Package 'frt'

February 19, 2015

Version 0.1
Date 2011-12-31
Title Full Randomization Test
Author Giangiacomo Bravo <giangiacomo.bravo@unito.it>, Lucia Tamburino</giangiacomo.bravo@unito.it>
<pre><lucia.tamburino@alice.it>.</lucia.tamburino@alice.it></pre>
Maintainer Giangiacomo Bravo <giangiacomo.bravo@unito.it></giangiacomo.bravo@unito.it>
Description Perform full randomization tests.
License GPL (>= 2)
<pre>URL http://www.r-project.org</pre>
Repository CRAN
Date/Publication 2012-10-29 08:58:47
NeedsCompilation no
R topics documented:
bin
comb
concat
frt
shoes
tomatoes
Index 8

2 comb

bin

Transform decimal into binary

Description

bin transforms a decimal number into a binary one in vectorial form.

Usage

bin(x)

Arguments

Χ

an integer

Details

bin takes as input an integer and transforms it into the corresponding binary number. The output is a vector whose elements are the coefficients of increasing powers of 2, i.e., the *i*th item is the coefficient for 2^{i-1} . For instance, bin(4) returns (0,0,1).

Value

a vector of 0/1

Author(s)

Lucia Tamburino, Giangiacomo Bravo

Examples

```
for (i in 0:10) print(bin(i))
```

comb

Build a matrix with combinations of zeros and ones.

Description

Internal function, generally not called by users.

Usage

```
comb(m, n)
```

concat 3

Arguments

m an integer, corresponding to the number of zeros. It must be greater or equal to

zero.

n an integer, corresponding to the number of ones. It must be greater or equal to

zero.

Details

comb builds the matrix with all combinations of m zeros and n ones. The output matrix will hence have as number of columns $n_c = m + n$ and as number of rows $n_r = (m+n)!/(m!n!)$, which is the number of all the possible combinations. Each row will contain one of the n_r possible combinations of m zeros and n ones.

Value

A matrix

Author(s)

Lucia Tamburino

Examples

comb(3,2)

concat

Combine rows of two input matrices

Description

Internal function, generally not called by users.

Usage

```
concat(x1, x2)
```

Arguments

A matrix. It can have any numbers of columns and rows, but cannot be empty
A matrix. It can have any numbers of columns and rows, but cannot be empty

Details

This function takes as input two matrices and builds a matrix with all the possible combinations of the rows of the first input matrix, with the rows of the second one. If r_1 and c_1 (resp. r_2 and c_2) are the row and the column number of the matrix xI (resp. x2), then the output matrix will have $c_1 + c_2$ columns and r_1r_2 rows. Therefore, each row of the output matrix is composed by any of the rows of xI (in the first c_1 columns) and any of the rows of x2 (in the column from $c_1 + 1$ to $c_1 + c_2$).

4 frt

Value

A matrix.

Author(s)

Lucia Tamburino

Examples

```
m1 <- matrix(1:6, nrow=2, ncol=3)
print(m1)
m2 <- matrix(c(0,0,0,1,1,0,1,1), nrow=4, ncol=2)
print(m2)
concat(m1,m2)</pre>
```

frt

Full randomization test

Description

Performs a two sample full randomization test on vectors of data.

Usage

```
frt(x, y, alternative = "two.sided")
```

Arguments

x a numeric vector y a numeric vector

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" or "less". You can specify just the initial letter.

Details

The function tests all the (n+m)!/n!m! possible arrangements, where n and m are the lengths of x and y respectively. This number (just as computational times and memory requirements) grows extremely fast with n and m.

Value

numeric the probability of the null hypothesis of no difference between means.

Author(s)

Giangiacomo Bravo

frt.paired 5

References

Box, G.E.P, Hunter, J.S. and Hunter, G.W. (2005), *Statistics for Experimenters: Design, Innovation, and Discovery. Second Edition*. Hoboken, NJ: Wiley.

See Also

```
frt.paired
```

Examples

```
# Tomato yield example in Box et al. (2005, 78--80)
data(tomatoes)
attach(tomatoes)
x <- pounds[fertilizer == "A"]
y <- pounds[fertilizer == "B"]
frt(x, y, alt="l")
detach(tomatoes)</pre>
```

frt.paired

Full randomization paired test

Description

Performs a full randomization test on paired vectors of data.

Usage

```
frt.paired(x, y, alternative = "two.sided")
```

Arguments

x a numeric vector y a numeric vector

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" or "less". You can specify just the initial letter.

Details

x and y must have the same length.

The function tests 2^n possible arrangements, where n is the length of x and y. This number (just as computational times and memory requirements) grows rapidly with n.

Value

numeric the probability of the null hypothesis of no difference between means.

6 shoes

Author(s)

Giangiacomo Bravo

References

Box, G.E.P, Hunter, J.S. and Hunter, G.W. (2005), *Statistics for Experimenters: Design, Innovation, and Discovery. Second Edition*. Hoboken, NJ: Wiley.

See Also

frt

Examples

```
# Boys' shoes example in Box et al. (2005, 81--84)
data(shoes)
attach(shoes)
frt.paired(matA, matB, alt="1")
detach(shoes)
```

shoes

Boys' shoes data

Description

Data for the boys' shoes example in Box et al. (2005, 81–84).

Usage

```
data(shoes)
```

Format

A data frame with 10 observations on the following 6 variables.

```
boy a numeric vector
matA a numeric vector
sideA a factor with levels L R
matB a numeric vector
sideB a factor with levels L R
diff a numeric vector
```

Source

Box, G.E.P, Hunter, J.S. and Hunter, G.W. (2005), *Statistics for Experimenters: Design, Innovation, and Discovery. Second Edition*. Hoboken, NJ: Wiley.

tomatoes 7

Examples

```
data(shoes)
print(shoes)
```

tomatoes

Tomato yield example

Description

Data for the Tomato yield example in Box et al. (2005, 78–80)

Usage

```
data(tomatoes)
```

Format

A data frame with 11 observations on the following 4 variables.

```
run a numeric vector
position a numeric vector
fertilizer a factor with levels A B
pounds a numeric vector
```

Source

Box, G.E.P, Hunter, J.S. and Hunter, G.W. (2005), *Statistics for Experimenters: Design, Innovation, and Discovery. Second Edition*. Hoboken, NJ: Wiley.

Examples

```
data(tomatoes)
print(tomatoes)
```

Index

```
*Topic datasets
    shoes, 6
    {\tt tomatoes, 7}
*Topic design
    frt, 4
    {\tt frt.paired, 5}
*Topic htest
    frt, 4
    frt.paired, 5
*Topic math
    bin, 2
    comb, 2
*Topic utilities
    bin, 2
    comb, 2
    concat, 3
bin, 2
comb, 2
concat, 3
frt, 4, 6
frt.paired, 5, 5
shoes, 6
tomatoes, 7
```