9

Package ‘freegroup

September 25, 2018
Type Package
Title The Free Group
Version 1.1-0
Date 2018-09-14
Author Robin K. S. Hankin
Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
Depends magrittr,methods,magic (>= 1.5-9), plyr
Suggests knitr, rmarkdown

VignetteBuilder knitr

Description Provides functionality for manipulating elements of the free group (juxtaposition is repre-

sented by a plus) including inversion, multiplication by a scalar, group-theoretic power opera-
tion, and Tietze forms. The package is fully vectorized.

License GPL-2
URL https://github.com/RobinHankin/freegroup.git

BugReports https://github.com/RobinHankin/freegroup/issues
NeedsCompilation no

Repository CRAN

Date/Publication 2018-09-25 20:50:08 UTC

R topics documented:

freegroup-package e e
abC . . L e e
abelianize L. e
abs.free L e e e e e
alpha L L e

https://github.com/RobinHankin/freegroup.git
https://github.com/RobinHankin/freegroup/issues

2 freegroup-package

cycred . ..o e e e 10
Extract e e e 12
free . . . L e e e e 13
getlet e e e e 14
identity 15
Keep . . . o e e e 16
Opsdree e e e 17
PIINt e e 18
reduce L e e e 20
free . . . L e 21
SIZE o o i e e e e e e e e e e e e 22
SUDS . . L e e e e 23
SUM & . v v e 24
HELZE . . . o o e e e e e 25

Index 27

freegroup-package The Free Group
Description

Provides functionality for manipulating elements of the free group (juxtaposition is represented by
a plus) including inversion, multiplication by a scalar, group-theoretic power operation, and Tietze
forms. The package is fully vectorized.

Details
The DESCRIPTION file:
Package: freegroup
Type: Package
Title: The Free Group
Version: 1.1-0
Date: 2018-09-14
Author: Robin K. S. Hankin
Maintainer: Robin K. S. Hankin <hankin.robin @ gmail.com>
Depends: magrittr,methods,magic (>= 1.5-9), plyr
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
Description: Provides functionality for manipulating elements of the free group (juxtaposition is represented by a plus)
License: GPL-2
URL: https://github.com/RobinHankin/freegroup.git
BugReports: https://github.com/RobinHankin/freegroup/issues

Index of help topics:

abc

Extract.free
Ops.free

abc
abelianize
abs.free
alpha
backwards

C
char_to_free
cumsum
cycred

free
freegroup-package
getlet
identity
keep
print.free
reduce

rfree

size

subs

sum

tietze

Author(s)

Robin K. S. Hankin

Extract or replace parts of a free group object

Arithmetic Ops methods for the free group
Create an alphabetical free group element
Abelianization of free group elements
Absolute value of a 'free' object
Single-symbol words

Write free objects backwards
Concatenation of free objects

Convert character vectors to free objects
Cumulative sum

Cyclic reductions of a word

Objects of class 'free'

The Free Group

Get letters of a freegroup object

The identity element

Keep or drop symbols

Print free objects

Reduction of a word to reduced form
Random free objects

Bignesses of a free object

Substitute and invert symbols

Repeated summation by concatenation
Tietze form for free group objects

Maintainer: Robin K. S. Hankin <hankin.robin @ gmail.com>

Examples

a <- rfree(10,6,3)
x <- as.free('x")

a+x

arx

sum(a)
abelianize(a)

discard(atx,'a')

abc

Create an alphabetical free group element

4 abelianize

Description

Create a simple free group element

Usage
abc(n)
Arguments
n An integer specifying the length of the word; if a vector, return the appropriate
free vector
Author(s)

Robin K. S. Hankin

Examples

abc(8)
abc(1:26) # compare alpha(1:26)
abc(-3:3) # negative numbers give expected result

abc(26) * alpha(1:9)

abelianize Abelianization of free group elements

Description

Return the result of modifying a free group element under the assumption of Abelianness

Usage

abelianize(x)

Arguments

X An object of class free

Details

Abelianizing a free group element means that the symbols can commute past one another. Abelian-
ization is vectorized.

abs.free

Author(s)

Robin K. S. Hankin

Examples

x <- rfree(190,20,20)
abelianize(x)

p <- free(rbind(rep(1:5,4),rep(1:4,5)))
abelianize(p)

abs.free Absolute value of a free object

Description

Replaces every term’s power with its absolute value

Usage

S3 method for class 'free'
abs(x)

Arguments

X Object of class free

Details

Replaces every term’s power with its absolute value

Note

The function’s name is motivated by the inequality in the examples section.

Author(s)

Robin K. S. Hankin

See Also

subs

Examples

abs(abc(-5:5))

a <- rfree(10,4,7)
b <- rfree(10,4,7)

a
abs(a)

following should all be TRUE:
all(size(abs(atb)) <= size(abs(a) + abs(b)))
all(total(abs(a+tbh)) <= total(abs(a) + abs(b)))
all(number(abs(atb)) <= number(abs(a) + abs(b)))

all(size(atb) <= size(abs(a) + abs(b)))
all(total(atb) <= total(abs(a) + abs(b)))
all(number(a+b) <= number(abs(a) + abs(b)))

alpha

alpha Single-symbol words

Description

Produces a vector of single-symbol words

Usage
alpha(v)

Arguments

v Vector of integers

Author(s)
Robin K. S. Hankin

Examples

alpha(1) # just the letter 'a'

alpha(1:26) # the whole alphabet; compare abc(1:26)
all(alpha(1:26) == as.free(letters)) # should be TRUE

1

z <- alpha(26) # variable 'z' is symbol 26, aka 'z'.

backwards

abc(1:10) * z

abc(-5:5)
sum(abc(-5:5))

bear in mind that the symbols used are purely for the print method:
jj <- LETTERS[1:10]

options(symbols = apply(expand.grid(jj,jj),1,paste,collapse=""))
alpha(c(66,67,68,69)) # sensible output

options(symbols=NULL) # restore to symbols to default letters
alpha(c(66,67,68,69)) # print method not very helpful now

backwards Write free objects backwards

Description

Write free objects in reverse order

Usage
backwards(x)

Arguments

X Object of class free

Note

Function backwards () is distinct from rev (), see examples.

Author(s)

Robin K. S. Hankin

Examples

backwards(abc(1:5))
rev(abc(1:5))

x <- rfree(10,5)
all(abelianize(x) == abelianize(backwards(x)))

8 char_to_free

c Concatenation of free objects

Description

Concatenate free objects together

Usage
S3 method for class 'free'
c(...)
S3 method for class 'free'
rep(x, ...)
Arguments
In the method for c(), objects to be concatenated. Should all be of the same
type
X In the method for rep(), a free object
Author(s)

Robin K. S. Hankin

Examples

x <- rfree(10,3)
y <- rfree(10,3)
c(x,y)

NB: compare

rep(x,2)
X*2

char_to_free Convert character vectors to free objects

Description

Convert character vectors to free objects

Usage

char_to_matrix(x)

char_to_free 9

Arguments

X A character vector

Details
Function char_to_matrix() gives very basic conversion between character vectors and free ob-

jects. Current functionality is limited to strings like “aaabaacd”, which would give a3ba?cd. It
would be nice to take a string like “a*3b” (-3)” but this is not yet implemented.

Function char_to_free() is a vectorized version that coerces output to free.

Note

The function is not robust; for example, passing anything other than lower-case letters a-z will give
possibly undesirable behaviour.

Function char_to_free() is consistent with the default print options (which are that the symbols

are the lowercase letters a-z). If you change the the symbols’ names, for example options(symbols=sample(letters)),
then things can get confusing. The print method does not change the internal representation of a

free object, which is a list of integer matrices.

Author(s)

Robin K. S. Hankin

See Also

print.free

Examples

char_to_matrix("aaabacdcd")
rfree(10,3) + as.free('XXXXXXXXXXxX")
as.free(letters)*7

as.free('') # identity element

10

cycred

cumsum Cumulative sum

Description

Cumulative sum of free vectors

Usage

S3 method for class 'free'
cumsum(x)

Arguments

X Vector of class free

Author(s)

Robin K. S. Hankin

See Also

sum

Examples
cumsum(abc(1:6))

x <- rfree(10,2)
cumsum(c(x, -rev(x)))

cycred Cyclic reductions of a word

Description

Functionality to cyclically reduce words and detect conjugacy

cycred 11

Usage

is.cyclically_reduced(a)
is.cyclically_reduced2(a)
as.cyclically_reduced(a)
cyclically_reduce(a)
cyclically_reduce_tietze(p)
is.conjugate_single(u,v)

X %%y

S3 method for class 'free'
is.conjugate(x,y)

allconj(x)
Arguments

a,Xx,y An object of class free

p,u,v Integer vector corresponding to Tietze form of a word
Details

A free object is cyclically reduced iff every cyclic permutation of the word is reduced. A reduced
word is cyclically reduced iff the first letter is not the inverse of the last one. A reduced word is
cyclically reduced if the first and last symbol differ (irrespective of power) or, if identical, have
powers of opposite sign. For example, abac and abca are cyclically reduced but abca*{-13 is not.
Function is.cyclically_reduced() tests for this. Function is.cyclically_reduced2() gives
identical output; it uses slicker but marginally slower R idiom.

Function as.cyclically_reduced() takes a vector of free objects and returns the elementwise
cyclically reduced equivalents. Function cyclically_reduce() is a synonym with better (English)
grammar.

The identity is cyclically reduced: it cannot be shortened by a combination of cyclic permutation fol-
lowed by reduction. This ensures that is.cyclically_reduced(as.cyclically_reduced(x)) is
always TRUE. Also, it is clear that the identity should be conjugate to itself.

Two words a, b are conjugate if there exists a such that ax = b (or equivalently @ = x~'bx). This
is detected by function is.conjugate(). Functions is_conjugate_single() and cyclically_reduce_tietze()
are lower-level helper functions.

Function allconj() returns all cyclically reduced words conjugate to its argument.

Author(s)

Robin K. S. Hankin

See Also

reduce

12 Extract

Examples

as.cyclically_reduced(abc(1:9) - abc(9:1))

a <- rfree(1000,3)
all(size(as.cyclically_reduced(a)) <= size(a))
all(total(as.cyclically_reduced(a)) <= total(a))
all(number(as.cyclically_reduced(a)) <= number(a))

x <= rfree(1000,2)
y <- as.free('ab"')
table(conjugate = (x%~%y), equal = (x==y)) # note zero at top right

allconj(as.free('aaaaab'))
allconj(sum(abc(seq_len(3))))

x <- rfree(1,10,8,8)
all(is.id(allconj(x) + allconj(-x)[shift(rev(seqg_len(total(x))))1))

Extract Extract or replace parts of a free group object

Description

Extract or replace subsets of free objects

Arguments
X Object of class free
index elements to extract or replace
value replacement value

Details

These methods (should) work as expected: an object of class free is a list but standard extraction
techniques should work.

free 13

Examples

x <- rfree(20,8,8)

x[5:6]
x[1:2] <- -x[11:12]

x[1:5] %<>% keep(1:3)

free Objects of class free

Description

Generate, and test for, objects of class free

Usage

free(x)
as.free(x)
is.free(x)
list_to_free(x)

Arguments
X Function free() needs either a two-row matrix, or a list of two-row matrices;
function as. free() attempts to coerce different types of argument before pass-
ing to free() (possibly via list_to_free())
Details

The basic structure of an element of the free group is a two-row matrix. The top row is the symbols
(1=a, 2=b, 3=c, etc) and the bottom row is the corresponding power. Thus a%ba! would be

> rbind(c(1,2,1),c(2,1,-1))
[,11 [,2] [,3]

[1,1 1 2 1

[2,] 2 1 -1

>

Function free() needs either a two-row matrix or a list of two-row matrices. It is the only place in
the package that sets the class of an objet to free. Function as.free() is a bit more user-friendly
and tries a bit harder to do the Right Thing.

14 getlet

Author(s)

Robin K. S. Hankin

See Also

char_to_free

Examples

free(rbind(1:5,5:1))

x <- rfree(10,4)
X

X+X

X=X

x * (0:3)

as.free(c(4,3,2,2,2))
as.free("aaaabccccaaaaa”)

getlet Get letters of a freegroup object

Description

Get the symbols in a freegroup object

Usage

getlet(x)

Arguments

X Object of class free

Note
By default, return a list with elements corresponding to the elements of x. But, if object x is of
length 1, a vector is returned. The result is sorted for convenience.

Author(s)

Robin K. S. Hankin

identity 15

Examples

x <- rfree(30,4,11)
getlet(x)
as.free(getlet(x))

identical(as.free(getlet(abc(1:26))), abc(1:26))

identity The identity element

Description

Create and test for the identity element

Usage

is.id(x)

id(n)

S3 method for class 'free'
is.id(x)

Arguments

X Object of class free

n Strictly positive integer

Details

Function id() returns a vector of free objects, all of which are the identity element. Do not ask
what happens if n = 0.

Function is.id() returns a Boolean indicating whether an element is the identity or not. The
identity can also be generated using as. free(0).

Author(s)

Robin K. S. Hankin

16

Examples

id()

as.free(@) # convenient R idiom for creating the identity

x <- rfree(10,3)
stopifnot(all(x == x + as.free(@)))
stopifnot(all(is.id(x-x)))

keep

keep Keep or drop symbols

Description

Keep or drop symbols

Usage
keep(a, yes)
discard(a, no)
Arguments

a Object of class free

yes,no Specification of symbols to either keep (yes) or discard (no), coerced to a free

object

Note

Function keep() needs an explicit return() to prevent it from returning invisibly.

The functions are vectorised in the first argument but not the second.

The second argument—the symbols to keep or discard—is formally a vector of nonnegative inte-
gers, but the functions coerce it to a free object. The symbols kept or dropped are the union of the
symbols in the elements of the vector. Function discard() was formerly known as drop() but this

conflicted with base: :drop().

These functions have nothing in common with APL’s take () and drop().

Author(s)

Robin K. S. Hankin

Ops.free 17

Examples

x <- rfree(10,5,8)

keep(x,abc(4)) # keep only symbols a,b,c,d
discard(x,as.free('cde')) # drop symbols c,d,e

x[1:4] %<>% keep(alpha(3)) # keep only abc in first 4 elements of x

Ops.free Arithmetic Ops methods for the free group

Description

Allows arithmetic operators to be used for manipulation of free group elements such as addition,
multiplication, powers, etc

Usage

S3 method for class 'free'
Ops(el, e2)

free_equal(el,e2)
free_power(el,e2)
free_repeat(el,n)
juxtapose(el,e2)

S3 method for class 'free'
inverse(el)

S3 method for class 'matrix'
inverse(el)

Arguments
el,e2 Objects of class free
n An integer, possibly non-positive
Details
The function Ops. free() passes binary arithmetic operators (“+”, “*”, “*”_and “==") to the appro-

priate specialist function.

There are two non-trivial operations: juxtaposition, denoted “a+b”, and inversion, denoted “-a”.
Note that juxtaposition is noncommutative and a+b will not, in general, be equal to b+a.

All operations return a reduced word.

18 print

The caret, as in a*b, denotes group-theoretic exponentiation (-b+a+b); the notation is motivated by
the identities x* (yz)=(x*y)*z and (xy)"z=x"z*y*z, as in the permutations package.

Multiplication between a free object a and an integer n is defined as juxtaposing n copies of a and
reducing. Zero and negative values of n work as expected.
Note

The package uses additive notation but multiplicative notation might have been better.

Author(s)
Robin K. S. Hankin

Examples

x <- rfree(10,2)
y <- rfree(10,2)

z <- rfree(10,9) # more complicated than x or y
Xty

X-y

Xty == y+x # not equal in general

x+as.free(Q) == x # always true

as.free(@)+x == # always true

x+(ytz) == (xty)+z # always true

X*5 == X+X+X+X+X # always true

x + alpha(26)
x*alpha(26)

x*12
x*(0:9)

print Print free objects

Description

Print methods for free objects

print 19

Usage

S3 method for class 'free'
print(x,...)
as.character_free(m, latex=getOption("latex"))

Arguments
X Object of class free in the print method
m A two-row matrix in function as.character_free()
latex Boolean, with codeTRUE meaning to print latex-friendly output including curly
braces, and default NULL option meaning to give a nicer-looking output that latex
would typeset incorrectly
Further arguments, currently ignored
Note

The print method does not change the internal representation of a free object, which is a list of
integer matrices.

The default print method uses multiplicative notation (powers) which is inconsistent with the juxta-
position method “+”.

The print method has special dispensation for length-zero free objects but these are not handled
entirely consistently.

The default print method uses lowercase letters a-z, but it is possible to override this using options(symbols = foo),
where foo is a character vector. This is desirable if you have more than 26 symbols, because unal-
located symbols appear as NA.

The package will allow the user to set options("”symbols") to unhelpful things like rep(”a", 20)
without complaining (but don’t actually do it, you crazy fool).

Author(s)
Robin K. S. Hankin

See Also

char_to_free

Examples

default symbols:

abc(26)
rfree(1,10)

if we need more than 26:
options(symbols=state.name)
rfree(10,4)

20 reduce

or even:

jj <- letters[1:10]
options(symbols=apply(expand.grid(jj,jj),1,paste,collapse=""))
rfree(10,10,100,4)

options(symbols=NULL) # NULL is interpreted as letters a-z

rfree(10,4) # back to normal
reduce Reduction of a word to reduced form
Description

Given a word, remove redundant zero-power terms, and consolidate adjacent like terms into a single
power

Usage

reduce(a)
is_reduced(a)
remove_zero_powers(a)
consolidate(a)
is_proper(a)

Arguments

a An object of class free

Details

A word is reduced if no symbol appears next to its own inverse and no symbol has zero power. The
essence of the package is to reduce a word into a reduced form. Thus a?b~'ba will transformed
into a?.

In the package, reduction happens automatically at creation, in function free().

Apart from is_proper (), the functions all take a free object, but the meat of the function operates
on a single two-row matrix.

Reduction is carried out by repeatedly consolidating adjacent terms of identical symbol (function
consolidate()), and removing zero power terms (function remove_zero_power ()) until the word
is in reduced form (function is_reduced()).

Function is_proper() checks to see whether a matrix is suitably formed for passing to reduce().

A free object is cyclically reduced iff every cyclic permutation of the word is reduced. A reduced
word is cyclically reduced iff the first letter is not the inverse of the last one. A reduced word is
cyclically reduced if the first and last symbol differ (irrespective of power) or, if identical, have
powers of opposite sign. For example, abac and abca are cyclically reduced but abca*{-13 is not.
Function is.cyclically.reduced() tests for this, documented at cycred.Rd.

rfree 21

Whether the identity should be regarded as cyclically reduced is problematic. On the one hand the
identity cannot be shortened by a combination of cyclic permutation followed by reduction; but on
the other, I cannot exhibit a symbol at the start of the identity which can be reduced by juxtaposition
with a symbol at the end (because there are no symbols). Currently it returns NA but I am open to
suggestions.

Author(s)

Robin K. S. Hankin

See Also

cycred
Examples

create a matrix:
M <- rbind(c(1,2,3,3,2,3,2,1),c(1,2,3,-3,5,0,7,0))

call the print method (note non-reduced form):
as.character_free(M)

show the effect of reduce():
as.character_free(reduce(M))

free() calls reduce() automatically:
free(M)

rfree Random free objects

Description

Creates a vector of random free objects

Usage

rfree(n, size, number = size, powers = seq(from = -size, to = size))
Arguments

n Length of random vector to generate

size Maximum length of each element

number How many distinct letters to sample from

powers Powers to sample from

22 size

Details

The auxiliary arguments specify the general complexity of the returned object with small meaning
simpler.

Author(s)
Robin K. S. Hankin

See Also

size
Examples

x <- rfree(10,2)
y <- rfree(10,30,26)

rfree(20,2)*alpha(26)

size Bignesses of a free object

Description

Various metrics to say how “big” a free object is

Usage

size(a)
total(a)
number (a)
bigness(a)

Arguments

a Vector of free group objects

Details
* The “size” of an object is the number of pure powers in it (this is the number of columns of
the matrix representation of the word).
* The “total” of an object is the sum of the absolute values of its powers
* The “number” of an object is the number of distinct symbols in it
Thus size(a*2ba)=3, total (a*2ba)=4, and number (a*2ba)=2.

Function bigness() is a convenience wrapper that returns all three bigness measures.

subs 23

Value

These functions return an integer vector.

Note
I would like to thank Murray Jorgensen for his insightful comments which inspired this functional-
ity.

Author(s)
Robin K. S. Hankin

See Also

abs

Examples

a <- rfree(20,6,4)
size(a)

total(a)

number(a)

a <- rfree(20,6,4)
b <- rfree(20,6,4)

Following should all be TRUE
size(atb) <= size(a) + size(b)
total(ath) <= total(a) + total(b)
number (a+b) <= number(a)+ number(b)

bigness(rfree(10,3,3))
bigness(allconj(rfree(1,6,1)))

subs Substitute and invert symbols

Description

Substitute and invert specific symbols in a free object

Usage

subs(a, from, to)
flip(a, turn)

24 sum

Arguments

a Object of class free

from,to,turn Objects coerced to class free specifying symbols to alter

Details

Function subs(a, from, to) takes object a and transforms every symbol present in from into the
symbol specified in to.

Function flip(a, turn) takes object a and replaces every symbol present in turn with its inverse.

Author(s)
Robin K. S. Hankin

See Also

abs

Examples

subs(abc(1:10),abc(5),'z")
flip(abc(1:10),abc(5))

o <- rfree(30,5,10)

Following tests should all be TRUE:
size(flip(o,'a')) == size(o)
number (flip(o,'a')) == number(o)
total(flip(o,'a')) == total(o)

size(subs(o,'a','b")) <= size(o)
number (subs(o,'a','b')) <= number(o)
total(subs(o,'a','b')) <= total(o)

sum Repeated summation by concatenation

Description

Concatenates its arguments to give a single free object

Usage

S3 method for class 'free'
sum(..., na.rm = FALSE)

tietze 25

Arguments
Objects of class free, to be summed
na.rm Boolean, indicating whether to ignore NA entries (currently ignored)
Details

Concatenates its arguments and gives a single element of the free group. It works nicely with rev(),
see the examples.

Author(s)
Robin K. S. Hankin

Examples

x <- rfree(10,3)
y <- rfree(10,6)
z <- alpha(26)

sum(x)
abelianize(sum(x))
sum(x,y) == sum(sum(x),sum(y))

x+ty # not the same!

sum(x, -x)
sum(x, rev(-x))

stopifnot(sum(x*z) == sum(x)*z)
tietze Tietze form for free group objects
Description

Translate an object of class free to and from Tietze form

Usage
S3 method for class 'free'
tietze(x)
S3 method for class 'matrix'
tietze(x)

vec_to_matrix(x)

26 tietze

Arguments

X Object to be converted

Details

The Tietze form for a word is a list of integers corresponding to the symbols of the word; typically
a = 1,b = 2, etc. Negative integers represent the inverses of the symbols.

Function vec_to_free() is a low-level helper function that returns a two-row integer matrix. If
given @ or NULL, it returns a two-row, zero-column matrix.

Author(s)
Robin K. S. Hankin

Examples
tietze(rfree(10,3))
vec_to_matrix(c(1,3,-1,-1,-1,2))
as.free(list(c(1,1,8),c(2,-4,-4)))

all(as.free(tietze(abc(1:30)))== abc(1:30))

Index

+Topic package

freegroup-package, 2
[.free (Extract), 12
[<-.free (Extract), 12
%~% (cycred), 10

abc, 3

abelianize, 4

abs, 23, 24

abs (abs.free), 5

abs.free, 5

allconj (cycred), 10

alpha, 6

alphabet (alpha), 6
as.character_free (print), 18
as.cyclically_reduced (cycred), 10
as.free (free), 13

backwards, 7
bigness (size), 22

c, 8

char_to_free, 8, 14, 19
char_to_matrix (char_to_free), 8
consolidate (reduce), 20

cumsum, 10

cyclic (cycred), 10
cyclic_reduction (cycred), 10
cyclically (cycred), 10
cyclically_reduce (cycred), 10
cyclically_reduce_tietze (cycred), 10
cyclically_reduced (cycred), 10
cycred, 10, 21

discard (keep), 16
drop (keep), 16

Extract, 12

flip (subs), 23
free, 13

27

free_equal (Ops.free), 17
free_power (Ops.free), 17
free_repeat (Ops.free), 17
freegroup (freegroup-package), 2
freegroup-package, 2

getlet, 14

id (identity), 15
identity, 15
inverse (Ops.free), 17

is.
is.
is.
is.
is.
.cyclically_reduced2 (cycred), 10
is.
is.
is.

is

is

is_

conjugate (cycred), 10
conjugate_single (cycred), 10
cyclically.reduced (cycred), 10
cyclically.reduced?2 (cycred), 10
cyclically_reduced (cycred), 10

free (free), 13

id (identity), 15
identity (identity), 15
proper (reduce), 20
reduced (reduce), 20

juxtapose (Ops.free), 17

keep, 16

list_to_free (free), 13

neutral (identity), 15
number (size), 22

ops (Ops.free), 17
Ops.free, 17

print, 18
print.free, 9
print.free (print), 18

reduce, 11, 20
remove_zero_powers (reduce), 20

28

rep.free(c), 8
rfree, 21

size, 22,22
subs, 5, 23
sum, 10, 24

Tietze (tietze), 25
tietze, 25
total (size), 22

vec_to_matrix (tietze), 25

INDEX

	freegroup-package
	abc
	abelianize
	abs.free
	alpha
	backwards
	c
	char_to_free
	cumsum
	cycred
	Extract
	free
	getlet
	identity
	keep
	Ops.free
	print
	reduce
	rfree
	size
	subs
	sum
	tietze
	Index

