlling the setup of the system
calls that launch the background R workers, and how to connect to external machines.

Usage
makeClusterPSOCK (
workers,
makeNode = makeNodePSOCK,
port = c("auto”, "random"),

autoStop = FALSE,
verbose = getOption("future.debug"”, FALSE)

)

makeNodePSOCK (
worker = "localhost”,
master = NULL,
port,

connectTimeout = getOption("future.makeNodePSOCK.connectTimeout”,
as.numeric(Sys.getenv(”"R_FUTURE_MAKENODEPSOCK_CONNECTTIMEOUT", 2 * 60))),

timeout = getOption("future.makeNodePSOCK.timeout",
as.numeric(Sys.getenv("R_FUTURE_MAKENODEPSOCK_TIMEOUT", 3@ * 24 x 60 * 60))),

rscript = NULL,

homogeneous = NULL,

rscript_args = NULL,

rscript_startup = NULL,

rscript_envs = NULL,

rscript_libs = NULL,

methods = TRUE,

useXDR = TRUE,

outfile = "/dev/null”,

renice = NA_integer_,

rshcmd = getOption("future.makeNodePSOCK.rshcmd”,
Sys.getenv("R_FUTURE_MAKENODEPSOCK_RSHCMD")),

user = NULL,

revtunnel = TRUE,

rshlogfile = NULL,

rshopts = getOption("future.makeNodePSOCK.rshopts”,

16 makeClusterPSOCK

Sys.getenv("R_FUTURE_MAKENODEPSOCK_RSHOPTS")),
rank = 1L,
manual = FALSE,
dryrun = FALSE,
verbose = FALSE

)
Arguments

workers The hostnames of workers (as a character vector) or the number of localhost
workers (as a positive integer).

makeNode A function that creates a "SOCKnode" or "SOCK@node" object, which represents
a connection to a worker.

port The port number of the master used for communicating with all the workers
(via socket connections). If an integer vector of ports, then a random one
among those is chosen. If "random”, then a random port in is chosen from
11000:11999, or from the range specified by environment variable R_FUTURE_RANDOM_PORTS.
If "auto” (default), then the default (single) port is taken from environment
variable R_PARALLEL_PORT, otherwise "random” is used. Note, do not use this
argument to specify the port number used by rshemd, which typically is an SSH
client. Instead, if the SSH daemon runs on a different port than the default 22,
specify the SSH port by appending it to the hostname, e.g. "remote.server.org:2200"
or via SSH options -p, e.g. rshopts = c("-p"”, "2200").
Optional arguments passed to makeNode (workers[i],...,rank = i) where i
= seq_along(workers).

autoStop If TRUE, the cluster will be automatically stopped

verbose If TRUE, informative messages are outputted.

worker The hostname or IP number of the machine where the worker should run.

master The hostname or IP number of the master / calling machine, as known to the

workers. If NULL (default), then the default is Sys.info()[["nodename"]]
unless worker is localhost or revtunnel = TRUE in case it is "localhost”.

connectTimeout The maximum time (in seconds) allowed for each socket connection between the
master and a worker to be established (defaults to 2 minutes). See note below on
current lack of support on Linux and macOS systems.

timeout The maximum time (in seconds) allowed to pass without the master and a worker
communicate with each other (defaults to 30 days).

rscript, homogeneous
The system command for launching Rscript on the worker and whether it is
installed in the same path as the calling machine or not. For more details, see
below.

rscript_args Additional arguments to Rscript (as a character vector). This argument can be
used to customize the R environment of the workers before they launches. For
instance, use rscript_args =c("-e",shQuote('setwd("/path/to")"')) to
set the working directory to ‘/path/to’ on all workers.

makeClusterPSOCK

rscript_startup

rscript_envs

rscript_libs

methods
useXDR

outfile

renice
rshcmd, rshopts

user
revtunnel

rshlogfile

rank
manual

dryrun

Value

17

An R expression or a character vector of R code, or a list with a mix of these,
that will be evaluated on the R worker prior to launching the worker’s event
loop. For instance, use rscript_startup = 'setwd("/path/to")"' to set the
working directory to ‘/path/to’ on all workers.

A named character vector environment variables to set on worker at startup,
e.g. rscript_envs =c(FO0="3.14","HOME", "UNKNOWN"). If an element is
not named, then the value of that variable will be used as the name and the value
will be the value of Sys.getenv() for that variable. Non-existing environment
variables will be dropped. These variables are set using Sys.setenv().

A character vector of R library paths that will be used for the library search path
of the R workers. An asterisk ("*") will be resolved as the current . 1ibPaths()
on the worker. That is, to prepend a folder, instead of replacing the existing
ones, use rscript_libs = c("new_folder"”,"x").

If TRUE, then the methods package is also loaded.

If TRUE, the communication between master and workers, which is binary, will
use big-endian (XDR).

Where to direct the stdout and stderr connection output from the workers. If
NULL, then no redirection of output is done, which means that the output is
relayed in the terminal on the local computer. On Windows, the output is only
relayed when running R from a terminal but not from a GUI.

A numerical "niceness’ (priority) to set for the worker processes.

The command (character vector) to be run on the master to launch a process on
another host and any additional arguments (character vector). These arguments
are only applied if machine is not localhost. For more details, see below.

(optional) The user name to be used when communicating with another host.

If TRUE, a reverse SSH tunnel is set up for each worker such#’ that the worker
R process sets up a socket connection to its local port (port -rank + 1) which
then reaches the master on port port. If FALSE, then the worker will try to
connect directly to port port on master. For more details, see below.
(optional) If a filename, the output produced by the rshcmd call is logged to
this file, of if TRUE, then it is logged to a temporary file. The log file name is
available as an attribute as part of the return node object. Warning: This only
works with SSH clients that support option -E out.log.

A unique one-based index for each worker (automatically set).

If TRUE the workers will need to be run manually. The command to run will be
displayed.

If TRUE, nothing is set up, but a message suggesting how to launch the worker
from the terminal is outputted. This is useful for troubleshooting.

An object of class c("RichSOCKcluster”,”SOCKcluster”,"cluster"”) consisting of a list of
"SOCKnode" or "SOCK@node" workers (that also inherit from RichSOCKnode).

makeNodePSOCK() returns a "SOCKnode" or "SOCK@node" object representing an established con-
nection to a worker.

18 makeClusterPSOCK

Definition of localhost

A hostname is considered to be localhost if it equals:

e "localhost”,
e "127.0.0.1", or

e Sys.info()[["nodename"]].

Itis also considered localhost if it appears on the same line as the value of Sys.info() [["nodename”]1]
in file ‘/etc/hosts’.

Default SSH client and options (arguments rshcmd and rshopts)

Arguments rshemd and rshopts are only used when connecting to an external host.

The default method for connecting to an external host is via SSH and the system executable for this
is given by argument rshcmd. The default is given by option ‘future.makeNodePSOCK. rshemd’. If
that is not set, then the default is to use ssh. Most Unix-like systems, including macOS, have ssh
preinstalled on the PATH. This is also true for recent Windows 10 (since version 1803, April 2018)
().

For Windows systems prior to Windows 10, it is less common to find ssh on the PATH. Instead
it is more likely that such systems have the PuTTY software and its SSH client plink installed.
PuTTY puts itself on the system PATH when installed, meaning this function will find PuTTY au-
tomatically if installed. If not, to manually set specify PuTTY as the SSH client, specify the ab-
solute pathname of ‘plink.exe’ in the first element and option -ssh in the second as in rshcmd =
c("C:/Path/PuTTY/plink.exe"”,"-ssh"). This is because all elements of rshcmd are individu-
ally "shell" quoted and element rshcmd[1] must be on the system PATH.

Furthermore, when running R from RStudio on Windows, the ssh client that is distributed with
RStudio will also be considered. This client, which is from MinGW MSYS, is searched for in the
folder given by the RSTUDIO_MSYS_SSH environment variable - a variable that is (only) set when
running RStudio.

You can override the default set of SSH clients that are searched for by specifying them in rshcmd
using the format <...>, e.g. rshcmd = c("<rstudio-ssh>", "<putty-plink>", "<ssh>"). See be-
low for examples.

If no SSH-client is found, an informative error message is produced.

(*) Known issue with the Windows 10 SSH client: There is a bug in the SSH client of Win-
dows 10 that prevents it to work with reverse SSH tunneling (https://github.com/PowerShell/
Win32-0penSSH/issues/ 1265, Oct 2018). The most recent version that we tested and that did not
work was OpenSSH_for_Windows_7.7pl, LibreSSL 2.6.5 (ssh -V) on Windows 10 (version 1909,
OS build 18363.720) (ver). Because of this, it is recommended to use the PuTTY SSH client or the
RStudio SSH client until this bug has been resolved in Windows 10.

Additional SSH options may be specified via argument rshopts, which defaults to option ‘future.makeNodePSOCK. rshopts
For instance, a private SSH key can be provided as rshopts = c("-1","~/.ssh/my_private_key").

PuTTY users should specify a PuTTY PPK file, e.g. rshopts = c("-i","C:/Users/joe/.ssh/my_keys.ppk").

Contrary to rshcmd, elements of rshopts are not quoted.

http://www.mingw.org/wiki/msys
https://github.com/PowerShell/Win32-OpenSSH/issues/1265
https://github.com/PowerShell/Win32-OpenSSH/issues/1265

makeClusterPSOCK 19

Accessing external machines that prompts for a password

IMPORTANT: With one exception, it is not possible to for these functions to log in and launch R
workers on external machines that requires a password to be entered manually for authentication.
The only known exception is the PuTTY client on Windows for which one can pass the password
via command-line option -pw, e.g. rshopts = c("-pw”, "MySecretPassword").

Note, depending on whether you run R in a terminal or via a GUI, you might not even see the
password prompt. It is also likely that you cannot enter a password, because the connection is set
up via a background system call.

The poor man’s workaround for setup that requires a password is to manually log into the each of
the external machines and launch the R workers by hand. For this approach, use manual = TRUE
and follow the instructions which include cut’n’pasteable commands on how to launch the worker
from the external machine.

However, a much more convenient and less tedious method is to set up key-based SSH authentica-
tion between your local machine and the external machine(s), as explain below.

Accessing external machines via key-based SSH authentication

The best approach to automatically launch R workers on external machines over SSH is to set up
key-based SSH authentication. This will allow you to log into the external machine without have to
enter a password.

Key-based SSH authentication is taken care of by the SSH client and not R. To configure this, see
the manuals of your SSH client or search the web for "ssh key authentication".

Reverse SSH tunneling

The default is to use reverse SSH tunneling (revtunnel = TRUE) for workers running on other ma-
chines. This avoids the complication of otherwise having to configure port forwarding in firewalls,
which often requires static IP address as well as privileges to edit the firewall, something most users
don’t have. It also has the advantage of not having to know the internal and / or the public IP address
/ hostname of the master. Yet another advantage is that there will be no need for a DNS lookup by
the worker machines to the master, which may not be configured or is disabled on some systems,
e.g. compute clusters.

Default value of argument rscript

If homogeneous is FALSE, the rscript defaults to "Rscript”, i.e. it is assumed that the Rscript
executable is available on the PATH of the worker. If homogeneous is TRUE, the rscript defaults
to file.path(R.home("bin"),"Rscript"”), i.e. it is basically assumed that the worker and the
caller share the same file system and R installation.

Default value of argument homogeneous

The default value of homogeneous is TRUE if and only if either of the following is fulfilled:

e worker is localhost
e revtunnel is FALSE and master is localhost

* worker is neither an IP number nor a fully qualified domain name (FQDN). A hostname is
considered to be a FQDN if it contains one or more periods

20 makeClusterPSOCK
In all other cases, homogeneous defaults to FALSE.

Connection time out

Argument connectTimeout does not work properly on Unix and macOS due to limitation in R
itself. For more details on this, please see R-devel thread 'BUG?: On Linux setTimeLimit()
fails to propagate timeout error when it occurs (works on Windows)’ on 2016-10-26 (https:
//stat.ethz.ch/pipermail/r-devel/2016-0ctober/073309.html). When used, the timeout
will eventually trigger an error, but it won’t happen until the socket connection timeout timeout
itself happens.

Communication time out

If there is no communication between the master and a worker within the timeout limit, then the
corresponding socket connection will be closed automatically. This will eventually result in an error
in code trying to access the connection.

Failing to set up local workers

When setting up a cluster of localhost workers, that is, workers running on the same machine as
the master R process, occasionally a connection to a worker ("cluster node") may fail to be set up.
When this occurs, an informative error message with troubleshooting suggestions will be produced.
The most common reason for such localhost failures is due to port clashes. Retrying will often
resolve the problem.

Failing to set up remote workers

A cluster of remote workers runs R processes on external machines. These external R processes
are launched over, typically, SSH to the remote machine. For this to work, each of the remote
machines needs to have R installed, which preferably is of the same version as what is on the main
machine. For this to work, it is required that one can SSH to the remote machines. Ideally, the
SSH connections use authentication based on public-private SSH keys such that the set up of the
remote workers can be fully automated (see above). If makeClusterPSOCK() fails to set up one or
more remote R workers, then an informative error message is produced. There are a few reasons for
failing to set up remote workers. If this happens, start by asserting that you can SSH to the remote
machine and launch ‘Rscript’ by calling something like:

{local}$ ssh -1 alice remote.server.org
{remote}$ Rscript --version

R scripting front-end version 3.6.1 (2019-07-05)
{remote}$ logout

{local}$

When you have confirmed the above to work, then confirm that you can achieve the same in a single
command-line call;

{local}$ ssh -1 alice remote.server.org Rscript --version
R scripting front-end version 3.6.1 (2019-07-05)
{local}$

https://stat.ethz.ch/pipermail/r-devel/2016-October/073309.html
https://stat.ethz.ch/pipermail/r-devel/2016-October/073309.html

makeClusterPSOCK 21

The latter will assert that you have proper startup configuration also for non-interactive shell ses-
sions on the remote machine.

Another reason for failing to setup remote workers could be that they are running an R version that is
not compatible with the version that your main R session is running. For instance, if we run R (>=
3.6.0) locally and the workers run R (< 3.5.0), we will get: Error in unserialize(node$con) : er-
ror reading from connection. This is because R (>= 3.6.0) uses serialization format version 3
whereas R (< 3.5.0) only supports version 2. We can see the version of the R workers by adding
rscript_args =c("-e",shQuote(”"getRversion()")) when calling makeClusterPSOCK().

Examples

NOTE: Drop 'dryrun = TRUE' below in order to actually connect. Add
'verbose = TRUE' if you run into problems and need to troubleshoot.

EXAMPLE: Two workers on the local machine
workers <- c("localhost”, "localhost"”)
cl <- makeClusterPSOCK(workers, dryrun = TRUE)

EXAMPLE: Three remote workers

Setup of three R workers on two remote machines are set up
workers <- c(”"nl.remote.org”, "n2.remote.org”, "nl.remote.org")
cl <- makeClusterPSOCK(workers, dryrun = TRUE)

EXAMPLE: Local and remote workers
Same setup when the two machines are on the local network and
have identical software setups
cl <- makeClusterPSOCK(
workers,
revtunnel = FALSE, homogeneous = TRUE,
dryrun = TRUE
)

EXAMPLE: Remote workers with specific setup
Setup of remote worker with more detailed control on
authentication and reverse SSH tunnelling
cl <- makeClusterPSOCK(
"remote.server.org”, user = "johnny",
Manual configuration of reverse SSH tunnelling
revtunnel = FALSE,
rshopts = c("-v", "-R 11000:gateway:11942"),
master = "gateway"”, port = 11942,
Run Rscript nicely and skip any startup scripts
rscript = c¢("nice”, "/path/to/Rscript”),
rscript_args = c("--vanilla"),
dryrun = TRUE
)

EXAMPLE: Two workers running in Docker on the local machine
Setup of 2 Docker workers running rocker/r-parallel
cl <- makeClusterPSOCK(

22

makeClusterPSOCK

rep(”localhost”, times = 2L),
Launch Rscript inside Docker container
rscript = c(

"docker”, "run", "--net=host”, "rocker/r-parallel”,

"Rscript”
),
IMPORTANT: Because Docker runs inside a virtual machine (VM) on macOS
and Windows (not Linux), when the R worker tries to connect back to
the default 'localhost' it will fail, because the main R session is
not running in the VM, but outside on the host. To reach the host on

macOS and Windows, make sure to use master = "host.docker.internal”
master = "host.docker.internal”, # <= macOS & Windows
dryrun = TRUE

)

EXAMPLE: Two workers running in Singularity on the local machine
Setup of 2 Singularity workers running rocker/r-parallel
cl <- makeClusterPSOCK(

rep("localhost”, times = 2L),

Launch Rscript inside Linux container

rscript = c(

"singularity”, "exec", "docker://rocker/r-parallel”,
"Rscript”
))
dryrun = TRUE
)

EXAMPLE: One worker running in udocker on the local machine
Setup of a single udocker.py worker running rocker/r-parallel
cl <- makeClusterPSOCK(
"localhost”,
Launch Rscript inside Docker container (using udocker)
rscript = c(
"udocker.py"”,
"Rscript”

n n

run”, "rocker/r-parallel”,
)Y
Manually launch parallel workers
(need double shQuote():s because udocker.py drops one level)
rscript_args = c(
"-e", shQuote(shQuote("parallel:::.slaveRSOCK()"))
)?
dryrun = TRUE

EXAMPLE: Remote worker running on AWS

Launching worker on Amazon AWS EC2 running one of the
Amazon Machine Images (AMI) provided by RStudio

(http://www.louisaslett.com/RStudio_AMI/)

public_ip <- "1.2.3.4"

ssh_private_key_file <- "~/.ssh/my-private-aws-key.pem”

makeClusterPSOCK

cl <- makeClusterPSOCK(
Public IP number of EC2 instance

public_ip,

User name (always 'ubuntu')

user = "ubuntu”,

Use private SSH key registered with AWS
rshopts = c(

-0", "StrictHostKeyChecking=no",
-0", "IdentitiesOnly=yes",
-i", ssh_private_key_file
),
Set up .libPaths() for the 'ubuntu' user
and then install the future package
rscript_startup = quote(local({
p <- Sys.getenv("R_LIBS_USER")
dir.create(p, recursive = TRUE, showWarnings = FALSE)
.libPaths(p)
install.packages("future")

m,
dryrun = TRUE

EXAMPLE: Remote worker running on GCE
Launching worker on Google Cloud Engine (GCE) running a
container based VM (with a #cloud-config specification)
public_ip <- "1.2.3.4"
user <- "johnny”
ssh_private_key_file <- "~/.ssh/google_compute_engine”
cl <- makeClusterPSOCK(

Public IP number of GCE instance

public_ip,

User name (== SSH key label (sic!))

user = user,

Use private SSH key registered with GCE

rshopts = c(

"-0", "StrictHostKeyChecking=no",

-0", "IdentitiesOnly=yes"”,
, ssh_private_key_file

n

n

_in
)?

Launch Rscript inside Docker container
rscript = c(

"docker”, "run", "--net=host”, "rocker/r-parallel”,
"Rscript”

)?

dryrun = TRUE

EXAMPLE: Remote worker running on Linux from Windows machine

Connect to remote Unix machine 'remote.server.org' on port 2200
as user 'bob' from a Windows machine with PuTTY installed.

Using the explicit special rshcmd = "<putty-plink>", will force

23

24

##
##
cl

)

##
#H#
##
##
#H
##
cl

makeClusterPSOCK() to search for and use the PuTTY plink software,
preventing it from using other SSH clients on the system search PATH.
<- makeClusterPSOCK(

"remote.server.org"”, user = "bob",

rshcemd = "<putty-plink>",

rshopts = c("-P", 2200, "-i", "C:/Users/bobby/.ssh/putty.ppk”),

dryrun = TRUE

EXAMPLE: Remote worker running on Linux from RStudio on Windows
Connect to remote Unix machine 'remote.server.org' on port 2200
as user 'bob' from a Windows machine via RStudio's SSH client.
Using the explicit special rshcmd = "<rstudio-ssh>", will force
makeClusterPSOCK() to use the SSH client that comes with RStudio,
preventing it from using other SSH clients on the system search PATH.
<- makeClusterPSOCK(
"remote.server.org”, user = "bob"”, rshcmd = "<rstudio-ssh>",
dryrun = TRUE

multicore

)
multicore Create a multicore future whose value will be resolved asynchronously
in a forked parallel process
Description

A multicore future is a future that uses multicore evaluation, which means that its value is computed
and resolved in parallel in another process.

Usage

multicore(

expr,
envir = parent.frame(),
substitute = TRUE,

lazy = FALSE,
seed = NULL,
globals = TRUE,
workers = availableCores(constraints = "multicore”),
earlySignal = FALSE,
label = NULL,

)

Arguments
expr An R expression.

envir The environment from where global objects should be identified.

multicore 25

substitute If TRUE, argument expr is substitute():ed, otherwise not.

lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.

seed (optional) If TRUE, the random seed, that is, the state of the random number

generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.

globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section ’Globals used by future expressions’ in the
help for future().

workers A positive numeric scalar or a function specifying the maximum number of

parallel futures that can be active at the same time before blocking. If a function,
it is called without arguments when the future is created and its value is used to
configure the workers. The function should return a numeric scalar.

earlySignal Specified whether conditions should be signaled as soon as possible or not.
label An optional character string label attached to the future.

Additional named elements passed to Future().

Details

This function will block if all cores are occupied and will be unblocked as soon as one of the
already running multicore futures is resolved. For the total number of cores available including the
current/main R process, see availableCores().

Not all operating systems support process forking and thereby not multicore futures. For instance,
forking is not supported on Microsoft Windows. Moreover, process forking may break some R envi-
ronments such as RStudio. Because of this, the future package disables process forking also in such
cases. See supportsMulticore() for details. Trying to create multicore futures on non-supported
systems or when forking is disabled will result in multicore futures falling back to becoming se-
quential futures.

The preferred way to create an multicore future is not to call this function directly, but to register
it via plan(multicore) such that it becomes the default mechanism for all futures. After this
future() and %<-% will create multicore futures.

Value

A MulticoreFuture If workers == 1, then all processing using done in the current/main R session
and we therefore fall back to using an sequential future. This is also the case whenever multicore
processing is not supported, e.g. on Windows.

26 multisession

See Also

For processing in multiple background R sessions, see multisession futures. For multicore process-
ing with fallback to multisession where the former is not supported, see multiprocess futures.

Use availableCores() to see the total number of cores that are available for the current R session.
Use availableCores(”"multicore™) > 1L to check whether multicore futures are supported or not
on the current system.

Examples

Use multicore futures
plan(multicore)

A global variable
a<-0

Create future (explicitly)
f <= future({

b <-3

c <-2

axbxc
»

A multicore future is evaluated in a separate forked
process. Changing the value of a global variable
will not affect the result of the future.

a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == @)

multisession Create a multisession future whose value will be resolved asyn-
chronously in a parallel R session

Description

A multisession future is a future that uses multisession evaluation, which means that its value is
computed and resolved in parallel in another R session.

Usage

multisession(
expr,
envir = parent.frame(),
substitute = TRUE,
lazy = FALSE,

multisession

seed = NULL,

globals = TRUE,

persistent = FALSE,

workers = availableCores(),

27

gc = FALSE,
earlySignal = FALSE,
label = NULL,
)
Arguments
expr An R expression.
envir The environment from where global objects should be identified.
substitute If TRUE, argument expr is substitute():ed, otherwise not.
lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.
seed (optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.
globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().
persistent If FALSE, the evaluation environment is cleared from objects prior to the eval-
uation of the future.
workers A positive numeric scalar or a function specifying the maximum number of
parallel futures that can be active at the same time before blocking. If a function,
it is called without arguments when the future is created and its value is used to
configure the workers. The function should return a numeric scalar.
gc If TRUE, the garbage collector run (in the process that evaluated the future) only
after the value of the future is collected. Exactly when the values are collected
may depend on various factors such as number of free workers and whether
earlySignal is TRUE (more frequently) or FALSE (less frequently). Some
types of futures ignore this argument.
earlySignal Specified whether conditions should be signaled as soon as possible or not.
label An optional character string label attached to the future.

Additional named elements passed to Future().

28 multisession

Details

The background R sessions (the "workers") are created using makeClusterPSOCK().

The multisession() function will block if all available R session are occupied and will be un-
blocked as soon as one of the already running multisession futures is resolved. For the total number
of R sessions available including the current/main R process, see availableCores().

A multisession future is a special type of cluster future.

The preferred way to create an multisession future is not to call this function directly, but to register
it via plan(multisession) such that it becomes the default mechanism for all futures. After this
future() and %<-% will create multisession futures.

Value
A MultisessionFuture. If workers == 1, then all processing using done in the current/main R ses-
sion and we therefore fall back to using a lazy future.

See Also

For processing in multiple forked R sessions, see multicore futures. For multicore processing with
fallback to multisession where the former is not supported, see multiprocess futures.

Use availableCores() to see the total number of cores that are available for the current R session.

Examples

Use multisession futures
plan(multisession)

A global variable
a<-0

Create future (explicitly)
f <- future({

b <-3

c<-2

ax*xb=xc
»

A multisession future is evaluated in a separate R session.
Changing the value of a global variable will not affect

the result of the future.

a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == @)

Explicitly close multisession workers by switching plan
plan(sequential)

nbrOfWorkers 29

nbrOfWorkers Get the number of workers available

Description

Get the number of workers available

Usage

nbrOfWorkers(evaluator = NULL)

Arguments
evaluator A future evaluator function. If NULL (default), the current evaluator as returned
by plan() is used.
Value

A positive number in 1, 2, 3, Note, it may also be +Inf for certain types of backends.

Examples

plan(multisession)
nbrOfWorkers() ## == availableCores()

plan(sequential)
nbrOfWorkers() ## == 1

plan Plan how to resolve a future

Description

This function allows the user to plan the future, more specifically, it specifies how future():s are
resolved, e.g. sequentially or in parallel.

Usage

plan(
strategy = NULL,

L

substitute = TRUE,

.skip = FALSE,
.call = TRUE,
.cleanup = TRUE,
.init = TRUE

30 plan
Arguments
strategy The evaluation function (or name of it) to use for resolving a future. If NULL,
then the current strategy is returned.
Additional arguments overriding the default arguments of the evaluation func-
tion. Which additional arguments are supported depends on what evaluation
function is used, e.g. several support argument workers but not all. For details,
see the individual functions of which some are linked to below.
substitute If TRUE, the strategy expression is substitute():d, otherwise not.
.skip (internal) If TRUE, then attempts to set a strategy that is the same as what is
currently in use, will skipped.
.call (internal) Used for recording the call to this function.
.cleanup (internal) Used to stop implicitly started clusters.
.init (internal) Used to initiate workers.
Details

The default strategy is sequential, but the default can be configured by option ‘future.plan’
and, if that is not set, system environment variable R_FUTURE_PLAN. To reset the strategy back to
the default, use plan("default"”).

Value

If a new strategy is chosen, then the previous one is returned (invisible), otherwise the current one
is returned (visibly).

Implemented evaluation strategies

sequential: Resolves futures sequentially in the current R process.

transparent: Resolves futures sequentially in the current R process and assignments will be
done to the calling environment. Early stopping is enabled by default.

multisession: Resolves futures asynchronously (in parallel) in separate R sessions running
in the background on the same machine.

multicore: Resolves futures asynchronously (in parallel) in separate forked R processes run-
ning in the background on the same machine. Not supported on Windows.

multiprocess: If multicore evaluation is supported, that will be used, otherwise multisession
evaluation will be used.

cluster: Resolves futures asynchronously (in parallel) in separate R sessions running typi-
cally on one or more machines.

remote: Resolves futures asynchronously in a separate R session running on a separate ma-
chine, typically on a different network.

Other package may provide additional evaluation strategies. Notably, the future.batchtools pack-
age implements a type of futures that will be resolved via job schedulers that are typically available
on high-performance compute (HPC) clusters, e.g. LSF, Slurm, TORQUE/PBS, Sun Grid Engine,
and OpenLava.

To "close" any background workers (e.g. multisession), change the plan to something different;
plan(sequential) is recommended for this.

plan 31

For package developers

Please refrain from modifying the future strategy inside your packages / functions, i.e. do not call
plan() in your code. Instead, leave the control on what backend to use to the end user. This idea is
part of the core philosophy of the future framework - as a developer you can never know what future
backends the user have access to. Moreover, by not making any assumptions about what backends
are available, your code will also work automatically with any new backends developed after you
wrote your code.

If you think it is necessary to modify the future strategy within a function, then make sure to undo
the changes when exiting the function. This can be done using:

oplan <- plan(new_set_of_strategies)
on.exit(plan(oplan), add = TRUE)
L...]

Using plan() in scripts and vignettes

When writing scripts or vignettes that uses futures, try to place any call to plan() as far up (as early
on) in the code as possible. This will help users to quickly identify where the future plan is set up
and allow them to modify it to their computational resources. Even better is to leave it to the user
to set the plan() prior to source():ing the script or running the vignette. If a . future.R’ exists
in the current directory and / or in the user’s home directory, it is sourced when the future package
is loaded. Because of this, the ‘. future.R’ file provides a convenient place for users to set the
plan(). This behavior can be controlled via an R option - see future options for more details.

Examples

a <- b <-c <-NA_real_

An sequential future
plan(sequential)
f <- future({
a<-17
b <-3
c <-2
a*b=*c
»
y <- value(f)
print(y)
str(list(a = a, b =b, c = c)) ## ALl NAs

A sequential future with lazy evaluation
plan(sequential)
f <= future({
a<-17
b <-3
c<-2
a*b=xc
}, lazy = TRUE)
y <- value(f)

32

print(y)
str(list(a = a, b =Db, c =c)) ## All NAs

A multicore future (specified as a string)
plan("multicore”)
f <- future({
ac<-7
b <-3
c <-2
axbxc
»
y <- value(f)
print(y)
str(list(a = a, b = b, ¢ =c)) ## ALl NAs

Multisession futures gives an error on R CMD check on
Windows (but not Linux or macOS) for unknown reasons.

The same code works in package tests.

A multisession future (specified via a string variable)

plan("future::multisession”)
f <- future({
ac<-7
b <-3
c <-2
axbxc
1)
y <- value(f)
print(y)
str(list(a = a, b = b, ¢ =c)) ## ALl NAs

Explicitly close multisession workers by switching plan

remote

plan(sequential)
remote Create a remote future whose value will be resolved asynchronously in
a remote process
Description

A remote future is a future that uses remote cluster evaluation, which means that its value is com-

puted and resolved remotely in another process.

remote

Usage

remote(
expr,
envir = parent.frame(),
substitute = TRUE,
lazy = FALSE,
seed = NULL,
globals = TRUE,
persistent = TRUE,
workers = NULL,

33

user = NULL,
revtunnel = TRUE,
gc = FALSE,
earlySignal = FALSE,
myip = NULL,
label = NULL,
)
Arguments
expr An R expression.
envir The environment from where global objects should be identified.
substitute If TRUE, argument expr is substitute():ed, otherwise not.
lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.
seed (optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.
globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().
persistent If FALSE, the evaluation environment is cleared from objects prior to the eval-
uation of the future.
workers A cluster object, a character vector of host names, a positive numeric scalar, or

a function. If a character vector or a numeric scalar, a cluster object is created
using makeClusterPSOCK (workers). If a function, it is called without argu-
ments when the future is created and its value is used to configure the workers.
The function should return any of the above types.

34 remote

user (optional) The user name to be used when communicating with another host.

revtunnel If TRUE, reverse SSH tunneling is used for the PSOCK cluster nodes to connect
back to the master R process. This avoids the hassle of firewalls, port forwarding
and having to know the internal / public IP address of the master R session.

gc If TRUE, the garbage collector run (in the process that evaluated the future) only
after the value of the future is collected. Exactly when the values are collected
may depend on various factors such as number of free workers and whether
earlySignal is TRUE (more frequently) or FALSE (less frequently). Some
types of futures ignore this argument.

earlySignal Specified whether conditions should be signaled as soon as possible or not.

myip The external IP address of this machine. If NULL, then it is inferred using an
online service (default).

label An optional character string label attached to the future.

Additional named elements passed to ClusterFuture().

Value

A ClusterFuture.

’remote’ versus ’cluster’

The remote plan is a very similar to the cluster plan, but provides more convenient default argu-
ment values when connecting to remote machines. Specifically, remote uses persistent = TRUE
by default, and it sets homogeneous, revtunnel, and myip "wisely" depending on the value of
workers. See below for example on how remote and cluster are related.

Examples

Not run: \donttest{

Use a remote machine
plan(remote, workers = "remote.server.org")

Evaluate expression remotely

host %<-% { Sys.info()[["nodename”]] }
host

[1]1 "remote.server.org”

The following setups are equivalent:

plan(remote, workers = "localhost")

plan(cluster, workers = "localhost”, persistent = TRUE)
plan(cluster, workers = 1L, persistent = TRUE)
plan(multisession, workers = 1L, persistent = TRUE)

The following setups are equivalent:
plan(remote, workers = "remote.server.org")
plan(cluster, workers = "remote.server.org”", persistent = TRUE, homogeneous = FALSE)

resolve

35

The following setups are equivalent:

cl <- makeClusterPSOCK("remote.server.org")
plan(remote, workers = cl)

plan(cluster, workers = cl, persistent = TRUE)

}

End(Not run)

resolve

Resolve one or more futures synchronously

Description

This function provides an efficient mechanism for waiting for multiple futures in a container (e.g.
list or environment) to be resolved while in the meanwhile retrieving values of already resolved

futures.
Usage
resolve(
X ’
idxs = NULL,
recursive = 0,
result = FALSE,
stdout = FALSE,
signal = FALSE,
force = FALSE,
sleep = 1,
value = result,
)
Arguments
X A Future to be resolved, or a list, an environment, or a list environment of futures
to be resolved.
idxs (optional) integer or logical index specifying the subset of elements to check.
recursive A non-negative number specifying how deep of a recursion should be done. If
TRUE, an infinite recursion is used. If FALSE or zero, no recursion is per-
formed.
result (internal) If TRUE, the results are retrieved, otherwise not.
stdout (internal) If TRUE, captured standard output is relayed, otherwise note.
signal (internal) If TRUE, captured conditions are relayed, otherwise not.
force (internal) If TRUE, captured standard output and captured conditions already

relayed is relayed again, otherwise not.

36 resolved

sleep Number of seconds to wait before checking if futures have been resolved since
last time.
value (DEPRECATED) Use argument result instead.
Not used.
Details

This function is resolves synchronously, i.e. it blocks until x and any containing futures are resolved.

Value
Returns x (regardless of subsetting or not). If signal is TRUE and one of the futures produces an
error, then that error is produced.

See Also

To resolve a future variable, first retrieve its Future object using future0f (), e.g. resolve(future0f(x)).

resolved Check whether a future is resolved or not

Description

Check whether a future is resolved or not

Usage
resolved(x, ...)
Arguments
X A Future, a list, or an environment (which also includes list environment.
Not used.
Details

This method needs to be implemented by the class that implement the Future API. The implemen-
tation must never throw an error, but only return either TRUE or FALSE. It should also be possible
to use the method for polling the future until it is resolved (without having to wait infinitely long),
e.g. while (!resolved(future)) Sys.sleep(5).

Value

A logical of the same length and dimensions as x. Each element is TRUE unless the corresponding
element is a non-resolved future in case it is FALSE.

sequential 37

sequential Create a sequential future whose value will be in the current R session

Description

A sequential future is a future that is evaluated sequentially in the current R session similarly to
how R expressions are evaluated in R. The only difference to R itself is that globals are validated
by default just as for all other types of futures in this package.

Usage

sequential(
expr,
envir = parent.frame(),
substitute = TRUE,

lazy = FALSE,
seed = NULL,
globals = TRUE,
local = TRUE,
earlySignal = FALSE,
label = NULL,

)

transparent(
expr,

envir = parent.frame(),
substitute = TRUE,

lazy = FALSE,

seed = NULL,

globals = FALSE,

local = FALSE,
earlySignal = TRUE,

label = NULL,
)
Arguments
expr An R expression.
envir The environment from where global objects should be identified.
substitute If TRUE, argument expr is substitute():ed, otherwise not.
lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-

wise not.

38

seed

globals

local

earlySignal
label

Details

sequential

(optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.

(optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section ’Globals used by future expressions’ in the
help for future().

If TRUE, the expression is evaluated such that all assignments are done to lo-
cal temporary environment, otherwise the assignments are done in the calling
environment.

Specified whether conditions should be signaled as soon as possible or not.
An optional character string label attached to the future.

Reserved for internal use only.

The preferred way to create a sequential future is not to call these functions directly, but to register
them via plan(sequential) such that it becomes the default mechanism for all futures. After this
future() and %<-% will create sequential futures.

Value

A SequentialFuture.

transparent futures

Transparent futures are sequential futures configured to emulate how R evaluates expressions as far
as possible. For instance, errors and warnings are signaled immediately and assignments are done
to the calling environment (without local () as default for all other types of futures). This makes
transparent futures ideal for troubleshooting, especially when there are errors.

Examples

Use sequential futures

plan(sequential)

A global variable

a<-290

Create a sequential future

f <- future({
b <-3
c<-2

signalConditions 39

a*b=xc
»
Since 'a' is a global variable in future 'f' which
is eagerly resolved (default), this global has already
been resolved / incorporated, and any changes to 'a'
at this point will _not_ affect the value of 'f'.
a<-7
print(a)

v <- value(f)
print(v)
stopifnot(v == 0)

signalConditions Signals Captured Conditions

Description

Captured conditions that meet the include and exclude requirements are signaled in the order as
they were captured.

Usage
signalConditions(
future,
include = "condition”,

exclude = NULL,
resignal = TRUE,

)
Arguments
future A resolved Future.
include A character string of condition classes to signal.
exclude A character string of condition classes not to signal.
resignal If TRUE, then already signaled conditions are signaled again, otherwise not.
Not used.
Value

Returns the Future where conditioned that were signaled have been flagged to have been signaled.

See Also

Conditions are signaled by signalCondition().

40 value.Future

tweak Tweak a future function by adjusting its default arguments

Description

Tweak a future function by adjusting its default arguments

Usage
tweak(strategy, ..., penvir = parent.frame())
Arguments
strategy An existing future function or the name of one.
Named arguments to replace the defaults of existing arguments.
penvir The environment used when searching for a future function by its name.
Value

a future function.

See Also

Use plan() to set a future to become the new default strategy.

value.Future The value of a future

Description

Gets the value of a future. If the future is unresolved, then the evaluation blocks until the future is

resolved.
Usage
S3 method for class 'Future'
value(future, stdout = TRUE, signal = TRUE, ...)
Arguments
future A Future.
stdout If TRUE, any captured standard output is outputted, otherwise not.
signal A logical specifying whether (conditions) should signaled or be returned as val-
ues.

Not used.

values 41

Details

This method needs to be implemented by the class that implement the Future API.

Value

An R object of any data type.

values Get all values in a container

Description

Gets all values in an environment, a list, or a list environment and returns an object of the same
class (and dimensions). All future elements are replaced by their corresponding value() values.
For all other elements, the existing object is kept.

Usage
values(x, stdout = TRUE, signal = TRUE, ...)
Arguments
X A Future, an environment, a list, or a list environment.
stdout If TRUE, captured standard output is relayed, otherwise note.
signal If TRUE, captured (conditions) are relayed, otherwise not.
Additional arguments passed to value() of each future.
Value

An object of same type as x and with the same names and/or dimensions, if set. If signal is TRUE
and one of the futures produces an error, then that error is produced.

%conditions% Control whether standard output should be captured or not

Description

Control whether standard output should be captured or not

Usage

fassignment %conditions% capture

Arguments

fassignment The future assignment, e.g. x %<-% { expr }.
capture If TRUE, the standard output will be captured, otherwise not.

42 %label %

%globals% Specify globals and packages for a future assignment

Description

Specify globals and packages for a future assignment

Usage

fassignment %globals% globals
fassignment %packages% packages

Arguments
fassignment The future assignment, e.g. x %<-% { expr }.
globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section *Globals used by future expressions’ in the
help for future().
packages (optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.
%label% Specify label for a future assignment
Description

Specify label for a future assignment

Usage

fassignment %label% label

Arguments

fassignment The future assignment, e.g. x %<-% { expr }.

label An optional character string label attached to the future.

Ylazy % 43

%lazy% Control lazy / eager evaluation for a future assignment

Description

Control lazy / eager evaluation for a future assignment

Usage

fassignment %lazy% lazy

Arguments
fassignment The future assignment, e.g. x %<-% { expr }.
lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.
%plan% Use a specific plan for a future assignment
Description

Use a specific plan for a future assignment

Usage

fassignment %plan% strategy

Arguments
fassignment The future assignment, e.g. x %<-% { expr J}.
strategy The mechanism for how the future should be resolved. See plan() for further
details.
See Also

The plan() function sets the default plan for all futures.

44 % stdout%

%seed% Set random seed for future assignment

Description

Set random seed for future assignment

Usage

fassignment %seed% seed

Arguments

fassignment The future assignment, e.g. x %<-% { expr }.

seed (optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE, it is assumed that the future
expression does neither need nor use random numbers generation. To use a fixed
random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular RNG
seed (a single integer). Furthermore, if FALSE, then the future will be monitored
to make sure it does not use random numbers. If it does and depending on
the value of option future.rng.misUse, the check is ignored, an informative
warning, or error will be produced. If seed is NULL (default), then the effect is
as with seed = FALSE but without the RNG check being performed.

%stdout% Control whether standard output should be captured or not

Description

Control whether standard output should be captured or not

Usage

fassignment %stdout% capture

Arguments

fassignment The future assignment, e.g. x %<-% { expr }.

capture If TRUE, the standard output will be captured, otherwise not.

Jotweak % 45

%tweak% Temporarily tweaks the arguments of the current strategy

Description

Temporarily tweaks the arguments of the current strategy

Usage

fassignment %tweak% tweaks

Arguments
fassignment The future assignment, e.g. x %<-% { expr }.
tweaks A named list (or vector) with arguments that should be changed relative to the

current strategy.

Index

* internals futureOf, 8, 12
clusterExportSticky, 6 future0f (), 36

.future.R, 31 futures, 13

%=>% (future), 6

%<-% (future), 6 list, 8

%packages% (%globals%), 42 list environment, 36

%conditions%, 41

%globals%, 10, 42 makeCluster, /4

%label%, 42 makeClusterMPI, 14

%lazy%, 43 makeClusterPSOCK, 4, 15, 33

%plan%, 43 makeClusterPSOCK(), 14, 28

%seed%, 44 makeNodePSOCK (makeClusterPSOCK), 15

%stdout%, 44 makePSOCKcluster, 15

%tweak%, 45 multicore, 24, 28, 30

MulticoreFuture, 25
availableCores, 26 multiprocess, 26, 28, 30
availableCores(), 25, 26, 28 multisession, 26, 26, 30

MultisessionFuture, 28
backtrace, 2

nbrOofWorkers, 29
cluster, 3, 4, 30, 33, 34

clusterExportSticky, 6 parallel::makeCluster(), 6, 14
ClusterFuture, 5, 34 plan, 5, 25, 28, 29, 38
ClusterFuture(), 5, 34 plan(), 6, 10, 29, 40, 43
condition, 39 promise, 8

conditions, 35, 40, 41
remote, 30, 32

do.call, 8 resolve, 35

resolved, 8, 36
environment, 4,7, 8, 24, 27, 33, 37

expression, 4, 7, 24,27, 33, 37 sequential, 25, 30, 37
SequentialFuture, 38

function, § signalCondition, 39

Future, 8, 12, 35, 36, 3941 signalConditions, 39

future, 6 stderr, 17

future options, 31 stdout, 17

Future(), 25, 27 stopCluster(), 14

future(), 4, 5,7, 12,25, 27-29, 33, 38, 42 substitute, 4, 7, 25, 27, 33, 37

future.rng.misUse, 4, 7, 25, 27, 33, 38, 44 supportsMulticore(), 25

futureAssign (future), 6

futureCall (future), 6 transparent, 30

46

INDEX

transparent (sequential), 37
tweak, 40

uniprocess (sequential), 37

value, 8§

value (value.Future), 40
value(), 8

value.environment (values), 41
value.Future, 40

value.list (values), 41
value.listenv (values), 41
values, 41

47

	backtrace
	cluster
	clusterExportSticky
	future
	futureOf
	futures
	makeClusterMPI
	makeClusterPSOCK
	multicore
	multisession
	nbrOfWorkers
	plan
	remote
	resolve
	resolved
	sequential
	signalConditions
	tweak
	value.Future
	values
	%conditions%
	%globals%
	%label%
	%lazy%
	%plan%
	%seed%
	%stdout%
	%tweak%
	Index

