Construction and smart selection of Gaussian process models with emphasis on treatment of functional inputs. This package offers: (i) flexible modeling of functional-input regression problems through the fairly general Gaussian process model; (ii) built-in dimension reduction for functional inputs; (iii) heuristic optimization of the structural parameters of the model (e.g., active inputs, kernel function, type of distance). Metamodeling background is provided in Betancourt et al. (2020) <doi:10.1016/j.ress.2020.106870>. The algorithm for structural parameter optimization is described in <https://hal.archives-ouvertes.fr/hal-02532713>.
Version: | 0.1.0 |
Imports: | methods, foreach, knitr, scales, qdapRegex, microbenchmark, doFuture, future, progressr |
Published: | 2020-04-22 |
Author: | Jose Betancourt [cre, aut], François Bachoc [aut], Thierry Klein [aut], Deborah Idier [ctb], Jeremy Rohmer [ctb] |
Maintainer: | Jose Betancourt <djbetancourt at uninorte.edu.co> |
License: | GPL-3 |
URL: | https://djbetancourt-gh.github.io/funGp/ |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | funGp results |
Reference manual: | funGp.pdf |
Package source: | funGp_0.1.0.tar.gz |
Windows binaries: | r-devel: funGp_0.1.0.zip, r-release: funGp_0.1.0.zip, r-oldrel: funGp_0.1.0.zip |
macOS binaries: | r-release: funGp_0.1.0.tgz, r-oldrel: funGp_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=funGp to link to this page.