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Abstract

Forest inventories provide reliable evidence-based information to assess the state and develop-

ment of forests over time. They typically consist of a random sample of plot locations in the forest

that are assessed individually by hand. Due to the high costs of these terrestrial campaigns, remote

sensing information available in high quantity and low costs (e.g. LiDAR, stereophotogramme-

try, etc.) is frequently incorporated in the estimation process in order to reduce inventory costs

or improve estimation precision. With respect to this objective, the application of multi-phase

forest inventory methods (e.g. double- and triple-sampling regression estimators) has proved to

be efficient. While these methods have been successfully applied in practice, the availability of

open-source software has been rare if not non-existent. The R package forestinventory provides

a comprehensive set of global and small area regression estimators for multiphase forest inven-

tories under simple and cluster sampling. The implemented methods have been demonstrated in

various scientific studies ranging from small to large scale forest inventories, and can be used for

post-stratification, regression and regression within strata. This article summarizes the mathemat-

ical theory of this family of design-based estimators and demonstrates their application in the R

environment.

Keywords: forest inventory, design-based, infinite population approach, two- and three-phase sam-

pling, regression estimators, small area estimation.

1. Introduction

In many countries, forest inventories have become an indispensable tool for evaluating the current

state of forests as well as for tracking their development over time. They provide accurate quantitative

information that can be used to define management actions and to adapt forest management strategies

according to guidelines on national and international levels. As conducting a full census of all trees

within any sizable forest area is clearly infeasible due to time and cost restrictions, forest inventories

usually gather their information by means of statistical sampling methods. Typically this means that

discrete sample locations (sample plots) are randomly chosen in the forest, making up the framework

of a terrestrial inventory. This terrestrial sample data is then used to make estimates for the entire

forested area and provide a measure of precision for those estimates in the form of confidence inter-

vals. There is a broad range of literature describing the concepts and methods regarding the choice

of different estimators under various sample designs (Gregoire and Valentine 2007; Köhl, Magnussen,

and Marchetti 2006; Schreuder, Gregoire, and Wood 1993; Mandallaz 2008).

Terrestrial inventories have the benefit of being very flexible in the sense that they can be used to

produce high quality estimates for a wide-variety of different forest attributes. However, they have the

downside of being very expensive. Improving the precision of the estimates by increasing the number

of sample plots essentially means that travel costs will rise as trained inventorists are sent to more and

more plot locations. This is why the number of terrestrial samples is often limited. Although national
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inventories usually possess a sufficiently large terrestrial sample size to provide high estimation accu-

racies for larger areas, this is often not the case for smaller areas, such as forest management units.

As a result, there has been an increasing need for alternative inventory methods that can maintain the

same estimation precision at lower costs, or achieve higher estimation precision at identical costs (von

Lüpke 2013). A method which has become particularly attractive is called multi-phase sampling. The

core concept is to enlarge the sample size in order to gain higher estimation precision without enlarging

the terrestrial sample size. This is done by using predictions of the terrestrial target variable at addi-

tional sample locations where the terrestrial information has not been gathered. These predictions are

produced by regression models that use explanatory variables derived from auxiliary data, commonly

in the form of spatially exhaustive remote sensing data in the inventory area. Regression estimators

using this concept can consider either one additional sample of plot locations consisting of auxiliary

information (two-phase or double-sampling) or two additional samples available in different sample

sizes (three-phase or triple-sampling) (Gregoire and Valentine 2007; Saborowski, Marx, Nagel, and

Böckmann 2010; Mandallaz 2013a,d; von Lüpke, Hansen, and Saborowski 2012). Their application

to existing forest inventory systems have already showed their efficiency in terms of cost reduction

and gain in estimation precision (Breidenbach and Astrup 2012; von Lüpke and Saborowski 2014;

Mandallaz, Breschan, and Hill 2013; Magnussen, Mandallaz, Breidenbach, Lanz, and Ginzler 2014;

Massey, Mandallaz, and Lanz 2014).

Despite the broad range of methodological literature and case studies, freely available software sup-

porting the application of the proposed multi-phase sampling methods to forestry has been rare. Two

exceptions are the R package JoSAE by Breidenbach (2015) that provides the GREG (Särndal, Swens-

son, and Wretman 2003) and EBLUP (Battese, Harter, and Fuller 1988) two-phase small area estimator

for simple sampling derived under the finite population approach, and the package maSAE by Cull-

mann (2016) which provided an initial implementation of the extended synthetic estimator under two

and three-phase sampling (Mandallaz et al. 2013; Mandallaz 2013d). However, a more comprehensive

software package covering a larger variety of sample designs and estimators for forest inventories has

not yet been available, which is the motivation behind the R package forestinventory. The package

provides global and small area estimators for two-phase and three-phase forest inventories under sim-

ple and cluster sampling, which have been developed under the infinite population approach by Daniel

Mandallaz at ETH Zurich between 2008 and 2017. The implemented methods have been demon-

strated by case studies in Switzerland (Massey et al. 2014; Massey and Mandallaz 2015b; Mandallaz

et al. 2013) and Germany (Hill, Mandallaz, Buddenbaum, Stoffels, and Langshausen 2017). The im-

plemented estimators cover 32 inventory scenarios and can be used for post-stratification, regression

and regression within strata (Massey 2015). The long-term objective of forestinventory is to make

the broad range of estimators available to a large user community and to facilitate their application in

science as well as operational forest management.

The objectives of this article are to a) establish the link between the mathematical description of

the estimators and their implementation in our package, b) illustrate their application to real-world

inventory data sets and c) address special cases and demonstrate how the package-functions handle

them.
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2. Methods and Structure of the Package

2.1. Forest Inventory in the Infinite Population Approach

Most forest inventories gather terrestrial information by sending field crews to randomly (or system-

atically) selected points in the forest area defined by GPS coordinates. The crew then defines a sample

plot by measuring individual trees located within one or multiple constructed inclusion circles around

the sample point x, and aggregating their characteristics (e.g. timber volumes) to local plot densities

(e.g. the timber density in m3/ha). The estimators implemented in forestinventory use the so called

infinite population approach in order to bridge this inventory process to the mathematics behind the

estimators. This approach assumes that the spatial distribution of the local density, Y (x), over the forest

area is determined by a fixed piecewise constant function, as visualized in Fig. 1. The population total

of the target variable (e.g. the total timber volume of the forest) is mathematically equivalent to the

integral of that density function, which is depicted in Fig. 1 as the volume under the density surface.

From this perspective, the practical challenge is that the form of this function is unknown. Theoreti-

cally, we could get the total timber volume by observing the function value, i.e. the local density Y (x),
at each possible point x over the forest area and taking their sum. However, this is impossible because

there is an infinite number of points in the forest area. Our strategy is thus to take a sample of points,

s2, from an infinite population of possible points and use their associated local densities, i.e. Y (x), to

estimate the integral Y = 1
λ (F)

∫

F Y (x)dx with Ŷ = 1
n2

∑x∈s2
Y (x). The total timber volume can then be

obtained by multiplying Ŷ by the surface area of the forest, λ (F). All estimators included in forestin-

ventory rest upon this theoretical perspective. The key point in the infinite population approach is

that a local density value Y (x) is associated with the sample point x, which constitutes the sample unit,

and not with the sample plot area. This has some theoretical advantages over the finite population

approach, where the sample units are the actual plot areas usually assumed to be either circular or

rectangular. This is mainly due to the impossibility of a perfect tessellation over an amorphous forest

area by any choice of plot shape. Hence, the population in the finite approach is, strictly speaking, not

well defined with respect to the forest area. The consideration of an underlying infinite population of

sample points will also play an important role when incorporating auxiliary information in the frame

of two- and three-phase estimation methods.
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Figure 1: Artificial representation of a local density surface. The spatial distribution of a hypothetical density function for

every point in a forested area is represented as a wavy piecewise constant green surface. Sample plots (white dots) inform

the inventorist of the value of the density function at that point. Note that the plateaus of constant Y (x) values here have the

shape of squares whereas in reality they are likely to be formed by the intersection of circles around trees.
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2.2. Two-Phase Sampling

The two-phase or double-sampling estimators use inventory information from two nested sam-

ples which are commonly referred to as phases (Fig. 2a). The first phase s1 comprises n1 sample

locations that each provide a set of explanatory variables described by the column vector ZZZ(x) =
(z(x)1,z(x)2, ...,z(x)p)

t at each point x ∈ s1. These explanatory variables are derived from auxiliary

information that is available in high quantity within the forest area F . The second phase s2 constitutes

the terrestrial inventory conducted at n2 subsamples of the large phase s1 and provides the value of the

target variable, i.e. the local density Y (x) (e.g. the timber volume per hectare). For every x ∈ s1, ZZZ(x) is

transformed into a prediction Ŷ (x) of Y (x) using the choice of some model, which in forestinventory

is always a linear model fit in s2 using ordinary least squares (OLS). The basic idea of this setup is to

boost the sample size by providing a large sample of less precise but cheaper predictions of Y (x) in s1

and to correct any possible model bias, i.e. E(Y (x)− Ŷ (x)), using the subsample of terrestrial inven-

tory units where the value of Y (x) is observed. In the design-based context, the two-phase estimator is

typically unbiased regardless of the model used to produce the predictions. This property comes from

the assumption that each phase’s sample is selected via simple random sampling (see Section 2.5).

2.3. Three-Phase Sampling

Three-phase estimators extend the principle of two-phase sampling and use inventory information

from three nested samples (phases) (Fig. 2a). The basic setup is that the explanatory variables calcu-

lated from the auxiliary information are available in two different frequencies. The phase s0 provides a

large number n0 of auxiliary data, whereas the phase s1 provides additional auxiliary data that are only

available at n1 subsamples of s0. The terrestrial information is then collected at a further subsample s2

of s1. The motivation for three-phase sampling is that the additional set of explanatory variables avail-

able at s1, now denoted ZZZ(1)(x), adds considerable explanatory power to the set of variables available

at all sample locations x ∈ s0, denoted ZZZ(0)(x). From that it follows that we can define two nested re-

gression models. The full set of predictor variables ZZZt(x) = (ZZZ(0)t(x),ZZZ(1)t(x)) can be used to calculate

the predictions Ŷ (x) of Y (x) at all sample locations x ∈ s1. The regression model applicable to the s1

phase is thus referred to as the full model. Less accurate predictions, Ŷ (0)(x), can be produced at all

the sample locations x ∈ s0 using only the reduced set of explanatory variables ZZZ(0)(x). If there is a

significant gain in model precision between the reduced and the full model and the sampling fraction

between s0 and s1 is sufficiently large, the three-phase estimator normally leads to a further increase in

estimation precision compared to the two-phase estimator.

2.4. Small Area Estimation

Small area estimation does not necessarily refer to small spatial areas but rather to areas that contain

little or no terrestrial sample. To formulate this mathematically, we want to make an estimate for a

subregion G of the entire inventory area F (Fig. 2b). As the sample size in the small area, n2,G, is

usually too small to provide sufficient estimation precision, multi-phase estimation can be efficient.

However, n2,G may also be too small to justify fitting a separate regression model just for that area

because the estimates produce undesirably large confidence intervals. The idea is then to borrow

strength from the entire terrestrial sample s2 of F to fit the model, and to apply this model to the small

area. The potential bias of applying that model in G is then corrected for by using the empirical model

residuals derived from that small area. If there are no terrestrial plots in G (i.e. n2,G = 0), one cannot

correct for a potential model bias in G and has to accept a potential bias in the estimator. These are

called synthetic estimates and despite their potential bias, it is usually still possible to calculate their

design-based variance.
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Figure 2: (a) Concept of multiphase sampling. The square represents the forest area for which an inventory is being

conducted. The points denote the sample locations x. Filled points indicate available information. (b) Illustration of the

Small Area Estimation problem

2.5. Design-Based vs. Model-Dependent Approach

The subject of model selection gets a lot of attention in the field of forest inventory. This is why

it is important to understand that the mathematical interpretation of how a model is used to produce

estimates is fundamentally different between the design-based and model-dependent approach. In the

model-dependent (also known as model-based) framework, the sample locations x are fixed and the

observation Y (x) taken at location x is assumed to be a random variable as the forest is assumed to be

the realization of a stochastic process. Although the model does not need to be fit from a probability

sample, i.e. the sample locations could arbitrarily be chosen, the model should adequately describe the

underlying stochastic process in order to efficiently ensure unbiased results. In practice this means that

special attention must be made to ensure that the variable selection is appropriate to avoid overfitting,

important variables are not omitted and all model assumptions are reasonably met through empirical

verification. If a model is misspecified then estimation based on inference from that model may not be

reliable. In the model-dependent framework one thus has to trust the model. In contrast, the design-

based approach, on which all forestinventory estimators are based, rests upon the randomization of

the sample locations x. While the sample locations x are independently and uniformly distributed in

the forest, the forest itself and thus the values of the local densities Y (x) at any location x ∈ F are fixed

and not the result of a stochastic process. A selected observation Y(x) still remains a random variable,

but solely due to the random sample mechanism. A consequence of this approach is that the estimation

properties of design-based regression estimators (e.g. unbiasedness) typically hold regardless of the

model that is chosen. The philosophy of the design-based approach is thus to use prediction models

to improve the efficiency of the estimators without having to rely on their correct specification, which

makes them very attractive to be used in official statistics. They are therefore also referred to as model-

assisted. It should be noted that the randomization of sample locations upon which design-based

inference depends, is in practice often replaced by systematic grids to minimize travelling costs in the

terrestrial survey. However, there is reasonable evidence that softening this assumption is acceptable

for point and variance estimation as long as the grid does not interact with periodic features in the

forest structure (Mandallaz 2008). The variance will in most cases be slightly overestimated and lead

to wider, more conservative confidence intervals (Mandallaz 2013a).
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2.6. Package Structure

In the forestinventory package, estimators for two-phase and three-phase sampling are applied

with the twophase() and threephase() functions. From these two overall function calls, various

estimators for specific inventory scenarios under the chosen sampling design can be applied (Fig. 3).

Choosing an estimator follows a tree-like structure which can serve the user as a guideline throughout

this article as well as in future applications. The basic decision to make is whether an estimate and its

variance should be computed for an entire inventory area (global estimators) or only for subregions of

the entire inventory area (small area estimators). In the second case, the package offers three small

area estimators that will in detail be described in the following sections. The estimators are available

under exhaustive and non-exhaustive use of the auxiliary data. Additionally, the package also can

calculate one-phase estimates solely based on terrestrial samples. All estimators are also available for

cluster sampling, in which case a sample unit consists of multiple, spatially agglomerated samples. The

following sections describe the mathematical details and the application of the multi-phase estimators

implemented in the R package forestinventory. While Mandallaz (2008, 2013c,b, 2015) provides

an extensive derivation of all estimators, we will provide the mathematical formulas that are actually

implemented in the package. We will also restrict discussion to simple sampling, while the formulas for

cluster sampling are available in the technical reports (Mandallaz, Hill, and Massey 2016; Mandallaz

2013c,b). A special case under cluster sampling is described in Section 6.

Exhaustive 

auxiliary 

information

Global

Estimators

Non-exhaustive 

auxiliary 

information

Unbiased
Potentially 

biased

Extended
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Figure 3: Structure of the multi-phase estimators in the R package forestinventory



Andreas Hill, Alexander Massey 7

3. Two-phase Estimators and their Application

3.1. Global Estimators

Mathematical Background

The vector of regression coefficients of the OLS regression model is found by using the following

solution to the sample-based normal equation:

β̂ββ s2
=
( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1( 1

n2
∑

x∈s2

Y (x)ZZZ(x)
)

(1)

The individual predictions can then be calculated as Ŷ (x) =ZZZt(x)β̂ββ s2
and the empirical model resid-

uals, which are only available at all sample locations x ∈ s2, are calculated as R̂(x) = Y (x)− Ŷ (x).
Unless stated otherwise, forestinventory only uses internal models to calculate estimates. This means

that the model fit, i.e. β̂ββ s2
, is derived from the current inventory data that are passed to the twophase()

and threephase() functions. While virtually all inventorists fit their models using the current inven-

tory data, sometimes there is reason to use formulas derived from external models where the sample

used to train the model is assumed to be taken from an independent source (Massey and Mandallaz

2015a). However, this usually occurs when using a model other than the OLS regression model and is

beyond the scope of the package at this time.

The package provides the calculation of point estimates under exhaustive (ex) and non-exhaustive

(nex) use of the auxiliary information, which means to respectively apply β̂ββ s2
to Z̄ZZ, i.e. the exact spatial

mean of ZZZ(x), or to ˆ̄ZZZ, i.e. an estimate of the spatial mean of ZZZ(x):

Ŷreg2p,ex = Z̄ZZ
t
β̂ββ s2

(2a)

Ŷreg2p,nex =
ˆ̄ZZZtβ̂ββ s2

(2b)

Note that for internal linear models the mean of the empirical residuals 1
n2

∑x∈s2
R̂(x) is zero by

construction (zero mean residual property) which is why it does not appear in the point estimate. More

explanation about how to obain the auxiliary means is given in the next subsection.

The forestinventory package implements two kinds of variances for each of these point estimates:

the g-weight formulation that accounts for the fact that our model is in fact internal, and the external

variance formulation that assumes a true external regression model and thus neglects the uncertainty

in the regression coefficients (Mandallaz et al. 2016).

The g-weight formulation is

V̂(Ŷreg2p,ex) := Z̄ZZ
t
Σ̂ΣΣ

β̂ββ s2

Z̄ZZ (3a)

V̂(Ŷreg2p,nex) := ˆ̄ZZZtΣ̂ΣΣ
β̂ββ s2

ˆ̄ZZZ + β̂ββ
t

s2
Σ̂ΣΣ ˆ̄ZZZ

β̂ββ s2
(3b)

where the g-weight variance-covariance matrix of β̂ββ s2
is calculated as

Σ̂ΣΣ
β̂ββ s2

:=
( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZt(x)
)( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1

(4)
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and the uncertainty caused by using the s1 sample to estimate Z̄ZZ by ˆ̄ZZZ is accounted for by the variance-

covariance matrix of the auxiliary vector ˆ̄ZZZ

Σ̂ ˆ̄ZZZ
=

1

n1(n1 −1) ∑
x∈s1

(ZZZ(x)− ˆ̄ZZZ)(ZZZ(x)− ˆ̄ZZZ)t (5)

The external variance formulation for linear regression models is

V̂ext(Ŷreg2p,ex) =
1

n2

V̂s2
(R̂(x)) (6a)

V̂ext(Ŷreg2p,nex) =
1

n1

V̂s1
(Ŷ (x))+

1

n2

V̂s2
(R̂(x))

where V̂s2
and V̂s1

indicate taking the sample variance over s2 and s1 respectively.

Note that when applied to internal linear regression models, the external variance is asymptotically

unbiased and usually slightly smaller than the g-weight variance, where the uncertainty of the regres-

sion coefficients is accounted for by the variance-covariance matrix (Eq. 4). The external variances are

provided in the package forestinventory in case the user wants to compare linear models to another

model type where no g-weight formulation is possible, as is the case with non-parametric models like

kNN.

Calculation of Explanatory Variables

We will now draw our attention to the calculation of the explanatory variables from the auxiliary

data for both the non-exhaustive and exhaustive cases. Fig. 4b depicts how the non-exhaustive case

often looks like in practice: a regular terrestrial grid s2 is given by a terrestrial inventory (the points

surrounded by dotted circles) and densified to a larger sample s1 (the points). For every point x, each

explanatory variable in the vector ZZZ(x) = (z(x)1,z(x)2, ...,z(x)p)
t is calculated using a defined spatial

extent of auxiliary information around that point called the support (the dark green square tiles). We

emphasize that the value of the explanatory variables for ZZZ(x) are associated with the sample point

whereas the support is the spatial extent of the auxiliary information used to calculate those values. So

far this is in perfect agreement with the presented theory of the non-exhaustive estimator, except for

using regular grids rather than randomly placed sample points. The forestinventory package calculates

the empirical mean of ZZZ(x) automatically from the input data frame using ˆ̄ZZZ = 1
n1

∑x∈s1
ZZZ(x).

The exhaustive case requires a closer look. In the infinite population approach, ZZZ(x) refers to the

sample point x and not the area around it. Deriving the exact spatial mean, Z̄ZZ = 1
λ (F)

∫

F ZZZ(x)dx =

( 1
λ (F)

∫

F z1(x)dx, ..., 1
λ (F)

∫

F zp(x)dx)t , implies that we need to calculate the spatial mean of each com-

ponent of ZZZ(x) using all possible points in F . This is much like the situation we had with calculating

the mean of the local density surface for Y (x) in that we need to find the mean of ZZZ(x) over an infinite

number of sample points (i.e. n1 = ∞). Although it is practically infeasible to assess ZZZ(x) for every

x, there are few cases where the exact mean can in fact be precisely calculated. The first case is when

the explanatory variables are provided by polygon layers (e.g. map of development stages). In this

case, one can calculate the exact mean as the area-weighted average of each categorical variable. The

second case is when the exact mean can be calculated in one step, e.g. taking the mean of all height

pixels of a raster canopy height model will perfectly equal the mean calculated by the use of an infinite

number of supports (Mandallaz et al. 2013). However, for most types of explanatory variables we will

try to get an approximation of Z̄ZZ that is only negligibly different.

One implementation to approximate the exact mean Z̄ZZ is shown in Fig. 4a, where the spatial arrange-

ment of the supports (the dark green tiles) are tessellated to form a perfect partition over the inventory
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area in order for all of the wall-to-wall auxiliary information to be exploited. Is has to be noted that

this setup would allow for a perfect calculation of the exact mean Z̄ZZ in the finite population approach,

i.e. deriving ZZZ(x) for the finite population of supports that are considered the sampling units. While

in the infinite population approach this implementation probably does not produce the true exact mean

Z̄ZZ, n1 is still expected to be reasonably large for the difference to be considered negligible as long as

the size of the supports are not unreasonably large. However, the perfect tessellation implementation

can also impose drawbacks. One is that a perfect tessellation by the supports strongly depends on the

distance between the sample locations of s1 and the support size. Since in practice the support size

should ideally be chosen to achieve a best possible explanatory power of the regression model (thus

minimizing the residual variation) a perfect tessellation might often not be feasible. In the infinite

population frame, the supports are allowed to overlap if this seems necessary to acquire a sufficiently

large sample n1 to get a negligibly close approximation of Z̄ZZ. With this respect, the infinite population

approach provides more flexibility than the finite approach.

(a) (b)

Figure 4: Concept of (a) exhaustive and (b) non-exhaustive calculation of explanatory variables including boundary ad-

justment at the support level. Auxiliary data are in both cases available over the entire inventory area marked by the large

rectangle. A vector of explanatory variables ZZZ(x) is calculated within the supports (small squares) at each sample location x

(points) that falls into the forest area (green underlying polygon).

An extension to the so-far published estimators by Mandallaz is the consideration of a boundary

adjustment. In forest inventories, the sample is often restricted to those sample locations located within

the forest area. In case a consistent forest definition can be applied to both the s2 and s1 sample (e.g. by

a polygon forest mask layer), it might be desired to restrict the calculation of the explanatory variables

to the forest area within the given support (see Fig. 4). This method was suggested in Mandallaz et al.

(2013) and led to an improvement in estimation precision. In order to ensure an unbiased calculation

of either ˆ̄ZZZ or Z̄ZZ, the respective means have then to be calculated as the weighted mean (Eq. 7) where

the weight w(x) is equal to the percentage of forested area within the support of sample location x.

ˆ̄ZZZ =
∑x∈s1

w(x)ZZZ(x)

∑x∈s1
w(x)

(7)

Application

To demonstrate the use of the global two-phase estimators, we will use the grisons data set that

comes with installing the package from the CRAN repository. The data set contains data from a

simple (i.e. non-cluster) two-phase forest inventory conducted in 2007 that was used in Mandallaz

et al. (2013) as a case study. The s1 sample is comprised of 306 sample locations arranged on a
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systematic grid containing auxiliary information in the form of LiDAR canopy height metrics (mean,

stddev, max, q75). For a systematic subsample of 67 (s2 sample), terrestrial information of the timber

volume per hectare (tvol) on the sample plot level is provided from a terrestrial survey. We can load

forestinventory and examine the grisons data set in the R environment as follows:

R> library(forestinventory)

R> data("grisons", package = "forestinventory")

R> head(grisons)

phase_id_2p boundary_weights mean stddev max q75 smallarea tvol

1 2 1.0000000 9.301509 11.841066 40.86731 21.140011 C 107.80

2 1 1.0000000 12.156926 11.353946 39.79736 21.542512 A NA

3 2 1.0000000 5.247305 5.738444 23.81775 9.530029 D 63.77

4 1 1.0000000 7.533882 9.332118 34.09998 13.022277 A NA

5 1 0.6660761 6.105373 5.872390 23.32996 10.551788 B NA

6 1 1.0000000 12.149097 10.161655 33.75732 20.969971 C NA

7 2 1.0000000 6.377284 4.720547 17.96094 10.143495 D 154.10

8 1 1.0000000 1.247679 3.793701 22.71594 0.000000 B NA

9 1 1.0000000 21.563423 7.493390 32.65515 27.811491 A NA

10 2 1.0000000 13.547820 7.200165 36.14001 18.587038 A 256.15

Estimates can be made using the onephase(), twophase() or threephase() functions. The data

frame inputted to these functions must have the structure where each row corresponds to a unique

sample location and the columns specify the attributes associated to that respective sample location.

Attributes that are missing, e.g. because they are associated with sample locations that were not se-

lected in the subsample for the subsequent phase, should be designated as NA and the phase membership

is encoded as numeric.

For global two-phase estimation, we have to specify

• the regression model (formula) as specified in the lm()-function (R Core Team 2017)

• the inputted data.frame containing the inventory information (data)

• the list-object phase_id containing: the phase.col argument identifying the name of the

column specifying membership to s1 or s2, and the terrgrid.id argument specifying which

numeric value indicates s2 membership in that column

• the name of the column containing the weights w(x) of the boundary adjustments (optional)

The non-exhaustive estimator with boundary weight adjustment can thus be applied as follows:

R> reg2p_nex <- twophase(formula=tvol ~ mean + stddev + max + q75,

+ data=grisons,

+ phase_id=list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

The twophase() function creates an S3 object of class "twophase" with subclass "global". A

readable summary of the estimation results can be obtained by passing this object to the summary()

function, which automatically interprets what type of estimator was used and returns pertinent infor-

mation such as the regression model formula, the point estimate (estimate), the g-weight and external

variance (g_variance and ext_variance) as well as the sample sizes and the model R2:

R> summary(reg2p_nex)
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Two-Phase global estimation

Call:

twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

boundary_weights = "boundary_weights")

Method used:

Non-exhaustive global estimator

Regression Model:

tvol ~ mean + stddev + max + q75

Estimation results:

estimate ext_variance g_variance n1 n2 r.squared

383.5354 279.954 271.5057 306 67 0.6428771

✬boundary_weight✬- option was used to calculate weighted means of auxiliary variables

For practical use, one should normally always prefer the g-weight variance over the external vari-

ance. This is because when we use internal models, the regression coefficients actually depend on the

terrestrial sample realized by the sampling design. In contrast to the external variance, the g-weight

variance accounts for this sampling variability which results in more reliable point and variance esti-

mates and also enjoys better statistical calibration properties (g-weights). The external and g-weight

variances are asymptotically equivalent but the external variance is really only included here in case

the user wants to compare to another estimator where no g-weight variance exists.

The exhaustive estimator can be applied by additionally passing a vector containing the exact

means of the explanatory variables, i.e. Z̄ZZ, to the optional argument exhaustive. This vector must be

calculated beforehand in such a way that any desired boundary adjustment has already been applied.

Note that the vector input to exhaustive must be in the same order that the lm()-function processes

a formula object including the intercept term whose exact mean will always be 1. Particular caution

must be taken if categorical variables are present because the lm()-function, which is internally used

to set up the design-matrix, automatically creates dummy variables with one of the categories used as

a reference. Using our grisons example, the correct order can always be extracted by the following

R-code:

R> colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons, x = TRUE)$x)

The exhaustive estimator can be applied after defining the vector of exact means Z̄ZZ taken from

Mandallaz et al. (2013), denoted as true.means.Z:

R> true.means.Z <- c(1, 11.39, 8.84, 32.68, 18.03)

R> reg2p_ex <- twophase(formula = tvol ~ mean + stddev + max + q75,

+ data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ exhaustive = true.means.Z)

An alternative way to look at the estimation results without using the summary() is to query
reg2p_ex directly:

R> reg2p_ex$estimation

estimate ext_variance g_variance n1 n2 r.squared

1 376.7426 202.5602 187.2787 Inf 67 0.6428771
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Note that both variances of the exhaustive estimation are smaller than those of the non-exhaustive

estimation. This is essentially because we eliminated one component of uncertainty by substituting the

estimated means of the explanatory variables ˆ̄ZZZ by their exact means Z̄ZZ.

3.2. Small Area Estimators

Mathematical Background

The forestinventory package provides three types of small area estimators each of which has an

exhaustive and non-exhaustive form. We will use a different nomenclature for the non-exhaustive case

in small area estimation since much of the existing literature shows preference for the label pseudo to

indicate that the mean of the explanatory variables within the small area was based on a finite sample.

The main idea for all these small area estimators is to calculate the regression coefficient vector β̂ββ s2
and

its variance-covariance matrix Σ̂ΣΣ
β̂ββ s2

on the entire s2 sample according to Eq. 1 and 4, and subsequently

use that to make predictions for sample locations restricted to small area G.

We first introduce the small area estimator (small), which uses exhaustively computed explanatory

variables, and its non-exhaustive version, the pseudo small area estimator (psmall).

ŶG,small,2p = Z̄ZZ
t
Gβ̂ββ s2

+
1

n2,G
R̂(x) (8a)

ŶG,psmall,2p =
ˆ̄ZZZt

Gβ̂ββ s2
+

1

n2,G
R̂(x) (8b)

In the equations for the point estimates (Eq. 8a and 8b), we see that the globally derived regression

coefficients are applied to the exhaustively or non-exhaustively calculated means of the explanatory

variables (Z̄ZZG, ˆ̄ZZZG) which are now only based on the first-phase sample s1,G located within small area

G. A potential bias of the regression model predictions in the small area G, due to fitting the regres-

sion model with data also outside of G, is then corrected by adding the mean of the empirical model

residuals in G. This is called the bias or residual correction term.

The package provides the g-weight variance for small and psmall respectively (Eq. 9a, 9b) as well as

the external variance (Eq. 10a, 10b). Again note that all components are restricted to those available

at the sample locations in the small area (s1,G and s2,G), with exception of the regression coefficient

components β̂ββ s2
and Σ̂ΣΣ

β̂ββ s2

.

V̂(ŶG,small,2p) := Z̄ZZ
t
GΣ̂ΣΣ

β̂ββ s2

Z̄ZZG +
1

n2,G
V̂s2,G(R̂(x)) (9a)

V̂(ŶG,psmall,2p) := ˆ̄ZZZt
GΣ̂ΣΣ

β̂ββ s2

ˆ̄ZZZG + β̂ββ
t

s2
Σ̂ ˆ̄ZZZG

β̂ββ s2
+

1

n2,G
V̂s2,G(R̂(x)) (9b)

V̂ext(ŶG,small,2p) :=
1

n2,G
V̂s2,G(R̂(x)) (10a)

V̂ext(ŶG,psmall,2p) :=
1

n1,G
V̂s2,G(Y (x))+

(

1−
n2,G

n1,G

) 1

n2,G
V̂s2,G(R̂(x)) (10b)
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where V̂s2,G indicates taking the sample variance over s2,G. If boundary adjustment is applied, the

simple mean of the explanatory variable over the small area ˆ̄ZZZG = 1
n1,G

∑x∈s1,G
ZZZ(x) is replaced by its

weighted version ˆ̄ZZZG =
∑x∈s1,G

w(x)ZZZ(x)

∑x∈s1,G
w(x) , and likewise for exhaustively used auxiliary information.

The synthetic estimator (synth) and pseudo synthetic estimator psynth are commonly applied

when no terrestrial sample is available within the small area G (i.e. n2,G = 0). In this case, the point

estimates (Eq. 11a and 11b) are based only on the predictions generated by applying the globally

derived regression model to the auxiliary vectors Z̄ZZG and ˆ̄ZZZG respectively. However, the bias correction

using the observed residuals R̂(x) is not applied as was the case in the small and pseudo small area

estimator (Eq. 8a and 8b). Thus, the (pseudo) synthetic estimator has a potentially unobservable

design-based bias. Also note that the residual variation can no longer be considered in the g-weight

variance (Eq. 11c and 11d). Therefore, the synthetic estimators will usually have a smaller variance

than estimators incorporating the regression model uncertainties, but at the cost of a potential bias.

Due to the absence of available residuals in G, there is also no external variance form for the synthetic

and pseudo synthetic estimator.

ŶG,synth,2p = Z̄ZZ
t
Gβ̂ββ s2

(11a)

ŶG,psynth,2p =
ˆ̄ZZZt

Gβ̂ββ s2
(11b)

V̂(ŶG,synth,2p) = Z̄ZZ
t
GΣ̂ΣΣ

β̂ββ s2

Z̄ZZG (11c)

V̂(ŶG,psynth,2p) =
ˆ̄ZZZt

GΣ̂ΣΣ
β̂ββ s2

ˆ̄ZZZG + β̂ββ
t

s2
Σ̂ ˆ̄ZZZG

β̂ββ s2
(11d)

where the variance-covariance matrix of the auxiliary vector ˆ̄ZZZG is estimated by

Σ̂ ˆ̄ZZZG
=

1

n1,G(n1,G −1) ∑
x∈s1,G

(ZZZ(x)− ˆ̄ZZZG)(ZZZ(x)−
ˆ̄ZZZG)

t (12)

The synthetic estimators, synth and psynth, have attractively compact formulas but come with the

downside of potential bias in their point estimates which can make the variances seem deceptively

optimistic. The small and psmall estimators overcome this issue by using a bias correction term,

i.e. 1
n2,G

∑x∈s2,G
R̂(x). The motivation behind the extended synthetic and extended pseudo synthetic

estimator (extsynth and extpsynth) is to use the same mathematically elegant formulas of the (pseudo)

synthetic estimators while at the same time ensuring that the empirical residuals of the prediction

model in the entire area F and the small area G are by construction both zero at the same time. This is

accomplished by extending the vector of auxiliary information ZZZ(x) by a binary categorical indicator

variable IG(x) which takes the value 1 if the sample location x lies inside the target small area G and

is otherwise set to 0. Recalling that linear models fitted using OLS have zero mean residual property

by construction also if categorical variables are used, this leads to unbiased point estimates. The new

extended auxiliary vector thus becomes ZZZ
t(x) = (ZZZt(x), IG(x)) and can be used to replace its non-

extended counterpart ZZZt(x) whereever it is used in Eq. 11 and 12. Note that the package functions

internally extend the data set by the indicator variable if the extsynth or extpsynth estimator is called.

Not every equation needs to be re-written here, but to give an example of the notational change, the

regression coefficient under extended model approach becomes

θ̂θθ s2
=
( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1( 1

n2
∑

x∈s2

Y (x)ZZZ(x)
)

(13)
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The point estimates and their g-weight variances can then be re-written as

ŶG,extsynth,2p = Z̄ZZ
t

Gθ̂θθ s2
(14a)

ŶG,ext psynth,2p =
ˆ̄
ZZZ

t
Gθ̂θθ s2

(14b)

V̂(ŶG,extsynth,2p) = Z̄ZZ
t

GΣ̂ΣΣθ̂θθ s2

Z̄ZZG (14c)

V̂(ŶG,ext psynth,2p) =
ˆ̄
ZZZ

t
GΣ̂ΣΣθ̂θθ s2

ˆ̄
ZZZG + θ̂θθ

t

s2
Σ̂ ˆ̄
ZZZG

θ̂θθ s2
(14d)

While the formulas look similar to the synthetic estimators, note that a decomposition of θ̂θθ s2
reveals

that the residual correction term is now included in the regression coefficient θ̂θθ s2
(Mandallaz et al.

2016) and thus the estimates are asymptotically design-unbiased.

The package also provides the external variance for both the extended synthetic and extended pseudo

synthetic estimator. Note that neither the extended model approach nor external variance estimates

are possible in the absence of terrestrial samples and thus model residuals in G, which is precisely

when one must rely on the (pseudo) synthetic estimates. The external variance forms of extsynth and

extpsynth are

V̂ext(ŶG,extsynth,2p) =
1

n2,G
V̂s2,G(R̂(x)) (15a)

V̂ext(ŶG,ext psynth,2p) =
1

n1,G
V̂s2,G(Y (x))+

(

1−
n2,G

n1,G

) 1

n2,G
V̂s2G

(R̂(x)) (15b)

where R̂(x) are the empirical residuals under the extended auxiliary vector.

To summarize, the (pseudo) synthetic estimator can be applied whether terrestrial inventory sample

is found in the small area or not, but has a deceptively small g-weight variance due to its potential

bias. When terrestrial sample is observed in the small area, we can produce (asymptotically) design-

unbiased estimates and variances using either small or psmall which remove this bias explicitly with a

mean residual term, or more elegantly with extsynth or extpsynth which simply use the same synthetic

formulas while including an indicator variable for the small area in the model formula to remove the

bias by construction in OLS.

Application

Small area estimates in the forestinventory package can be applied by specifying the optional ar-

gument small_area. The input data set has to include an additional column of class factor that

describes the small area membership of the sample location represented by that row. The argument

small_area requires a list-object that comprises

• the name of the column specifiying the small area of each observation (sa.col)

• a vector specifying the small area(s) for which estimations are desired (areas)

• the argument unbiased that controls which of the three available estimators is applied

In order to apply the pseudo small area estimator (psmall) with boundary adjustment, we set
unbiased=TRUE as well as the optional argument psmall=TRUE:
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R> psmall_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights",

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE),

+ psmall = TRUE)

R> summary(psmall_2p)

Two-phase small area estimation

Call:

twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

small_area = list(sa.col = "smallarea", areas = c("A", "B"),

unbiased = TRUE), boundary_weights = "boundary_weights",

psmall = TRUE)

Method used:

Pseudo small area estimator

Regression Model:

tvol ~ mean + stddev + max + q75

Estimation results:

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

A 393.9713 1009.034 1308.117 306 67 94 19 0.6428771

B 419.6416 1214.035 1259.472 306 67 81 17 0.6428771

✬boundary_weight✬- option was used to calculate weighted means of auxiliary variables

The small area functions all return an S3 object of class "twophase" with subclass "smallarea".
In addition to global estimation, the estimation object now comprises the estimates and variances
for all small areas (column area). We can view the sample sizes by looking into the object itself

R> psmall_2p$samplesizes

$A

n1G n2G n1 n2

plots 94 19 306 67

$B

n1G n2G n1 n2

plots 81 17 306 67

The extended pseudo synthetic estimator (extpsynth) can be applied by setting unbiased=TRUE
and leaving the optional argument psmall to its default value of FALSE:

R> extpsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights",

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE))

R> extpsynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 391.9356 995.5602 1017.633 306 67 94 19 0.6526503

2 B 419.7231 1214.6053 1019.191 306 67 81 17 0.6428854



16 forestinventory: Design-Based Global and Small Area Estimations in R

The forestinventory package automatically includes the indicator variable for the small area behind

the scenes so there is no need for the user to implement it. Notice that the R2s (r.squared) under the

extpsynth estimator vary between the small areas, while they are identical under the psmall estimator.

This is because under the extpsynth estimator, the regression model is recalculated for each small

area estimation after adding the indicator variable for the respective small area in the globally derived

design matrix. In case of the psmall estimator, the regression model stays the same for each small

area estimation. Although the results of both estimators should always be close to each other, we

recommend applying both estimators and compare the results afterwards in order to reveal unsuspected

patterns in the data, particularly in the case of cluster sampling (see Section 6).

Setting the argument unbiased=FALSE applies the pseudo synthetic estimator to the selected

small areas. Note that in the grisons data set, all small areas possess much more than the suggested

minimum number of terrestrial observations (a rule of thumb is that n2,G ≥ 6) required to produce re-

liable design-unbiased estimates. Hence, choosing to use psynth is probably not desireable and is just

applied here for demonstration purposes. In this case the residual correction will not be applied.

R> psynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights",

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = FALSE))

R> psynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 421.8863 NA 546.8651 306 67 94 19 0.6428771

2 B 418.7399 NA 566.3361 306 67 81 17 0.6428771

We see here that the psynth variances are almost only half the variances of the psmall and extended

psynth estimators. However, psmall and extended psynth are design unbiased and their variances reflect

the fact that they account for potential bias of the regression model predictions. The g-weight variance

of psynth completely neglects a potential bias and as a result risks severely overstating the estimation

precision.

The exhaustive versions of the small area estimators (Eq. 8a, 9a, 10a, 11a, 11c) are specified

via the optional argument exhaustive. Its application requires that we know the exact means of

all explanatory variables within the small area(s) of interest. In contrast to the global estimators, the

exact means have now to be delivered in the form of a data.frame, where each row corresponds to a

small area, and each column specifies the exact mean of the respective explanatory variable. Note that

likewise the case of global estimation, the order of the explanatory variables in the data frame has to

match the order in which they appear in the design matrix defined by the lm()-function in R. In order

to tell R which row describes which small area, the row names have to match the respective names of

the small areas specified in the areas argument.

For the grisons data set, the exact means of the explanatory variables for the small areas used in
Mandallaz et al. (2013) are thus defined by

R> colnames(lm(formula = tvol ~ mean + stddev + max + q75, data = grisons, x = TRUE)$x)

R> true.means.Z.G <- data.frame(Intercept = rep(1, 4),

+ mean = c(12.85, 12.21, 9.33, 10.45),

+ stddev = c(9.31, 9.47, 7.90, 8.36),

+ max = c(34.92, 35.36, 28.81, 30.22),

+ q75 = c(19.77, 19.16, 15.40, 16.91))

R> rownames(true.means.Z.G) <- c("A", "B", "C", "D")
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R> true.means.Z.G

Intercept mean stddev max q75

A 1 12.85 9.31 34.92 19.77

B 1 12.21 9.47 35.36 19.16

C 1 9.33 7.90 28.81 15.40

D 1 10.45 8.36 30.22 16.91

The extended synthetic estimator (extsynth) can then be applied by

R> extsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ small_area = list(sa.col ="smallarea", areas = c("A", "B"),

+ unbiased = TRUE),

+ exhaustive = true.means.Z.G)

R> extsynth_2p$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 A 372.6930 744.3658 696.5739 Inf 67 Inf 19 0.6526503

2 B 387.5116 693.8576 708.1105 Inf 67 Inf 17 0.6428854

Just as in the global case, we see that the variance has again been significantly decreased by sub-

stituting the exact auxiliary means and both first phase sample sizes are now infinity. Note that the

function extracts the required exact means for small area "A" and "B" from the complete set of exact

means defined in true.means.Z.G.
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4. Three-phase Estimators and their Application

4.1. Global Estimators

Mathematical Background

Solving the sample-based normal equations, the vector of regression coefficients α̂ααs2
for the reduced

model, i.e. using the reduced set of explanatory variables ZZZ(0)(x) available at x ∈ s0, and likewise the

vector of regression coefficients β̂ββ s2
for the full model, i.e. using the full set of explanatory variables

ZZZt(x) = (ZZZ(0)t(x),ZZZ(1)t(x)) available only at a subset x ∈ s1 ⊂ s0, are derived as

α̂ααs2
=
( 1

n2
∑

x∈s2

ZZZ(0)(x)ZZZ(0)t(x)
)−1 1

n2
∑

x∈s2

Y (x)ZZZ(0)(x) (16a)

β̂ββ s2
=
( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1 1

n2
∑

x∈s2

Y (x)ZZZ(x) (16b)

The package allows for the calculation of point estimates under exhaustive and non-exhaustive use

of the auxiliary information in the s0 phase. Fitting the model using s2 (i.e. internally) ensures the zero

mean residual property over s2.

Ŷreg3p,ex =
1

λ (F)

∫

F
ZZZ(0)t(x)α̂ααs2

+
1

n1
∑

x∈s1

(ZZZt(x)β̂ββ s2
−ZZZ(0)t(x)α̂ααs2

)+
1

n2
∑

x∈s2

(Y (x)−ZZZt(x)β̂ββ s2
)

= (Z̄ZZ
(0)
0 − ˆ̄ZZZ

(0)
1 )tα̂ααs2

+ ˆ̄ZZZt
1β̂ββ s2

(17a)

Ŷreg3p,nex =
1

n0
∑

x∈s0

ZZZ(0)t(x)α̂ααs2
+

1

n1
∑

x∈s1

(ZZZt(x)β̂ββ s2
−ZZZ(0)t(x)α̂ααs2

)+
1

n2
∑

x∈s2

(Y (x)−ZZZt(x)β̂ββ s2
)

= ( ˆ̄ZZZ
(0)
0 − ˆ̄ZZZ

(0)
1 )tα̂ααs2

+ ˆ̄ZZZt
1β̂ββ s2

(17b)

Intuitively, the three phase estimator is simply the mean of the predictions using the reduced model,

corrected by the mean difference between the reduced model predictions and the more accurate full

model predictions, corrected by the mean difference between the ground truth and the full model

predictions. For the compact version of the formula in the non-exhaustive case, the estimated means

of ZZZ(0)(x) over both the s0 and s1 phase, as well as the estimated mean of ZZZ(x) over the s1 phase are

calculated according to Eq. 18. If the exact mean over s0 is known, the estimated mean ˆ̄ZZZ
(0)
0 can simply

be replaced by the exact mean Z̄ZZ
(0)
0 . Note that in case of applied boundary adjustment (Section 3), the

simple mean is again replaced by the weighted mean analogous to Eq. 7.

ˆ̄ZZZ
(0)
0 =

1

n0
∑

x∈s0

ZZZ(0)(x), ˆ̄ZZZ
(0)
1 =

1

n1
∑

x∈s1

ZZZ(0)(x), ˆ̄ZZZ1 =
1

n1
∑

x∈s1

ZZZ(x) (18)

The package again provides the g-weight and external variances. The g-weight variance formula-

tion is

V̂(Ŷreg3p,ex) =
n2

n1

Z̄ZZ
(0)t

Σ̂ΣΣα̂ααs2
Z̄ZZ
(0)

+(1−
n2

n1

) ˆ̄ZZZt
1Σ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1 (19a)

V̂(Ŷreg3p,nex) = α̂αα t
s2

Σ̂ΣΣ ˆ̄ZZZ
(0)
0

α̂ααs2
+

n2

n1

ˆ̄ZZZ
(0)t
0 Σ̂ΣΣα̂ααs2

ˆ̄ZZZ
(0)
0 +(1−

n2

n1

) ˆ̄ZZZt
1Σ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1 (19b)
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with the variance-covariance matrix of ˆ̄ZZZ
(0)
0 and the variance-covariance matrices of the regression

coefficients α̂ααs2
and β̂ββ s2

:

Σ̂ΣΣ ˆ̄ZZZ
(0)
0

=
1

n0(n0 −1) ∑
x∈s0

(ZZZ(0)(x)− ˆ̄ZZZ
(0)
0 )(ZZZ(0)(x)− ˆ̄ZZZ

(0)
0 )t (20a)

Σ̂ΣΣα̂ααs2
=
( 1

n2
∑

x∈s2

ZZZ(0)(x)ZZZ(0)t(x)
)−1( 1

n2
2

∑
x∈s2

R̂(0)2(x)ZZZ(0)(x)ZZZ(0)t(x)
)( 1

n2
∑

x∈s2

ZZZ(0)(x)ZZZ(0)t(x)
)−1

(20b)

Σ̂ΣΣ
β̂ββ s2

=
( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1( 1

n2
2

∑
x∈s2

R̂2(x)ZZZ(x)ZZZt(x)
)( 1

n2
∑

x∈s2

ZZZ(x)ZZZt(x)
)−1

(20c)

Note that R̂(x) = Y (x)− ZZZt(x)β̂ββ s2
denotes the empirical residuals of the full model, whereas

R̂(0)(x) = Y (x)−ZZZ(0)tα̂ααs2
denotes the empirical residuals of the reduced model. The external vari-

ance form under linear regression models is defined as

V̂ext(Ŷreg3p,ex) =
1

n1

V̂s2
(R̂(0)(x))+(1−

n2

n1

)
1

n2

V̂s2
(R̂(x)) (21a)

V̂ext(Ŷreg3p,nex) =
1

n0

V̂s0
(Ŷ (0)(x))+

1

n1

V̂s2
(R̂(0)(x))+(1−

n2

n1

)
1

n2

V̂s2
(R̂(x)) (21b)

where V̂s0
indicates taking the sample variance over s0.

Application

In order to demonstrate the three-phase estimators in the package, we created an artificial three-phase

scenario by recoding the phase indicators in the grisons data set (column phase_id_3p) according

to the terminology used in this article (0 for s0, 1 for s1, 2 for s2). We now assume that the mean

canopy height (mean) is available at all 306 sample locations x ∈ s0, whereas we have the explanatory

variables stddev, max and q75 only at 128 subsamples s1 of s0. At 40 further subsamples s2 we have

the observations Y (x) from the field inventory. Based on this setup, we can now define the reduced

and full regression model formulas to be used in the threephase() function (note that the models are

nested):

R> formula.rm <- tvol ~ mean # reduced model applied to s0 phase

R> formula.fm <- tvol ~ mean + stddev + max + q75 # full model applied to s1 phase

Compared to the twophase()-function, we now have to specify two regression models, i.e. the

nested reduced (formula.s0) and full (formula.s1) regression model. In addition, we also have to

specify the indication of the s1 phase (s1.id) in the argument phase_id (note that forestinventory

implicitly assumes that all other rows in the input data set belong to s0). The global three-phase

estimation can thus be applied by

R> reg3p_nex <- threephase(formula.s0 = formula.rm,

+ formula.s1 = formula.fm, data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1,

+ terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

R> summary(reg3p_nex)
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Three-phase global estimation

Call:

threephase(formula.s0 = formula.rm, formula.s1 = formula.fm,

data = grisons, phase_id = list(phase.col = "phase_id_3p",

s1.id = 1, terrgrid.id = 2), boundary_weights = "boundary_weights")

Method used:

Non-exhaustive global estimator

Full Regression Model:

tvol ~ mean + stddev + max + q75

Reduced Regression Model:

tvol ~ mean

Estimation results:

estimate ext_variance g_variance n0 n1 n2 r.squared_reduced r.squared_full

372.0896 454.4064 451.3626 306 128 40 0.527363 0.7166608

✬boundary_weight✬- option was used to calculate weighted means of auxiliary variables

The summary() of a threephase()-function now recalls both regression model formulas and also

gives the R2 for both the reduced (r.squared_reduced) and the full (r.squared_full) models. We

are told that including stddev, max and q75 yields a 20 % improvement in R2. When comparing to

using only mean under a two-phase approach, we would see a considerable reduction in variance by

the three-phase extension.

4.2. Small Area Estimators

Mathematical Background

The three two-phase small area estimators described in Section 3.2 can also be extended to the

three-phase scenario. The general principle thereby stays the same, i.e. the regession coefficients

of the reduced and full model and their variance-covariance matrices are calculated on the entire s2

sample according to Eq. 16a, 16b, 20b and 20c, and are subsequently used to make predictions for

sample locations restricted to small area G.

The unbiased point estimates of the small (small) and pseudo small area estimator (psmall) are

calculated by applying the globally derived reduced and full regression model coefficients to the small

area means of the explanatory variables, and then corrected for a potential model bias in G by adding

the small area mean of the full model residuals, i.e. R̂G(x) = YG(x)−ZZZt
G(x)β̂ββ s2

, to the point estimate.

The difference between the mean ˆ̄ZZZ
(0)
1,G and the more precise or exact mean ˆ̄ZZZ

(0)
0,G and Z̄ZZ

(0)
0,G is again

considered as a correction term likewise in the global estimation (Eq. 17).

ŶG,small,3p = (Z̄ZZ
(0)
0,G − ˆ̄ZZZ

(0)
1,G)

tα̂ααs2
+ ˆ̄ZZZt

1,Gβ̂ββ s2
+

1

n2,G
R̂G(x) (22a)

ŶG,psmall,3p = ( ˆ̄ZZZ
(0)
0,G − ˆ̄ZZZ

(0)
1,G)

tα̂ααs2
+ ˆ̄ZZZt

1,Gβ̂ββ s2
+

1

n2,G
R̂G(x) (22b)

The g-weight variance is then calculated as
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V̂(ŶG,small,3p) =
n2

n1

Z̄ZZ
(0)t
0,GΣ̂ΣΣα̂ααs2

Z̄ZZ
(0)
0,G +(1−

n2

n1

) ˆ̄ZZZt
1,GΣ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1,G +
1

n2,G
V̂s2,G(R̂(x)) (23a)

V̂(ŶG,psmall,3p) = α̂αα t
s2

Σ̂ΣΣ ˆ̄ZZZ
(0)
0,G

α̂ααs2
+

n2

n1

ˆ̄ZZZ
(0)t
0,GΣ̂ΣΣα̂ααs2

ˆ̄ZZZ
(0)
0,G +(1−

n2

n1

) ˆ̄ZZZt
1,GΣ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1,G +
1

n2,G
V̂s2,G(R̂(x)) (23b)

with the variance-covariance matrix

Σ̂ ˆ̄ZZZ
(0)
0,G

=
1

n0,G(n0,G −1) ∑
x∈s0,G

(ZZZ(0)(x)− ˆ̄ZZZ
(0)
0,G)(ZZZ

(0)(x)− ˆ̄ZZZ
(0)
0,G)

t (24)

The external variance is defined as:

V̂ext(ŶG,small,3p) =
1

n1,G
V̂s2,G(R̂

(0)(x))+(1−
n2,G

n1,G
)

1

n2,G
V̂s2,G(R̂(x)) (25a)

V̂ext(ŶG,psmall,3p) =
1

n0,G
V̂s2,G(Y (x))+(1−

n1,G

n0,G
)

1

n1,G
V̂s2,G(R̂

(0)(x))

+(1−
n2,G

n1,G
)

1

n2,G
V̂s2,G(R̂(x)) (25b)

where R̂(0)(x) = Y (x)− Ŷ (0)(x) with Ŷ (0)(x) = ZZZ(0)t(x)α̂ααs2
.

The synthetic (synth) and pseudo synthetic estimator (psynth) can be applied if no terrestrial sam-

ples are available in the small area, i.e. n2,G = 0. Consequently, the residual correction and the residual

variation term of the full model can no longer be applied and drops from the point estimate (Eq. 26a

and 26b) and g-weight variance (Eq. 26c and 26d) formulas. The point estimates are again potentially

biased since 1
n2,G

∑x∈s2,G
R̂(x) = 0 for the full model residuals can not be ensured within small area G.

Also the variance will be small but to the cost of ignoring the model uncertainties. Note that there is

again no external variance formula for the synthetic and pseudo synthetic estimation.

ŶG,synth,3p = (Z̄ZZ
(0)
0,G − ˆ̄ZZZ

(0)
1,G)

tα̂αα2 +
ˆ̄ZZZt

1,Gβ̂ββ s2
(26a)

ŶG,psynth,3p = ( ˆ̄ZZZ
(0)
0,G − ˆ̄ZZZ

(0)
1,G)

tα̂αα2 +
ˆ̄ZZZt

1,Gβ̂ββ s2
(26b)

V̂(ŶG,synth,3p) =
n2

n1

Z̄ZZ
(0)t
0,GΣ̂ΣΣα̂ααs2

Z̄ZZ
(0)
0,G +(1−

n2

n1

) ˆ̄ZZZt
1,GΣ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1,G (26c)

V̂(ŶG,psynth,3p) = α̂αα t
2Σ̂ΣΣ ˆ̄ZZZ

(0)
0,G

α̂αα2 +
n2

n1

ˆ̄ZZZ
(0)t
0,GΣ̂ΣΣα̂ααs2

ˆ̄ZZZ
(0)
0,G +(1−

n2

n1

) ˆ̄ZZZt
1,GΣ̂ΣΣ

β̂ββ s2

ˆ̄ZZZ1,G (26d)

The extended synthetic (extsynth) and extended pseudo synthetic estimator (extpsynth) ensures

that the residuals of the full model over both the entire inventory area F and the small area G are zero

at the same time, i.e. 1
n2

∑x∈s2
R̂(x) = 1

n2,G
∑x∈s2,G

R̂(x) = 0. This is again realized by extending the vector

of explanatory variables by a binary categorical indicator variable IG(x) which takes the value 1 if the

observation lies inside the small area G and is otherwise set to 0. The extended auxiliary vector is

thus defined as ZZZt(x) = (ZZZ(0)t(x),ZZZ(1)t(x)), where ZZZ
(0)t(x) = (ZZZ(0)t(x), It

G(x)). In other words, when

the extended option is chosen, forestinventory automatically adds the binary indicator variable for the

desired small area for all observations in the input data frame (i.e. s0). The regression coefficients,

point estimates and variance estimates are calculated by replacing ZZZ with ZZZ (and likewise ZZZ(0) with

ZZZ
(0)) into Eq. 16, 20, 25 and 26. Just as in the two-phase case, the resulting point estimates are now
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unbiased and have an associated g-weight variance that accounts for the variability of the regression

coefficients resulting from the random sample s2.

Application

We will demonstrate the use of three-phase small area estimation in the package forestinventory by

applying the extended synthetic and the synthetic estimator to the grisons data set. The setup is

thus exactly the same as in the example for global three-phase estimation (Section 4.1). However, this

time will use the exact auxiliary mean of the mean canopy height variable (mean) and assume that we

do not know the exact means of the remaining explanatory variables stddev, max and q75. We thus

first define the true means for each small area just as we did in the twophase() example (Section 3.2):

R> truemeans.G <- data.frame(Intercept = rep(1, 4),

+ mean = c(12.85, 12.21, 9.33, 10.45))

R> rownames(truemeans.G) <- c("A", "B", "C", "D")

Three-phase small area estimation in the package can in general be applied by additionally speci-

fying the small_area list argument. The exhaustive estimators can be called by optionally passing

a data.frame containing the exact auxiliary means to the exhaustive argument. The extended

synthetic estimator can be applied by setting the argument unbiased to TRUE (default):

R> extsynth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p",

+ s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE),

+ exhaustive = truemeans.G,

+ boundary_weights = "boundary_weights")

R> extsynth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G r.squared_reduced

1 A 382.6405 1642.055 1518.741 Inf 128 40 Inf 38 12 0.5454824

2 B 368.9013 1501.211 1530.576 Inf 128 40 Inf 34 11 0.5354637

r.squared_full

1 0.7242913

2 0.7171512

The synthetic estimator can be applied by changing the argument unbiased to FALSE, which

causes the function to not apply a bias correction in the respective small area.

R> synth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = FALSE),

+ exhaustive = truemeans.G,

+ boundary_weights = "boundary_weights")

R> synth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G r.squared_reduced

1 A 409.3390 NA 410.7529 Inf 128 40 Inf 38 12 0.527363

2 B 375.4608 NA 461.8250 Inf 128 40 Inf 34 11 0.527363

r.squared_full
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1 0.7166608

2 0.7166608

We see that the threephase()-function returns the sample sizes in the entire inventory area as well

as within each small area. The value Inf for n0G indicates that the explanatory variables at s0 sample

locations used in the reduced model were in our case derived exhaustively. If we compare the two

results, we see that the synthetic estimation again yields a much smaller variance than the extended

synthetic estimation, but at the cost of a potential bias.

We can also analyse how the exhaustive derivation of mean performed compared to the case where

mean is non-exhaustively available but at a very large s0 phase with n0,G >> n1,G. To do this, we addi-

tionally compute the extended pseudo synthetic estimates. As we can see, the exhaustive derivation

of mean only yielded a slightly smaller variance.

R> extpsynth_3p <- threephase(formula.rm, formula.fm, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p",

+ s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea", areas = c("A", "B"),

+ unbiased = TRUE),

+ boundary_weights = "boundary_weights")

R> extpsynth_3p$estimation

area estimate ext_variance g_variance n0 n1 n2 n0G n1G n2G r.squared_reduced

1 A 395.1882 1967.580 1858.204 306 128 40 94 38 12 0.5454824

2 B 389.8329 1830.949 1816.655 306 128 40 81 34 11 0.5354637

r.squared_full

1 0.7242913

2 0.7171512
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5. Calculation of Confidence Intervals

Converting the estimated variance into a 95% confidence interval (CI) allows for a more practical

interpretation of a point estimate’s precision. The correct interpretation of a CI is not that there is

a 95% probability that it contains the true value. In the design-based context, the true value of the

population parameter we are trying to estimate, albeit unknown, is fixed and the sample is randomly

generated under the sample design. Theoretically, if we were to repreatedly conduct the inventory

using the same estimation method, estimator and auxiliary information under newly drawn random

samples and calculate the 95% CI from each sample, then 95% of the CIs are expected to contain

the true population parameter. The confidence level 1−α (e.g. 95%) is thus the expected frequency

or proportion of possible confidence intervals to contain the unknown population parameter under

resampling and is therefore often also referred to as coverage rate. The CI is also linked to hypothesis

testing in that its associated point estimate is considered statistically different from any given value

that lies outside the CI boundaries.

Based on the central limit theorem it can be assumed that under hypothetical repeated sampling

the point estimates will asymptotically follow a normal distribution. However, on the recommenda-

tion of Mandallaz (2013a), better confidence intervals can obtained using the Student’s t distribution

(Mandallaz (2013a)) defined as

One-Phase Estimation

CI1−α(Ŷ ) =

[

Ŷ − tn2−1,1− α
2

√

V̂(Ŷ ),Ŷ + tn2−1,1− α
2

√

V̂(Ŷ )

]

(27)

Two-Phase and Three-Phase Global Estimation

CI1−α(Ŷ ) =

[

Ŷ − tn2−p,1− α
2

√

V̂(Ŷ ),Ŷ + tn2−p,1− α
2

√

V̂(Ŷ )

]

(28)

Two-Phase and Three-Phase Small Area Estimation

CI1−α(Ŷ ) =

[

Ŷ − tn2,G−1,1− α
2

√

V̂(Ŷ ),Ŷ + tn2,G−1,1− α
2

√

V̂(Ŷ )

]

(29)

where Ŷ is the point estimate, V̂(Ŷ ) is the estimated variance, 1−α is the confidence level and p

constitutes the number of parameters used in the (full) regression model. In case of cluster-sampling,

n2,G is the number of terrestrial clusters (a cluster constitutes the sample unit and comprises multiple

sample plots). In forestinventory, the confidence intervals for all estimation methods and estimators

can be computed by the S3 generic method confint(), which requires an estimation object created by

either the onephase(), twophase() or threephase() function. For example, the 95% confidence

interval for the small area estimates by the extpsynth estimator (Section 3.2) are calculated by:

R> confint(extpsynth_2p)

95% Confidence Intervals for twophase small area estimation

area estimate ci_lower_ext ci_upper_ext ci_lower_g ci_upper_g

1 A 391.9356 325.6463 458.2250 324.9155 458.9558

2 B 419.7231 345.8418 493.6043 352.0456 487.4006
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6. Special Cases and Scenarios

6.1. Post-Stratification

A special case of multi-phase regression estimators is post-stratification, which can further be di-

vided into the cases of multi-phase sampling for stratification and multi-phase sampling for regression

within strata. Both imply the use of one or more categorical variables in the regression model(s),

leading to classical ANOVA and ANCOVA models.

To demonstrate post-stratification, we first create an artificial categorical variable development stage

(stage) by clustering the mean canopy heights of the grisons data set into 3 height classes:

R> grisons$stage <- as.factor(kmeans(grisons$mean, centers = 3)$cluster)

Two-phase sampling for stratification is applied if the model only contains categorical variables, in

this case the factor variable stage. Linear regression models only fitted with categorical variables

produce ANOVA models, which when used in multi-phase regression estimators, is equivalent to post-

stratification. For our example, this means that the model predictions are simply the means of the

terrestrial response values within each development stage (within-strata means).

R> # two-phase sampling for stratification

R> twophase(formula=tvol ~ stage,

+ data=grisons,

+ phase_id=list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Two-phase sampling for regression within strata implies the combination of continuous and cate-

gorical variables within the model (i.e. we have an ANCOVA model). If an interaction term is not

present between categorical and continuous variables, the regression lines within the strata will have

the same slope but different intercepts. If an interaction term is present, both the intercept and the

slope are allowed to vary within the strata. Note that one can actually use the entire range of OLS

regression techniques in the multi-phase estimators, including higher order terms and transformations

of the explanatory variables, which makes them very flexible.

R> # two-phase sampling for regression within strata:

R> twophase(formula=tvol ~ mean + stddev + max + q75 + stage,

+ data=grisons,

+ phase_id=list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

The variance of all model-assisted estimators included in forestinventory can be decreased by re-

ducing the sum of square residuals of the regression model. In case of post-stratification, this par-

ticularly implies minimizing the within strata residual square sum. Also, for post-stratification, the

g-weight variance should be trusted over the external variance because it has the advantage that the

strata weights are estimated from the large sample rather than the terrestrial sample s2.

6.2. Small Area Estimation under Cluster Sampling

As mentioned in Section 2.6, cluster sampling is a special case of sample designs where the sample

consists of more than one spatially agglomerated sample points. One randomly places the sample

location x in the inventory area as in the simple sampling design, but then M − 1 additional sample

locations x2, ...,xM are created close to the cluster origin x by adding a fixed set of spatial vectors
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e2, ...,eM to x. The idea of cluster sampling is to increase the amount of information without increasing

the travel costs of the terrestrial campaign. However, the information gathered at all sub-locations of a

cluster is then averaged on the cluster level, and this average value then references exactly one point,

i.e. the cluster origin x. Without going into too much mathematical detail, the estimators under simple

sampling are thus extended in a way that all parameters (local density, mean vector of explanatory

variables, mean model residuals) have to be calculated as the weighted cluster means with M(x) being

the cluster weights. Whereas the geometric form and the number of sample locations per cluster M

is fixed (i.e. defined by the inventorist), the actual number of points M(x) falling into the forest area

F at sample location x is random because the cluster origin x is random. The forstinventory package

identifies clusters via a unique cluster ID that is assigned to a column in the input data set. Its column

name is passed to the argument cluster in the twophase() and threephase() function calls.

For small area applications, the scenario might occur where the points of a cluster at sample locations

x spread over more than one small area, i.e. only a subset MG(x)< M(x) is included in the small area

of interest. In this case, the zero mean residual property within the small area,
∑x∈s2,G

M(x)R̂c(x)

∑x∈s2,G
M(x) = 0, is no

longer guaranteed when using the extended and pseudo extended synthetic estimator (see extsynth

and extpsynth in Sections 3.2 and 4.2). In this case, it is adviseable to use the (pseudo) small area

estimator (psmall) where the zero mean residual property is still ensured.

In order to keep track of such cases, forestinventory tells the user to do so by returning a warning
message:

R> extpsynth.clust <- twophase(formula = basal ~ stade + couver + melange, data=zberg,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ cluster = "cluster",

+ small_area = list(sa.col = "ismallold", areas = c("1"),

+ unbiased = TRUE))

Warning message:

At least one terrestrial cluster not entirely included within small area 1.

Zero mean residual assumption for small area maybe violated.

Check mean_Rc_x_hat_G and consider alternative estimator ✬psmall✬

R> extpsmall.clust <- twophase(formula = basal ~ stade + couver + melange, data=zberg,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ cluster = "cluster",

+ small_area = list(sa.col = "ismallold", areas = c("1"),

+ unbiased = TRUE),

+ psmall = TRUE)

R> extpsynth.clust$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 1 25.54748 14.03806 14.16853 298 73 29 8 0.205741

R> extpsmall.clust$estimation

area estimate ext_variance g_variance n1 n2 n1G n2G r.squared

1 1 23.98581 16.30509 15.69473 298 73 29 8 0.1873795

Comparing the extpsynth and psmall estimates, we see that in this particular case the point estimates

are close and more important, the external as well as the g-weight variances only differ marginally. This

can be taken as evidence that the violation of the zero mean residual property can here be expected to

have negligible consequences.
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6.3. Violation of Nesting in Sample Design

As explained in Section 2, a basic prerequisite for the application of multi-phase estimators is that

the sample phases (s0, s1, s2) are nested in each other. The correct nesting thereby concerns the spatial

arrangement of the sample phases (Fig. 2a) as well as the availability of terrestrial and auxiliary

information per phase and sample location. For the latter, forestinventory runs validity checks in

the background, provides warning and error messages and, if possible, applies first-aid adjustments to

the inventory data set to prevent the calculations from failing. We will demonstrate possible nesting

violations by applying the global three-phase estimator to the grisons and zberg data sets.

Violation 1

Based on the nesting rule, s2 ∈ s1 ∈ s0, each s2 and s1 sample location must have all explanatory

variables available that are used in the full (and thus reduced) regression model. If e.g. an s2 and/or s1

point misses a variable which is used in the full and reduced model (in this case mean), the function

will delete this sample point from the dataset and produce the following messages:

R> ## delete "mean" value from an s2- (i.e. s1- and s0-) sample point:

R> grisons[which(grisons$phase_id_3p==2)[1],"mean"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75,

+ data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning messages:

1: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Sample design not nested: for 1 terrestrial plots at least one auxiliary parameter

of the first phase (s1) is missing

2: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Sample design not nested: for 1 terrestrial plots at least one auxiliary parameter

of the zero phase (s0) is missing

3: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

1 rows deleted due to missingness in the set of auxiliary parameters for the zero phase (s0)

(1 terrestrial plots affected by deletion)

Violation 2

However, if an s2 and/or s1 point is missing a variable which is only used in the full regression model

(in this example q75), the function will recode the phase indicator of that point to s0, since the point

still provides the required information for the reduced model. If this concerns an s2 sample location,

the associated value of the response variable can no longer be used.

R> ## delete "q75" value from an s2-sample point:

R> grisons[which(grisons$phase_id_3p==2)[1],"q75"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75,

+ data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning messages:

1: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :
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Sample design not nested: for 1 terrestrial plots at least one auxiliary parameter

of the first phase (s1) is missing

2: In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

Changed the phase_id for 1 rows to the zero phase (s0) due to missingness in the set of

auxiliary parameters for the first phase (s1) (1 terrestrial information no longer usable

by this change)

Violation 3

If an s0 point misses at least one of the explanatory variables used in the reduced model, the sample

locations are deleted from the data set.

R> ## delete "mean" value from an s0-sample point:

R> grisons[which(grisons$phase_id_3p==0)[1],"mean"] <- NA

R> threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75,

+ data = grisons,

+ phase_id = list(phase.col="phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ boundary_weights = "boundary_weights")

Warning message:

In threephase(formula.s0 = tvol ~ mean, formula.s1 = tvol ~ mean + :

1 rows deleted due to missingness in the set of auxiliary parameters for the zero phase (s0)

(0 terrestrial plots affected by deletion)

Note that all the automatic data adjustments (deletion, recoding) have to be accepted with caution.

Recapitulating, the unbiasedness of estimators in the design-based framework is based on the uniform

and independent randomization of the sample locations. This means that every possible location within

the forest area F , as well as pairs of locations, have inclusion and joint inclusion probabilities greater

than zero. Whereas this is already violated in practice by the use of regular grids, one can still expect

that these grids do not exclude specific forest structures. If any information should be missing at

the sample locations, one should clarify the reason for this and make sure that the information can

reasonably be assumed to be completely missing at random.

Violation 4

If a categorical variable is used in the regression model(s) and the terrestrial sample s2 is consider-

ably small compared to the s1 phase, it might occur that a category is only present in the s1\s2 sample,

and thus missing in the s2 sample. Therefore, an internal regression model cannot be calculated and

the function stops with the following error message:

R> ## delete s2-points with "stade"-level ✬300✬

R> zberg <- zberg[-which(zberg.n$phase_id_2p == 2 & zberg.n$stade=="300"), ]

R> twophase(formula = basal ~ stade + couver + melange,

+ data = zberg,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ cluster = "cluster")

Error in check.mandatoryInputs(formula, data, phase_id) :

Level ✬300✬ of factor variable ✬stade✬ existing in s1(s0)- but not in s2 sample.

Calculation of coefficient not feasible.



Andreas Hill, Alexander Massey 29

7. Analysis and Visualization

7.1. Analysis

We often want to compare the results and performances of different estimation methods and esti-

mators for a given global or small area inventory, which can be easily accomplished in forestinven-

tory using the estTable() function. This function restructures the results from the onephase(),

twophase() and threephase() objects and merges them into one single data set that provides the

basis for further analysis. For demonstration purposes, we will first recalculate the one-phase estimator

as well as the two-phase and three-phase extended pseudo synthetic and the pseudo synthetic estimators

for the grisons data set:

R> op <- onephase(formula = tvol~1, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ area = list(sa.col = "smallarea", areas = c("A", "B", "C", "D")))

R> extpsynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea",

+ areas = c("A", "B","C", "D"),

+ unbiased = TRUE))

R> psynth_2p <- twophase(formula = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_2p", terrgrid.id = 2),

+ boundary_weights = "boundary_weights",

+ small_area = list(sa.col = "smallarea",

+ areas = c("A", "B", "C", "D"),

+ unbiased = FALSE))

R> extpsynth_3p <- threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area=list(sa.col = "smallarea", areas = c("A", "B", "C", "D"),

+ unbiased = TRUE),

+ boundary_weights = "boundary_weights")

R> psynth_3p <- threephase(formula.s0 = tvol ~ mean,

+ formula.s1 = tvol ~ mean + stddev + max + q75, data = grisons,

+ phase_id = list(phase.col = "phase_id_3p", s1.id = 1, terrgrid.id = 2),

+ small_area = list(sa.col = "smallarea",

+ areas = c("A", "B", "C", "D"),

+ unbiased = FALSE),

+ boundary_weights = "boundary_weights")

We can then aggregate all estimation objects in a list and pass it to the estTable()-function:

R> grisons.sae.table <- estTable(est.list = list(op, extpsynth_2p, psynth_2p,

+ extpsynth_3p, psynth_3p),

+ sae = TRUE,

+ vartypes = c("variance", "g_variance", "ext_variance"))

The function merges the estimation results and returns a list object with the subclasses

"esttable" "smallarea". The vartypes argument can be used to restrict the estTable() output
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to certain types of variances. If one prefers the data.frame format for further analysis, this can easily

be done using as.data.frame(grisons.sae.table). Note however that forestinventory provides

several S3 generic methods specifically for the class "esttable".

The structure of an esttable object is very similar to the objects created by the small area estima-

tion functions of the package. However, the point estimates and variances from all estimation objects

passed to estTable() have been stored in one single column (estimate and variance) and can be

distinguished by the variables method, estimator and vartype which specify the estimation method

(one, two or three-phase), the estimator and the type of variance that was applied (g_ for g-weight and

ext_ for external variance). By default, the confidence intervals are also added.

R> str(grisons.sae.table)

List of 20

$ area : chr [1:28] "A" "A" "A" "A" ...

$ domain : Factor w/ 2 levels "global","smallarea": 1 2 2 2 2 2 2 1 2 2 ...

$ method : Factor w/ 3 levels "onephase","twophase",..: 1 3 3 3 2 2 2 1 3 3 ...

$ estimator : Factor w/ 3 levels "onephase","psynth extended",..: 1 2 2 3 2 2 3 1 2 2 ...

$ vartype : Factor w/ 3 levels "ext_variance",..: 3 1 2 2 1 2 2 3 1 2 ...

$ estimate : num [1:28] 410 395 395 422 391 ...

$ variance : num [1:28] 1987 1968 1858 726 996 ...

$ std : num [1:28] 44.6 44.4 43.1 26.9 31.6 ...

$ error : num [1:28] 10.86 11.22 10.91 6.39 8.07 ...

$ n2 : num [1:28] 19 40 40 40 67 67 67 17 40 40 ...

$ n2G : num [1:28] NA 12 12 12 19 19 19 NA 11 11 ...

$ n1 : num [1:28] NA 128 128 128 306 306 306 NA 128 128 ...

$ n1G : num [1:28] NA 38 38 38 94 94 94 NA 34 34 ...

$ n0 : int [1:28] NA 306 306 306 NA NA NA NA 306 306 ...

$ n0G : int [1:28] NA 94 94 94 NA NA NA NA 81 81 ...

$ r.squared : num [1:28] NA NA NA NA 0.653 ...

$ r.squared_reduced: num [1:28] NA 0.545 0.545 0.527 NA ...

$ r.squared_full : num [1:28] NA 0.724 0.724 0.717 NA ...

$ ci_lower : num [1:28] 317 298 300 367 325 ...

$ ci_upper : num [1:28] 504 493 490 476 457 ...

- attr(*, "row.names")= int [1:28] 1 2 3 4 5 6 7 8 9 10 ...

- attr(*, "class")= chr [1:3] "list" "esttable" "smallarea"

Note that estTable() also returns the estimation error (error) that is defined as the standard

error devided by the point estimate:

error[%] =

√

V̂(Ŷ )

Ŷ
·100 (30)

As multi-phase estimation techniques are primary intended to increase estimation precision, the

function mphase.gain() can be applied to quantify the potential benefit of a multi-phase global or

small area estimate compared to its respective one-phase estimate. The function takes an esttable

object as input and returns a summary of which multi-phase method and estimator performed best

using the precision from the one-phase estimator as a baseline. If the esttable object contains more

than one multi-phase estimation object, mphase.gain() identifies the one with the smallest variance

and compares it to the onephase estimation. The argument pref.vartype can be used to define what

type of variance (g-weight or external) should be used for the comparison. Synthetic estimates (synth

and psynth estimator) are not considered for the comparison under the default setting (exclude.synth

= TRUE) since they usually have a much smaller variance at the cost of a potential bias.

R> mphase.gain(grisons.sae.table, pref.vartype = "g_variance")
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area var_onephase var_multiphase method estimator gain rel.eff

1 A 1987.117 1016.9557 twophase psynth extended 48.8 1.953986

2 B 3175.068 1019.2698 twophase psynth extended 67.9 3.115041

3 C 1180.853 763.0731 threephase psynth extended 35.4 1.547496

4 D 2290.652 1112.7346 twophase psynth extended 51.4 2.058579

The function call returns a data frame containing the one-phase variance (var_onephase) and the

variance of the best performing multi-phase estimator (var_multiphase). The multi-phase estimation

procedure is again specified in the method and estimator column. The last two columns quantify

the potential benefit of the multi-phase estimation. The gain is the reduction (if its value is positive)

in variance when applying the multi-phase as alternative to the one-phase estimation. For example,

it is indicated that the two-phase extended psynth estimation procedure for small area "B" leads to a

67.9 % reduction in variance compared to the one-phase procedure. The column rel.eff specifies

the relative efficiency which is defined as the ratio between the one-phase variance and the multi-phase

variance:

rel.e f f[%] =
V̂onephase(Ŷ )

V̂multiphase(Ŷ )
·100 (31)

The relative efficiency can be interpreted as the relative sample size of the one-phase estimator

needed to achieve the variance of the multi-phase estimator. For small area "B" we can thus see that

we would have to increase the terrestrial sample size by factor 3 in the one-phase approach in order

to get the same estimation precision as the two-phase extended psynth estimator. If the average costs

for a terrestrial sample plot survey are known, the relative efficiency can thus be a simple means of

quantifying the financial benefit of using multi-phase estimation for forest inventories.

7.2. Visualization

The forestinventory package also provides a S3 generic plot method based on the ggplot2 package

(Wickham 2009) to visualize the estimation results in two ways: 1) the point estimates with overlayed

confidence intervals, and 2) the estimation errors. Both plots can be obtained by passing the esstable

object to the plot() function.

R> plot(grisons.sae.table, ncol = 2)
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Whereas the estimation errors are plotted by default, the point estimates and confidence intervals

are returned when setting the argument yvar = "estimate". Note that the graphics can arbitrarily

be extended by additional ggplot2 parameterizations.

R> plot(grisons.sae.table, ncol = 2, yvar = "estimate") +

+ ylab("Timber Volume [m3/ha]")

8. Future Plans

The forestinventory package currently provides a fairly well-rounded toolkit for forestry inven-

torists to integrate auxiliary information into their estimates using the model-assisted methods under

the design-based approach. Although 32 combinations of inventory scenarios, estimators and sample

designs are covered, there are still potential improvements planned for the future. As this is an open-

source project, everyone is encouraged to give feedback and/or make contributions on the package’s

development page on GitHub (Hill 2017). Currently planned extensions include:

• Implement parallel procedures for efficiently calculating many small areas.

• Allow functions to accept objects of class data.table from the data.table package (Dowle and

Srinivasan 2017) to improve memory efficiency.

• Enable the user to choose other types of models than linear regressions fitted with OLS.
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