
Package ‘futile.paradigm’
August 29, 2016

Type Package

Title A framework for working in a functional programming paradigm in
R

Version 2.0.4

Date 2012-02-06

Depends futile.options, RUnit

Author Brian Lee Yung Rowe

Maintainer Brian Lee Yung Rowe <r@nurometic.com>

Description Provides dispatching implementations suitable for
functional programming paradigms. The framework provides a
mechanism for attaching guards to functions similar to Erlang,
while also providing the safety of assertions reminiscent of
Eiffel.

License LGPL-3

LazyLoad yes

Repository CRAN

Date/Publication 2012-02-06 16:53:54

NeedsCompilation no

R topics documented:

futile.paradigm-package . 2
AbuseMethod . 5
crud . 6
UseFunction . 7
%must% . 8
%when% . 10

Index 14

1

2 futile.paradigm-package

futile.paradigm-package

A framework for working in a functional programming paradigm in R

Description

Provides dispatching implementations suitable for functional programming paradigms. The frame-
work provides a mechanism for attaching guards to functions similar to Erlang, while also providing
the safety of assertions reminiscent of Eiffel.

Details

Package: futile.paradigm
Type: Package
Version: 2.0.4
Date: 2012-02-06
License: LGPL-3
LazyLoad: yes

In many ways R is a functional language. The futile.paradigm complements R’s functional strengths
to make it easier to develop software in this paradigm. This package implements a function dis-
patching method based on the guard concept (in lieu of direct pattern matching) for functional
programming in R. In contrast to UseMethod, which is used for S3 object-oriented method dis-
patching, futile.paradigm introduces UseFunction for functional programming. Since UseMethod
only detects the type of the first argument, dispatching can be tricky/cumbersome when multiple
arguments and/or types are supported. Also, the direct manipulation of class attributes is danger-
ous in the S3 paradigm. In the futile.paradigm, access is restricted via encapsulation to reduce the
fragility of such a mechanism. In lieu of the S4 style that requires significant up-front design, the
futile.paradigm intends to ease the development process from initial experimentation to systems
development. This package provides a richer syntax for defining functions including the constraints
that must be satisfied in order to dispatch to the particular function. A happy consequence of this
approach is that code becomes self-documenting and functions are more concise since there is a
clean separation of concerns between the true logic of a function and the data management tasks
within the function.

Concrete implementations of the abstract function, must be defined in a hierarchical naming scheme
based on the name of the abstract function. Similar to UseMethod, the concrete function name is
derived from the abstract function with a unique suffix separated by a dot. Unlike UseMethod,
the suffix is arbitrary as the dispatching and association is controlled by the guard and the number
of arguments in the concrete function. Guards are expressions using the same variables as the
concrete function variant or explicit functions operating on the same number of arguments as the
concrete function it is guarding. Either form of a guard must return a boolean value. Multiple guard
functions can be defined in the guard call and in this situation all guards must resolve to TRUE for
the function to execute. In addition to a function, a default function can be defined by setting the
guard expression to TRUE.

futile.paradigm-package 3

To use the package, two key operators are introduced to implement guard statements and assertions.
Guards are declared by using the ’%when%’ operator, which is reminiscent of the Erlang approach
to guards. By convention the guard is declared before the function definition as this communicates
immediately the criteria required to execute this particular implementation of the parent function.
See the examples section for a trivial implementation.

In addition to guard statements, this package provides post-assertions reminiscent of Eiffel’s design-
by-contract approach. Using the ’%must%’ operator validates function outputs and fails if they
aren’t satisfied. The arguments to a generated assertion are ordered with the result object first
(named ’result’), then all of the function arguments.

Conventions: . Types are named in PascalCase . Functions are named in lower case with words
separated by underscore . Function namespaces are separated by dot . Declare guard statements be-
fore concrete implementations . Declare ensure statements after concrete implementations . Avoid
explicit UseFunction definitions . Avoid default function implementations unless a package defines
all possible variants

Note

Due to scoping rules with operators, logical expressions need to be wrapped in parentheses.

Author(s)

Brian Lee Yung Rowe

Maintainer: Brian Lee Yung Rowe <r@nurometic.com>

References

Some background on using guards and pattern matching:

http://en.wikipedia.org/wiki/Guard_%28computing%29

See Also

UseFunction, %when%, %must%

Examples

The guard must be defined before the concrete function variant
abs_max %when% is.numeric(a)
abs_max %also% (length(a) > 1)
This adds a post-assertion to ensure the value is what you expect
abs_max %must% (result > 0)
abs_max %as% function(a) abs_max(a[1], abs_max(a[2:length(a)]))

abs_max %when% (is.numeric(a) && length(a) == 1)
abs_max %must% (result == a)
abs_max %as% function(a) a

abs_max %when% (a %isa% DataObject & a %hasa% data)
abs_max %as% function(a) abs_max(as.numeric(strsplit(a$data, ',')[[1]]))

abs_max %when% (is.numeric(a) & is.numeric(b))

4 futile.paradigm-package

abs_max %must% (result >= a | result >= b)
abs_max %as% function(a, b) max(abs(a), abs(b))

Using a guard of TRUE acts as a default condition
abs_max %when% TRUE
abs_max %as% function(a,b) abs_max(as.numeric(a), as.numeric(b))

Define constructor for DataObject
create.DataObject <- function(T, data, name=NA) list(name=name, data=data)

Test some output
abs_max(2,-3) # Calls abs_max.twoArg

abs_max("3","-4") # Calls abs_max.twoArgDefault

abs_max(3,"-4") # Calls abs_max.twoArgDefault

a <- rnorm(10)
abs_max(a) # Calls abs_max.recursive1

b <- create(DataObject, c('12,-3,-5,8,-13,3,1,3'))
abs_max(b) # Calls abs_max.csv

Newton-Raphson optimization
converged <- function(x1, x0, tolerance=1e-6) abs(x1 - x0) < tolerance
minimize <- function(x0, algo, max.steps=100)
{

step <- 0
old.x <- x0
while (step < max.steps)
{
new.x <- iterate(old.x, algo)
if (converged(new.x, old.x)) break
old.x <- new.x

}
new.x

}

iterate %when% (algo %isa% NewtonRaphson)
iterate %as% function(x, algo) x - algo$f1(x) / algo$f2(x)

iterate %when% (algo %isa% GradientDescent)
iterate %as% function(x, algo) x - algo$step * algo$f1(x)

create.GradientDescent <- function(T, f1, step=0.01) list(f1=f1,step=step)

fx <- function(x) x^2 - 4
f1 <- function(x) 2*x
f2 <- function(x) 2

algo <- create(NewtonRaphson, f1=f1,f2=f2)

AbuseMethod 5

minimize(3, algo)

algo <- create(GradientDescent, f1=f1,step=0.1)
minimize(3, algo)

AbuseMethod Dispatcher for high-level API functions

Description

Used for library authors defining very high-level API functions. Not typically needed for normal
development.

Usage

AbuseMethod(fn.name, type, ..., EXPLICIT = FALSE, ALWAYS = TRUE)

Arguments

fn.name The parent function name. This is just the name of the original function

type The target type or a regular value from which the type is derived

... Arguments to pass to the dispatched function

EXPLICIT Whether the type is passed in explicitly or not

ALWAYS Whether a default function should be called if all else fails

Details

This alternative dispatching is for specialized purposes. It allows certain syntactic sugar not possible
in UseMethod when performing method dispatching. If none of the above made sense, then don’t
use this function. Otherwise, it can be useful when defining very high-level functions that define
interfaces for an API.

In the future this function may take on additional functionality to manage dispatching certain func-
tions based on computer/network architecture.

Value

Returns the result of the dispatched function. When ALWAYS is FALSE, no default function will
be called. Instead, an error message is printed. In certain circumstances this fail-fast behavior is
preferred over the default lenient behavior.

Author(s)

Brian Lee Yung Rowe

See Also

UseMethod, UseFunction

6 crud

Examples

Trivial example for pedagogical reasons only
product <- function(...) AbuseMethod('product', ...)

product.numeric <- function(a,b) a * b
product.matrix <- function(a,b) a

product(4,2)

crud API for CRUD-like operations

Description

Provides a high-level API for abstracting CRUD operations for arbitrary objects. Currently only
create is provided, as this is essential for type management within futile.paradigm. Others will be
added as necessary.

Usage

create(type, ...)
create.default(type, ...)

Arguments

type The object type to create as a symbol or character

... Additional arguments to pass to dispatched functions

Details

Adding to ’create’ requires a minimal function definition as the harness is provided in the package.
Typically a list is returned and the function defines any defaults needed. This is similar to the S4
style but is simpler and not a requirement for using the rest of futile.paradigm.

In general the futile.paradigm avoids strings where syntax is explicit enough that this is possible.
By convention types are PascalCased, which makes identifying a type even clearer. For this to work
properly, it is essential that class names are not defined as types as defined symbols are assumed to
be valid for dereferencing.

Value

’create’ returns an object of the requested type.

Author(s)

Brian Lee Yung Rowe

UseFunction 7

Examples

create.Car <- function(T, wheels=4, doors=4) list(wheels=wheels, doors=doors)

This is how you inherit from a type
create.SportsCar <- function(T, doors=2, ...)

create(Car, doors=doors, ...)

my.car <- create(Car, doors=5)

your.car <- create('SportsCar')

The type can be passed in via a variable as well
her.class <- 'Car'
her.car <- create(her.class, wheels=3)

my.car %isa% Car
your.car %isa% SportsCar

UseFunction Primary dispatcher for functional programming

Description

UseFunction is an alternative approach to function dispatching vis-a-vis UseMethod. It is designed
for people interested in writing functional programs in R as opposed to object-oriented programs.

Usage

UseFunction(fn.name, ...)

Arguments

fn.name The name of a function that uses functional dispatching. This is just the name
of the function being defined

... The arguments that are passed to dispatched functions

Details

In most situations (i.e. following the conventions outlined by the futile.paradigm), explicit use of
UseFunction is unnecessary as the system will automatically generate and execute this command
as necessary. The only time it is necessary is when an abstract function has an ambiguous name
(typically containing extraneous dots).

Explicit function definitions follow a simple template: fn.var <- function(...) UseFunction(’fn.var’,
...)

When calling the function, if no guards match, then an error is returned.

8 %must%

Value

Returns the value of the dispatched function

Note

For high-level API development, AbuseMethod may be more appropriate

Author(s)

Brian Lee Yung Rowe

See Also

AbuseMethod

Examples

Note that these are trivial examples for pedagogical purposes. Due to their
trivial nature, most of these examples can be implemented more concisely
using built-in R features.

Optional
#reciprocal <- function(...) UseFunction('reciprocal', ...)

reciprocal %when% is.numeric(x)
reciprocal %also% (x != 0)
reciprocal %must% (sign(result) == sign(x))
reciprocal %as% function(x) 1 / x

reciprocal %when% is.character(x)
reciprocal %as% function(x) reciprocal(as.numeric(x))

print(reciprocal)
reciprocal(4)

%must% Add post-assertion validations to a function to define the conditions
when results of a child function are valid

Description

The ’ensure’ function defines the conditions for successful execution for the given function. This is
an optional declaration that requires a previous guard declaration for the given function.

The ’ensures’ function provides reflection and displays assertions defined for a function hierarchy.

%must% 9

Usage

fn.ref %must% condition
ensures(fn, inherits = TRUE, child = NULL)

Arguments

fn.ref This is the function for which the assertion is applied. Unlike with ’guard’, the
function must exist

condition The conditions for dispatching to this function. This can either be an expression,
a function, or vector of functions. See Details for more information

fn The function to find assertions for. If this is a child function, the parent function
will be queried

inherits If a function is passed that has no assertions, whether to search for a parent
function. Typically this is safe to leave as the default

child Used to filter the assertions for a specific concrete function. Typically safe to
ignore

Details

Combining guards with post-execution assertions provides a framework for design-by-contract pro-
gramming. This paradigm forces developers to define the programming interface for each function
explicitly in the code. Doing so ensures that failures are detected immediately (known as fail-fast)
reducing troubleshooting time. Using the ’ensure’ command is optional.

When using an expression in the ensure command, the executed function is called with the following
arguments: the result of the concrete function (named ’result’) followed by the arguments passed to
the concrete function. If the condition fails, execution will halt with an error message.

Value

The ’%must%’ declaration is used for its side-effects and has no return value.

The ’ensures’ function works like ’guards’ and displays all registered assertions for a given abstract
function.

Author(s)

Brian Lee Yung Rowe

See Also

UseFunction, %when%

Examples

Note that these are trivial examples for pedagogical purposes. Due to their
trivial nature, most of these examples can be implemented more concisely
using built-in R features.

10 %when%

The expression must operate on arguments declared in the concrete function.
logarithm %when% is.numeric(x)
logarithm %as% function(x) logarithm(x, exp(1))

Explicit form (only necessary for special cases)
logarithm %when% is.numeric(x)
logarithm %also% is.numeric(y)
logarithm %must% (! is.nan(result) && ! is.infinite(result))
logarithm %as% function(x,y) log(x, base=y)

logarithm %when% TRUE
logarithm %as% function(x,y) logarithm(as.numeric(x), as.numeric(y))

logarithm(5)

Uses all arguments in assertion
f %when% (is.numeric(a) & is.numeric(b) & b > 1)
f %must% (result == a + b)
f %as% function(a,b) a + b

f(2,3)

View the function variants for this abstract function
ensures(logarithm)

%when% Add guards to a function to define the conditions when a child function
will execute

Description

The ’%when%’ operator defines the conditions for execution for the given function. To use a
function within futile.paradigm, a guard must be defined for each child function, even if it’s a
default guard using TRUE. Each ’%when%’ clause indicates a new function variant for a given
function.

The ’%also%’ operator specifies additional clauses that must be met to execute the given function
variant. It is provided as a syntactic convenience to shorten long guards.

’%as%’ is used to assign the function variant definition to the function

’%default%’ is used to specify a fallback if necessary

The ’%isa%’ operator performs type checking.

The ’%hasa%’ operator checks whether an object contains a named value.

The ’%hasall%’ function is like ’%hasa%’ but returns the conjunction of the ’%hasa%’ results.

The ’guards’ function provides introspection and displays guards defined for a function hierarchy.

To access a specific function variant, use the ’variant’ function. This function takes a name as an
argument, returning a function reference. The primary purpose of this is for debugging.

%when% 11

Usage

fn.ref %when% condition
fn.ref %also% condition
fn.ref %as% fn.def

argument %isa% type
argument %hasa% property
argument %hasall% property

guards(fn.ref, inherits = TRUE)
variant(name.fn)

Arguments

fn.ref The function for which a guard is applied. It does not need to exist yet

fn.def An actual function definition to associate with the function variant

condition The conditions for dispatching to this function. This can either be an expression,
a function, or vector of functions. See Details for more information

inherits If a function is passed that has no guards, whether to search for a parent function.
Typically this is safe to leave as the default

type A symbol or character describing the type to match

argument The argument to match the type or properties with

property The property or properties to look for within the object

name.fn A function name that references a specific function variant

Details

Guards provide a mechanism for dispatching function variants consistent with the declarative style
of functional programming. Using guards for dispatching has many benefits: function variants are
self-contained and focus on a single task (separation of concerns), design-by-contract is inherent,
data manipulation is separate from computational logic, self-documenting.

The futile.paradigm makes adoption of guards simple. A function is decorated with declarative
statements, and futile.paradigm performs the necessary wiring. Any number of function variants
can be attached to a given function, with each variant starting with the ’%when%’ operator:

<function> %when% (<logical expression>)

The guard statement tells futile.paradigm under what conditions this particular function variant
should be called. This is defined by passing an expression to the guard function that operates on
the arguments of the concrete function (see Examples). This expression is dynamically bound to
an actual function at run-time. Guards are naturally scoped based on the number of arguments in a
function. Hence only functions with the same number of arguments as were passed into the parent
function will be considered for dispatching.

Named arguments passed into the parent function must match the named arguments defined in the
child function. Hence, dispatching is defined by both the number of arguments and the matching
named arguments, which introduces a greater level of control in dispatching than otherwise possible.

12 %when%

In general, the built-in argument matching will Do the Right Thing w.r.t. unnamed arguments,
although the first match will be the one applied, which could result in unexpected behavior if one is
careless.

Each function variant has exactly one ’%when%’ clause. For convenience, additional conjunctive
clauses (i.e. they all must resolve to true) can be attached to the variant with the ’%also%’ operator:

<function> %also% (<logical expression>)

The order that the function guards are defined determines the order that functions are evaluated for
satisfaction of guard criteria. This behavior is typically called top-to-bottom, left-to-right evalua-
tion. The left-to-right evaluation only applies to the explicit form when multiple function guards
are defined in a vector. These details are important to understand as default functions defined too
early will be greedy and no other criteria will be evaluated.

Binding an actual function definition to this particular guard sequence is done by using the %as%
operator. Each variant needs at minimum a %when% statement and an %as% statement to succes-
fully bind a new variant to the given function.

In addition to variants with guards, the %default% operator can be used to specify a default function
that is used if no function variants match when calling the function.

Another important consideration is that using the ellipsis argument is not supported in futile.paradigm.
This is by design as the functional programming approach intentionally makes function arguments
explicit, such that the ellipsis argument should never be needed in a child function definition.

The ’ whether ’argument’ is a ’type’. This is more than syntactic sugar in guard sequences as it adds
a level of protective indirection when accessing type information. Note that the preferred format is
to supply a raw symbol to

the syntax without undue clutter.

The ’ a particular named property. This operator also supports raw symbols as the argument.

Deprecated Functions The below functions are for version 1 of the futile.paradigm and are officially
deprecated. They will be removed in future versions.

The ’isStrict’ function is an introspective function that indicates whether the given child function
has strict guards or not.

When strict guards are disabled, then only argument length will be applied as a precondition plus
any conditions defined by the guards. In certain circumstances this may be desired, although in
general strict guards provides greater control. Note that this feature is deprecated.

Value

No value is returned for ’%when%’ nor ’%also%’ since these operators are used purely for their
side-effects.

The ’guards’ function returns a list of guard functions for each child function defined. This essen-
tially shows the evaluation path that UseFunction will take.

The ’variant’ function returns a function reference if found.

’%isa%’ returns a logical value indicating whether a variable is an instance of class.

’%hasa%’ returns a logical value indicating whether a property exists in an object.

’%hasall%’ returns the conjunction of all ’%hasa%’ results for an object. This is useful if a set of
properties are required for execution.

%when% 13

Note

In general functions in FP do not have side-effects. This principle does not apply here since this
function is used to implement the framework itself.

Author(s)

Brian Lee Yung Rowe

See Also

UseFunction, %must%

Examples

Note that these are trivial examples for pedagogical purposes. Due to their
trivial nature, most of these examples can be implemented more concisely
using built-in R features.

The expression must operate on arguments declared in the concrete function.
logarithm %when% is.numeric(x)
logarithm %as% function(x) logarithm(x, exp(1))

Defaults are applied on a per-argument length basis
logarithm %when% TRUE
logarithm %as% function(x) logarithm(as.numeric(x))

logarithm %when% is.numeric(x)
logarithm %also% is.numeric(y)
logarithm %as% function(x,y) log(x, base=y)

logarithm %when% TRUE
logarithm %as% function(x,y) logarithm(as.numeric(x), as.numeric(y))

logarithm %default% function(...) cat("This is the default function\n")

logarithm(100,10)
logarithm(5)
logarithm("5")
logarithm(6,7,8)

View the function variants for this abstract function
guards(logarithm)

In the futile.paradigm, the convention is to name types in PascalCase
a <- create(Apple, seeds=103)
a
a

Index

∗Topic methods
%must%, 8
%when%, 10
AbuseMethod, 5
crud, 6
UseFunction, 7

∗Topic package
futile.paradigm-package, 2

∗Topic programming
%must%, 8
%when%, 10
AbuseMethod, 5
crud, 6
UseFunction, 7

%also% (%when%), 10
%as% (%when%), 10
%default% (%when%), 10
%hasa% (%when%), 10
%hasall% (%when%), 10
%isa% (%when%), 10
%must%, 3, 8, 13
%when%, 3, 9, 10

AbuseMethod, 5, 8

create (crud), 6
crud, 6

ensures (%must%), 8

futile.paradigm
(futile.paradigm-package), 2

futile.paradigm-package, 2

guards (%when%), 10

paradigm.options
(futile.paradigm-package), 2

rm.variant (%when%), 10

UseFunction, 3, 5, 7, 9, 13
UseMethod, 5

variant (%when%), 10

14

	futile.paradigm-package
	AbuseMethod
	crud
	UseFunction
	%must%
	%when%
	Index

