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2 fpca

easy An example with M=5 (basis functions) and r=3 (non-zero eigenval-
ues)

Description

A simulated dataset as an example which corresponds to the "easy" case in the paper

Usage

data(easy)

Format
easy is a list with six components (in the given order):

data data matrix with three columns: column 1-ID, column 2-measurement, column 3—time.
eigenfunctions true eigenfunctions: generated from cubic Bsplines with M=5 equally spaced knots.
eigenvalues true eigenvalues: first—1, second—0.66, third—0.52, others—zero.

number_of basis true number of basis functions: M=5.

dimension true dimension of the process: r=3.

error_sd true error standard deviation: 0.25.

Details

mean curve of the process is zero; principal component scores and errors are all i.i.d N(0,1); there
are 200 subjects, and each has 2~10 measurements uniformly distributed on [0,1]; in total there are
1227 measurements

fpca The fpca package: summary information

Description

The package implements the restricted maximum likelihood estimation through a Newton-Raphson
procedure described in Peng and Paul (2009) to estimate functional principal components from
(sparsely and irregularly observed) longitudinal data.

Details

This is version 0.2-1 updated in Feb, 2011. Two new functions, fpca.score, fpca.pred, are included.
Missing values are not allowed. Subjects with only one measurement will be automatically ex-
cluded. The main function is ’fpca.mle’. Simulated data sets can be called by ’data(easy)’ and
’data(prac)’. Type ’help(easy)’ and "help(prac)’ to see details. Packages ’sm’ and ’splines’ are used
by this package. The code for EM (as initial estimate) is provided by Professor G. James in USC
(with slight modifications).
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Author(s)
J. Peng, D. Paul

References

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the func-
tional principal components from sparse longitudinal data. Journal of Computational and Graphical
Statistics. December 1, 2009, 18(4): 995-1015

James, G. M., Hastie, T. J. and Sugar, C. A. (2000) Principal component models for sparse func-
tional data. Biometrika, 87, 587-602.

Yao, F., Mueller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association 100, 577-590

See Also

fpca.mle for model fitting, fpca.score for fpc scores, fpca.pred for prediction

fpca.mle Restricted MLE of Functional Principal Components

Description

A function to obtain restricted MLE of functional principal components by Newton-Raphson algo-
rithm for (sparsely and irregularly observed) longitudinal data (Peng and Paul, 2009). Subjects with
only one measurement will be automatically excluded by *fpca.mle’. Acknowledgements: The code
for EM (as initial estimate) is provided by Professor G. James in USC (with slight modifications).

Usage

fpca.mle(data.m, M.set,r.set, ini.method="EM", basis.method="bs", sl.v=rep(0.5,10), max.step=50,
grid.l=seq(0,1,0.01), grids=seq(9,1,0.002))

Arguments

data.m Matrix with three columns. Each row corresponds to one measurement for one
subject. Column One: subject ID (numeric or string); Column 2: measurement
(numeric); Column 3: corresponding measurement time (numeric); Missing val-
ues are not allowed.

M.set numeric vector with integer values (>=4). Its elements M denote the number of
basis functions used in the model for representing the eigenfunctions.

r.set numeric vector with integer values (>=1). Its elements r denote the dimension
of the process (number of nonzero eigenvalues) used in the model.

ini.method string. It specifies the initial method for Newton. Its value is either "EM" (de-

fault): EM algorithm by James et al. 2002; or "loc": the local linear method by
Yao et al. 2005.



basis.method

sl.v

max.step

grid.1l

grids

Details

fpca.mle

string. It specifies the basis functions. Its value is either "bs" (default): cu-
bic B-splines with equally spaced knots; or "ns": truncated basis cubic splines
with equally spaced knots. Given basis.method, each combination of M and r
specifies a model.

numeric vector. An ordinary Newton step has length 1 which could be too large
in the initial few steps. This vector specifies the step length for the first K steps,
where K is the length of sl.v. If K >= max.step (see below), then sl.v will be
truncated at max.step. If K < max.step, then the steps after the K-th step will
have length 1. The default value of sl.v sets the first 10 steps of Newton to be of
length 0.5.

integer. It is the maximum number of iterations Newton will run. Newton will
be terminated if max.step number of iterations has been achieved even if it has
not converged.

numeric vector ranging from 0 to 1. This specifies the grid used by the local
linear method (when "loc" is the initial method). Note that, due to the "sm"
package used for fitting "loc", this grid can not be too dense; the default is
grid.1=seq(0,1,0.01).

numeric vector ranging from 0 to 1. This specifies the grid used by EM (when
EM is the initial method) and Newton. Note that, for both grid.l and grids, the
denser the grid is, the more computation is needed.

’fpca.mle’ uses the Newton-Raphson algorithm on a Stiefel manifold to obtain the restricted
maximum likelihood estimator of the functional principal components from longitudinal data. It
also performs model selection over (M and r) based on an approximate leave-one-curve-out cross-

validation score.

Value

A list with eight components

selected_model

eigenfunctions

eigenvalues
error_var

fitted_mean

grid

cv_scores

converge

table. the selected M (number of basis functions) and r (dimension of the pro-
cess).

numeric matrix. The estimated eigenfunctions under the selected model, evalu-
ated at "grid" (see below). dimension: r.select by grid_length

numeric vector. The estimated eigenvalues under the selected model.

numeric value. The estimated error variance under the selected model.

numeric vector. The estimated mean curve (by local linear fitting) evaluated at
"grid".

numeric vector ranging from L1 and L2. This is the grid of time points rescaled

to fit the actual time domain of the data, where L1 is the earliest time point, and
L2 is the latest time point in the data.

numeric matrix. Approximate cv score for each combination of M and r.

numeric matrix. Indicates the convergence of Newton for each combination of
M and r. If an entry is less than le-3, it indicates that Newton converged under
the corresponding model; otherwise it has not converged.
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Author(s)
J. Peng, D. Paul

References

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the func-
tional principal components from sparse longitudinal data. Journal of Computational and Graphical
Statistics. December 1, 2009, 18(4): 995-1015

James, G. M., Hastie, T. J. and Sugar, C. A. (2000) Principal component models for sparse func-
tional data. Biometrika, 87, 587-602.

Yao, F., Mueller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association 100, 577-590

See Also

fpca.score for fpc scores, fpca.pred for prediction

Examples

HHHEHHHEHRARRAERAHEHEEHE example I: "easy” case

##load data
data(easy)

##sample trajectory
plot(easy$datal,3],easy$datal,2],xlab="grid",ylab="" type="p")

for(i in 1:500){
cur<-easy$dataleasy$datal,1]1==1,]
points(cur[,3],cur[,2], type="1")

}

## candidate models for fitting
M.set<-c(4,5,6)
r.set<-c(2,3,4)

##parameters for fpca.mle
ini.method="EM"
basis.method="bs"
sl.v=rep(0.5,10)
max.step=50
grid.l=seq(0,1,0.01)
grids=seq(0,1,0.002)

##fit candidate models by fpca.mle
result<-fpca.mle(easy$data, M.set,r.set,ini.method, basis.method,sl.v,max.step,grid.1l,grids)
summary (result)

##rescaled grid
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grids.new<-result$grid
##model selection result: the true model M=5, r=3 is selected with the smallest CV score among all converged mode

M<-result$selected_model[1]
r<-result$selected_model[2]

##compare estimated eigenvalues with the truth
evalest<-result$eigenvalues ## estimated
easy$eigenvalues ## true

#i#compare estimated error variance with the truth
sig2est<-result$error_var ## estimated
easy$error_sd”"2 ## true

##plot: compare estimated eigenfunctions with the truth

eigenfest<-result$eigenfunctions

eigenf<-easy$eigenfunctions ##true

par(mfrow=c(2,2))

for(i in 1:r){
plot(grids.new,eigenfest[i,],ylim=range(eigenfest),xlab="time",ylab=paste("eigenfunction”,i))
points(grids, eigenf[i,],col=5,type="0")

}

##plot: compare estimated mean curve with the truth

muest<-result$fitted_mean

plot(grids.new,muest,xlab="time",ylab="mean curve”,ylim=range(result$fitted_mean))
points(grids,numeric(length(grids)),col=5)

par(mfrow=c(1,1))

##look at the CV scores and convergence for each model: note that model (M=5, r=4) does not converge.
result$cv_scores  ##CV
result$converge  ##convergence

## derive fpc scores and look at the predicted curve

#fpc scores

fpcs<-fpca.score(easy$data,grids.new,muest,evalest,eigenfest,sig2est,r)

#get predicted trajectories on a fine grid: the same grid for which mean and eigenfunctions are evaluated
pred<-fpca.pred(fpcs, muest,eigenfest)

#get predicted trajectories on the observed measurement points
N<-length(grids.new)

par(mfrow=c(3,3))
for (i in 1:9){

id<-i ##for curve i
t.c<-easy$dataleasy$datal,1]==id, 3] ##measurement points
t.proj<-ceiling(N*t.c) ##measurement points projected on the grid

y.c<-easy$dataleasy$datal,1]1==id, 2] #i#obs
y.pred.proj<-pred[t.proj,id] ##predicted obs on the measurement points
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#plots

plot(t.c,y.c,ylim=range(pred[,id]),xlab="time",ylab="obs", main=paste("predicted trajectory of curve”, id))
points(grids.new,pred[,id],col=3,type="'1")

##points(t.c,y.pred.proj,col=2, pch=2) ##predicted measurements at observed measurement times

3
par(mfrow=c(1,1))

HHHHEHHAHHHAAHA A A A example I1: "practical” case

##load data
## Not run:
data(prac)

##sample trajectory
plot(prac$datal,3],prac$datal,2],xlab="grid",ylab="" type="p")

for(i in 1:500){
cur<-prac$datalprac$datal,1]1==1,]
points(cur[,3],cur[,2], type="1")

## candidate models for fitting
M.set<-c(5,10,15,20)
r.set<-5

##tparameters for fpca.mle
ini.method="EM"
basis.method="bs"
sl.v=rep(0.5,10)
max.step=50
grid.l=seq(0,1,0.01)
grids=seq(0,1,0.002)

##fit candidate models by fpca.mle
result<-fpca.mle(prac$data, M.set,r.set,ini.method, basis.method,sl.v,max.step,grid.l,grids)
summary (result)

##rescaled grid
grids.new<-result$grid

##model selection result: the true model M=5, r=3 is selected with the smallest CV score among all converged mode
M<-result$selected_model[1]
r<-result$selected_model[2]

#i#compare estimated eigenvalues with the truth
result$eigenvalues ## estimated
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prac$eigenvalues ## true

##compare estimated error variance with the truth
result$error_var ## estimated
prac$error_sd*2 ## true

#i#plot: compare estimated eigenfunctions with the truth

eigenf<-prac$eigenfunctions ##true

par(mfrow=c(2,3))

for(i in 1:r){
plot(grids.new,result$eigenfunctions[i,],ylim=range(result$eigenfunctions),xlab="time",ylab=paste("eigenfunct
points(grids, eigenf[i,],col=5,type="0")

}

##plot: compare estimated mean curve with the truth
plot(grids.new,result$fitted_mean,xlab="time",ylab="mean curve",ylim=range(result$fitted_mean))
points(grids,numeric(length(grids)),col=5)

par(mfrow=c(1,1))

##look at the CV scores and convergence for each model: note that model (M=5, r=4) does not converge.
result$cv_scores  ##CV

result$converge ##convergence

## End(Not run)

fpca.pred Predicted trajectories

Description

A function to predict trajectory for each subject

Usage

fpca.pred(fpcs, muhat,eigenfuncs)

Arguments
fpcs Functional principal component scores. An estimate is returned by fpca.score
muhat Mean curve evaluated on a grid. An estimate is returned by fpca.mle.
eigenfuncs Eigenfunctions evaluated on the same grids as in 'muhat’. An estimate is re-
turned by fpca.mle.
Details

"fpca.pred’ gives predicted trajectories (evaluated on a fine grid).

Value

A matrix where each column corresponds to the predicted trajectory of a subject.
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Author(s)
J. Peng, D. Paul

References

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the func-
tional principal components from sparse longitudinal data. Journal of Computational and Graphical
Statistics. December 1, 2009, 18(4): 995-1015

James, G. M., Hastie, T. J. and Sugar, C. A. (2000) Principal component models for sparse func-
tional data. Biometrika, 87, 587-602.

Yao, F., Mueller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association 100, 577-590

See Also

fpca.mle for model fitting, fpca.score for fpc scores

fpca.score

Functional principal component scores

Description

A function to estimate the functional principal component scores by the best linear unbiased pre-
dictors (Yao et al. 2005).

Usage

fpca.score(data.m,grids.u,muhat,eigenvals,eigenfuncs, sig2hat,K)

Arguments

data.m

grids.u

muhat

eigenvals

eigenfuncs

sig2hat
K

Matrix with three columns. Each row corresponds to one measurement for one
subject. Column One: subject ID (numeric or string); Column 2: measurement
(numeric); Column 3: corresponding measurement time (numeric); Missing val-
ues are not allowed. Same format as the data input for fpca.mle.

Grid of time points used in evaluating the mean and eigenfunctions (on the orig-
inal scale). Same as ’grid’ returned by fpca.mle.

Mean evaluated on the same grids as in grids.u. An estimate is returned by
fpca.mle.

Eigenvalues. An estimate is returned by fpca.mle.

Eigenfunctions evaluated on the same grids as in grids.u. An estimate is returned
by fpca.mle.

Noise variance. An estimate is returned by fpca.mle.

Number of eigenfunctions used to derive the fpc scores.
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Details

’fpca.score’ uses best linear unbiased predictors (BLUP) to estimate the functional principal com-
ponent scores for each subject

Value

An n by K matrix containing the first K functional principal component scores for each subject.

Author(s)
J. Peng, D. Paul

References

Peng, J. and Paul, D. (2009). A geometric approach to maximum likelihood estimation of the func-
tional principal components from sparse longitudinal data. Journal of Computational and Graphical
Statistics. December 1, 2009, 18(4): 995-1015

James, G. M., Hastie, T. J. and Sugar, C. A. (2000) Principal component models for sparse func-
tional data. Biometrika, 87, 587-602.

Yao, F., Mueller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse longitudinal data.
Journal of the American Statistical Association 100, 577-590

See Also

fpca.mle for model fitting, fpca.pred for prediction

prac An example with M=10 (basis functions) and r=5 (non-zero eigenval-
ues)

Description

A simulated dataset as an example which corresponds to the "practical” case in the paper

Usage
data(prac)

Format
prac is a list with six components (in the given order):

data data matrix with three columns: column 1-ID, column 2—-measurement, column 3—time.

eigenfunctions true eigenfunctions: generated from cubic Bsplines with M=10 equally spaced
knots.

eigenvalues true eigenvalues: first—1, second—0.66, third—0.52, fourth-0.44, fifth—0.38, others—
Zero.
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number_of basis true number of basis functions: M=10.
dimension true dimension of the process: r=5.

error_sd true error standard deviation: 0.25.

Details

mean curve of the process is zero; principal component scores and errors are all i.i.d N(0,1); there
are 500 subjects, and each has 2~10 measurements uniformly distributed on [0,1]; in total there are
3018 measurements
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