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fullfact-package Full Factorial Breeding Analysis

Description

Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive
genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important
for examining evolutionary potential. Traditionally, full factorial mating designs have been ana-
lyzed using a two- way analysis of variance, which may produce negative variance values and is
not suited for unbalanced designs. Mixed-effects models do not produce negative variance values
and are suited for unbalanced designs. However, extracting the variance components, calculating
significance values, and estimating confidence intervals and/or power values for the components are
not straightforward using traditional analytic methods.

In this package we address these issues and facilitate the analysis of full factorial mating designs
with mixed-effects models. The observed data functions extract the variance explained by random
and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive
genetic, and maternal variance components explaining the phenotype. In particular, we integrate
nonnormal error structures for estimating these components for nonnormal data types. The resam-
pled data functions are used to produce bootstrap confidence intervals, which can then be plotted
using a simple function. This package will facilitate the analyses of full factorial mating designs
in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to
incorporate additional random and fixed effects and power analyses.

The paper associated with the package including worked examples is:

Houde ALS, Pitcher TE. 2016. fullfact: an R package for the analysis of genetic and maternal
variance components from full factorial mating designs. Ecology and evolution 6 (6), 1656-1665.
doi: 10.1002/ece3.1943.

Details

The DESCRIPTION file:

Package: fullfact
Version: 1.3
Date: 2019-09-01
Title: Full Factorial Breeding Analysis
Author: Aimee Lee Houde [aut, cre], Trevor Pitcher [aut]
Maintainer: Aimee Lee Houde <aimee.lee.houde@gmail.com>
Depends: R (>= 3.6)
Imports: lme4, afex
Description: We facilitate the analysis of full factorial mating designs with mixed-effects models. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap confidence intervals, which can then be plotted using a simple function. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses. The paper associated with the package including worked examples is: Houde ALS, Pitcher TE (2016) <doi:10.1002/ece3.1943>.
License: GPL (>=2)
URL: https://www.r-project.org

Index of help topics:
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JackGlmer Jackknife components for non-normal data
JackGlmer2 Jackknife components for non-normal data 2
JackGlmer3 Jackknife components for non-normal data 3
JackLmer Jackknife components for normal data
JackLmer2 Jackknife components for normal data 2
JackLmer3 Jackknife components for normal data 3
barMANA Bargraph of confidence intervals
boxMANA Boxplot of resampled results
buildBinary Convert to a binary data frame
buildMulti Convert to a multinomial frame
chinook_bootL Chinook salmon length, bootstrap calculations
chinook_bootS Chinook salmon survival, bootstrap data
chinook_jackL Chinook salmon length, jackknife data
chinook_length Chinook salmon length, raw data
chinook_resampL Chinook salmon length, bootstrap resampled
chinook_resampS Chinook salmon survival, bootstrap resampled
chinook_survival Chinook salmon survival, raw data
ciJack Jackknife confidence intervals
ciJack2 Jackknife confidence intervals 2
ciJack3 Jackknife confidence intervals 3
ciMANA Bootstrap confidence intervals
ciMANA2 Bootstrap confidence intervals 2
ciMANA3 Bootstrap confidence intervals 3
fullfact-package Full Factorial Breeding Analysis
observGlmer Variance components for non-normal data
observGlmer2 Variance components for non-normal data 2
observGlmer3 Variance components for non-normal data 3
observLmer Variance components for normal data
observLmer2 Variance components for normal data 2
observLmer3 Variance components for normal data 3
powerGlmer Power analysis for non-normal data
powerGlmer2 Power analysis for non-normal data 2
powerGlmer3 Power analysis for non-normal data 3
powerLmer Power analysis for normal data
powerLmer2 Power analysis for normal data 2
powerLmer3 Power analysis for normal data 3
resampFamily Bootstrap resample within families
resampGlmer Bootstrap components for non-normal data
resampGlmer2 Bootstrap components for non-normal data 2
resampGlmer3 Bootstrap components for non-normal data 3
resampLmer Bootstrap components for normal data
resampLmer2 Bootstrap components for normal data 2
resampLmer3 Bootstrap components for normal data 3
resampRepli Bootstrap resample within replicates

Author(s)

Aimee Lee Houde [aut, cre], Trevor Pitcher [aut]
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Maintainer: Aimee Lee Houde <aimee.lee.houde@gmail.com>

References

Traditional full factorial breeding design analysis:

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Residual variance component values for generalized linear mixed-effects models:

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Fixed effect variance component values for mixed-effects models:

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

Confidence intervals (bootstrap resampling, bias and acceleration correction, jackknife resampling):

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Martin, H., Westad, F. & Martens, H. (2004). Imporved Jackknife Variance Estimates of Bilinear
Model Parameters. COMPSTAT 2004 – Proceedings in Computational Statistics 16th Symposium
Held in Prague, Czech Republic, 2004 (ed J. Antoch), pp. 261-275. Physica-Verlag HD, Heidelberg.

Data sources:

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z

Examples

data(chinook_length) #Chinook salmon offspring length

## Standard additive genetic, non-additive genetic, and maternal variance analysis

length_mod1<- observLmer(observ=chinook_length,dam="dam",sire="sire",response="length")
length_mod1

## Confidence intervals

##Bootstrap resampling of data: replicates within family
## Not run: resampRepli(dat=chinook_length,copy=c(3:8),family="family",replicate="repli",
iter=1000)
## End(Not run)
#saves the files in working directory: one for each replicate and
#one final (combined) file "resamp_datR.csv"

##Import file
#length_datR<- read.csv("resamp_datR.csv")
data(chinook_resampL) #same as length_datR, 5 iterations

##Models for the resampled data: standard analysis
## Not run: length_rcomp<- resampLmer(resamp=length_datR,dam="dam",sire="sire",
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response="length",start=1,end=1000)
## End(Not run)

## 1. Uncorrected Bootstrap 95% confidence interval

#ciMANA(comp=length_rcomp)
data(chinook_bootL) #similar to length_rcomp, but 1,000 models
ciMANA(comp=chinook_bootL)

## 2. Bias and accelerated corrected Bootstrap 95% confidence interval

##Jackknife resampling of data, delete-one: for acceleration estimate
## Not run: length_jack<- JackLmer(observ=chinook_length,dam="dam",sire="sire",
response="length")
## End(Not run)

#ciMANA(comp=length_rcomp,bias=c(0.0000000,0.7192253,0.2029684),accel=length_jack)
data(chinook_jackL) #similar to length_jack, but all observations
ciMANA(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684),accel=chinook_jackL)

##3. Jackknife 95% confidence interval

#ciJack(comp=length_jack,full=c(0.0000000,0.7192253,0.2029684,1.0404425))
ciJack(comp=chinook_jackL,full=c(0.0000000,0.7192253,0.2029684,1.0404425))

barMANA Bargraph of confidence intervals

Description

A simple bargraph function for confidence intervals of additive genetic, non-additive genetic, and
maternal variance components. Also, plots the median for the bootstrap resampling method or mean
of the pseudo-values for the jackknife resampling method.

Usage

barMANA(ci_dat, type = "perc", bar_len = 0.1, ymax = NULL, ymin = NULL, yunit = NULL,
leg = "topright", cex_ylab = 1, cex_yaxis = 1, cex_names = 1)

Arguments

ci_dat Data frame of a confidence interval function.

type Default is "perc" for percentage values of variance components. Other option is
"raw" for raw values of variance components.

bar_len Length of error bar in inches.

ymax Maximum value of the y-axis.

ymin Minimum value of the y-axis.

yunit Unit increment of the y-axis.
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leg Position of the simple legend.

cex_ylab Magnification of the y-axis label.

cex_yaxis Magnification of the y-axis units.

cex_names Optional magnification of trait labels.

Details

Plots a bargraph with the median or mean as the top of the shaded bar and error bars covering the
range of the confidence interval. Uses an object produced by any of the bootstrap resampling CI
functions, i.e. ciMANA, ciMANA2, and ciMANA3 or jackknife resampling functions, i.e. ciJack,
ciJack2, and ciJack3. The median is plotted for bootstrap resampling and the mean of pseudo-
value for jackknife resampling. Produces a simple legend. The function can plot several bar graphs
grouped by label to visualize several phenotypic traits.

Examples

##Import bootstrap resampling results
data(chinook_bootS) #Chinook salmon offspring survival
#Extract un-corrected confidence interval
survival_ci<- ciMANA(comp=chinook_bootS,trait="survival")
survival_ci

#Default plot
barMANA(ci_dat=survival_ci)
#Add plot modifications
barMANA(ci_dat=survival_ci,bar_len=0.3,yunit=5,ymax=20,cex_ylab=1.3)

##Import jackknife resampling results
data(chinook_jackL) #Chinook salmon offspring length
#Extract jackknife confidence interval
length_ci<- ciJack2(comp=chinook_jackL,full=c(0.0000000,0.7192253,0.2029684,1.0404425,
0.1077423),position="tray",trait="length")
length_ci

#Default plot
barMANA(ci_dat=length_ci)
#Add plot modifications
barMANA(ci_dat=length_ci,bar_len=0.3,yunit=20,ymax=100,cex_ylab=1.3)

##Group survival and length together in the same plot
data(chinook_bootL) #Chinook salmon offspring length
length_ci2<- ciMANA2(comp=chinook_bootL,position="tray",trait="length")
length_ci2
#
comb_r<- rbind(survival_ci$raw,length_ci2$raw)
comb_p<- rbind(survival_ci$percentage,length_ci2$percentage)
comb_ci<- list(raw=comb_r,percentage=comb_p)

#Default plot
barMANA(ci_dat=comb_ci)
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#Add plot modifications
barMANA(ci_dat=comb_ci,bar_len=0.3,yunit=20,ymax=100,cex_ylab=1.3,leg="topleft")

boxMANA Boxplot of resampled results

Description

A simple boxplot function for bootstrap and jackknife resampled results of additive genetic, non-
additive genetic, and maternal variance components.

Usage

boxMANA(comp, type = "perc", ymax = NULL, ymin = NULL, yunit = NULL, leg = "topright",
cex_ylab = 1, cex_yaxis = 1, cex_names = 1)

Arguments

comp Data frame of bootstrap or jackknife resampling results.

type Default is "perc" for percentage values of variance components. Other option is
"raw" for raw values of variance components.

ymax Maximum value of the y-axis.

ymin Minimum value of the y-axis.

yunit Unit increment of the y-axis.

leg Position of the simple legend.

cex_ylab Magnification of the y-axis label.

cex_yaxis Magnification of the y-axis units.

cex_names Optional magnification of trait labels.

Details

Plots an R boxplot. Uses an object produced by any of the bootstrap resampling functions, i.e.
resampLmer, resampLmer2, resampLmer3, resampGlmer, resampGlmer2, and resampGlmer3. Or
any of the jackknife resampling functions, i.e. JackLmer, JackLmer2, JackLmer3, JackGlmer, Jack-
Glmer2, and JackGlmer3. Produces a simple legend.

Examples

#Import bootstrap resampled data model results
data(chinook_bootL) #Chinook salmon offspring length

#Default plot
boxMANA(comp=chinook_bootL)
#Add plot modifications
boxMANA(comp=chinook_bootL,yunit=20,ymax=100,cex_ylab=1.3)
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##Group length and survival together in the same plot
data(chinook_bootS) #Chinook salmon offspring survival
chinook_bootL$trait<- "length"
chinook_bootS$trait<- "survival"

colnames(chinook_bootL[,-2])
colnames(chinook_bootS)
#
comb_boot<- rbind(chinook_bootL[,-2],chinook_bootS) #remove 'tray'
comb_boot$trait<- as.factor(comb_boot$trait) #to form levels

#Default plot
boxMANA(comp=comb_boot)
#Add plot modifications
boxMANA(comp=comb_boot,yunit=20,ymax=100,cex_ylab=1.3)

buildBinary Convert to a binary data frame

Description

Assign a binary number (i.e. ’0’ or ’1’) to two columns containing the number of offspring. Copy
information by the number of times equal to the number of offspring.

Usage

buildBinary(dat, copy, one, zero)

Arguments

dat Data frame to convert.

copy Column numbers to copy.

one Column name of counts to assign a ’1’ value.

zero Column name of counts to assign a ’0’ value.

Details

Replicate-level data should be converted to the individual-level to not underestimate phenotypic
variance, which can influence genetic and maternal estimates (see Puurtinen et al. 2009).

Value

A converted data frame with a number of row matching the total number of individuals.

References

Puurtinen M, Ketola T, Kotiaho JS. 2009. The good-genes and compatible-genes benefits of mate
choice. The American Naturalist 174(5): 741-752. DOI: 10.1086/606024
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See Also

buildMulti

Examples

data(chinook_survival)
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(1:6,9),one="alive",zero="dead")

buildMulti Convert to a multinomial frame

Description

Assign multiple numbers to multiple columns containing the number of offspring. Copy informa-
tion by the number of times equal to the number of offspring.

Usage

buildMulti(dat, copy, multi)

Arguments

dat Data frame to convert.

copy Column numbers to copy.

multi A list containing the numbers to assign and matching column names. E.g.
list(c(2,0,1),c("two","zero","one").)

Details

Replicate-level data should be converted to the individual-level to not underestimate phenotypic
variance, which can influence genetic and maternal estimates (see Puurtinen et al. 2009).

Value

A converted data frame with a number of row matching the total number of individuals.

References

Puurtinen M, Ketola T, Kotiaho JS. 2009. The good-genes and compatible-genes benefits of mate
choice. The American Naturalist 174(5): 741-752. DOI: 10.1086/606024

See Also

buildBinary
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Examples

data(chinook_survival)
chinook_survival$total<- chinook_survival$alive + chinook_survival$dead #create total column
chinook_survival3<- buildMulti(dat=chinook_survival,copy=c(1:6,9),multi=list(c(2,1,0),
c("total","alive","dead")))

chinook_bootL Chinook salmon length, bootstrap calculations

Description

Bootstrap resampled Chinook salmon fork length (mm) at hatch with the amount of additive genetic,
non-additive genetic, and maternal variance calculations.

Usage

data("chinook_bootL")

Format

A data frame with 1000 observations on the following 9 variables.

dam.sire, a numeric vector.

tray, a numeric vector.

sire, a numeric vector.

dam, a numeric vector.

Residual, a numeric vector.

Total, a numeric vector.

additive, a numeric vector.

maternal, a numeric vector.

nonadd, a numeric vector.

Details

Also includes the calculations for the amount of variance explained by position (tray), dam by sire,
sire, dam, residual,and total.

Source

http://link.springer.com.proxy1.lib.uwo.ca/article/10.1007

References

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z
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Examples

data(chinook_bootL)
## Extract bootstrap confidence interval
ciMANA(comp=chinook_bootL)

chinook_bootS Chinook salmon survival, bootstrap data

Description

Bootstrap resampled Chinook salmon binary survival to hatch (1 is alive, 0 is dead) with the amount
of additive genetic, non-additive genetic, and maternal variance calculations.

Usage

data("chinook_bootS")

Format

A data frame with 1000 observations on the following 8 variables.

dam.sire, a numeric vector.

sire, a numeric vector.

dam, a numeric vector.

Residual, a numeric vector.

Total, a numeric vector.

additive, a numeric vector.

maternal, a numeric vector.

nonadd, a numeric vector.

Details

Also includes the calculations for the amount of variance explained by dam by sire, sire, dam,
residual, and total.

Source

http://link.springer.com.proxy1.lib.uwo.ca/article/10.1007

References

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z
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Examples

data(chinook_bootS)
## Extract bootstrap confidence interval
ciMANA(comp=chinook_bootS)

chinook_jackL Chinook salmon length, jackknife data

Description

Jackknife resampled Chinook salmon fork length (mm) at hatch with the amount of additive genetic,
non-additive genetic, and maternal variance calculations. Jackknife resampling was leave-out-one.

Usage

data("chinook_jackL")

Format

A data frame with 1210 observations on the following 9 variables.

dam.sire, a numeric vector.

tray, a numeric vector.

sire, a numeric vector.

dam, a numeric vector.

Residual, a numeric vector.

Total, a numeric vector.

additive, a numeric vector.

nonadd, a numeric vector.

maternal, a numeric vector.

Details

Also includes the calculations for the amount of variance explained by position (tray), dam by sire,
sire, dam, residual, and total.

Source

http://link.springer.com.proxy1.lib.uwo.ca/article/10.1007

References

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z
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Examples

data(chinook_jackL)
## Extract jackknifed confidence interval
ciJack(comp=chinook_jackL,full=c(0.0000000,0.7192253,0.2029684,1.0404425))

chinook_length Chinook salmon length, raw data

Description

Raw Chinook salmon fork length (mm) at hatch for offspring produced using an 11 x 11 full factorial
breeding design.

Usage

data("chinook_length")

Format

A data frame with 1210 observations on the following 8 variables.

family, a factor with levels: f1 f10 f100 f101 f102 f103 f104 f105 f106 f107 f108 f109 f11
f110 f111 f112 f113 f114 f115 f116 f117 f118 f119 f12 f120 f121 f13 f14 f15 f16 f17
f18 f19 f2 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f3 f30 f31 f32 f33 f34 f35 f36 f37
f38 f39 f4 f40 f41 f42 f43 f44 f45 f46 f47 f48 f49 f5 f50 f51 f52 f53 f54 f55 f56 f57
f58 f59 f6 f60 f61 f62 f63 f64 f65 f66 f67 f68 f69 f7 f70 f71 f72 f73 f74 f75 f76 f77
f78 f79 f8 f80 f81 f82 f83 f84 f85 f86 f87 f88 f89 f9 f90 f91 f92 f93 f94 f95 f96 f97
f98 f99

repli, a factor with levels: r1 r2

dam, a factor with levels: d1 d10 d11 d2 d3 d4 d5 d6 d7 d8 d9

sire, a factor with levels: s1 s10 s11 s2 s3 s4 s5 s6 s7 s8 s9

tray, a factor with levels: t1 t10 t11 t12 t13 t14 t15 t16 t2 t3 t4 t5 t6 t7 t8 t9

cell, a factor with levels: 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D

length, a numeric vector.

egg_size, a numeric vector.

Details

Also includes family identity, family replicate, incubator position (tray and cell), and average female
egg size (mm) information.

Source

http://link.springer.com.proxy1.lib.uwo.ca/article/10.1007
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References

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z

Examples

data(chinook_length)
## Standard additive genetic, non-additive genetic, and maternal variance analysis
length_mod1<- observLmer(observ=chinook_length,dam="dam",sire="sire",response="length")
length_mod1

chinook_resampL Chinook salmon length, bootstrap resampled

Description

Bootstrap resampled Chinook salmon fork length (mm) at hatch. Number of iterations was 5.

Usage

data("chinook_resampL")

Format

A data frame with 1210 observations on the following 30 variables.

dam1, a numeric vector

sire1, a numeric vector

tray1, a numeric vector

cell1, a numeric vector

length1, a numeric vector

egg_size1, a numeric vector

dam2, a numeric vector

sire2, a numeric vector

tray2, a numeric vector

cell2, a numeric vector

length2, a numeric vector

egg_size2, a numeric vector

dam3, a numeric vector

sire3, a numeric vector

tray3, a numeric vector

cell3, a numeric vector
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length3, a numeric vector

egg_size3, a numeric vector

dam4, a numeric vector

sire4, a numeric vector

tray4, a numeric vector

cell4, a numeric vector

length4, a numeric vector

egg_size4, a numeric vector

dam5, a numeric vector

sire5, a numeric vector

tray5, a numeric vector

cell5, a numeric vector

length5, a numeric vector

egg_size5, a numeric vector

Source

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z

Examples

data(chinook_resampL)
#the five models
length_rcomp1<- resampLmer(resamp=chinook_resampL,dam="dam",sire="sire",response="length",
start=1,end=5) #full analysis should use 1,000 models

chinook_resampS Chinook salmon survival, bootstrap resampled

Description

Bootstrap resampled Chinook salmon binary survival to hatch (1 is alive, 0 is dead). Number of
iterations was 5.

Usage

data("chinook_resampS")
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Format

A data frame with 36300 observations on the following 30 variables.

status1, a numeric vector

dam1, a numeric vector

sire1, a numeric vector

tray1, a numeric vector

cell1, a numeric vector

egg_size1, a numeric vector

status2, a numeric vector

dam2, a numeric vector

sire2, a numeric vector

tray2, a numeric vector

cell2, a numeric vector

egg_size2, a numeric vector

status3, a numeric vector

dam3, a numeric vector

sire3, a numeric vector

tray3, a numeric vector

cell3, a numeric vector

egg_size3, a numeric vector

status4, a numeric vector

dam4, a numeric vector

sire4, a numeric vector

tray4, a numeric vector

cell4, a numeric vector

egg_size4, a numeric vector

status5, a numeric vector

dam5, a numeric vector

sire5, a numeric vector

tray5, a numeric vector

cell5, a numeric vector

egg_size5, a numeric vector

Source

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z
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Examples

data(chinook_resampS)
## Not run: survival_rcomp<- resampGlmer(resamp=chinook_resampS,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),start=1,end=1000)
## End(Not run)

chinook_survival Chinook salmon survival, raw data

Description

Raw Chinook salmon numbers alive and dead to hatching of offspring produced using an 11 x 11
full factorial breeding design.

Usage

data("chinook_survival")

Format

A data frame with 242 observations on the following 9 variables.

family, a factor with levels: f1 f10 f100 f101 f102 f103 f104 f105 f106 f107 f108 f109 f11
f110 f111 f112 f113 f114 f115 f116 f117 f118 f119 f12 f120 f121 f13 f14 f15 f16 f17
f18 f19 f2 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f3 f30 f31 f32 f33 f34 f35 f36 f37
f38 f39 f4 f40 f41 f42 f43 f44 f45 f46 f47 f48 f49 f5 f50 f51 f52 f53 f54 f55 f56 f57
f58 f59 f6 f60 f61 f62 f63 f64 f65 f66 f67 f68 f69 f7 f70 f71 f72 f73 f74 f75 f76 f77
f78 f79 f8 f80 f81 f82 f83 f84 f85 f86 f87 f88 f89 f9 f90 f91 f92 f93 f94 f95 f96 f97
f98 f99

repli, a factor with levels: r1 r2

dam, a factor with levels: d1 d10 d11 d2 d3 d4 d5 d6 d7 d8 d9

sire, a factor with levels: s1 s10 s11 s2 s3 s4 s5 s6 s7 s8 s9

tray, a factor with levels: t1 t10 t11 t12 t13 t14 t15 t16 t2 t3 t4 t5 t6 t7 t8 t9

cell, a factor with levels: 1A 1B 1C 1D 2A 2B 2C 2D 3A 3B 3C 3D 4A 4B 4C 4D

alive, a numeric vector.

dead, a numeric vector.

egg_size, a numeric vector.

Details

Also includes family identity, family replicate, incubator position (tray and cell), and average female
egg size (mm) information.

Source

http://link.springer.com.proxy1.lib.uwo.ca/article/10.1007
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References

Pitcher TE, Neff BD. 2007. Genetic quality and offspring performance in Chinook salmon: impli-
cations for supportive breeding. Conservation Genetics 8(3):607-616. DOI: 10.1007/s10592-006-
9204-z

Examples

data(chinook_survival)
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(2:6,9),one="alive",zero="dead")

## Standard additive genetic, non-additive genetic, and maternal variance analysis
## Not run: survival_mod1<- observGlmer(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit))
survival_mod1
## End(Not run)

ciJack Jackknife confidence intervals

Description

Extracts jackknife confidence intervals for additive genetic, non-additive genetic, and maternal vari-
ance components.

Usage

ciJack(comp, full, level = 95, rnd_r = 3, rnd_p = 1, trait = NULL)

Arguments

comp Data frame of jackknife resampling results.

full A vector of raw observed additive, non-additive, maternal, and total variance
component values for from the full observed data set, i.e. c(additive, non-
additive, maternal, total).

level Confidence level, as a percentage. Default is 95.

rnd_r Number of decimal places to round the confidence interval of raw values.

rnd_p Number of decimal places to round the confidence interval of percentage values.

trait Optional label for the phenotypic trait.
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Details

Used for jackknife resampling results produced using JackLmer for normal data or JackGlmer for
non-normal data. Jackknife confidence intervals, using pseudo-values are described by Efron and
Tibshirani (1993). The standard errors are calculated from the pseudo-values and the Student’s
t distribution is used to provide the lower and upper confidence values. For delete-d jackknife
resampling, M degrees of freedom are used for producing the confidence interval (Martin et al.
2004): M = N / d, where N is the total number of observations and d is the number of deleted
observations. That is, M is the number of row in the jackknife resampling results. Large values of
M, such as 1,000, can translate to the delete-d jackknife resampling method approaching bootstrap
resampling expectations (Efron & Tibshirani 1993).

Value

Prints a data frame containing the lower, median, and upper values of the jackknife confidence
interval for additive genetic, non-additive genetic, and maternal variance components. Values are
presented as raw and percentages of the total variance value within each row.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Martin, H., Westad, F. & Martens, H. (2004). Imporved Jackknife Variance Estimates of Bilinear
Model Parameters. COMPSTAT 2004 – Proceedings in Computational Statistics 16th Symposium
Held in Prague, Czech Republic, 2004 (ed J. Antoch), pp. 261-275. Physica-Verlag HD, Heidelberg.

See Also

ciJack2, ciJack3

Examples

data(chinook_jackL) #Chinook salmon offspring length, delete-one jackknife
ciJack(chinook_jackL,c(0.0000000,0.7192253,0.2029684,1.0404425))

ciJack2 Jackknife confidence intervals 2

Description

Extracts jackknife confidence intervals for additive genetic, non-additive genetic, and maternal vari-
ance components. Also extracts intervals for optional position and block variance components.

Usage

ciJack2(comp, full, level = 95, rnd_r = 3, rnd_p = 1, position = NULL, block = NULL,
trait = NULL)
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Arguments

comp Data frame of jackknife resampling results.
full A vector of raw observed additive, non-additive, maternal, and total variance

component values for from the full observed data set, i.e. c(additive, non-
additive, maternal, total, position/block). If there is a position and a block c(...,
maternal, position, block).

level Confidence level, as a percentage. Default is 95.
rnd_r Number of decimal places to round the confidence interval of raw values.
rnd_p Number of decimal places to round the confidence interval of percentage values.
position Optional column name containing position factor information.
block Optional column name containing block factor information.
trait Optional label for the phenotypic trait.

Details

Used for jackknife resampling results produced using JackLmer2 for normal data or JackGlmer2
for non-normal data. Jackknife confidence intervals, using pseudo-values are described by Efron
and Tibshirani (1993). The standard errors are calculated from the pseudo-values and the Student’s
t distribution is used to provide the lower and upper confidence values. For delete-d jackknife
resampling, M degrees of freedom are used for producing the confidence interval (Martin et al.
2004): M = N / d, where N is the total number of observations and d is the number of deleted
observations. That is, M is the number of row in the jackknife resampling results. Large values of
M, such as 1,000, can translate to the delete-d jackknife resampling method approaching bootstrap
resampling expectations (Efron & Tibshirani 1993).

Value

Prints a data frame containing the lower, median, and upper values of the jackknife confidence
interval for additive genetic, non-additive genetic, maternal variance components, and optional po-
sition and/or block variance components. Values are presented as raw and percentages of the total
variance value within each row.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Martin, H., Westad, F. & Martens, H. (2004). Imporved Jackknife Variance Estimates of Bilinear
Model Parameters. COMPSTAT 2004 – Proceedings in Computational Statistics 16th Symposium
Held in Prague, Czech Republic, 2004 (ed J. Antoch), pp. 261-275. Physica-Verlag HD, Heidelberg.

See Also

ciJack, ciJack3

Examples

data(chinook_jackL) #Chinook salmon offspring length, delete-one jackknife
ciJack2(chinook_jackL,c(0.0000000,0.7192253,0.2029684,1.0404425,0.1077423),position="tray")
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ciJack3 Jackknife confidence intervals 3

Description

Extracts jackknife confidence intervals for additive genetic, non-additive genetic, and maternal vari-
ance components. Also extracts intervals for additional fixed and random effects.

Usage

ciJack3(comp, full, remain = NULL, level = 95, rnd_r = 3, rnd_p = 1, trait = NULL)

Arguments

comp Data frame of jackknife resampling results

full A vector of raw observed additive, non-additive, maternal, and total variance
component values for from the full observed data set, i.e. c(additive, non-
additive, maternal, total). Followed by any other components in the order of
the vector remain, i.e. c(additive, non-additive, maternal, total, component1,
component2, ...).

remain Vector of column names for additional effects

level Confidence level, as a percentage. Default is 95.

rnd_r Number of decimal places to round the confidence interval of raw values.

rnd_p Number of decimal places to round the confidence interval of percentage values.

trait Optional label for the phenotypic trait.

Details

Used for jackknife resampling results produced using JackLmer3 for normal data or JackGlmer3
for non-normal data. Jackknife confidence intervals, using pseudo-values are described by Efron
and Tibshirani (1993). The standard errors are calculated from the pseudo-values and the Student’s
t distribution is used to provide the lower and upper confidence values. For delete-d jackknife
resampling, M degrees of freedom are used for producing the confidence interval (Martin et al.
2004): M = N / d, where N is the total number of observations and d is the number of deleted
observations. That is, M is the number of row in the jackknife resampling results. Large values of
M, such as 1,000, can translate to the delete-d jackknife resampling method approaching bootstrap
resampling expectations (Efron & Tibshirani 1993).

Value

Prints a data frame containing the lower, median, and upper values of the jackknife confidence in-
terval for additive genetic, non-additive genetic, maternal variance components, and any additional
fixed effect and random effect variance components. Values are presented as raw and percentages
of the total variance value within each row.



ciMANA 23

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Martin, H., Westad, F. & Martens, H. (2004). Imporved Jackknife Variance Estimates of Bilinear
Model Parameters. COMPSTAT 2004 – Proceedings in Computational Statistics 16th Symposium
Held in Prague, Czech Republic, 2004 (ed J. Antoch), pp. 261-275. Physica-Verlag HD, Heidelberg.

See Also

ciJack, ciJack2

Examples

data(chinook_jackL) #Chinook salmon offspring length, delete-one jackknife
ciJack3(chinook_jackL,c(0.0000000,0.7192253,0.2029684,1.0404425,0.1077423,0.5499255),
remain=c("tray","Residual"))

ciMANA Bootstrap confidence intervals

Description

Extracts bootstrap-t confidence intervals for additive genetic, non-additive genetic, and maternal
variance components.

Usage

ciMANA(comp, level = 95, rnd_r = 3, rnd_p = 1, bias = NULL, accel = NULL, trait = NULL)

Arguments

comp Data frame of bootstrap resampling results.
level Confidence level, as a percentage. Default is 95.
rnd_r Number of decimal places to round the confidence interval of raw values.
rnd_p Number of decimal places to round the confidence interval of percentage values.
bias Optional vector of raw observed additive, non-additive, and maternal, variance

component values for bias correction, i.e. c(additive, non-additive, maternal,
total).

accel Optional data frame of jackknifed data model results for acceleration correction.
trait Optional label for the phenotypic trait.

Details

Used for bootstrap resampling results produced using resampLmer for normal data or resampGlmer
for non-normal data. Bootstrap-t confidence intervals, including bias and acceleration correction
methods are described by Efron and Tibshirani (1993). Jackknife data model results for acceleration
correction can be produced using JackLmer, for normal data or JackGlmer for non-normal data.
The ’bias fail’ warning is if the bias calculation is Inf or -Inf, e.g. bias contains a zero value, so the
uncorrected confidence interval is displayed.



24 ciMANA2

Value

Prints a data frame containing the lower, median, and upper values of the bootstrap-t confidence
interval for additive genetic, non-additive genetic, and maternal variance components. Values are
presented as raw and percentages of the total variance value within each row.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

See Also

ciMANA2, ciMANA3

Examples

#Import bootstrap resampled data model results
data(chinook_bootL) #Chinook salmon offspring length

#Extract un-corrected confidence interval
ciMANA(comp=chinook_bootL)

#Extract bias corrected confidence interval
ciMANA(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684))
#see details for 'bias' fail

#Extract bias and accelerated corrected confidence interval
#Import jackknife resampled data model results
data(chinook_jackL)
#
ciMANA(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684),accel=chinook_jackL)
#see details for 'bias' fail

ciMANA2 Bootstrap confidence intervals 2

Description

Extracts bootstrap-t confidence intervals for additive genetic, non-additive genetic, and maternal
variance components. Also extracts intervals for optional position and block variance components.

Usage

ciMANA2(comp, level = 95, rnd_r = 3, rnd_p = 1, position = NULL, block = NULL,
bias = NULL, accel = NULL, trait = NULL)
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Arguments

comp Data frame of bootstrap resampling results.

level Confidence level, as a percentage. Default is 95.

rnd_r Number of decimal places to round the confidence interval of raw values.

rnd_p Number of decimal places to round the confidence interval of percentage values.

position Optional column name containing position factor information.

block Optional column name containing block factor information.

bias Optional vector of raw observed additive, non-additive, maternal, position and/or
block variance component values for bias correction, i.e. c(additive, non-additive,
maternal, position/block). If there is a position and a block c(..., maternal, posi-
tion, block).

accel Optional data frame of jackknifed data model results for acceleration correction.

trait Optional label for the phenotypic trait.

Details

Used for bootstrap resampling results produced using resampLmer2 for normal data or resampGlmer2
for non-normal data. Bootstrap-t confidence intervals, including bias and acceleration correction
methods are described by Efron and Tibshirani (1993). Jackknife data model results for accelera-
tion correction can be produced using JackLmer2, for normal data or JackGlmer2 for non-normal
data. The ’bias fail’ warning is if the bias calculation is Inf or -Inf, e.g. bias contains a zero value,
so the uncorrected confidence interval is displayed.

Value

Prints a data frame containing the lower, median, and upper values of the bootstrap-t confidence
interval for additive genetic, non-additive genetic, maternal, and optional position and/or block
variance components. Values are presented as raw and percentages of the total variance value
within each row.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

See Also

ciMANA, ciMANA3

Examples

#Import bootstrap resampled data model results
data(chinook_bootL) #Chinook salmon offspring length

#Extract un-corrected confidence interval
ciMANA2(comp=chinook_bootL,position="tray")
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#Extract bias corrected confidence interval
ciMANA2(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684,0.1077423),position="tray")
#see details for 'bias' fail

#Extract bias and accelerated corrected confidence interval
#Import jackknife resampled data model results
data(chinook_jackL)
#
ciMANA2(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684,0.1077423),
accel=chinook_jackL,position="tray")
#see details for 'bias' fail

ciMANA3 Bootstrap confidence intervals 3

Description

Extracts bootstrap-t confidence intervals for additive genetic, non-additive genetic, and maternal
variance components. Also extracts intervals for additional fixed and random effects.

Usage

ciMANA3(comp, level = 95, rnd_r = 3, rnd_p = 1, bias = NULL, accel = NULL,
remain = NULL, trait = NULL)

Arguments

comp Data frame of bootstrap resampling results.

level Confidence level, as a percentage. Default is 95.

rnd_r Number of decimal places to round the confidence interval of raw values.

rnd_p Number of decimal places to round the confidence interval of percentage values.

bias Optional vector of raw observed additive, non-additive, and maternal variance
components for bias correction. Followed by any other components in the or-
der of the vector remain, i.e. c(additive, non-additive, maternal, component1,
component2, ...).

accel Optional data frame of jackknifed data model results for acceleration correction.

remain Vector of column names for additional effects.

trait Optional label for the phenotypic trait.

Details

Used for bootstrap resampling results produced using resampLmer3 for normal data or resampGlmer3
for non-normal data. Bootstrap-t confidence intervals, including bias and acceleration correction
methods are described by Efron and Tibshirani (1993). Jackknife data model results for accelera-
tion correction can be produced using JackLmer3, for normal data or JackGlmer3 for non-normal
data. The ’bias fail’ warning is if the bias calculation is Inf or -Inf, e.g. bias contains a zero value,
so the uncorrected confidence interval is displayed.
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Value

Prints a data frame containing the lower, median, and upper values of the bootstrap-t confidence
interval for additive genetic, non-additive genetic, maternal, and any additional fixed effect and ran-
dom effect variance components. Values are presented as raw and percentages of the total variance
value within each row.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

See Also

ciMANA, ciMANA2

Examples

#Import bootstrap resampled data model results
data(chinook_bootL) #Chinook salmon offspring length

#Extract un-corrected confidence interval
ciMANA3(comp=chinook_bootL,remain=c("tray","Residual"))

#Extract bias corrected confidence interval
ciMANA3(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684,0.1077423,0.5499255),
remain=c("tray","Residual"))
#see details for 'bias' fail

#Extract bias and accelerated corrected confidence interval
#Import jackknife resampled data model results
data(chinook_jackL)
#
ciMANA3(comp=chinook_bootL,bias=c(0.0000000,0.7192253,0.2029684,0.1077423,0.5499255),
accel=chinook_jackL,remain=c("tray","Residual"))

JackGlmer Jackknife components for non-normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire.

Usage

JackGlmer(observ, dam, sire, response, fam_link, quasi = F, size = 1, first = NULL)
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Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

quasi Incorporate overdispersion or quasi-error structure.

size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife
resampling occurs removing a block d equal to size.

first Number of initial sub-samples to run. Useful for examing if there is variation
among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of obser-
vations of size d is deleted sequentially. Laplace approximation parameter estimation is used, which
is a true likelihood method (Bolker et al. 2009). For the overdispersion option, an observation-level
random effect is added to the model (Atkins et al. 2013). Extracts the dam, sire, dam, and dam
by sire variance components. The residual variance component for the fam_links are described by
Nakagawa and Schielzeth (2010, 2013). Calculates the total variance component. Calculates the
additive genetic, non-additive genetic, and maternal variance components (see Lynch and Walsh
1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. The number of rows in the
data frame matches the total number of observations (N) for delete-one jackknife resampling or M
groups for delete-d jackknife resampling to the lowest integer. Each row represents a deleted single
observation or deleted d observations group.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.
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Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

JackGlmer2, JackGlmer3

Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(1:6,9),one="alive",zero="dead")

#Delete-one
## Not run: survival_jack1<- JackGlmer(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit))
## End(Not run)

#Delete-d, d=36
## Not run: survival_jack1.2<- JackGlmer(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),size=36)
## End(Not run)

JackGlmer2 Jackknife components for non-normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire. Options to include one random position and/or one random block effect(s).
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Usage

JackGlmer2(observ, dam, sire, response, fam_link, position = NULL, block = NULL,
quasi = F, size = 1, first = NULL)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

position Optional column name containing position factor information.

block Optional column name containing block factor information.

quasi Incorporate overdispersion or quasi-error structure.

size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife
resampling occurs removing a block d equal to size.

first Number of initial sub-samples to run. Useful for examing if there is variation
among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of obser-
vations of size d is deleted sequentially. Laplace approximation parameter estimation is used, which
is a true likelihood method (Bolker et al. 2009). For the overdispersion option, an observation-level
random effect is added to the model (Atkins et al. 2013). Extracts the dam, sire, dam, and dam by
sire variance components. Extracts optional position and block variance components. The resid-
ual variance component for the fam_links are described by Nakagawa and Schielzeth (2010, 2013).
Calculates the total variance component. Calculates the additive genetic, non-additive genetic, and
maternal variance components (see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for the options of position and/or block. The number of rows in the
data frame matches the total number of observations (N) for delete-one jackknife resampling or M
groups for delete-d jackknife resampling to the lowest integer. Each row represents a deleted single
observation or deleted d observations group.
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Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

JackGlmer, JackGlmer3

Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(1:6,9),one="alive",zero="dead")

#Delete-one
## Not run: survival_jack2<- JackGlmer2(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),position="tray")
## End(Not run)

#Delete-d, d=36
## Not run: survival_jack2.2<- JackGlmer2(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),position="tray",size=36)
## End(Not run)
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JackGlmer3 Jackknife components for non-normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, dam by sire, and any additional fixed and/or random effects.

Usage

JackGlmer3(observ, dam, sire, response, fam_link, remain, quasi = F, size = 1,
first = NULL)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

remain Remaining formula with # using lme4 package formula.

quasi Incorporate overdispersion or quasi-error structure.

size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife
resampling occurs removing a block d equal to size.

first Number of initial sub-samples to run. Useful for examing if there is variation
among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of obser-
vations of size d is deleted sequentially. Laplace approximation parameter estimation is used, which
is a true likelihood method (Bolker et al. 2009). For the overdispersion option, an observation-level
random effect is added to the model (Atkins et al. 2013). Extracts the dam, sire, dam, and dam
by sire variance components. Extracts any additional fixed effect and random effect variance com-
ponents. The fixed-effect variance component is as a single group using the method described by
Nakagawa and Schielzeth (2013). The residual variance component for the fam_links are described
by Nakagawa and Schielzeth (2010, 2013). Calculates the total variance component. Calculates
the additive genetic, non-additive genetic, and maternal variance components (see Lynch and Walsh
1998, p. 603).
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Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for remaining formula components. The number of rows in the data frame
matches the total number of observations (N) for delete-one jackknife resampling or M groups for
delete-d jackknife resampling to the lowest integer. Each row represents a deleted single observation
or deleted d observations group.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

JackGlmer, JackGlmer2

Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(1:6,9),one="alive",zero="dead")

#Delete-one
## Not run: survival_jack3<- JackGlmer3(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),remain="egg_size + (1|tray)")
## End(Not run)
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#Delete-d, d=36
## Not run: survival_jack3.2<- JackGlmer3(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),remain="egg_size + (1|tray)",size=36)
## End(Not run)

JackLmer Jackknife components for normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire.

Usage

JackLmer(observ, dam, sire, response, ml = F, size = 1, first = NULL)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife
resampling occurs removing a block d equal to size.

first Number of initial sub-samples to run. Useful for examing if there is variation
among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of
observations of size d is deleted sequentially. Extracts the dam, sire, dam, dam by sire, and residual
variance components. Calculates the total variance component. Calculates the additive genetic,
non-additive genetic, and maternal variance components (see Lynch and Walsh 1998, p. 603).
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Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. The number of rows in the
data frame matches the total number of observations (N) for delete-one jackknife resampling or M
groups for delete-d jackknife resampling to the lowest integer. Each row represents a deleted single
observation or deleted d observations group.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

JackLmer2, JackLmer3

Examples

data(chinook_length) #Chinook salmon offspring length

#Delete-one
#length_jack1<- JackLmer(observ=chinook_length,dam="dam",sire="sire",response="length")
length_jack1<- JackLmer(observ=chinook_length,dam="dam",sire="sire",response="length",
first=2) #first 2

#Delete-d, d=5
#length_jack1.2<- JackLmer(observ=chinook_length,dam="dam",sire="sire",response="length",
#size=5)
length_jack1.2<- JackLmer(observ=chinook_length,dam="dam",sire="sire",response="length",
size=5,first=2) #first 2
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JackLmer2 Jackknife components for normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire. Options to include one random position and/or one random block effect(s).

Usage

JackLmer2(observ, dam, sire, response, position = NULL, block = NULL, ml = F, size = 1,
first = NULL)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

position Optional column name containing position factor information.

block Optional column name containing block factor information.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife
resampling occurs removing a block d equal to size.

first Number of initial sub-samples to run. Useful for examing if there is variation
among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of
observations of size d is deleted sequentially. Extracts the dam, sire, dam, dam by sire, and resid-
ual variance components. Extracts optional position and block variance components. Calculates
the total variance component. Calculates the additive genetic, non-additive genetic, and maternal
variance components (see Lynch and Walsh 1998, p. 603).
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Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for the options of position and/or block. The number of rows in the
data frame matches the total number of observations (N) for delete-one jackknife resampling or M
groups for delete-d jackknife resampling to the lowest integer. Each row represents a deleted single
observation or deleted d observations group.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

JackLmer, JackLmer3

Examples

data(chinook_length) #Chinook salmon offspring length

#Delete-one
#length_jack2<- JackLmer2(observ=chinook_length,dam="dam",sire="sire",response="length",
#position="tray")
length_jack2<- JackLmer2(observ=chinook_length,dam="dam",sire="sire",response="length",
position="tray",first=2) #first 2

#Delete-d, d=5
#length_jack2.2<- JackLmer2(observ=chinook_length,dam="dam",sire="sire",response="length",
#position="tray",size=5)
length_jack2.2<- JackLmer2(observ=chinook_length,dam="dam",sire="sire",response="length",
position="tray",size=5,first=2) #first 2



38 JackLmer3

JackLmer3 Jackknife components for normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, dam by sire, and any additional fixed and/or random effects.

Usage

JackLmer3(observ, dam, sire, response, remain, ml = F, size = 1, first = NULL)

Arguments

observ Data frame of observed data
dam Column name containing dam(female) parent identity information.
sire Column name containing sire(male) parent identity information.
response Column name containing the offspring (response) phenotype values.
remain Remaining formula with # using lme4 package format.
ml Default is FALSE for restricted maximum likelihood. Change to TRUE for

maximum likelihood.
size Default is 1 for delete-one jackknife resampling. If size > 1, delete-d jackknife

resampling occurs removing a block d equal to size.
first Number of initial sub-samples to run. Useful for examing if there is variation

among sub-samples before jackknife resampling the entire data set. There can
be little varitation for delete-one jackknife resampling with large data sets, and
delete-d jackknife resampling should be considered.

Details

Uses delete-one jackknife resampling (Efron & Tibshirani 1993, p. 141-145). For the option of
delete-d jackknife resampling, the rows of the observed data frame are shuffled and a block of
observations of size d is deleted sequentially. Extracts the dam, sire, dam, dam by sire, and residual
variance components. Extracts any additional fixed effect and random effect variance components.
The fixed-effect variance component is as a single group using the method described by Nakagawa
and Schielzeth (2013). Calculates the total variance component. Calculates the additive genetic,
non-additive genetic, and maternal variance components (see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for remaining formula components. The number of rows in the data frame
matches the total number of observations (N) for delete-one jackknife resampling or M groups for
delete-d jackknife resampling to the lowest integer. Each row represents a deleted single observation
or deleted d observations group.
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Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Efron B, Tibshirani R. 1993. An introduction to the Bootstrap. Chapman and Hall, New York.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

JackLmer, JackLmer2

Examples

data(chinook_length) #Chinook salmon offspring length

#Delete-one
#length_jack3<- JackLmer3(observ=chinook_length,dam="dam",sire="sire",response="length",
#remain="egg_size + (1|tray)")
length_jack3<- JackLmer3(observ=chinook_length,dam="dam",sire="sire",response="length",
remain="egg_size + (1|tray)",first=2) #first 2

#Delete-d, d=5
#length_jack3.2<- JackLmer3(observ=chinook_length,dam="dam",sire="sire",response="length",
#remain="egg_size + (1|tray)",size=5)
length_jack3.2<- JackLmer3(observ=chinook_length,dam="dam",sire="sire",response="length",
remain="egg_size + (1|tray)",size=5,first=2) #first 2

observGlmer Variance components for non-normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, and dam by sire.
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Usage

observGlmer(observ, dam, sire, response, fam_link, quasi = F)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

quasi Incorporate overdispersion or quasi-error structure.

Details

Laplace approximation parameter estimation is used, which is a true likelihood method (Bolker et
al. 2009). For the overdispersion option, an observation-level random effect is added to the model
(Atkins et al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. The resid-
ual variance component for the fam_links are described by Nakagawa and Schielzeth (2010, 2013).
Calculates the total variance component. Calculates the additive genetic, non-additive genetic, and
maternal variance components (see Lynch and Walsh 1998, p. 603). Significance values for the
random effects are determined using likelihood ratio tests (Bolker et al. 2009).

Value

A list object containing the raw variance components, the variance components as a percentage of
the total variance component. Also, contains the difference in AIC and BIC, and likelihood ratio
test Chi-square and p-value for all random effects.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008
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Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

observGlmer2, observGlmer3

Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(2:6,9),one="alive",zero="dead")
#
## Not run: survival_mod1<- observGlmer(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit)) #a few minutes
survival_mod1
## End(Not run)

observGlmer2 Variance components for non-normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, and dam by sire. Options to include one random position and/or one random block
effect(s).

Usage

observGlmer2(observ, dam, sire, response, fam_link, position = NULL, block = NULL,
quasi = F)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).
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position Optional column name containing position factor information.

block Optional column name containing block factor information.

quasi Incorporate overdispersion or quasi-error structure.

Details

Laplace approximation parameter estimation is used, which is a true likelihood method (Bolker et
al. 2009). For the overdispersion option, an observation-level random effect is added to the model
(Atkins et al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. Extracts op-
tional position and block variance components. The residual variance component for the fam_links
are described by Nakagawa and Schielzeth (2010, 2013). Calculates the total variance component.
Calculates the additive genetic, non-additive genetic, and maternal variance components (see Lynch
and Walsh 1998, p. 603). Significance values for the random effects are determined using likelihood
ratio tests (Bolker et al. 2009).

Value

A list object containing the raw variance components, the variance components as a percentage of
the total variance component. Also, contains the difference in AIC and BIC, and likelihood ratio
test Chi-square and p-value for all random effects.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x
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See Also

observGlmer, observGlmer3

Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(2:6,9),one="alive",zero="dead")
#
## Not run: survival_mod2<- observGlmer2(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),position="tray") #a few minutes
survival_mod2
## End(Not run)

observGlmer3 Variance components for non-normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, dam by sire, and any additional fixed and/or random effects.

Usage

observGlmer3(observ, dam, sire, response, fam_link, remain, quasi = F, iter = 1000)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

remain Remaining formula using lme4 package format.

quasi Incorporate overdispersion or quasi-error structure.

iter Number of iterations for computing the parametric bootstrap significance value
for any fixed effects.
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Details

Laplace approximation parameter estimation is used, which is a true likelihood method (Bolker et
al. 2009). For the overdispersion option, an observation-level random effect is added to the model
(Atkins et al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. Extracts
any additional fixed effect and random effect variance components. The fixed-effect variance com-
ponent is as a single group using the method described by Nakagawa and Schielzeth (2013). The
residual variance component for the fam_links are described by Nakagawa and Schielzeth (2010,
2013). Calculates the total variance component. Calculates the additive genetic, non-additive ge-
netic, and maternal variance components (see Lynch and Walsh 1998, p. 603). Significance values
for the random effects are determined using likelihood ratio tests (Bolker et al. 2009). Significance
values for any fixed effects are determined using likelihood ratio tests and a parametric bootstrap
method (Bolker et al. 2009) from the mixed function of the afex package.

Value

A list object containing the raw variance components, the variance components as a percentage
of the total variance component. Contains the difference in AIC and BIC, likelihood ratio test
Chi-square and p-value for both random and fixed effects. Also contains the parametric bootstrap
p-value for fixed effects.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

observGlmer, observGlmer2
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Examples

data(chinook_survival) #Chinook salmon offspring survival
## Convert replicate-level recorded data to individual-level (binary) data
chinook_survival2<- buildBinary(dat=chinook_survival,copy=c(2:6,9),one="alive",zero="dead")
#just a few iterations for the p-value of fixed effect
## Not run: survival_mod3<- observGlmer3(observ=chinook_survival2,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),remain="egg_size + (1|tray)",iter=5)

survival_mod3
## End(Not run)

observLmer Variance components for normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire.

Usage

observLmer(observ, dam, sire, response, ml = F)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

Details

Extracts the dam, sire, dam, dam by sire, and residual variance components. Calculates the total
variance component. Calculates the additive genetic, non-additive genetic, and maternal variance
components (see Lynch and Walsh 1998, p. 603). Significance values for the random effects are
determined using likelihood ratio tests (Bolker et al. 2009).

Value

A list object containing the raw variance components, the variance components as a percentage of
the total variance component. Also, contains the difference in AIC and BIC, and likelihood ratio
test Chi-square and p-value for all random effects.
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Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

observLmer2, observLmer3

Examples

data(chinook_length) #Chinook salmon offspring length
length_mod1<- observLmer(observ=chinook_length,dam="dam",sire="sire",response="length")
length_mod1

observLmer2 Variance components for normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire. Options to include one random position and/or one random block effect(s).

Usage

observLmer2(observ, dam, sire, response, position = NULL, block = NULL, ml = F)
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Arguments

observ Data frame of observed data.
dam Column name containing dam(female) parent identity information.
sire Column name containing sire(male) parent identity information.
response Column name containing the offspring (response) phenotype values.
position Optional column name containing position factor information.
block Optional column name containing block factor information.
ml Default is FALSE for restricted maximum likelihood. Change to TRUE for

maximum likelihood.

Details

Extracts the dam, sire, dam, dam by sire, and residual variance components. Extracts optional
position and block variance components. Calculates the total variance component. Calculates the
additive genetic, non-additive genetic, and maternal variance components (see Lynch and Walsh
1998, p. 603). Significance values for the random effects are determined using likelihood ratio tests
(Bolker et al. 2009).

Value

A list object containing the raw variance components, the variance components as a percentage of
the total variance component. Also, contains the difference in AIC and BIC, and likelihood ratio
test Chi-square and p-value for all random effects.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

observLmer, observLmer3
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Examples

data(chinook_length) #Chinook salmon offspring length
length_mod2<- observLmer2(observ=chinook_length,dam="dam",sire="sire",response="length",
position="tray")
length_mod2

observLmer3 Variance components for normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, dam by sire, and any additional fixed and/or random effects.

Usage

observLmer3(observ, dam, sire, response, remain, ml = F, iter = 1000)

Arguments

observ Data frame of observed data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

remain Remaining formula using lme4 package format.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

iter Number of iterations for computing the parametric bootstrap significance value
for any fixed effects.

Details

Extracts the dam, sire, dam, dam by sire, and residual variance components. Extracts any additional
fixed effect and random effect variance components. The fixed-effect variance component is as a
single group using the method described by Nakagawa and Schielzeth (2013). Calculates the total
variance component. Calculates the additive genetic, non-additive genetic, and maternal variance
components (see Lynch and Walsh 1998, p. 603). Significance values for the random effects are
determined using likelihood ratio tests (Bolker et al. 2009). Significance values for any fixed effects
are determined using likelihood ratio tests and a parametric bootstrap method (Bolker et al. 2009)
from the mixed function of the afex package.
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Value

A list object containing the raw variance components, the variance components as a percentage
of the total variance component. Contains the difference in AIC and BIC, likelihood ratio test
Chi-square and p-value for both random and fixed effects. Also contains the parametric bootstrap
p-value for fixed effects.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

observLmer, observLmer2

Examples

data(chinook_length) #Chinook salmon offspring length
#just a few iterations for the p-value of fixed effect
length_mod3<- observLmer3(observ=chinook_length,dam="dam",sire="sire",response="length",
remain="egg_size + (1|tray)",iter=5)
length_mod3
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powerGlmer Power analysis for non-normal data

Description

Extracts the power values of dam, sire, and dam by sire variance components from a generalized
linear mixed-effect model using the glmer function of the lme4 package.

Usage

powerGlmer(varcomp, nval, fam_link, alpha = 0.05, nsim = 100, poisLog = NULL)

Arguments

varcomp Vector of known dam, sire, and dam by sire variance components, i.e. c(dam,sire,ds).

nval Vector of known dam, sire, and offspring per family sample sizes, i.e. c(dam,sire,
offspring).

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

alpha Statistical significance value. Default is 0.05.

nsim Number of simulations. Default is 100.

poisLog Known poisson(log) variance component value.

Details

Extracts the dam, sire, dam, and dam by sire power values. The residual variance component for the
fam_links are described by Nakagawa and Schielzeth (2010, 2013). Power values are calculated by
stochastically simulation data and then calculating the proportion of significance values less than
alpha for each component (Bolker 2008). Significance values for the random effects are determined
using likelihood ratio tests (Bolker et al. 2009).

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.
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References
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See Also

powerGlmer2, powerGlmer3

Examples

#100 simulations
## Not run: pwr_G1<- powerGlmer(varcomp=c(1,0.15,0.11),nval=c(10,10,20),fam_link=binomial(logit))
pwr_G1
## End(Not run)

powerGlmer2 Power analysis for non-normal data 2

Description

Extracts the power values of dam, sire, and dam by sire variance components from a generalized
linear mixed-effect model using the glmer function of the lme4 package. Options to include one
random position and/or one random block effect(s).

Usage

powerGlmer2(varcomp, nval, fam_link, alpha = 0.05, nsim = 100, position = NULL,
block = NULL, poisLog = NULL)

Arguments

varcomp Vector of known dam, sire, dam by sire, and position and/or block variance
components, i.e. c(dam,sire,ds,position/block). If there is a position and a block
c(..., ds, position, block).

nval Vector of known dam, sire, offspring per family, and position and/or block sam-
ple sizes, i.e. c(dam,sire,offspring,position/block). If there is a position and a
block c(..., offspring, position, block).
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fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

alpha Statistical significance value. Default is 0.05.
nsim Number of simulations. Default is 100.
position Optional number of replicates to divide the number of offspring for the number

of positions.
block Optional vector of dams and sires per block, e.g. c(2,2).
poisLog Known poisson(log) variance component value.

Details

Extracts the dam, sire, dam, dam by sire, and position and/or block power values. The residual
variance component for the fam_links are described by Nakagawa and Schielzeth (2010, 2013).
Power values are calculated by stochastically simulation data and then calculating the proportion of
significance values less than alpha for each component (Bolker 2008). Significance values for the
random effects are determined using likelihood ratio tests (Bolker et al. 2009).

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jersey.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

powerGlmer, powerGlmer3
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Examples

#100 simulations
## Not run: pwr_G2<- powerGlmer2(varcomp=c(1,0.15,0.11,0.5),nval=c(10,10,20,10),
fam_link=binomial(logit),position=2)
pwr_G2
## End(Not run)

powerGlmer3 Power analysis for non-normal data 3

Description

Extracts the power values of dam, sire, and dam by sire variance components from a generalized lin-
ear mixed-effect model using the glmer function of the lme4 package. Model can include additional
fixed and/or random effects.

Usage

powerGlmer3(var_rand, n_rand, design, remain, fam_link, var_fix = NULL, n_fix = NULL,
alpha = 0.05, nsim = 100, poisLog = NULL, ftest = "LR", iter = NULL)

Arguments

var_rand Vector of known dam, sire, dam by sire, and remaining random variance com-
ponents, i.e. c(dam,sire,ds,rand1,rand2,...).

n_rand Vector of known dam, sire, family, and remaining random sample sizes, i.e.
c(dam,sire,family,rand1,rand2,...).

design A data frame of the experimental design, using only integers. First three columns
must contain and be named "dam", "sire", "family". Remaining columns are the
random effects followed by the fixed effects. Continuous fixed effects are a
column containing the values 1:nrow(design).

remain Remaining formula using lme4 package format. Must be random effects fol-
lowed by fixed effects. No interactions or random slopes; formulate as intercepts
in design.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

var_fix Vector of known fixed variance components, i.e. c(fix1,fix2,...). Continous fixed
random values are sorted to match column values.

n_fix Vector of known fixed sample sizes, i.e. c(fix1,fix2,...). Continuous fixed effects
must have a sample size of 1.

alpha Statistical significance value. Default is 0.05.

nsim Number of simulations. Default is 100.

poisLog Known poisson(log) variance component value.
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ftest Default is "LR" for likelihood ratio test for fixed effects. Option "PB" is for
parametric bootstrap.

iter Number of iterations for computing the parametric bootstrap significance value
for any fixed effects.

Details

Extracts the dam, sire, dam, dam by sire, and any remaining random and fixed effects power val-
ues. The residual variance component for the fam_links are described by Nakagawa and Schielzeth
(2010, 2013). Power values are calculated by stochastically simulation data and then calculating
the proportion of significance values less than alpha for each component (Bolker 2008). Signifi-
cance values for the random effects are determined using likelihood ratio tests (Bolker et al. 2009).
Significance values for any fixed effects are determined using likelihood ratio tests or parametric
bootstrap method (Bolker et al. 2009) from the mixed function of the afex package.

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jersey.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

powerGlmer, powerGlmer2



powerLmer 55

Examples

##design object: 2 remaining random effects and 1 continous fixed effect
block=c(2,2); blocN=10; position=2; posN=10; offN=20
dam0<- stack(as.data.frame(matrix(1:(block[1]*blocN),ncol=blocN,nrow=block[1])))
sire0<- stack(as.data.frame(matrix(1:(block[2]*blocN),ncol=blocN,nrow=block[2])))
observ0<- merge(dam0,sire0, by="ind")
levels(observ0[,1])<- 1:blocN; colnames(observ0)<- c("block","dam","sire")
observ0$family<- 1:nrow(observ0) #add family
#expand for position
observ1<- do.call("rbind", replicate(position,observ0,simplify=FALSE));rm(observ0)
observ1$position<- sample(rep(1:posN,each=position)) #random assignment
#expand for offspring
observ<- do.call("rbind", replicate(offN,observ1,simplify=FALSE)); rm(observ1)
desn<- observ[,c(2,3,4,5,1)];rm(observ) #dam,sire,family,position,block
desn$egg_size<- 1:nrow(desn)
colnames(desn)[6]<- "egg_size"

#100 simulations
## Not run: pwr_G3<- powerGlmer3(var_rand=c(1,0.15,0.11,0.5,0.3),n_rand=c(20,20,40,10,10),
fam_link=binomial(logit),var_fix=0.1,n_fix=1,design=desn,
remain="(1|position)+(1|block)+egg_size")
pwr_G3
## End(Not run)

powerLmer Power analysis for normal data

Description

Extracts the power values of dam, sire, and dam by sire variance components from a linear mixed-
effect model using the lmer function of the lme4 package.

Usage

powerLmer(varcomp, nval, alpha = 0.05, nsim = 100, ml = F)

Arguments

varcomp Vector of known dam, sire, dam by sire, and residual variance components, i.e.
c(dam,sire,ds,res).

nval Vector of known dam, sire, and offspring per family sample sizes, i.e. c(dam,sire,
offspring).

alpha Statistical significance value. Default is 0.05.

nsim Number of simulations. Default is 100.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.
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Details

Extracts the dam, sire, dam, and dam by sire power values. Power values are calculated by stochas-
tically simulation data and then calculating the proportion of significance values less than alpha for
each component (Bolker 2008). Significance values for the random effects are determined using
likelihood ratio tests (Bolker et al. 2009).

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jersey.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

powerLmer2, powerLmer3

Examples

#100 simulations
#pwr_L1<- powerLmer(varcomp=c(0.19,0.03,0.02,0.76),nval=c(10,10,20))
#pwr_L1
#5simulations
pwr_L1<- powerLmer(varcomp=c(0.19,0.03,0.02,0.76),nval=c(10,10,20),nsim=5)
pwr_L1
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powerLmer2 Power analysis for normal data 2

Description

Extracts the power values of dam, sire, and dam by sire variance components from a linear mixed-
effect model using the lmer function of the lme4 package. Options to include one random position
and/or one random block effect(s).

Usage

powerLmer2(varcomp, nval, alpha = 0.05, nsim = 100, position = NULL, block = NULL,
ml = F)

Arguments

varcomp Vector of known dam, sire, dam by sire, residual, and position and/or block
variance components, i.e. c(dam,sire,ds,res,position/block). If there is a position
and a block c(..., res, position, block).

nval Vector of known dam, sire, offspring per family, and position and/or block sam-
ple sizes, i.e. c(dam,sire,offspring,position/block). If there is a position and a
block c(..., offspring, position, block).

alpha Statistical significance value. Default is 0.05.

nsim Number of simulations. Default is 100.

position Optional number of replicates to divide the number of offspring for the number
of positions.

block Optional vector of dams and sires per block, e.g. c(2,2).

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

Details

Extracts the dam, sire, dam, dam by sire, and position and/or block power values. Power values
are calculated by stochastically simulation data and then calculating the proportion of significance
values less than alpha for each component (Bolker 2008). Significance values for the random effects
are determined using likelihood ratio tests (Bolker et al. 2009).

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.
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Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jersey.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

powerLmer, powerLmer3

Examples

#100 simulations
## Not run: pwr_L2<- powerLmer2(varcomp=c(0.19,0.03,0.02,0.66,0.1),nval=c(10,10,20,10),
position=2)
pwr_L2
## End(Not run)

powerLmer3 Power analysis for normal data 3

Description

Extracts the power values of dam, sire, and dam by sire variance components from a linear mixed-
effect model using the lmer function of the lme4 package. Model can include additional fixed and/or
random effects.

Usage

powerLmer3(var_rand, n_rand, design, remain, var_fix = NULL, n_fix = NULL,
alpha = 0.05, nsim = 100, ml = F, ftest = "LR", iter = NULL)
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Arguments

var_rand Vector of known dam, sire, dam by sire, residual, and remaining random vari-
ance components, i.e. c(dam,sire,ds,res,rand1,rand2,...).

n_rand Vector of known dam, sire, family, and remaining random sample sizes, i.e.
c(dam,sire,family,rand1,rand2,...).

design A data frame of the experimental design, using only integers. First three columns
must contain and be named "dam", "sire", "family". Remaining columns are the
random effects followed by the fixed effects. Continuous fixed effects are a
column containing the values 1:nrow(design).

remain Remaining formula using lme4 package format. Must be random effects fol-
lowed by fixed effects.No interactions or random slopes; formulate as intercepts
in design.

var_fix Vector of known fixed variance components, i.e. c(fix1,fix2,...). Continous fixed
random values are sorted to match column values.

n_fix Vector of known fixed sample sizes, i.e. c(fix1,fix2,...). Continuous fixed effects
must have a sample size of 1.

alpha Statistical significance value. Default is 0.05.

nsim Number of simulations. Default is 100.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

ftest Default is "LR" for likelihood ratio test for fixed effects. Option "PB" is for
parametric bootstrap.

iter Number of iterations for computing the parametric bootstrap significance value
for any fixed effects.

Details

Extracts the dam, sire, dam, dam by sire, and any remaining random and fixed effects power values.
Power values are calculated by stochastically simulation data and then calculating the proportion of
significance values less than alpha for each component (Bolker 2008). Significance values for the
random effects are determined using likelihood ratio tests (Bolker et al. 2009). Significance values
for any fixed effects are determined using likelihood ratio tests or parametric bootstrap method
(Bolker et al. 2009) from the mixed function of the afex package.

Value

A data frame with the sample sizes, variance component inputs, variance component outputs, and
power values.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
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residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jersey.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

powerLmer, powerLmer2

Examples

##design object: 2 remaining random effects and 1 continous fixed effect
block=c(2,2); blocN=10; position=2; posN=10; offN=20
dam0<- stack(as.data.frame(matrix(1:(block[1]*blocN),ncol=blocN,nrow=block[1])))
sire0<- stack(as.data.frame(matrix(1:(block[2]*blocN),ncol=blocN,nrow=block[2])))
observ0<- merge(dam0,sire0, by="ind")
levels(observ0[,1])<- 1:blocN; colnames(observ0)<- c("block","dam","sire")
observ0$family<- 1:nrow(observ0) #add family
#expand for position
observ1<- do.call("rbind", replicate(position,observ0,simplify=FALSE));rm(observ0)
observ1$position<- sample(rep(1:posN,each=position)) #random assignment
#expand for offspring
observ<- do.call("rbind", replicate(offN,observ1,simplify=FALSE)); rm(observ1)
desn<- observ[,c(2,3,4,5,1)];rm(observ) #dam,sire,family,position,block
desn$egg_size<- 1:nrow(desn)
colnames(desn)[6]<- "egg_size"

#100 simulations
## Not run: pwr_L3<- powerLmer3(var_rand=c(0.19,0.03,0.02,0.51,0.1,0.05),
n_rand=c(20,20,40,10,10),var_fix=0.1,n_fix=1,design=desn,remain="(1|position)+
(1|block)+egg_size")
pwr_L3
## End(Not run)



resampFamily 61

resampFamily Bootstrap resample within families

Description

Bootstrap resample observations grouped by family identities for a specified number of iterations
to create a resampled data set.

Usage

resampFamily(dat, copy, family, iter)

Arguments

dat Data frame observed data to resample.

copy Column numbers to copy.

family Column name containing family identity information.

iter Number of iterations for resampling.

Details

The resampled data can be used for producing bootstrap confidence intervals.

Value

Because of the large file sizes that can be produced, the resampling of each family X is saved
separately as a common separated (X_resampF.csv) file in the working directory. These files are
merged to create the final resampled data set (resamp_datF.csv).

See Also

resampRepli

Examples

data(chinook_length) #Chinook salmon offspring length
#resampFamily(dat=chinook_length,copy=c(3:8),family="family",iter=1000)
#resampFamily(dat=chinook_length,copy=c(3:8),family="family",iter=2)
#example with a couple iterations
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resampGlmer Bootstrap components for non-normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, and dam by sire.

Usage

resampGlmer(resamp, dam, sire, response, fam_link, start, end, quasi = F)

Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

start Starting model number.

end Ending model number.

quasi Incorporate overdispersion or quasi-error structure.

Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Laplace ap-
proximation parameter estimation is used, which is a true likelihood method (Bolker et al. 2009).
For the overdispersion option, an observation-level random effect is added to the model (Atkins et
al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. The residual variance
component for the fam_links are described by Nakagawa and Schielzeth (2010, 2013). Calculates
the total variance component. Calculates the additive genetic, non-additive genetic, and maternal
variance components (see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. The number of rows in the data
frame matches the number of iterations in the resampled data set and each row represents a model
number.
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Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

resampGlmer2, resampGlmer3

Examples

data(chinook_resampS) #5 iterations

## Not run: survival_rcomp<- resampGlmer(resamp=survival_datR,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),start=1,end=1000)
## End(Not run)

resampGlmer2 Bootstrap components for non-normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, and dam by sire. Options to include one random position and/or one random block
effect(s).
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Usage

resampGlmer2(resamp, dam, sire, response, fam_link, start, end, position = NULL,
block = NULL, quasi = F)

Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

start Starting model number.

end Ending model number.

position Optional column name containing position factor information.

block Optional column name containing block factor information.

quasi Incorporate overdispersion or quasi-error structure.

Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Laplace ap-
proximation parameter estimation is used, which is a true likelihood method (Bolker et al. 2009).
For the overdispersion option, an observation-level random effect is added to the model (Atkins
et al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. Extracts op-
tional position and block variance components. The residual variance component for the fam_links
are described by Nakagawa and Schielzeth (2010, 2013). Calculates the total variance component.
Calculates the additive genetic, non-additive genetic, and maternal variance components (see Lynch
and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for the options of position and/or block. The number of rows in the data
frame matches the number of iterations in the resampled data set and each row represents a model
number.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.
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References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

resampGlmer, resampGlmer3

Examples

data(chinook_resampS) #5 iterations

## Not run: survival_rcomp2<- resampGlmer2(resamp=survival_datR,dam="dam",sire="sire",response="status",
fam_link=binomial(logit),start=1,end=1000,position="tray")
## End(Not run)

resampGlmer3 Bootstrap components for non-normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a general-
ized linear mixed-effect model using the glmer function of the lme4 package. Model random effects
are dam, sire, dam by sire, and any additional fixed and/or random effects.

Usage

resampGlmer3(resamp, dam, sire, response, fam_link, start, end, remain, quasi = F)

Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.
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response Column name containing the offspring (response) phenotype values.

fam_link The family and link in family(link) format. Supported options are binomial(logit),
binomial(probit), poisson(log), and poisson (sqrt).

start Starting model number.

end Ending model number.

remain Remaining formula using lme4 package format with # sign (see column names),
e.g. fixed# + (1|random#).

quasi Incorporate overdispersion or quasi-error structure.

Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Laplace ap-
proximation parameter estimation is used, which is a true likelihood method (Bolker et al. 2009).
For the overdispersion option, an observation-level random effect is added to the model (Atkins et
al. 2013). Extracts the dam, sire, dam, and dam by sire variance components. Extracts any ad-
ditional fixed effect and random effect variance components. The fixed-effect variance component
is as a single group using the method described by Nakagawa and Schielzeth (2013). The resid-
ual variance component for the fam_links are described by Nakagawa and Schielzeth (2010, 2013).
Calculates the total variance component. Calculates the additive genetic, non-additive genetic, and
maternal variance components (see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for remaining formula components. The number of rows in the data frame
matches the number of iterations in the resampled data set and each row represents a model number.

Note

The Laplace approximation is used because there were fewer disadvantages relative to penalized
quasi-likelihood and Gauss-Hermite quadrature parameter estimation (Bolker et al. 2009). That
is, penalized quasi-likelihood is not recommended for count responses with means less than 5 and
binary responses with less than 5 successes per group. Gauss-Hermite quadrature is not recom-
mended for more than two or three random effects because of the rapidly declining analytical speed
with the increasing number of random effects.

References

Atkins DC, Baldwin SA, Zheng C, Gallop RJ, Neighbors C. 2013. A tutorial on count regres-
sion and zero-altered count models for longitudinal substance use data. Psychology of Addictive
Behaviors 27(1): 166-177. DOI: 10.1037/a0029508

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.
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Nakagawa S, Schielzeth H. 2010. Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biological Reviews 85(4): 935-956. DOI: 10.1111/j.1469-185X.2010.00141.x

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

resampGlmer, resampGlmer2

Examples

data(chinook_resampS) #5 iterations

## Not run: survival_rcomp3<- resampGlmer3(resamp=survival_datR,dam="dam",sire="sire",
response="status",fam_link=binomial(logit),start=1,end=1000,
remain="egg_size# + (1|tray#)")
## End(Not run)

resampLmer Bootstrap components for normal data

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire.

Usage

resampLmer(resamp, dam, sire, response, start, end, ml = F)

Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

start Starting model number.

end Ending model number.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.
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Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Extracts the
dam, sire, dam, dam by sire, and residual variance components. Calculates the total variance com-
ponent. Calculates the additive genetic, non-additive genetic, and maternal variance components
(see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. The number of rows in the data
frame matches the number of iterations in the resampled data set and each row represents a model
number.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

resampLmer2, resampLmer3

Examples

data(chinook_resampL) #5 iterations

#length_rcomp1<- resampLmer(resamp=length_datR,dam="dam",sire="sire",response="length",
#start=1,end=1000)
length_rcomp1<- resampLmer(resamp=chinook_resampL,dam="dam",sire="sire",response="length",
start=1,end=5)
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resampLmer2 Bootstrap components for normal data 2

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, and dam by sire. Options to include one random position and/or one random block effect(s).

Usage

resampLmer2(resamp, dam, sire, response, start, end, position = NULL, block = NULL,
ml = F)

Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

start Starting model number.

end Ending model number.

position Optional column name containing position factor information.

block Optional column name containing block factor information.

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Extracts the
dam, sire, dam, dam by sire, and residual variance components. Extracts optional position and block
variance components. Calculates the total variance component. Calculates the additive genetic,
non-additive genetic, and maternal variance components (see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for the options of position and/or block. The number of rows in the data
frame matches the number of iterations in the resampled data set and each row represents a model
number.
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Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

See Also

resampLmer, resampLmer3

Examples

data(chinook_resampL) #5 iterations

#length_rcomp2<- resampLmer2(resamp=length_datR,dam="dam",sire="sire",response="length",
#start=1,end=1000,position="tray")
length_rcomp2<- resampLmer2(resamp=chinook_resampL,dam="dam",sire="sire",response="length",
start=1,end=5,position="tray")

resampLmer3 Bootstrap components for normal data 3

Description

Extracts additive genetic, non-additive genetic, and maternal variance components from a linear
mixed-effect model using the lmer function of the lme4 package. Model random effects are dam,
sire, dam by sire, and any additional fixed and/or random effects.

Usage

resampLmer3(resamp, dam, sire, response, start, end, remain, ml = F)
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Arguments

resamp Data frame of bootstrap resampled data.

dam Column name containing dam(female) parent identity information.

sire Column name containing sire(male) parent identity information.

response Column name containing the offspring (response) phenotype values.

start Starting model number.

end Ending model number.

remain Remaining formula using lme4 package format with # sign (see column names),
e.g. fixed# + (1|random#).

ml Default is FALSE for restricted maximum likelihood. Change to TRUE for
maximum likelihood.

Details

Used for bootstrap resampled data set produced using resampRepli or resampFamily. Extracts the
dam, sire, dam, dam by sire, and residual variance components. Extracts any additional fixed effect
and random effect variance components. The fixed-effect variance component is as a single group
using the method described by Nakagawa and Schielzeth (2013). Calculates the total variance com-
ponent. Calculates the additive genetic, non-additive genetic, and maternal variance components
(see Lynch and Walsh 1998, p. 603).

Value

A data frame with columns containing the raw variance components for dam, sire, dam by sire,
residual, total, additive genetic, non-additive genetic, and maternal. Also columns containing the
raw variance components for remaining formula components. The number of rows in the data frame
matches the number of iterations in the resampled data set and each row represents a model number.

Note

Maximum likelihood (ML) estimates the parameters that maximize the likelihood of the observed
data and has the advantage of using all the data and accounting for non-independence (Lynch and
Walsh 1998, p. 779; Bolker et al. 2009). On the other hand, ML has the disadvantage of assuming
that all fixed effects are known without error, producing a downward bias in the estimation of the
residual variance component. This bias can be large if there are lots of fixed effects, especially if
sample sizes are small. Restricted maximum likelihood (REML) has the advantage of not assum-
ing the fixed effects are known and averages over the uncertainty, so there can be less bias in the
estimation of the residual variance component. However, REML only maximizes a portion of the
likelihood to estimate the effect parameters, but is the preferred method for analyzing large data sets
with complex structure.

References

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology
and Evolution 24(3): 127-135. DOI: 10.1016/j.tree.2008.10.008
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Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Mas-
sachusetts.

Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133-142. DOI:
10.1111/j.2041-210x.2012.00261.x

See Also

resampLmer, resampLmer2

Examples

data(chinook_resampL)

#length_rcomp3<- resampLmer3(resamp=length_datR,dam="dam",sire="sire",response="length",
#start=1,end=1000,remain="egg_size# + (1|tray#)")
length_rcomp3<- resampLmer3(resamp=chinook_resampL,dam="dam",sire="sire",response="length",
start=1,end=5,remain="egg_size# + (1|tray#)")

resampRepli Bootstrap resample within replicates

Description

Bootstrap resample observations grouped by replicate identities within family identities for a spec-
ified number of iterations to create a resampled data set.

Usage

resampRepli(dat, copy, family, replicate, iter)

Arguments

dat Data frame observed data to resample.

copy Column numbers to copy.

family Column name containing family identity information.

replicate Column name containing replicate identity information.

iter Number of iterations for resampling.

Details

The resampled data can be used for producing bootstrap confidence intervals.

Value

Because of the large file sizes that can be produced, the resampling of each replicate Y per family X
is saved separately as a common separated (X_Y_resampR.csv) file in the working directory. These
files are merged to create the final resampled data set (resamp_datR.csv).
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See Also

resampFamily

Examples

data(chinook_length) #Chinook salmon offspring length
#resampRepli(dat=chinook_length,copy=c(3:8),family="family",replicate="repli",iter=1000)
#resampRepli(dat=chinook_length,copy=c(3:8),family="family",replicate="repli",iter=2)
#example with a couple iterations
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