future.apply: Apply Function to Elements in Parallel using Futures
Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster. These future_*apply() functions come with the same pros and cons as the corresponding base-R *apply() functions but with the additional feature of being able to be processed via the future framework.
Version: |
1.6.0 |
Depends: |
R (≥ 3.2.0), future (≥ 1.17.0) |
Imports: |
globals (≥ 0.12.5), parallel, utils |
Suggests: |
datasets, stats, tools, listenv (≥ 0.8.0), R.rsp, markdown |
Published: |
2020-07-01 |
Author: |
Henrik Bengtsson [aut, cre, cph],
R Core Team [cph, ctb] |
Maintainer: |
Henrik Bengtsson <henrikb at braju.com> |
BugReports: |
https://github.com/HenrikBengtsson/future.apply/issues |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://github.com/HenrikBengtsson/future.apply |
NeedsCompilation: |
no |
Materials: |
NEWS |
CRAN checks: |
future.apply results |
Downloads:
Reverse dependencies:
Reverse depends: |
dhReg |
Reverse imports: |
BAMBI, blavaan, codalm, cSEM, dipsaus, disk.frame, drtmle, EFAtools, epwshiftr, forecastML, fxtract, genBaRcode, GSODR, gWQS, hackeRnews, haldensify, iml, kernelboot, lightr, mcp, mlr3, mrgsim.parallel, origami, pavo, phylolm, QDNAseq, qgcomp, rainette, rangeMapper, rBiasCorrection, robotstxt, RTransferEntropy, sctransform, Seurat, Signac, simglm, solitude, spatialwarnings, sperrorest, steps, TSstudio |
Reverse suggests: |
bcmaps, blockCV, DeclareDesign, fabletools, future.BatchJobs, future.batchtools, future.callr, glmmboot, grattan, gstat, inlinedocs, lgr, merTools, MineICA, mlr3db, PeakSegDisk, penaltyLearning, progressr, stars, tcensReg |
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=future.apply
to link to this page.