Package 'flows'

December 5, 2016

Type Package
Title Flow Selection and Analysis
Version 1.1.1
Date 2016-06-06
Description Selections on flow matrices, statistics on selected flows, map and graph visualisations.
License GPL-3
LazyData TRUE
Depends R (>= 2.10)
Imports reshape2, igraph, sp, graphics, stats
Suggests knitr
URL https://github.com/rCarto/flows
BugReports https://github.com/rCarto/flows/issues
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 5.0.1
NeedsCompilation no
Author Timothée Giraud [cre, aut], Laurent Beauguitte [aut], Marianne Guérois [ctb]
Maintainer Timothée Giraud <timothee.giraud@ums-riate.fr></timothee.giraud@ums-riate.fr>
Repository CRAN
Date/Publication 2016-12-05 18:28:47

R topics documented:

compmat																														•					•	1	2
domflows																														•					•	1	3
firstflows .	•	•	•		•	•	•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	4

compmat

prepflows											10
plotMapDomFlows											9
plotDomFlows											8
nav											7
GE								:	:	:	7
flows	• •	•	•••	•••	• •	• •	•	•	•	•	6

Index

compmat

Comparison of Two Matrices

Description

Compares two matrices of same dimension, with same column and row names.

Usage

compmat(mat1, mat2, digits = 0)

Arguments

1
A square matrix of flows.
An integer indicating the number of decimal places to be used when printing the data frame in the console (see round)
∆ 1

Value

A data.frame that provides statistics on differences between mat1 and mat2: absdiff are the absolute differences and reldiff are the relative differences (in percent).

See Also

statmat

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")
# Remove the matrix diagonal
diag(myflows) <- 0
# Select the dominant flows (incoming flows criterion)</pre>
```

domflows

domflows Dominant Flows Selection

Description

Dominant flows selection.

Usage

domflows(mat, w, k)

Arguments

mat	A square matrix of flows.
w	A vector of units weigths (sum of incoming flows, sum of outgoing flows).
k	A threshold (see 'Details').

Details

This function selects which flow (fij or fji) must be kept. If the ratio weight of destination (wj) / weight of origin (wi) is greater than k, then fij is selected and fji is not. This function can perform the second criterion of the Nystuen & Dacey's dominants flows analysis. As the output is a boolean matrix, use element-wise multiplication to get flows intensity.

Value

A boolean matrix of selected flows.

References

J. Nystuen & M. Dacey, 1961, "A Graph Theory Interpretation of Nodal Regions.", *Papers and Proceedings of the Regional Science Association*, 7:29-42.bt

See Also

firstflows, firstflowsg, plotDomFlows, plotMapDomFlows

Examples

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")
# Remove the matrix diagonal
diag(myflows) <- 0
# Select the dominant flows (incoming flows criterion)
flowSel <- domflows(mat = myflows, w = colSums(myflows), k = 1)
statmat(mat = myflows * flowSel, output = "none")</pre>
```

firstflows Flow Selection from Origins

Description

Flow selection from origins.

Usage

```
firstflows(mat, method = "nfirst", ties.method = "first", k)
```

Arguments

mat	A square matrix of flows.
method	A method of flow selection, one of "nfirst", "xfirst" or "xsumfirst":
	• nfirst selects the k first flows from origins,
	• xfirst selects flows greater than k,
	• xsumfirst selects as many flows as necessary for each origin so that their sum is at least equal to k. If k is not reached for one origin, all its flows are selected.
ties.method	In case of equality with "nfirst" method, use "random" or "first" (see rank).
k	Selection threshold.

Details

As the output is a boolean matrix, use element-wise multiplication to get flows intensity.

Value

A boolean matrix of selected flows.

See Also

firstflowsg, domflows

4

firstflowsg

Examples

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")</pre>
# Remove the matrix diagonal
diag(myflows) <- 0</pre>
# Select the 2 first flows of each origin
flowSel <- firstflows(mat = myflows, method = "nfirst", ties.method = "first",</pre>
                       k = 2)
statmat(mat = myflows * flowSel, output = "none")
# Select flows greater than 2000
flowSel <- firstflows(mat = myflows, method = "xfirst", k = 2000)</pre>
statmat(mat = myflows * flowSel, output = "none")
# Select as many flows as necessary for each origin so that their sum is at
# least equal to 20000
flowSel <- firstflows(myflows, method = "xsumfirst", k = 20000)</pre>
statmat(mat = myflows * flowSel, output = "none")
# Select each flows that represent at least 10% of the outputs
myflowspct <- myflows / rowSums(myflows) * 100</pre>
flowSel <- firstflows(mat = myflowspct, method = "xfirst", k = 10)</pre>
statmat(mat = myflows * flowSel, output = "none")
```

firstflowsg

Flow Selection Based on Global Criteria

Description

Flow selection based on global criteria.

Usage

```
firstflowsg(mat, method = "nfirst", k, ties.method = "first")
```

Arguments

A square matrix of flows.
A method of flow selection, one of "nfirst", "xfirst" or "xsumfirst":
• nfirst selects the k first flows of the matrix,
• xfirst selects flows greater than k,
• xsumfirst selects as many flows as necessary so that their sum is at least equal to k.
Selection threshold.
In case of equality with "nfirst" method, use "random" or "first" (see rank).

Details

As the output is a boolean matrix, use element-wise multiplication to get flows intensity.

Value

A boolean matrix of selected flows.

See Also

firstflows, domflows

Examples

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")</pre>
# Remove the matrix diagonal
diag(myflows) <- 0</pre>
# Select the 50 first flows of the matrix
flowSel <- firstflowsg(mat = myflows, method = "nfirst", ties.method = "first",</pre>
                        k = 50)
statmat(mat = myflows * flowSel, output = "none")
# Select all flows greater than 2000
flowSel <- firstflowsg(myflows, method = "xfirst", k= 2000)</pre>
statmat(mat = myflows * flowSel, output = "none")
# Select flows that represent at least 50% of the matrix flows
k50 <- sum(myflows)/2</pre>
flowSel <- firstflowsg(mat = myflows, method = "xsumfirst", k = 150000)</pre>
statmat(mat = myflows * flowSel, output = "none")
```

flows

Flows Selection and Analysis

Description

Selections on flow matrices, statistics on selected flows, map and graph visualisations.

An introduction to the package conceptual background and usage is proposed in a vignette (see vignette(topic = "flows")) and a paper (Beauguitte, Giraud & Guérois 2015).

References

L. Beauguitte, T. Giraud & M. Guérois, 2015. "Un outil pour la sélection et la visualisation de flux : le package flows", *Netcom*, 29-3/4:399-408. https://netcom.revues.org/2134.

Grand Est Region

Description

SpatialPolygonsDataFrame of the Grand Est region in France.

References

http://professionnels.ign.fr/geofla#tab-3

Examples

```
###GE
data(nav)
sp::plot(GE, col = "#cceae7", border = "grey50")
```

nav

Commuters

Description

Data on commuters between Urban Areas of the French Grand Est region in 2011. Fields:

- i: Code of the urban area of residence
- namei: Name of the urban area of residence
- wi: Total number of active occupied persons in the urban area of residence
- j: Code of the urban area of work
- namej: Name of the urban area of work
- wj: Total number of active occupied persons in the urban area of work
- fij: Number of commuters between i and j

References

http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=mobilite-professionnelle-11

Examples

nav data(nav) str(nav)

GE

plotDomFlows

Description

This function plots a dominant flows graph.

Usage

```
plotDomFlows(mat, legend.flows.pos = "topright",
    legend.flows.title = "Flows Intensity", legend.nodes.pos = "bottomright",
    legend.node.txt = c("Dominant", "Intermediary", "Dominated",
    "Size proportional\nto sum of inflows"), labels = FALSE)
```

Arguments

mat	A square matrix of dominant flows (see domflows).
legend.flows	. pos
	Position of the flows legend, one of "topleft", "top", "topright", "left", "right", "bottomleft", "bottom", "bottomright".
legend.flows	title
	Title of the flows legend.
legend.nodes	. pos
	Position of the nodes legend, one of "topleft", "top", "topright", "left", "right", "bottomleft", "bottom", "bottomright".
legend.node.	txt
	Text of the nodes legend.
labels	A boolean, if TRUE, labels of dominant and intermediary nodes are plotted.

Note

As square matrices can easily be plot with plot.igraph or gplot functions from igraph and sna packages, we do not propose visualisation for other outputs.

See Also

domflows, plotMapDomFlows

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")
# Remove the matrix diagonal
diag(myflows) <- 0</pre>
```

plotMapDomFlows

plotMapDomFlows Dominant Flows Map

Description

This function plots a dominant flows map.

Usage

```
plotMapDomFlows(mat, spdf, spdfid, w, wid, wvar, wcex = 0.05,
    legend.flows.pos = "topright", legend.flows.title = "flow intensity",
    legend.nodes.pos = "topleft", legend.node.txt = c("Dominant",
    "Intermediary", "Dominated", "Size proportional\nto sum of inflows"),
    add = FALSE)
```

Arguments

mat	A square matrix of dominant flows (see domflows).
spdf	A SpatialPolygonsDataFrame or a SpatialPointsDataFrame of units.
spdfid	Name of the unique identifier variable in the spdf data.frame.
W	A data.frame which contains the weight variable used to plot units sizes on the map.
wid	Name of the unique identifier variable in w.
wvar	Name of the weight variable in w.
wcex	Share of the surface of the map occupied by circles $(0.02 \text{ is } 2\%)$.
legend.flows.po	S
	Position of the flows legend, one of "topleft", "top", "topright", "left", "right", "bottomleft", "bottom", "bottomright".
legend.flows.ti	tle
	Title of the flows legend.
legend.nodes.po	S
	Position of the nodes legend, one of "topleft", "top", "topright", "left", "right", "bottomleft", "bottom", "bottomright".
legend.node.txt	
	Text of the nodes legend.
add	A boolean, if TRUE, add the layer to an existing plot.

See Also

domflows, plotDomFlows

Examples

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")</pre>
# Remove the matrix diagonal
diag(myflows) <- 0</pre>
# Select the dominant flows (incoming flows criterion)
flowSel1 <- domflows(mat = myflows, w = colSums(myflows), k = 1)</pre>
# Select the first flows
flowSel2 <- firstflows(mat = myflows, method = "nfirst", ties.method = "first",</pre>
                        k = 1)
# Combine selections
flowSel <- myflows * flowSel1 * flowSel2</pre>
# Node weights
inflows <- data.frame(id = colnames(myflows), w = colSums(myflows))</pre>
# Plot dominant flows map
opar <- par(mar = c(0, 0, 2, 0))
sp::plot(GE, col = "#cceae7", border = NA)
plotMapDomFlows(mat = flowSel, spdf = UA, spdfid = "ID", w = inflows, wid = "id",
                wvar = "w", wcex = 0.05, add = TRUE,
                legend.flows.pos = "bottomleft",
                legend.flows.title = "Nb. of commuters")
title("Dominant Flows of Commuters")
mtext(text = "INSEE, 2011", side = 4, line = -1, adj = 0.01, cex = 0.8)
par(opar)
```

prepflows

Flows Preparation

Description

From a long format matrix to a a wide format matrix.

Usage

prepflows(mat, i, j, fij)

statmat

Arguments

mat	A data.frame of flows between origins and destinations: long format matrix (origins, destinations, flows intensity).
i	A character giving the origin field name in mat.
j	A character giving the destination field name in mat.
fij	A character giving the flow field name in mat.

Value

A square matrix of flows. Diagonal can be filled or empty depending on data used.

Examples

```
# Import data
data(nav)
head(nav)
# Prepare data
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")
myflows[1:5,1:5]</pre>
```

statmat	Descriptive Statistics on Flow Matrix
---------	---------------------------------------

Description

This function provides various indicators and graphical outputs on a flow matrix.

Usage

```
statmat(mat, output = "all", verbose = TRUE)
```

Arguments

mat	A square matrix of flows.
output	Graphical output. Choices are "all" for all graphics, "none" to avoid any graphi- cal output, "degree" for degree distribution, "wdegree" for weighted degree dis- tribution, "lorenz" for Lorenz curve of link weights and "boxplot" for boxplot of link weights (see 'Details').
verbose	A boolean, if TRUE, returns statistics in the console.

Details

Graphical ouputs concern outdegrees by default. If the matrix is transposed, outputs concern indegrees.

Value

The function returns a list of statistics and may plot graphics.

- nblinks: number of cells with values > 0
- density: number of links divided by number of possible links (also called gamma index by geographers), loops excluded
- connectcomp: number of connected components (isolates included, weakly connected: use of clusters where mode = "weak")
- connectcompx: number of connected components (isolates deleted, weakly connected: use of clusters where mode = "weak")
- sizecomp: a data.frame of connected components: size and sum of flows per component (isolates included)
- compocomp: a data.frame of connected components giving membership of units (isolates included)
- degrees: a data.frame of nodes degrees and weighted degrees
- sumflows: sum of flows
- min: minimum flow
- Q1: first quartile of flows
- median: median flow
- Q3: third quartile of flows
- max: maximum flow
- mean: mean flow
- sd: standart deviation of flows

See Also

compmat

```
# Import data
data(nav)
myflows <- prepflows(mat = nav, i = "i", j = "j", fij = "fij")
# Get statistics and graphs about the matrix
mystats <- statmat(mat = myflows, output = "all", verbose = TRUE)
# Size of connected components
mystats$sizecomp
# Sum of flows
mystats$sumflows
# Plot Lorenz curve only
statmat(mat = myflows, output = "lorenz", verbose = FALSE)
```

```
# Statistics only
mystats <- statmat(mat = myflows, output = "none", verbose = FALSE)
str(mystats)</pre>
```

UA

Urban Areas

Description

SpatialPolygonsDataFrame of Urban Areas of the Grand Est region in France. (2010 delineation).

References

http://professionnels.ign.fr/geofla#tab-3

```
## UA
data(nav)
sp::plot(GE, col = "#cceae7", border = "grey50")
sp::plot(UA, col = "#940000", border = "white", add = TRUE)
```

Index

clusters, 12compmat, 2, *12* domflows, 3, 4, 6, 8-10 firstflows, 3, 4, 6 firstflowsg, 3, 4, 5 flows,6 flows-package(flows), 6 GE, 7 ${\tt gplot}, {\color{red}8}$ nav, 7 plot.igraph,8plotDomFlows, 3, 8, 10 plotMapDomFlows, 3, 8, 9 prepflows, 10 rank, **4**, **5** round, 2 statmat, 2, 11 UA, 13