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Introduction

The freealg package provides some functionality for the free algebra, using the Standard Template library
of C++, commonly known as the STL. It is very like the mvp package for multivariate polynomials, but the
indeterminates do not commute: multiplication is word concatenation.

The free algebra

A vector space over a commutative field F (here the reals) is a set V together with two binary operations,
addition and scalar multiplication. Addition, usually written +, makes (V,+) an Abelian group. Scalar
multiplication is usually denoted by juxtaposition (or sometimes x) and makes (V, ) a semigroup. In addition,
for any a,b € F and u,v € V, the following laws are satisfied:

o Compatibility: a (bv) = (ab)v

e Identity: 1v = v, where 1 € F is the multiplicative identity
o Distributivity of vector addition: a (u+ v) = au + bv

« Distributivity of field addition: (a 4 b)v = av + bv

An algebra is a vector space endowed with a binary operation, usually denoted by either a dot or juxtaposition
of vectors, from V x V to V satisfying:

o Left distributivity: u-(v+w)=u-v+u-w.
o Right distributivity: (u+v) - w=u-w+v-w.
o Compatibility: (au) - (bv) = (ab)(u-v).

There is no requirement for vector multiplication to be commutative or indeed associative.

The free algebra is, in one sense, the most general algebra. Given a set of indeterminates { X1, Xo,..., X, }
one considers the set of words, that is, finite sequences of indeterminates. The vector space is then scalar
multiples of words together with a formal vector addition. This system automatically satisfies the axioms of
an algebra together with the requirement that addition of vectors satisfies distributivity.

The free algebra is the free R-module with a basis consisting of all words over an alphabet of symbols with
multiplication of words defined as concatenation. Thus, with an alphabet of {xz,y, z} and

A = az’yz + Bzy B =~z + oyt
we would have

A-B= (ochya: + ﬁzy) . (Wz + §y4) = ayzyzz + adzyxy* + Byzyz + Bozy®

and
B-A= ("yz + 5y4) . (a:cZyx + ﬂzy) = ayzayz + fy22y + adytzPyx + Boytzy.

Note that multiplication is not commutative, but it is associative.



The STL map class

Here, a term is defined to be a scalar multiple of a word, and an element of the free algebra is considered to
be the sum of a finite number of terms.

Thus we can view an element of the free algebra as a map from the set of words to the reals, each word
mapping to its coefficient. Note that the empty word maps to the constant term. In STL terminology, a map
is a sorted associative container that contains key-value pairs with unique keys. It is used in the package to
map words to their coefficients, and is useful here because search and insertion operations have logarithmic
complexity.

Package conventions

The indeterminates are the strictly positive integers (that is, we identify X; with integer i); a natural and
easily implemented extension is to allow each indeterminate X; to have an inverse X _;.

It is natural to denote indeterminates X1, Xo, X3 ... with lower-case letters a, b, ¢, ... and their multiplicative
inverses with upper-case letters A, B,C' ...

Thus we might consider X = 5a + 43zy + 6yx — 17a>b to be the map
{[1] -> 5, [24,25] -> 43, [25,24] -> 6, [1,1,1,2] -> -17}

In standard template library language, this is a map from a list of signed integers to a double; the header in
the package reads

typedef std::list<signed int> word; // an 'word' object is a list of signed ints
typedef map <word, double> freealg; // a 'freealg' maps word objects to reals

Although there are a number of convenience wrappers in the package, we would create object X as follows:

library("freealg")

X <- freealg(words = list(1, c(24,25), c(25,24), c(1,1,1,2)), coeffs = c(5, 43, 6, -17))
dput (X)

# structure(list(indices = list(1L, c(1L, 1L, 1L, 2L), 24:25, 25:24),

# coeffs = c(5, -17, 43, 6)), class = "freealg")

X

# free algebra element algebraically equal to

# + b*a - 17*aaab + 43*zy + 6*yz

(the print method translates from integers to letters). Note that the key-value pairs do not have a well-defined
order in the map class; so the terms of a free algebra object may appear in any order. This does not affect
the algebraic value of the object and allows for more efficient storage and manipulation. See also the mvp
(Hankin 2019a) and spray (Hankin 2019b) packages for similar issues.

The package in use

There are a variety of ways of creating free algebra objects:

(X <- as.freealg("3aab -2abbax")) # caret ("~") not yet implemented
# free algebra element algebraically equal to

# + 3*aab - 2*abbaz

(Y <- as.freealg("2 -3aab -aBBAA")) # uppercase letters are inverses
# free algebra element algebraically equal to

# + 2 - 1*aBBAA - 3*aab



(Z <- as.freealg(1:3))
# free algebra element algebratically equal to
# + 1*a + 1*%b + 1x*c

Then the usual arithmetic operations work, for example:

X"2 # powers are implemented

# free algebra element algebraically equal to

# + 9*aabaab - 6*aabadbbaxr - 6*abbazaab + 4*abbazabbaz

X+Y # 'aab' term cancels

# free algebra element algebraically equal to

# + 2 - 1*aBBAA - 2*abbazx

1000+Y*Z  # algebra multiplication and addition works as expected

# free algebra element algebratically equal to

# + 1000 + 2*%a — 1*aBBA - 1*aBBAAb - 1*aBBAAc - 3*aaba - 3*aabb - 3*aabc + 2*%b + 2%c

The print method

The default print method uses uppercase letters to represent multiplicative inverses, but it is possible to set
the usecaret option, which makes changes the appearance:

set.seed(0)

phi <- rfalg(n=5,inc=TRUE)

phi

# free algebra element algebraically equal to

# + 4*%B + 3*BC + 1*a + 5*aCBB + 2+*bc
options("usecaret" = TRUE)

phi

# free algebra element algebratically equal to

# + 4*%b7-1 + 3¥b"-1c™-1 + 1*a + 5*ac™-1b"-1b -1 + 2*bc
options("usecaret" = FALSE) # reset to default

An example

Haiman (1993) poses the following question, attributed to David Richman:
“find the constant term of (:c +y+at+ y‘l)p when z and y do not commute”.

Package idiom is straightforward. Consider p = 4:

X <- as.freealg("x+y+X+Y")

X"2

# free algebra element algebraically equal to

# + 4 + 1xYY + 1XYX + 1xYz + 1*XY + 1xXX + 1*#Xy + Ixx¥Y + Ixzx + I*zy + 1*xyX + I*ryxz + 1*yy
constant (X~4)

# [1] 28

We could even calculate the first few terms of Sloane’s A035610:

f <- function(n){constant(as.freealg("x+y+X+Y") n)}
sapply(c(0,2,4,6,8,10),f)
# [1] 1 4 28 232 2092 19864
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