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append_chains Append MCMC chains (objects of class coda::mcmc)

Description

Combines two or more MCMC runs into a single run. If runs have multiple chains, it will check
that all have the same number of chains, and it will join chains using the rbind function.

Usage

append_chains(...)

## Default S3 method:
append_chains(...)

## S3 method for class 'mcmc.list'
append_chains(...)

## S3 method for class 'mcmc'
append_chains(...)

Arguments

... A list of mcmc or mcmc.list class objects.

Value

If mcmc.list, an object of class mcmc.list, otherwise, an object of class mcmc.
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check_initial Checks the initial values of the MCMC

Description

This function is for internal use only.

Usage

check_initial(initial, nchains)

Arguments

initial Either a vector or matrix,.

nchains Integer scalar. Number of chains.

Details

When initial is a vector, the values are recycled to form a matrix of size nchains * length(initial).

Value

A named matrix.

Examples

init <- c(.4, .1)
check_initial(init, 1)
check_initial(init, 2)

init <- matrix(1:9, ncol=3)
check_initial(init, 3)

# check_initial(init, 2) # Returns an error

convergence-checker Convergence Monitoring

Description

Built-in set of functions to be used in companion with the argument conv_checker in MCMC.
These functions are not intended to be used in a context other than the MCMC function.
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Usage

convergence_gelman(freq = 1000L, threshold = 1.1, check_invariant = TRUE, ...)

convergence_geweke(
freq = 1000L,
threshold = 0.025,
check_invariant = TRUE,
...

)

convergence_heildel(freq = 1000L, ..., check_invariant = TRUE)

convergence_auto(freq = 1000L)

Arguments

freq Integer scalar. Frequency of checking.

threshold Numeric value. A Gelman statistic below the threshold will return TRUE.
check_invariant

Logical. When TRUE the function only computes the Gelman diagnostic using
variables with greater than 1e-10 variance.

... Further arguments passed to the method.

Details

In the case of convergence_geweke, threshold sets the p-value for the nullH0 : Z = 0, i.e. equal
means between the first and last chunks of the chain. See coda::geweke.diag. This implies that the
higher the threshold, the lower the probability of stopping the chain.

In the case that the chain has more than one parameter, the algorithm will return true if and only if
the test fails to reject the null for all the parameters.

For the convergence_heildel, see coda::heidel.diag for details.

The convergence_auto function is the default and is just a wrapper for convergence_gelman and
convergence_geweke. This function returns a convergence checker that will be either of the other
two depending on whether nchains in MCMC is greater than one–in which case it will use the Gelman
test–or not–in which case it will use the Geweke test.

Value

A function passed to MCMC to check automatic convergence.
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cov_recursive Recursive algorithms for computing variance and mean

Description

These algorithms are used in kernel_adapt() to simplify variance-covariance recalculation at ev-
ery step of the algorithm.

Usage

cov_recursive(
X_t,
Cov_t,
Mean_t,
Mean_t_prev,
t.,
eps = 0,
Sd = 1,
Ik = diag(length(X_t))

)

mean_recursive(X_t, Mean_t_prev, t.)

Arguments

X_t Last value of the sample

Cov_t Covariance in t
Mean_t, Mean_t_prev

Vectors of averages in time t and t-1 respectively.

t. Sample size up to t-1.

Sd, eps, Ik See kernel_adapt().

Details

The variance covariance algorithm was described in Haario, Saksman and Tamminen (2002).

References

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli,
7(2), 223–242. https://projecteuclid.org/euclid.bj/1080222083

Examples

# Generating random data (only four points to see the difference)
set.seed(1231)
n <- 3
X <- matrix(rnorm(n*4), ncol = 4)

https://projecteuclid.org/euclid.bj/1080222083
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# These two should be equal
mean_recursive(

X_t = X[1,],
Mean_t_prev = colMeans(X[-1,]),
t. = n - 1

)
colMeans(X)

# These two should be equal
cov_recursive(

X_t = X[1, ],
Cov_t = cov(X[-1,]),
Mean_t = colMeans(X),
Mean_t_prev = colMeans(X[-1, ]),
t = n-1

)
cov(X)

# Speed example -------------------------------------------------------------
set.seed(13155511)
X <- matrix(rnorm(1e3*100), ncol = 100)

ans0 <- cov(X[-1,])
t0 <- system.time({

ans1 <- cov(X)
})

t1 <- system.time(ans2 <- cov_recursive(
X[1, ], ans0,
Mean_t = colMeans(X),
Mean_t_prev = colMeans(X[-1,]),
t. = 1e3 - 1

))

# Comparing accuracy and speed
range(ans1 - ans2)
t0/t1

fmcmc A friendly MCMC framework

Description

The fmcmc package provides a flexible framework for implementing MCMC models using a lightweight
in terms of dependencies. Among its main features, fmcmc allows:
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Details

• Implementing arbitrary transition kernels.

• Incorporating convergence monitors for automatic stop.

• Out-of-the-box parallel computing implementation for running multiple chains simultane-
ously.

For more information see the packages vignettes:

vignette("workflow-with-fmcmc", "fmcmc")

vignette("user-defined-kernels", "fmcmc")

References

Vega Yon et al., (2019). fmcmc: A friendly MCMC framework. Journal of Open Source Software,
4(39), 1427, doi: 10.21105/joss.01427

kernel_adapt Adaptive Metropolis (AM) Transition Kernel

Description

Implementation of Haario et al. (2001)’s Adaptive Metropolis.

Usage

kernel_adapt(
mu = 0,
bw = 0L,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
freq = 1L,
warmup = 500L,
Sigma = NULL,
Sd = NULL,
eps = 1e-04,
fixed = FALSE,
until = Inf

)

kernel_am(
mu = 0,
bw = 0L,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
freq = 1L,
warmup = 500L,

https://doi.org/10.21105/joss.01427
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Sigma = NULL,
Sd = NULL,
eps = 1e-04,
fixed = FALSE,
until = Inf

)

Arguments

mu Either a numeric vector or a scalar. Proposal mean. If scalar, values are recycled
to match the number of parameters in the objective function.

bw Integer scalar. The bandwidth, is the number of observations to include in the
computation of the variance-covariance matrix.

lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

freq Integer scalar. Frequency of updates. How often the variance-covariance matrix
is updated. The implementation is different from that described in the original
paper (see details).

warmup Integer scalar. The number of iterations that the algorithm has to wait before
starting to do the updates.

Sigma The variance-covariance matrix. By default this will be an identity matrix during
the warmup period.

Sd Overall scale for the algorithm. By default, the variance-covariance is scaled to
2.42/d, with d the number of dimensions.

eps Double scalar. Default size of the initial step (see details).

fixed Logical scalar or vector of length k. Indicates which parameters will be treated
as fixed or not. Single values are recycled.

until Integer scalar. Last step at which adaptation takes place (see details).

Details

While it has been shown that under regular conditions this transition kernel generates ergodic chains
even when the adaptation does not stop, some practitioners may want to stop adaptation at some
point.

kernel_adapt Implements the adaptive Metropolis (AM) algorithm of Haario et al. (2001). If
the value of bw is greater than zero, then the algorithm folds back AP, a previous version which is
known to have ergodicity problems.

The parameter eps has two functions. The first one is to set the initial scale for the multivariate
normal kernel, which is replaced after warmup steps with the actual variance-covariance computed
by the main algorithm. The second usage is in the equation that ensures that the variance-covariance
is greater than zero, this is, the ε parameter in the original paper.

The update of the covariance matrix is done using cov_recursive() function, which makes the
updates faster. The freq parameter, besides of indicating the frequency with which the updates
are done, it specifies what are the samples included in each update, in other words, like a thinning
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parameter, only every freq samples will be used to compute the covariance matrix. Since this
implementation uses the recursive formula for updating the covariance, there is no practical need to
set freq != 1.

kernel_am is just an alias for kernel_adapt.

Value

An object of class fmcmc_kernel. fmcmc_kernel objects are intended to be used with the MCMC()
function.

References

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli,
7(2), 223–242. https://projecteuclid.org/euclid.bj/1080222083

See Also

Other kernels: kernel_mirror, kernel_new(), kernel_normal(), kernel_ram(), kernel_unif()

Examples

# Update every-step and wait 1,000 steps before starting to adapt
kern <- kernel_adapt(freq = 1, warmup = 1000)

# Two parameters model, the second parameter with a restricted range, i.e.
# a lower bound of 1
kern <- kernel_adapt(lb = c(-.Machine$double.xmax, 0))

kernel_mirror Mirror Transition Kernels

Description

NMirror and UMirror transition kernels described in Thawornwattana et al. (2018).

Usage

kernel_nmirror(
mu = 0,
scale = 1,
warmup = 500L,
nadapt = 4L,
arate = 0.4,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
fixed = FALSE,
scheme = "joint"

)

https://projecteuclid.org/euclid.bj/1080222083
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kernel_umirror(
mu = 0,
scale = 1,
warmup = 500L,
nadapt = 4L,
arate = 0.4,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
fixed = FALSE,
scheme = "joint"

)

Arguments

mu, scale Either a numeric vector or a scalar. Proposal mean and scale. If scalar, values
are recycled to match the number of parameters in the objective function.

warmup Integer. Number of steps required before starting adapting the chains.

nadapt Integer. Number of times the scale is adjusted for adaptation during the warmup
(burn-in) period.

arate Double. Target acceptance rate used as a reference during the adaptation pro-
cess.

lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

fixed, scheme For multivariate functions, sets the update plan. See plan_update_sequence().

Details

The kernel_nmirror and kernel_umirror functions implement simple symmetric transition ker-
nels that pivot around an approximation of the asymptotic mean.

In the multidimensional case, this implementation just draws a vector of independent draws from
the proposal kernel, instead of using, for example, a multivariate distribution of some kind. This
will be implemented in the next update of the package.

During the warmup period (or burnin as described in the paper), the algorithm adapts both the scale
and the reference mean of the proposal distribution. While the mean is adapted continuously, the
scale is updated only a handful of times, in particular, nadapt times during the warmup time. The
adaptation is done as proposed by Yang and Rodriguez (2013) in which the scale is adapted four
times.

Value

An object of class fmcmc_kernel. fmcmc_kernel objects are intended to be used with the MCMC()
function.
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References

Thawornwattana, Y., Dalquen, D., & Yang, Z. (2018). Designing Simple and Efficient Markov
Chain Monte Carlo Proposal Kernels. Bayesian Analysis, 13(4), 1037–1063. https://doi.org/
10.1214/17-BA1084

Yang, Z., & Rodriguez, C. E. (2013). Searching for efficient Markov chain Monte Carlo proposal
kernels. Proceedings of the National Academy of Sciences, 110(48), 19307–19312. https://doi.
org/10.1073/pnas.1311790110

See Also

Other kernels: kernel_adapt(), kernel_new(), kernel_normal(), kernel_ram(), kernel_unif()

Examples

# Normal mirror kernel with 5 adaptations and 1000 steps of warmup (burnin)
kern <- kernel_nmirror(nadapt = 5, warmup = 1000)

# Same as before but using a uniform mirror and choosing a target acceptance
# rate of 24 %
kern <- kernel_umirror(nadapt = 5, warmup = 1000, arate = .24)

kernel_new Transition Kernels for MCMC

Description

The function kernel_new is a helper function that allows creating fmcmc_kernel objects which are
passed to the MCMC() function.

Usage

kernel_new(proposal, ..., logratio = NULL, kernel_env = new.env(hash = TRUE))

Arguments

proposal, logratio

Functions. Both receive a single argument, an environment. This functions are
called later within MCMC (see details).

... In the case of kernel_new, further arguments to be stored with the kernel.

kernel_env Environment. This will be used as the main container of the kernel’s compo-
nents. It is returned as an object of class c("environment","fmcmc_kernel").

https://doi.org/10.1214/17-BA1084
https://doi.org/10.1214/17-BA1084
https://doi.org/10.1073/pnas.1311790110
https://doi.org/10.1073/pnas.1311790110
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Details

The objects fmcmc_kernels are environments that in general contain the following objects:

• proposal: The function used to propose changes in the chain based on the current state. The
function must return a vector of length equal to the number of parameters in the model.

• logratio: This function is called after a new state has been proposed, and is used to compute
the log of the Hastings ratio.
In the case that the logratio function is not specified, then it is assumed that the transi-
tion kernel is symmetric, this is, log-ratio is then implemented as function(env) {env$f1
-env$f0}

• ...: Further objects that are used within those functions.

Both functions, proposal and logratio, receive a single argument, an environment, which is
passed by the MCMC() function during each step using the function environment().

The passed environment is actually the environment in which the MCMC function is running, in
particular, this environment contains the following objects:

Object Description
i Integer. The current iteration.
theta1 Numeric vector. The last proposed state.
theta0 Numeric vector. The current state
f The log-unnormalized posterior function (a wrapper of fun passed to MCMC).
f1 The last value of f(theta1)
f0 The last value of f(theta0)
kernel The actual fmcmc_kernel object.
ans The matrix of samples defined up to i - 1.

These are the core component of the MCMC function. The following block of code is how this is
actually implemented in the package:

for (i in 1L:nsteps) {
# Step 1. Propose
theta1[] <- kernel$proposal(environment())
f1 <- f(theta1)

# Checking f(theta1) (it must be a number, can be Inf)
if (is.nan(f1) | is.na(f1) | is.null(f1))
stop(
"fun(par) is undefined (", f1, ")",
"Check either -fun- or the -lb- and -ub- parameters.",
call. = FALSE

)

# Step 2. Hastings ratio
if (R[i] < kernel$logratio(environment())) {
theta0 <- theta1
f0 <- f1
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}

# Step 3. Saving the state
ans[i,] <- theta0

}

For an extensive example on how to create new kernel objects see the vignette vignette("user-defined-kernels","fmcmc").

Value

An environment of class fmcmc_kernel which contains the following:

• proposal A function that receives a single argument, an environment. This is the proposal
function used within MCMC().

• logratio A function to compute log ratios of the current vs the proposed step of the chain.
Also used within MCMC().

• ... Further arguments passed to kernel_new.

Behavior

In some cases, calls to the proposal() and logratio() functions in fmcmc_kernels can trigger
changes or updates of variables stored within them. A concrete example is with adaptive kernels.

Adaptive Metropolis and Robust Adaptive Metropolis implemented in the functions kernel_adapt()
and kernel_ram() both update a covariance matrix used during the proposal stage, and further-
more, have a warmup stage that sets the point at which both will start adapting. Because of this,
both kernels have internal counters of the absolute step count which allows them activating, scaling,
etc. the proposals correctly.

1. When running multiple chains, MCMC will create independent copies of a baseline passed
fmcmc_kernel object. These are managed together in a fmcmc_kernel_list object.

2. Even if the chains are run in parallel, if a predefined kernel object is passed it will be updated
to reflect the last state of the kernels before the MCMC call returns.

References

Brooks, S., Gelman, A., Jones, G. L., & Meng, X. L. (2011). Handbook of Markov Chain Monte
Carlo. Handbook of Markov Chain Monte Carlo.

See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_normal(), kernel_ram(), kernel_unif()

Examples

# Example creating a multivariate normal kernel using the mvtnorm R package
# for a bivariate normal distribution
library(mvtnorm)
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# Define your Sigma
sigma <- matrix(c(1, .2, .2, 1), ncol = 2)

# How does it looks like?
sigma
# [,1] [,2]
# [1,] 1.0 0.2
# [2,] 0.2 1.0

# Create the kernel
kernel_mvn <- kernel_new(

proposal = function(env) {
env$theta0 + as.vector(mvtnorm::rmvnorm(1, mean = 0, sigma = sigma.))
},
sigma. = sigma

)

# As you can see, in the previous call we passed sigma as it will be used by
# the proposal function
# The logaratio function was not necesary to be passed since this kernel is
# symmetric.

kernel_normal Gaussian Transition Kernel

Description

Gaussian Transition Kernel

Usage

kernel_normal(mu = 0, scale = 1, fixed = FALSE, scheme = "joint")

kernel_normal_reflective(
mu = 0,
scale = 1,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
fixed = FALSE,
scheme = "joint"

)

Arguments

mu, scale Either a numeric vector or a scalar. Proposal mean and scale. If scalar, values
are recycled to match the number of parameters in the objective function.

fixed, scheme For multivariate functions, sets the update plan. See plan_update_sequence().
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lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

Details

The kernel_normal function provides the canonical normal kernel with symmetric transition prob-
abilities.

The kernel_normal_reflective implements the normal kernel with reflective boundaries. Lower
and upper bounds are treated using reflecting boundaries, this is, if the proposed θ′ is greater than
the ub, then θ′ − ub is subtracted from ub. At the same time, if it is less than lb, then lb − θ′ is
added to lb iterating until θ is within [lb,ub].

In this case, the transition probability is symmetric (just like the normal kernel).

Value

An object of class fmcmc_kernel. fmcmc_kernel objects are intended to be used with the MCMC()
function.

See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_new(), kernel_ram(), kernel_unif()

Examples

# Normal kernel with a small scale (sd) of 0.05
kern <- kernel_normal(scale = 0.05)

# Using boundaries for the second parameter of a two parameter chain
# to have values in [0, 100].
kern <- kernel_normal_reflective(

ub = c(.Machine$double.xmax, 100),
lb = c(-.Machine$double.xmax, 0)
)

kernel_ram Robust Adaptive Metropolis (RAM) Transition Kernel

Description

Implementation of Vihola (2012)’s Robust Adaptive Metropolis.
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Usage

kernel_ram(
mu = 0,
eta = function(i, k) min(c(1, i^(-2/3) * k)),
qfun = function(k) stats::rt(k, k),
arate = 0.234,
freq = 1L,
warmup = 0L,
Sigma = NULL,
eps = 1e-04,
lb = -.Machine$double.xmax,
ub = .Machine$double.xmax,
fixed = FALSE,
until = Inf

)

Arguments

mu Either a numeric vector or a scalar. Proposal mean. If scalar, values are recycled
to match the number of parameters in the objective function.

eta A function that receives the MCMC environment. This is to calculate the scaling
factor for the adaptation.

qfun Function. As described in Vihola (2012)’s, the qfun function is a symmetric
function used to generate random numbers.

arate Numeric scalar. Objective acceptance rate.

freq Integer scalar. Frequency of updates. How often the variance-covariance matrix
is updated.

warmup Integer scalar. The number of iterations that the algorithm has to wait before
starting to do the updates.

Sigma The variance-covariance matrix. By default this will be an identity matrix during
the warmup period.

eps Double scalar. Default size of the initial step (see details).

lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

fixed Logical scalar or vector of length k. Indicates which parameters will be treated
as fixed or not. Single values are recycled.

until Integer scalar. Last step at which adaptation takes place (see details).

Details

While it has been shown that under regular conditions this transition kernel generates ergodic chains
even when the adaptation does not stop, some practitioners may want to stop adaptation at some
point.
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The idea is similar to that of the Adaptive Metropolis algorithm (AM implemented as kernel_adapt()
here) with the difference that it takes into account a target acceptance rate.

The eta function regulates the rate of adaptation. The default implementation will decrease the rate
of adaptation exponentially as a function of the iteration number.

Value

An object of class fmcmc_kernel.

References

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics
and Computing, 22(5), 997–1008. https://doi.org/10.1007/s11222-011-9269-5

See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_new(), kernel_normal(), kernel_unif()

Examples

# Setting the acceptance rate to 30 % and deferring the updates until
# after 1000 steps
kern <- kernel_ram(arate = .3, warmup = 1000)

kernel_unif Uniform Transition Kernel

Description

Uniform Transition Kernel

Usage

kernel_unif(min. = -1, max. = 1, fixed = FALSE, scheme = "joint")

kernel_unif_reflective(
min. = -1,
max. = 1,
lb = min.,
ub = max.,
fixed = FALSE,
scheme = "joint"

)

https://doi.org/10.1007/s11222-011-9269-5
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Arguments

min., max. Passed to stats::runif().

fixed, scheme For multivariate functions, sets the update plan. See plan_update_sequence().

lb, ub Either a numeric vector or a scalar. Lower and upper bounds for bounded ker-
nels. When of length 1, the values are recycled to match the number of parame-
ters in the objective function.

Details

The kernel_unif function provides a uniform transition kernel. This (symmetric) kernel function
by default adds the current status values between [-1,1].

The kernel_unif_reflective is similar to kernel_unif with the main difference that proposals
are bounded to be within [lb, ub].

Value

An object of class fmcmc_kernel. fmcmc_kernel objects are intended to be used with the MCMC()
function.

See Also

Other kernels: kernel_adapt(), kernel_mirror, kernel_new(), kernel_normal(), kernel_ram()

Examples

# Multivariate setting with 4 parameters in which we set the kernel to make
# proposals one parameter at-a-time in a random ordering.
kern <- kernel_unif(scheme = "random")

MCMC Markov Chain Monte Carlo

Description

A flexible implementation of the Metropolis-Hastings MCMC algorithm.

Usage

MCMC(
initial,
fun,
nsteps,
...,
nchains = 1L,
burnin = 0L,
thin = 1L,
kernel = kernel_normal(),



MCMC 19

multicore = FALSE,
conv_checker = NULL,
cl = NULL,
progress = interactive() && !multicore,
chain_id = 1L

)

## S3 method for class 'mcmc'
MCMC(
initial,
fun,
nsteps,
...,
nchains = 1L,
burnin = 0L,
thin = 1L,
kernel = kernel_normal(),
multicore = FALSE,
conv_checker = NULL,
cl = NULL,
progress = interactive() && !multicore,
chain_id = 1L

)

## S3 method for class 'mcmc.list'
MCMC(
initial,
fun,
nsteps,
...,
nchains = 1L,
burnin = 0L,
thin = 1L,
kernel = kernel_normal(),
multicore = FALSE,
conv_checker = NULL,
cl = NULL,
progress = interactive() && !multicore,
chain_id = 1L

)

## Default S3 method:
MCMC(
initial,
fun,
nsteps,
...,
nchains = 1L,
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burnin = 0L,
thin = 1L,
kernel = kernel_normal(),
multicore = FALSE,
conv_checker = NULL,
cl = NULL,
progress = interactive() && !multicore,
chain_id = 1L

)

Arguments

initial Either a numeric matrix or vector, or an object of class coda::mcmc or coda::mcmc.list
(see details). initial values of the parameters for each chain (See details).

fun A function. Returns the log-likelihood.

nsteps Integer scalar. Length of each chain.

... Further arguments passed to fun.

nchains Integer scalar. Number of chains to run (in parallel).

burnin Integer scalar. Length of burn-in. Passed to coda::mcmc as start.

thin Integer scalar. Passed to coda::mcmc.

kernel An object of class fmcmc_kernel.

multicore Logical. If FALSE then chains will be executed in serial.

conv_checker A function that receives an object of class coda::mcmc.list, and returns a logical
value with TRUE indicating convergence. See the "Automatic stop" section and
the convergence-checker manual.

cl A cluster object passed to parallel::clusterApply.

progress Logical scalar. When set to TRUE shows a progress bar. A new bar will be show
every time that the convergence checker is called.

chain_id Integer scalar (internal use only). This is an argument passed to the kernel func-
tion and it allows it identify in which of the chains the process is taking place.
This could be relevant for some kernels (see kernel_new()).

Details

This function implements MCMC using the Metropolis-Hastings ratio with flexible transition ker-
nels. Users can specify either one of the available transition kernels or define one of their own (see
kernels). Furthermore, it allows easy parallel implementation running multiple chains in parallel.
In addition, we incorporate a variety of convergence diagnostics, alternatively the user can specify
their own (see convergence-checker).

We now give details of the various options included in the function.

Starting point

By default, if initial is of class mcmc, MCMC will take the last nchains points from the chain as
starting point for the new sequence. If initial is of class mcmc.list, the number of chains in
initial must match the nchains parameter.
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If initial is a vector, then it must be of length equal to the number of parameters used in the
model. When using multiple chains, if initial is not an object of class mcmc or mcmc.list, then it
must be a numeric matrix with as many rows as chains, and as many columns as parameters in the
model.

Multiple chains

When nchains > 1, the function will run multiple chains. Furthermore, if cl is not passed, MCMC
will create a PSOCK cluster using parallel::makePSOCKcluster with parallel::detectCores clusters
and attempt to execute using multiple cores. Internally, the function does the following:

# Creating the cluster
ncores <- parallel::detectCores()
ncores <- ifelse(nchains < ncores, nchains, ncores)
cl <- parallel::makePSOCKcluster(ncores)

# Loading the package and setting the seed using clusterRNGStream
invisible(parallel::clusterEvalQ(cl, library(fmcmc)))
parallel::clusterSetRNGStream(cl, .Random.seed)

When running in parallel, objects that are used within fun must be passed through ..., otherwise
the cluster will return with an error.

The user controls the initial value of the parameters of the MCMC algorithm using the argument
initial. When using multiple chains, i.e., nchains > 1, the user can specify multiple starting
points, which is recommended. In such a case, each row of initial is use as a starting point for
each of the chains. If initial is a vector and nchains > 1, the value is recycled, so all chains start
from the same point (not recommended, the function throws a warning message).

Automatic stop

By default, no automatic stop is implemented. If one of the functions in convergence-checker is
used, then the MCMC is done by bulks as specified by the convergence checker function, and thus
the algorithm will stop if, the conv_checker returns TRUE. For more information see convergence-
checker.

Value

An object of class coda::mcmc from the coda package. The mcmc object is a matrix with one column
per parameter, and nsteps rows. If nchains > 1, then it returns a coda::mcmc.list.

References

Brooks, S., Gelman, A., Jones, G. L., & Meng, X. L. (2011). Handbook of Markov Chain Monte
Carlo. Handbook of Markov Chain Monte Carlo.

Examples

# Univariate distributed data with multiple parameters ----------------------
# Parameters

https://CRAN.R-project.org/package=coda
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set.seed(1231)
n <- 1e3
pars <- c(mean = 2.6, sd = 3)

# Generating data and writing the log likelihood function
D <- rnorm(n, pars[1], pars[2])
fun <- function(x) {

x <- log(dnorm(D, x[1], x[2]))
sum(x)

}

# Calling MCMC, but first, loading the coda R package for
# diagnostics
library(coda)
ans <- MCMC(

fun, initial = c(mu=1, sigma=1), nsteps = 2e3,
kernel = kernel_normal_reflective(scale = .1, ub = 10, lb = 0)
)

# Ploting the output
oldpar <- par(no.readonly = TRUE)
par(mfrow = c(1,2))
boxplot(as.matrix(ans),

main = expression("Posterior distribution of"~mu~and~sigma),
names = expression(mu, sigma), horizontal = TRUE,
col = blues9[c(4,9)],
sub = bquote(mu == .(pars[1])~", and"~sigma == .(pars[2]))

)
abline(v = pars, col = blues9[c(4,9)], lwd = 2, lty = 2)

plot(apply(as.matrix(ans), 1, fun), type = "l",
main = "LogLikelihood",
ylab = expression(L("{"~mu,sigma~"}"~"|"~D))

)
par(oldpar)

# In this example we estimate the parameter for a dataset with ----------------
# With 5,000 draws from a MVN() with parameters M and S.

# Loading the required packages
library(mvtnorm)
library(coda)

# Parameters and data simulation
S <- cbind(c(.8, .2), c(.2, 1))
M <- c(0, 1)

set.seed(123)
D <- rmvnorm(5e3, mean = M, sigma = S)

# Function to pass to MCMC
fun <- function(pars) {
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# Putting the parameters in a sensible way
m <- pars[1:2]
s <- cbind( c(pars[3], pars[4]), c(pars[4], pars[5]) )

# Computing the unnormalized log likelihood
sum(log(dmvnorm(D, m, s)))

}

# Calling MCMC
ans <- MCMC(

initial = c(mu0=5, mu1=5, s0=5, s01=0, s2=5),
fun,
kernel = kernel_normal_reflective(

lb = c(-10, -10, .01, -5, .01),
ub = 5,
scale = 0.01

),
nsteps = 1e4,
thin = 20,
burnin = 5e3

)

# Checking out the outcomes
plot(ans)
summary(ans)

# Multiple chains -----------------------------------------------------------

# As we want to run -fun- in multiple cores, we have to
# pass -D- explicitly (unless using Fork Clusters)
# just like specifying that we are calling a function from the
# -mvtnorm- package.

fun <- function(pars, D) {
# Putting the parameters in a sensible way
m <- pars[1:2]
s <- cbind( c(pars[3], pars[4]), c(pars[4], pars[5]) )

# Computing the unnormalized log likelihood
sum(log(mvtnorm::dmvnorm(D, m, s)))

}

# Two chains
ans <- MCMC(

initial = c(mu0=5, mu1=5, s0=5, s01=0, s2=5),
fun,
nchains = 2,
kernel = kernel_normal_reflective(

lb = c(-10, -10, .01, -5, .01),
ub = 5,
scale = 0.01

),
nsteps = 1e4,
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thin = 20,
burnin = 5e3,
D = D

)

summary(ans)

new_progress_bar Progress bar

Description

A simple progress bar. This function is used in MCMC when the function has been called with a
single processor.

Usage

new_progress_bar(
n,
probs = c(0, 0.25, 0.5, 0.75, 1),
width = getOption("width", 80),
symbol = "/",
...

)

Arguments

n Integer. Number of steps.
probs Double vector. Quantiles where to put marks
width Integer. Width of the bar in characters.
symbol Character. Single character symbol to print each bar.
... Further arguments passed to cat() such as file and append.

Value

A function that can be included at the interior of a loop to mark the progress of the loop. It receives
a single argument, i, which is the number of the current step.

Examples

x <- new_progress_bar(20)
for (i in 1:20) {

Sys.sleep(2/20)
x(i)

}
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plan_update_sequence Parameters’ update sequence

Description

Parameters’ update sequence

Usage

plan_update_sequence(k, nsteps, fixed, scheme)

Arguments

k Integer. Number of parameters

nsteps Integer. Number of steps.

fixed Logical scalar or vector of length k. Indicates which parameters will be treated
as fixed or not. Single values are recycled.

scheme Scheme in which the proposals are made (see details).

Details

The parameter scheme present on the currently available kernels sets the way in which proposals
are made. By default, scheme = "joint", proposals are done jointly, this is, at each step of the
chain we are proposing new states for each parameter of the model. When scheme = "ordered", a
sequential update schema is followed, in which, at each step of the chain, proposals are made one
variable at a time, If scheme = "random", proposals are also made one variable at a time but in a
random scheme.

Finally, users can specify their own sequence of proposals for the variables by passing a numeric
vector to scheme, for example, if the user wants to make sequential proposals following the scheme
2, 1, 3, then scheme must be set to be scheme = c(2,1,3).

Value

A logical vector of size nsteps x k.

reflect_on_boundaries Reflective Boundaries

Description

Adjust a proposal according to its support by reflecting it. This is the workhorse of kernel_normal_reflective
and kernel_unif_reflective. It is intended for internal use only.
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Usage

reflect_on_boundaries(x, lb, ub, which)

Arguments

x A numeric vector. The proposal

lb, ub Numeric vectors of length length(x). Lower and upper bounds.

which Integer vector. Index of variables to be updated.

Value

An adjusted proposal vector.
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