
Package ‘flashlight’
June 20, 2020

Type Package

Title Shed Light on Black Box Machine Learning Models

Version 0.7.3

Date 2020-06-20

Maintainer Michael Mayer <mayermichael79@gmail.com>

Description Shed light on black box machine learning models by
the help of model performance, variable importance, global surrogate
models, ICE profiles, partial dependence (Friedman J. H. (2001)
<doi:10.1214/aos/1013203451>), accumulated local effects (Apley D. W.
(2016) <arXiv:1612.08468>), further effects plots, scatter plots,
interaction strength, and variable contribution breakdown (approximate
SHAP) for single observations (Gosiewska and Biecek (2019)
<arxiv:1903.11420>). All tools are implemented to work with case
weights and allow for stratified analysis. Furthermore, multiple
flashlights can be combined and analyzed together.

License GPL (>= 2)

URL https://github.com/mayer79/flashlight

BugReports https://github.com/mayer79/flashlight/issues

Depends R (>= 3.2.0)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

Imports stats, utils, tidyselect, dplyr (>= 1.0.0), tidyr (>= 1.0.0),
rpart, rpart.plot, ggplot2, ggpubr, MetricsWeighted (>= 0.3.0)

Suggests knitr, rmarkdown, testthat, ranger, xgboost, moderndive,
caret, mlr3, mlr3learners

NeedsCompilation no

Author Michael Mayer [aut, cre, cph]

Repository CRAN

Date/Publication 2020-06-20 12:30:02 UTC

1

https://github.com/mayer79/flashlight
https://github.com/mayer79/flashlight/issues

2 R topics documented:

R topics documented:
add_shap . 3
ale_profile . 5
all_identical . 6
auto_cut . 7
common_breaks . 8
cut3 . 9
flashlight . 10
grouped_center . 11
grouped_counts . 12
grouped_stats . 13
grouped_weighted_mean . 14
is.flashlight . 15
light_breakdown . 17
light_check . 20
light_combine . 21
light_effects . 22
light_global_surrogate . 25
light_ice . 27
light_importance . 29
light_interaction . 32
light_performance . 35
light_profile . 37
light_recode . 41
light_scatter . 42
midpoints . 44
most_important . 44
multiflashlight . 45
plot.light_breakdown . 46
plot.light_effects . 47
plot.light_global_surrogate . 48
plot.light_ice . 49
plot.light_importance . 50
plot.light_performance . 51
plot.light_profile . 52
plot.light_scatter . 54
plot_counts . 55
predict.flashlight . 56
predict.multiflashlight . 57
print.flashlight . 57
print.light . 58
print.multiflashlight . 59
residuals.flashlight . 59
residuals.multiflashlight . 60
response . 61

Index 62

add_shap 3

add_shap Add SHAP values to (multi-)flashlight

Description

The function calls light_breakdown for n_shap observations and adds the resulting (approximate)
SHAP decompositions as static element "shap" to the (multi)-flashlight for further analyses. We
offer two approximations to SHAP: For visit_strategy = "importance", the breakdown algo-
rithm (see reference) is used with importance based visit order. Use the default visit_strategy
= "permutation" to run breakdown for multiple random permutations, averaging the results. This
approximation will be closer to exact SHAP values, but very slow. Most available arguments can
be chosen to reduce computation time.

Usage

add_shap(x, ...)

Default S3 method:
add_shap(x, ...)

S3 method for class 'flashlight'
add_shap(
x,
v = NULL,
visit_strategy = c("permutation", "importance", "v"),
n_shap = 200,
n_max = Inf,
n_perm = 12,
seed = NULL,
use_linkinv = FALSE,
verbose = TRUE,
variable_name = "variable",
...

)

S3 method for class 'multiflashlight'
add_shap(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed from or to other methods.

v Vector of variables to assess contribution for. Defaults to all except those speci-
fied by "y", "w" and "by".

visit_strategy In what sequence should variables be visited? By n_perm "permutation" (slow),
by "importance" (fast), or as "v" (not recommended).

4 add_shap

n_shap Number of SHAP decompositions to calculate.

n_max Maximum number of rows in data to consider in the reference data. Set to lower
value if data is large.

n_perm Number of permutations of random visit sequences. Only used if visit_strategy
= "permutation".

seed An integer random seed.

use_linkinv Should retransformation function be applied? We suggest to keep the default
(FALSE) as the values can be retransformed later.

verbose Should progress bar be shown? Default is TRUE.

variable_name Column name in data of element "shap" containing the variable names. De-
faults to "variable".

Value

An object of class flashlight or multiflashlight with additional element "shap" of class "shap"
(and "list").

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Variable attribution to single observation for a flashlight.

• multiflashlight: Add SHAP to multiflashlight.

References

A. Gosiewska and P. Biecek (2019). IBREAKDOWN: Uncertainty of model explanations for non-
additive predictive models. ArXiv <arxiv.org/abs/1903.11420>.

Examples

Not run:
fit <- lm(Sepal.Length ~ . + Petal.Length:Species, data = iris)
x <- flashlight(model = fit, label = "lm", data = iris, y = "Sepal.Length")
x <- add_shap(x)
is.shap(x$shap)
plot(light_importance(x, type = "shap"))
plot(light_scatter(x, type = "shap", v = "Petal.Length"))

End(Not run)

ale_profile 5

ale_profile ALE profile

Description

Internal function used by light_profile to calculate ALE profiles.

Usage

ale_profile(
x,
v,
breaks = NULL,
n_bins = 11,
cut_type = c("equal", "quantile"),
value_name = "value",
counts_name = "counts",
counts = TRUE,
counts_weighted = FALSE,
pred = NULL,
evaluate_at = NULL,
indices = NULL,
n_max = 1000,
seed = NULL,
two_sided = FALSE,
calibrate = TRUE

)

Arguments

x An object of class flashlight.

v The variable to be profiled.

breaks Cut breaks for a numeric v. Only used if no evaluate_at is specified.

n_bins Maxmium number of unique values to evaluate for numeric v. Only used if no
evaluate_at is specified.

cut_type For the default "equal", bins of equal width are created for v by pretty. Choose
"quantile" to create quantile bins.

value_name Column name containing the profile value. Defaults to "value".

counts_name Name of the column containing counts if counts is TRUE.

counts Should counts be added?
counts_weighted

If counts is TRUE: Should counts be weighted by the case weights? If TRUE,
the sum of w is returned by group.

pred Optional vector with predictions.

6 all_identical

evaluate_at Vector with values of v used to evaluate the profile. Only relevant for type =
"partial dependence".

indices A vector of row numbers to consider.

n_max Maximum number of ICE profiles to calculate within interval (not within data).

seed Integer random seed passed to light_ice.

two_sided Standard ALE profiles are calculated via left derivatives. Set to TRUE if two-
sided derivatives should be calculated. Only works for continuous v. More
specifically: Usually, local effects at value x are calculated using points between
x-e and x. Set ale_two_sided = TRUE to use points between x-e/2 and x+e/2.

calibrate Should values be calibrated based on average preditions? Default is TRUE.

Value

A tibble containing results.

all_identical all_identical

Description

Checks if an aspect is identical for all elements in a nested list. The aspect is specified by fun, e.g.
[[, followed by the element name to compare.

Usage

all_identical(x, fun, ...)

Arguments

x A nested list of objects.

fun Function used to extract information of each element of x.

... Further arguments passed to fun.

Value

A logical vector of length one.

Examples

x <- list(a = 1, b = 2)
y <- list(a = 1, b = 3)
all_identical(list(x, y), `[[`, "a")
all_identical(list(x, y), `[[`, "b")

auto_cut 7

auto_cut Discretizes a Vector

Description

This function takes a vector x and returns a list with information on disretized version of x, see
return for details on the resulting object.

Usage

auto_cut(
x,
breaks = NULL,
n_bins = 27,
cut_type = c("equal", "quantile"),
x_name = "value",
level_name = "level",
...

)

Arguments

x A vector.

breaks An optional vector of breaks. Only relevant for numeric x.

n_bins If x is numeric and no breaks are provided, this is the maximum number of bins
allowed or to be created (approximately).

cut_type For the default type "equal", bins of equal width are created by pretty. Choose
"quantile" to create quantile bins.

x_name Column name with the values of x in the output.

level_name Column name with the bin labels of x in the output.

... Further arguments passed to cut3.

Details

The construction of level names can be controlled by passing ... arguments to formatC.

Value

A list with the following four elements:

• data A data.frame with colums x_name and level_name each with the same length as x.
The column x_name has values in output bin_means while the column level_name has values
in bin_labels.

• breaks A vector of increasing and unique breaks used to cut a numeric x with too many
distinct levels. NULL otherwise.

8 common_breaks

• bin_means The midpoints of subsequent breaks, or if there are no breaks in the output, factor
levels or distinct values of x.

• bin_labels Break labels of the form "(low, high]" if there are breaks in the output, otherwise
the same as bin_means. Same order as bin_means.

Examples

auto_cut(1:10, n_bins = 3)
auto_cut(c(NA, 1:10), n_bins = 3)
auto_cut(1:10, breaks = 3:4, n_bins = 3)
auto_cut(1:10, n_bins = 3, cut_type = "quantile")
auto_cut(LETTERS[4:1], n_bins = 2)
auto_cut(factor(LETTERS[1:4], LETTERS[4:1]), n_bins = 2)
auto_cut(990:1100, n_bins = 3, big.mark = "'", format = "fg")
auto_cut(c(0.0001, 0.0002, 0.0003, 0.005), n_bins = 3, format = "fg")

common_breaks Common Breaks for multiflashlight

Description

Internal function used to find common breaks from different flashlights.

Usage

common_breaks(x, v, data, breaks, n_bins, cut_type)

Arguments

x An object of class multiflashlight.

v The variable to be profiled.

data A data.frame.

breaks Cut breaks for a numeric v.

n_bins Maxmium number of unique values to evaluate for numeric v.

cut_type Cut type

Value

A vector of breaks

cut3 9

cut3 Modified cut

Description

Slightly modified version of base::cut.default. Both modifications refer to the construction of break
labels. Firstly, ... arguments are passed to formatC in formatting the numbers in the labels. Sec-
ondly, a separator between the two numbers can be specified with default ", ".

Usage

cut3(
x,
breaks,
labels = NULL,
include.lowest = FALSE,
right = TRUE,
dig.lab = 3L,
ordered_result = FALSE,
sep = ", ",
...

)

Arguments

x Numeric vector.
breaks Numeric vector of cut points or a single number specifying the number of inter-

vals desired.
labels Labels for the levels of the final categories.
include.lowest Flag if minimum value should be added to intervals of type (,] (or maximum for

[,)).
right Flag if intervals should be closed to the right or left.
dig.lab Number of significant digits passed to formatC.
ordered_result Flag if resulting output vector should be ordered.
sep Separater between from-to labels.
... Arguments passed to formatC.

Value

Vector of the same length as x.

Examples

x <- 998:1001
cut3(x, breaks = 2)
cut3(x, breaks = 2, big.mark = "'", sep = ":")

10 flashlight

flashlight Create or Update a flashlight

Description

Creates or updates a flashlight object. If a flashlight is to be created, all arguments are optional
except label. If a flashlight is to be updated, all arguments are optional up to x (the flashlight to be
updated).

Usage

flashlight(x, ...)

Default S3 method:
flashlight(
x,
model = NULL,
data = NULL,
y = NULL,
predict_function = predict,
linkinv = function(z) z,
w = NULL,
by = NULL,
metrics = list(rmse = rmse),
label = NULL,
shap = NULL,
...

)

S3 method for class 'flashlight'
flashlight(x, check = TRUE, ...)

Arguments

x An object of class flashlight. If not provided, a new flashlight is created based
on further input. Otherwise, x is updated based on further input.

... Arguments passed from or to other functions.

model A fitted model of any type. Most models require a customized predict_function.

data A data.frame or tibble used as basis for calculations.

y Variable name of response.
predict_function

A real valued function with two arguments: A model and a data of the same
structure as data. Only the order of the two arguments matter, not their names.

linkinv An inverse transformation function applied after predict_function.

w A variable name of case weights.

grouped_center 11

by A character vector with names of grouping variables.

metrics A named list of metrics. Here, a metric is a function with exactly four ar-
guments: actual, predicted, w (case weights) and ... like those in package
MetricsWeighted.

label Name of the flashlight. Required.

shap An optional shap object. Typically added by calling add_shap.

check When updating the flashlight: Should internal checks be performed? Default is
TRUE.

Value

An object of class flashlight (and list) containing each input (except x) as element.

Methods (by class)

• default: Used to create a flashlight object. No x has to be passed in this case.

• flashlight: Used to update an existing flashlight object.

See Also

multiflashlight.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
(fl <- flashlight(model = fit, data = iris, y = "Sepal.Length", label = "ols"))
(fl_updated <- flashlight(fl, linkinv = exp))

grouped_center Grouped, weighted mean centering

Description

Centers a numeric variable within optional groups and optional weights. The order of values is
unchanged.

Usage

grouped_center(data, x, w = NULL, by = NULL, ...)

Arguments

data A data.frame.

x Variable name in data to center.

w Optional name of the column in data with case weights.

by An optional vector of column names in data used to group the results.

... Additional arguments passed to mean calculation (e.g. na.rm = TRUE).

12 grouped_counts

Value

A numeric vector with centered values in column x.

Examples

ir <- data.frame(iris, w = 1)
mean(grouped_center(ir, "Sepal.Width"))
rowsum(grouped_center(ir, "Sepal.Width", by = "Species"), ir$Species)
mean(grouped_center(ir, "Sepal.Width", w = "w"))
rowsum(grouped_center(ir, "Sepal.Width", by = "Species", w = "w"), ir$Species)

grouped_counts Grouped count

Description

Calculates weighted counts grouped by optional columns.

Usage

grouped_counts(data, by = NULL, w = NULL, value_name = "n", ...)

Arguments

data A data.frame.

by An optional vector of column names in data used to group the results.

w Optional name of the column in data with case weights.

value_name Name of the resulting column with counts.

... Arguments passed to sum (only if weights are provided).

Value

A data.frame with columns by and value_name.

Examples

grouped_counts(iris)
grouped_counts(iris, by = "Species")
grouped_counts(iris, w = "Petal.Length")
grouped_counts(iris, by = "Species", w = "Petal.Length")

grouped_stats 13

grouped_stats Grouped Weighted Means, Quartiles, or Variances

Description

Calculates weighted means, quartiles, or variances (and counts) of a variable grouped by optional
columns. By default, counts are not weighted, even if there is a weighting variable.

Usage

grouped_stats(
data,
x,
w = NULL,
by = NULL,
stats = c("mean", "quartiles", "variance"),
counts = TRUE,
counts_weighted = FALSE,
counts_name = "counts",
value_name = x,
q1_name = "q1",
q3_name = "q3",
...

)

Arguments

data A data.frame.

x Variable name in data to summarize.

w Optional name of the column in data with case weights.

by An optional vector of column names in data used to group the results.

stats Statistic to calculate: "mean", "quartiles", or "variance".

counts Should group counts be added?
counts_weighted

Should counts be weighted by the case weights? If TRUE, the sum of w is
returned by group.

counts_name Name of column in the resulting data.frame containing the counts.

value_name Name of the resulting column with mean, median, or variance.

q1_name Name of the resulting column with first quartile values. Only relevant for stats
"quartiles".

q3_name Name of the resulting column with third quartile values. Only relevant for stats
"quartiles".

... Additional arguments passed to MetricsWeighted::weighted_mean, MetricsWeighted::weighted_quartiles,
or MetricsWeighted::weighted_var.

14 grouped_weighted_mean

Value

A data.frame with columns by, x and optionally counts_name.

Examples

grouped_stats(iris, "Sepal.Width")
grouped_stats(iris, "Sepal.Width", stats = "quartiles")
grouped_stats(iris, "Sepal.Width", stats = "variance")
grouped_stats(iris, "Sepal.Width", w = "Petal.Width", counts_weighted = TRUE)
grouped_stats(iris, "Sepal.Width", by = "Species")

grouped_weighted_mean Fast Grouped Weighted Mean

Description

Fast version of grouped_stats(..., counts = FALSE). Works if there is at most one "by" variable.

Usage

grouped_weighted_mean(
data,
x,
w = NULL,
by = NULL,
na.rm = TRUE,
value_name = x

)

Arguments

data A data.frame.
x Variable name in data to summarize.
w Optional name of the column in data with case weights.
by An optional vector of column names in data used to group the results.
na.rm Should missing values in x be removed?
value_name Name of the resulting column with means.

Value

A data.frame with grouped weighted means.

Examples

n <- 100
data <- data.frame(x = rnorm(n), w = runif(n), group = factor(sample(1:3, n, TRUE)))
grouped_weighted_mean(data, x = "x", w = "w", by = "group")

is.flashlight 15

is.flashlight Check functions for flashlight Classes

Description

Checks if an object inherits specific class relevant for the flashlight package.

Usage

is.flashlight(x)

is.multiflashlight(x)

is.light(x)

is.light_performance(x)

is.light_performance_multi(x)

is.light_importance(x)

is.light_importance_multi(x)

is.light_breakdown(x)

is.light_breakdown_multi(x)

is.light_ice(x)

is.light_ice_multi(x)

is.light_profile(x)

is.light_profile_multi(x)

is.light_effects(x)

is.light_effects_multi(x)

is.shap(x)

is.light_scatter(x)

is.light_scatter_multi(x)

is.light_global_surrogate(x)

16 is.flashlight

is.light_global_surrogate_multi(x)

Arguments

x Any object.

Value

A logical vector of length one.

Functions

• is.multiflashlight: Check for multiflashlight object.

• is.light: Check for light object.

• is.light_performance: Check for light_performance object.

• is.light_performance_multi: Check for light_performance_multi object.

• is.light_importance: Check for light_importance object.

• is.light_importance_multi: Check for light_importance_multi object.

• is.light_breakdown: Check for light_breakdown object.

• is.light_breakdown_multi: Check for light_breakdown_multi object.

• is.light_ice: Check for light_ice object.

• is.light_ice_multi: Check for light_ice_multi object.

• is.light_profile: Check for light_profile object.

• is.light_profile_multi: Check for light_profile_multi object.

• is.light_effects: Check for light_effects object.

• is.light_effects_multi: Check for light_effects_multi object.

• is.shap: Check for shap object.

• is.light_scatter: Check for light_scatter object.

• is.light_scatter_multi: Check for light_scatter_multi object.

• is.light_global_surrogate: Check for light_global_surrogate object.

• is.light_global_surrogate_multi: Check for light_global_surrogate_multi object.

Examples

a <- flashlight(label = "a")
is.flashlight(a)
is.flashlight("a")

light_breakdown 17

light_breakdown Variable Contribution Breakdown for Single Observation

Description

Calculates sequential additive variable contributions (approximate SHAP) to the prediction of a
single observation, see Gosiewska and Biecek (see reference) and the details below.

Usage

light_breakdown(x, ...)

Default S3 method:
light_breakdown(x, ...)

S3 method for class 'flashlight'
light_breakdown(
x,
new_obs,
data = x$data,
by = x$by,
v = NULL,
visit_strategy = c("importance", "permutation", "v"),
n_max = Inf,
n_perm = 20,
seed = NULL,
use_linkinv = FALSE,
after_name = "after",
before_name = "before",
label_name = "label",
variable_name = "variable",
step_name = "step",
description_name = "description",
description = TRUE,
digits = 2,
...

)

S3 method for class 'multiflashlight'
light_breakdown(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to prettyNum to format numbers in description text.

new_obs One single new observation to calculate variable attribution for. Needs to be a
data.frame of same structure as data.

18 light_breakdown

data An optional data.frame.

by An optional vector of column names used to filter data for rows with equal
values in "by" variables as new_obs.

v Vector of variables to assess contribution for. Defaults to all except those speci-
fied by "y", "w" and "by".

visit_strategy In what sequence should variables be visited? By "importance", by n_perm
"permutation" or as "v" (see Details).

n_max Maximum number of rows in data to consider in the reference data. Set to lower
value if data is large.

n_perm Number of permutations of random visit sequences. Only used if visit_strategy
= "permutation".

seed An integer random seed used to shuffle rows if n_max is smaller than the number
of rows in data.

use_linkinv Should retransformation function be applied? Default is FALSE.

after_name Column name in resulting data containing prediction after the step in step_name.
Defaults to "after".

before_name Column name in resulting data containing prediction before the step in step_name.
Defaults to "before".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

variable_name Column name in resulting data containing the variable names. Defaults to "vari-
able".

step_name Column name in resulting data containing the step of the prediction process.
Defaults to "step".

description_name

Column name in resulting data containing the description text to be visualized.
Defaults to "description".

description Should descriptions be added? Default is TRUE.

digits Passed to prettyNum to format numbers in description text.

Details

The breakdown algorithm works as follows: First, the visit order (x_1, ..., x_m) of the variables v is
specified. Then, in the query data, the column x_1 is set to the value of x_1 of the single observation
new_obs to be explained. The change in the (weighted) average prediction on data measures the
contribution of x_1 on the prediction of new_obs. This procedure is iterated over all x_i until
eventually, all rows in data are identical to new_obs. A complication with this approach is that the
visit order is relevant, at least for non-additive models. Ideally, the algorithm could be repeated for
all possible permutations of v and its results averaged per variable. This is basically what SHAP
values do, see the reference below for an explanation. Unfortunately, there is no efficient way to
do this in a model agnostic way. We offer two visit strategies to approximate SHAP. The first
one uses the short-cut described in the reference below: The variables are sorted by the size of
their contribution in the same way as the breakdown algorithm but without iteration, i.e. starting
from the original query data for each variable x_i. We call this visit strategy "importance". The

light_breakdown 19

second strategy "permutation" averages contributions from a small number of random permutations
of v. Note that the minimum required elements in the (multi-) flashlight are a "predict_function",
"model", and "data". The latter can also directly be passed to light_breakdown. Note that by
default, no retransformation function is applied.

Value

An object of class light_breakdown, light (and a list) with the following elements.

• data A tibble with results. Can be used to build fully customized visualizations.

• by Same as input by.

• after_name Same as input after_name.

• before_name Same as input before_name.

• label_name Same as input label_name.

• variable_name Same as input variable_name.

• step_name Same as input step_name.

• description_name Same as input description_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Variable attribution to single observation for a flashlight.

• multiflashlight: Variable attribution to single observation for a multiflashlight.

References

A. Gosiewska and P. Biecek (2019). IBREAKDOWN: Uncertainty of model explanations for non-
additive predictive models. ArXiv <arxiv.org/abs/1903.11420>.

See Also

plot.light_breakdown.

Examples

fit <- lm(Sepal.Length ~ . + Petal.Length:Species, data = iris)
fl <- flashlight(model = fit, label = "lm", data = iris, y = "Sepal.Length")
light_breakdown(fl, new_obs = iris[1,])

20 light_check

light_check Check flashlight

Description

Checks if an object of class flashlight or multiflashlight is consistently defined.

Usage

light_check(x, ...)

Default S3 method:
light_check(x, ...)

S3 method for class 'flashlight'
light_check(x, ...)

S3 method for class 'multiflashlight'
light_check(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed from or to other methods.

Value

The input x or an error message.

Methods (by class)

• default: Default check method not implemented yet.

• flashlight: Checks if a flashlight object is consistently defined.

• multiflashlight: Checks if a multiflashlight object is consistently defined.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fit_log <- lm(log(Sepal.Length) ~ ., data = iris)
fl <- flashlight(fit, data = iris, y = "Sepal.Length", label = "ols")
fl_log <- flashlight(fit_log, y = "Sepal.Length", label = "ols", linkinv = exp)
light_check(fl)
light_check(fl_log)

light_combine 21

light_combine Combine Objects

Description

Combines a list of similar objects each of class light by row binding data.frame slots and retain-
ing the other slots from the first list element.

Usage

light_combine(x, ...)

Default S3 method:
light_combine(x, ...)

S3 method for class 'light'
light_combine(x, new_class = NULL, ...)

S3 method for class 'list'
light_combine(x, new_class = NULL, ...)

Arguments

x A list of objects of the same class.

... Further arguments passed from or to other methods.

new_class An optional vector with additional class names to be added to the output.

Value

If x is a list, an object like each element but with unioned rows in data slots.

Methods (by class)

• default: Default method not implemented yet.

• light: Since there is nothing to combine, the input is returned except for additional classes.

• list: Combine a list of similar light objects.

Examples

fit_lm <- lm(Sepal.Length ~ ., data = iris)
fit_glm <- glm(Sepal.Length ~ ., family = Gamma(link = "log"), data = iris)
mod_lm <- flashlight(model = fit_lm, label = "lm", data = iris, y = "Sepal.Length")
mod_glm <- flashlight(model = fit_glm, label = "glm", data = iris, y = "Sepal.Length",

predict_function = function(object, newdata)
predict(object, newdata, type = "response"))

mods <- multiflashlight(list(mod_lm, mod_glm))
perf_lm <- light_performance(mod_lm)

22 light_effects

perf_glm <- light_performance(mod_glm)
manual_comb <- light_combine(list(perf_lm, perf_glm),

new_class = "light_performance_multi")
auto_comb <- light_performance(mods)
all.equal(manual_comb, auto_comb)

light_effects Combination of Response, Predicted, Partial Dependence, and ALE
profiles.

Description

Calculates response- prediction-, partial dependence, and ALE profiles of a (multi-)flashlight with
respect to a covariable v.

Usage

light_effects(x, ...)

Default S3 method:
light_effects(x, ...)

S3 method for class 'flashlight'
light_effects(
x,
v,
data = NULL,
by = x$by,
stats = c("mean", "quartiles"),
breaks = NULL,
n_bins = 11,
cut_type = c("equal", "quantile"),
use_linkinv = TRUE,
value_name = "value",
q1_name = "q1",
q3_name = "q3",
label_name = "label",
type_name = "type",
counts_name = "counts",
counts_weighted = FALSE,
v_labels = TRUE,
pred = NULL,
pd_indices = NULL,
pd_n_max = 1000,
pd_seed = NULL,
ale_two_sided = TRUE,
...

light_effects 23

)

S3 method for class 'multiflashlight'
light_effects(
x,
v,
data = NULL,
breaks = NULL,
n_bins = 11,
cut_type = c("equal", "quantile"),
...

)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to cut3 resp. formatC in forming the cut breaks of
the v variable.

v The variable to be profiled.

data An optional data.frame.

by An optional vector of column names used to additionally group the results.

stats Statistic to calculate for the response profile: "mean" or "quartiles".

breaks Cut breaks for a numeric v.

n_bins Maxmium number of unique values to evaluate for numeric v.

cut_type For the default "equal", bins of equal width are created for v by pretty. Choose
"quantile" to create quantile bins (recommended if interested in ALE).

use_linkinv Should retransformation function be applied? Default is TRUE.

value_name Column name in resulting data objects containing the profile value. Defaults to
"value".

q1_name Name of the resulting column with first quartile values. Only relevant for stats
"quartiles".

q3_name Name of the resulting column with third quartile values. Only relevant for stats
"quartiles".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

type_name Name of the column in data containing type.

counts_name Name of the column containing counts.
counts_weighted

Should counts be weighted by the case weights? If TRUE, the sum of w is
returned by group.

v_labels If FALSE, return group centers of v instead of labels. Only relevant if v is
numeric with many distinct values. In that case useful if e.g. different flashlights
use different data sets.

24 light_effects

pred Optional vector with predictions (after application of inverse link). Can be used
to avoid recalculation of predictions over and over if the functions is to be re-
peatedly called for different v and predictions are computationally expensive to
make. Not implemented for multiflashlight.

pd_indices A vector of row numbers to consider in calculating partial dependence and ALE
profiles. Useful to force all flashlights to use the same basis for calculations of
partial dependence and ALE.

pd_n_max Maximum number of ICE profiles to consider for partial depencence and ALE
calculation (will be randomly picked from data).

pd_seed An integer random seed used to sample ICE profiles for partial dependence and
ALE.

ale_two_sided If TRUE, v is continuous and breaks are passed or being calculated, then two-
sided derivatives are calculated for ALE instead of left derivatives. This aligns
the results better with the x labels. More specifically: Usually, local effects at
value x are calculated using points between x-e and x. Set ale_two_sided =
TRUE to use points between x-e/2 and x+e/2.

Details

Note that ALE profiles are being calibrated by (weighted) average predictions. The resulting level
might be quite different from the one of the partial dependence profiles.

Value

An object of classes light_effects, light (and a list) with the following elements.

• response A tibble containing the response profiles.

• predicted A tibble containing the prediction profiles.

• pd A tibble containing the partial dependence profiles.

• ale A tibble containing the ALE profiles.

• by Same as input by.

• v The variable(s) evaluated.

• stats Same as input stats.

• value_name Same as input value_name.

• q1_name Same as input q1_name.

• q3_name Same as input q3_name.

• label_name Same as input label_name.

• type_name Same as input type.

• counts_name Same as input counts_name.

Methods (by class)

• default: Default method.

• flashlight: Profiles for a flashlight object.

• multiflashlight: Effect profiles for a multiflashlight object.

light_global_surrogate 25

See Also

light_profile, plot.light_effects.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "iris", data = iris, y = "Sepal.Length")
light_effects(fl, v = "Species")

light_global_surrogate

Global Surrogate Tree

Description

Model predictions are modelled by a single decision tree, serving as an easy to interprete surrogate
to the original model. As suggested in Molnar (see reference below), the quality of the surrogate
tree can be measured by its R-squared.

Usage

light_global_surrogate(x, ...)

Default S3 method:
light_global_surrogate(x, ...)

S3 method for class 'flashlight'
light_global_surrogate(
x,
data = x$data,
by = x$by,
v = NULL,
use_linkinv = TRUE,
n_max = Inf,
seed = NULL,
keep_max_levels = 4,
label_name = "label",
tree_name = "tree",
...

)

S3 method for class 'multiflashlight'
light_global_surrogate(x, ...)

26 light_global_surrogate

Arguments

x An object of class flashlight or multiflashlight.

... Arguments passed to rpart, such as maxdepth.

data An optional data.frame.

by An optional vector of column names used to additionally group the results. For
each group, a separate tree is grown.

v Vector of variables used in the surrogate model. Defaults to all variables in data
except "by", "w" and "y".

use_linkinv Should retransformation function be applied? Default is TRUE.

n_max Maximum number of data rows to consider to build the tree.

seed An integer random seed used to select data rows if n_max is lower than the
number of data rows.

keep_max_levels

Number of levels of categorical and factor variables to keep. Other levels are
combined to a level "Other". This prevents rpart to take too long to split non-
numeric variables with many levels.

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

tree_name Column name in resulting data containing the trees. Defaults to "tree".

Details

The size of the tree can be modified by passing ... arguments to rpart.

Value

An object of class light_global_surrogate, light (and a list) with the following elements.

• data A tibble with results. Can be used to build fully customized visualizations.

• by Same as input by.

• label_name Same as input label_name.

• tree_name Name of column with tree objects.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Surrogate model for a flashlight.

• multiflashlight: Surrogate model for a multiflashlight.

References

Molnar C. (2019). Interpretable Machine Learning.

See Also

plot.light_global_surrogate.

light_ice 27

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
x <- flashlight(model = fit, label = "lm", data = iris)
light_global_surrogate(x)

light_ice Individual Conditional Expectation (ICE)

Description

Generates Individual Conditional Expectation (ICE) profiles. An ICE profile shows how the pre-
diction of an observation changes if one or multiple variables are systematically changed across
its ranges, holding all other values fixed (see the reference below for details). The curves can be
centered in order to increase visibility of interaction effects.

Usage

light_ice(x, ...)

Default S3 method:
light_ice(x, ...)

S3 method for class 'flashlight'
light_ice(
x,
v = NULL,
data = x$data,
by = x$by,
evaluate_at = NULL,
breaks = NULL,
grid = NULL,
n_bins = 27,
cut_type = c("equal", "quantile"),
indices = NULL,
n_max = 20,
seed = NULL,
use_linkinv = TRUE,
center = c("no", "first", "middle", "last", "mean", "0"),
value_name = "value",
label_name = "label",
id_name = "id",
...

)

S3 method for class 'multiflashlight'
light_ice(x, ...)

28 light_ice

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to or from other methods.

v The variable to be profiled.

data An optional data.frame.

by An optional vector of column names used to additionally group the results.

evaluate_at Vector with values of v used to evaluate the profile.

breaks Instead of evaluate_at (and grid), cut points for x can be provided. From
them, evaluate_at values are calculates as averages.

grid A data.frame with grid values as those generated by expand.grid.

n_bins Maximum number of unique values to evaluate for numeric v. Only used in
neither grid nor evaluate_at is specified.

cut_type For the default "equal", bins of equal width are created for v by pretty. Choose
"quantile" to create quantile bins. Only used in neither grid nor evaluate_at
is specified.

indices A vector of row numbers to consider.

n_max If indices is not given, maximum number of rows to consider. Will be ran-
domly picked from data if necessary.

seed An integer random seed.

use_linkinv Should retransformation function be applied? Default is TRUE.

center How should curves be centered? Default is "no". Choose "first", "middle",
or "last" to 0-center at specific evaluation points. Choose "mean" to center all
profiles at the within-group means. Choose "0" to mean-center curves at 0.

value_name Column name in resulting data containing the profile value. Defaults to "value".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

id_name Column name in resulting data containing the row id of the profile. Defaults to
"id_name".

Details

There are two ways to specify the variable(s) to be profiled. The first option is to pass the variable
name via v and an optional vector with evaluation points evaluate_at (or breaks). This works
for dependence on a single variable. The second option is much more general: You can specify any
grid as a data.frame with one or more columns. It can e.g. be generated by a call to expand.grid.
Currently, there is no option to pass more than one variable name without such grid. The minimum
required elements in the (multi-)flashlight are "predict_function", "model", "linkinv" and "data",
where the latest can be passed on the fly. Which rows in data are profiled? This is specified by
indices. If not given and n_max is smaller than the number of rows in data, then row indices
will be sampled randomly from data. If the same rows should be used for all flashlights in a
multiflashlight, there are two options: Either pass a seed (with potentially undesired consequences
for subsequent code) or a vector of indices used to select rows. In both cases, data should be the
same for all flashlights considered.

light_importance 29

Value

An object of class light_ice, light (and a list) with the following elements.

• data A tibble containing the results. Can be used to build fully customized visualizations. Its
column names are specified by all other items in this list.

• by Same as input by.

• v The variable(s) evaluated.

• center How centering was done.

• value_name Same as input value_name.

• label_name Same as input label_name.

• id_name Same as input id_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: ICE profiles for a flashlight object.

• multiflashlight: ICE profiles for a multiflashlight object.

References

Goldstein, A. et al. (2015). Peeking inside the black box: Visualizing statistical learning with
plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24:1
<doi.org/10.1080/10618600.2014.907095>.

See Also

light_profile, plot.light_ice.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "lm", data = iris, y = "Sepal.Length")
light_ice(fl, v = "Species")

light_importance Variable Importance

Description

Two algorithms to calculate variable importance are available: (a) Permutation importance and (b)
SHAP importance. Algorithm (a) measures importance of variable v as the drop in performance by
permuting the values of v, see Fisher et al. 2018 (reference below). Algorithm (b) measures variable
importance by averaging absolute SHAP values.

30 light_importance

Usage

light_importance(x, ...)

Default S3 method:
light_importance(x, ...)

S3 method for class 'flashlight'
light_importance(
x,
data = x$data,
by = x$by,
type = c("permutation", "shap"),
v = NULL,
n_max = Inf,
seed = NULL,
m_repetitions = 1,
metric = x$metrics[1],
lower_is_better = TRUE,
use_linkinv = FALSE,
metric_name = "metric",
value_name = "value",
error_name = "error",
label_name = "label",
variable_name = "variable",
...

)

S3 method for class 'multiflashlight'
light_importance(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to light_performance. Not used for type = "shap".

data An optional data.frame. Not used for type = "shap".

by An optional vector of column names used to additionally group the results.

type Type of importance: "permutation" (default) or "shap". "shap" is only available
if a "shap" object is contained in x.

v Vector of variables to assess importance for. Defaults to all variables in data
except "by" and "y".

n_max Maximum number of rows to consider. Not used for type = "shap".

seed An integer random seed used to select and shuffle rows. Not used for type =
"shap".

m_repetitions Number of permutations. Defaults to 1. A value above 1 provides more stable
estimates of variable importance and allows the calculation of standard errors
measuring the uncertainty from permuting. Not used for type = "shap".

light_importance 31

metric An optional named list of length one with a metric as element. Defaults to the
first metric in the flashlight. The metric needs to be a function with at least
four arguments: actual, predicted, case weights w and Irrelevant for type
= "shap".

lower_is_better

Logical flag indicating if lower values in the metric are better or not. If set to
FALSE, the increase in metric is multiplied by -1. Not used for type = "shap".

use_linkinv Should retransformation function be applied? Default is FALSE. Not uses for
type = "shap".

metric_name Name of the resulting column containing the name of the metric. Defaults to
"metric". Irrelevant for type = "shap".

value_name Column name in resulting data containing the variable importance. Defaults to
"value".

error_name Column name in resulting data containing the standard error of permutation
importance. Defaults to "error".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

variable_name Column name in resulting data containing the variable names. Defaults to "vari-
able".

Details

For algorithm (a), the minimum required elements in the (multi-) flashlight are "y", "predict_function",
"model", "data" and "metrics". For algorithm (b), the only required element is "shap". Call
add_shap once to add such object. Note: The values of the permutation algorithm (a) are on the
scale of the selected metric. For shap algorithm (b), the values are on the scale of absolute values
of the predictions.

Value

An object of class light_importance, light (and a list) with the following elements.

• data A tibble with results. Can be used to build fully customized visualizations.

• by Same as input by.

• type Same as input type. For information only.

• metric_name Column name representing the name of the metric. For information only.

• value_name Same as input value_name.

• error_name Same as input error_name.

• label_name Same as input label_name.

• variable_name Same as input variable_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Variable importance for a flashlight.

• multiflashlight: Variable importance for a multiflashlight.

32 light_interaction

References

Fisher A., Rudin C., Dominici F. (2018). All Models are Wrong but many are Useful: Variable
Importance for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class Re-
liance. ArXiv <arxiv.org/abs/1801.01489>.

See Also

most_important, plot.light_importance.

Examples

fit <- lm(Sepal.Length ~ Petal.Length, data = iris)
fl <- flashlight(model = fit, label = "full", data = iris, y = "Sepal.Length")
light_importance(fl)

light_interaction Interaction Strength

Description

This function provides Friedman’s H statistic for overall interaction strength per covariable as well
as its version for pairwise interactions, see reference below. As a fast alterantive to assess overall in-
teraction strength, with type = "ice", the function offers a method based on centered ICE curves:
The corresponding H* statistic measures how much of the variability of a c-ICE curve is unex-
plained by the main effect. As for Friedman’s H statistic, it can be useful to consider unnormalized
or squared values (see Details below).

Usage

light_interaction(x, ...)

Default S3 method:
light_interaction(x, ...)

S3 method for class 'flashlight'
light_interaction(
x,
data = x$data,
by = x$by,
v = NULL,
pairwise = FALSE,
type = c("H", "ice"),
normalize = TRUE,
take_sqrt = TRUE,
grid_size = 200,
n_max = 1000,
seed = NULL,

light_interaction 33

use_linkinv = FALSE,
value_name = "value",
error_name = "error",
label_name = "label",
variable_name = "variable",
type_name = "type",
...

)

S3 method for class 'multiflashlight'
light_interaction(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to or from other methods.

data An optional data.frame.

by An optional vector of column names used to additionally group the results.

v Vector of variables to be assessed.

pairwise Should overall interaction strength per variable be shown or pairwise interac-
tions? Defaults to FALSE.

type Are measures based on Friedman’s H statistic ("H") or on "ice" curves? Option
"ice" is available only if pairwise = FALSE.

normalize Should the variances explained be normalized? Default is TRUE in order to re-
produce Friedman’s H statistic.

take_sqrt In order to reproduce Friedman’s H statistic, resulting values are root trans-
formed. Set to FALSE if squared values should be returned.

grid_size Grid size used to form the outer product. Will be randomly picked from data
(after limiting to n_max).

n_max Maximum number of data rows to consider. Will be randomly picked from data
if necessary.

seed An integer random seed used for subsampling.

use_linkinv Should retransformation function be applied? Default is FALSE.

value_name Column name in resulting data containing the interaction strenght. Defaults to
"value".

error_name Currently not used.

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

variable_name Column name in resulting data containing the variable names. Defaults to "vari-
able".

type_name Column name in the resulting data with the plot type.

34 light_interaction

Details

Friedman’s H statistic relates the interaction strength of a variable (pair) to the total effect strength
of that variable (pair) based on partial dependence curves. Due to this normalization step, even
variables with low importance can have high values for H. The function light_interaction offers
the option to skip this normalization step in order to have a more direct comparison of the interaction
effects across variable (pairs). The values of such unnormalized H are on the scale of the response
variable. Use take_sqrt = FALSE to return squared values of H. Note that in general, for each
variable (pair) predictions are done on a data set with grid_size * n_max, so be cautious with
increasing the defaults too much. Still, even with larger grid_size and n_max, there might be
considerable variation across different runs, thus setting a seed might be required for reproducibility.
The minimum required elements in the (multi-) flashlight are a "predict_function", "model", and
"data".

Value

An object of class light_importance, light (and a list) with the following elements.

• data A tibble containing the results. Can be used to build fully customized visualizations. Its
column names are specified by the items in this list (except for "method").

• by Same as input by.

• type Same as input type. For information only.

• value_name Same as input value_name.

• error_name Same as input error_name.

• label_name Same as input label_name.

• variable_name Same as input variable_name.

• type_name Same as input type_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Interaction strengths for a flashlight object.

• multiflashlight: for a multiflashlight object.

References

Friedman, J. H. and Popescu, B. E. (2008). “Predictive learning via rule ensembles.” The Annals of
Applied Statistics. JSTOR, 916–54.

See Also

light_ice.

light_performance 35

Examples

fit_additive <- lm(Sepal.Length ~ Petal.Length + Petal.Width + Species, data = iris)
fit_nonadditive <- lm(Sepal.Length ~ Petal.Length * Petal.Width + Species, data = iris)
fl_additive <- flashlight(model = fit_additive, label = "additive")
fl_nonadditive <- flashlight(model = fit_nonadditive, label = "nonadditive")
fls <- multiflashlight(list(fl_additive, fl_nonadditive), data = iris, y = "Sepal.Length")
plot(st <- light_interaction(fls), fill = "darkgreen")
plot(light_interaction(fls, pairwise = TRUE), fill = "darkgreen")

light_performance Model Performance of Flashlight

Description

Calculates performance of a flashlight with respect to one or more performance measure.

Usage

light_performance(x, ...)

Default S3 method:
light_performance(x, ...)

S3 method for class 'flashlight'
light_performance(
x,
data = x$data,
by = x$by,
metrics = x$metrics,
use_linkinv = FALSE,
metric_name = "metric",
value_name = "value",
label_name = "label",
...

)

S3 method for class 'multiflashlight'
light_performance(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Arguments passed from or to other functions.

data An optional data.frame.

by An optional vector of column names used to additionally group the results. Will
overwrite x$by.

36 light_performance

metrics An optional named list with metrics. Each metric takes at least four arguments:
actual, predicted, case weights w and

use_linkinv Should retransformation function be applied? Default is FALSE.

metric_name Column name in resulting data containing the name of the metric. Defaults to
"metric".

value_name Column name in resulting data containing the value of the metric. Defaults to
"value".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

Details

The minimal required elements in the (multi-) flashlight are "y", "predict_function", "model", "data"
and "metrics". The latter two can also directly be passed to light_performance. Note that by
default, no retransformation function is applied.

Value

An object of class light_performance, light (and a list) with the following elements.

• data A tibble containing the results. Can be used to build fully customized visualizations.

• by Same as input by.

• metric_name Same as input metric_name.

• value_name Same as input value_name.

• label_name Same as input label_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Model performance of flashlight object.

• multiflashlight: Model performance of multiflashlight object.

See Also

plot.light_performance.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "lm", data = iris, y = "Sepal.Length")
light_performance(fl)
light_performance(fl, by = "Species")

light_profile 37

light_profile Partial Dependence and other Profiles

Description

Calculates different types of profiles across covariable values. By default, partial dependence pro-
files are calculated (see Friedman). Other options are profiles of ALE (accumulated local effects,
see Apley), response, predicted values ("M plots" or "marginal plots", see Apley), residuals, and
shap. The results are aggregated either by (weighted) means or by (weighted) quartiles. Note that
ALE profiles are calibrated by (weighted) average predictions. In contrast to the suggestions in Ap-
ley, we calculate ALE profiles of factors in the same order as the factor levels. They are not being
reordered based on similiarity of other variables.

Usage

light_profile(x, ...)

Default S3 method:
light_profile(x, ...)

S3 method for class 'flashlight'
light_profile(
x,
v = NULL,
data = NULL,
by = x$by,
type = c("partial dependence", "ale", "predicted", "response", "residual", "shap"),
stats = c("mean", "quartiles"),
breaks = NULL,
n_bins = 11,
cut_type = c("equal", "quantile"),
use_linkinv = TRUE,
value_name = "value",
q1_name = "q1",
q3_name = "q3",
label_name = "label",
type_name = "type",
counts_name = "counts",
counts = TRUE,
counts_weighted = FALSE,
v_labels = TRUE,
pred = NULL,
pd_evaluate_at = NULL,
pd_grid = NULL,
pd_indices = NULL,
pd_n_max = 1000,
pd_seed = NULL,

38 light_profile

pd_center = c("no", "first", "middle", "last", "mean", "0"),
ale_two_sided = FALSE,
...

)

S3 method for class 'multiflashlight'
light_profile(
x,
v = NULL,
data = NULL,
breaks = NULL,
n_bins = 11,
cut_type = c("equal", "quantile"),
pd_evaluate_at = NULL,
pd_grid = NULL,
...

)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed to cut3 resp. formatC in forming the cut breaks of
the v variable. Not relevant for partial dependence and ALE profiles.

v The variable to be profiled.

data An optional data.frame. Not used for type = "shap".

by An optional vector of column names used to additionally group the results.

type Type of the profile: Either "partial dependence", "ale", "predicted", "response",
"residual", or "shap".

stats Statistic to calculate: "mean" or "quartiles". For ALE profiles, only "mean"
makes sense.

breaks Cut breaks for a numeric v.

n_bins Maxmium number of unique values to evaluate for numeric v. Only used if
neither grid nor pd_evaluate_at is specified.

cut_type For the default "equal", bins of equal width are created for v by pretty. Choose
"quantile" to create quantile bins.

use_linkinv Should retransformation function be applied? Default is TRUE. Not used for
type "shap".

value_name Column name in resulting data containing the profile value. Defaults to "value".

q1_name Name of the resulting column with first quartile values. Only relevant for stats
"quartiles".

q3_name Name of the resulting column with third quartile values. Only relevant for stats
"quartiles".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

light_profile 39

type_name Column name in the resulting data with the plot type.

counts_name Name of the column containing counts if counts is TRUE.

counts Should counts be added?
counts_weighted

If counts is TRUE: Should counts be weighted by the case weights? If TRUE,
the sum of w is returned by group.

v_labels If FALSE, return group centers of v instead of labels. Only relevant for types
"response", "predicted" or "residual" and if v is being binned. In that case useful
if e.g. different flashlights use different data sets and bin labels would not match.

pred Optional vector with predictions (after application of inverse link). Can be used
to avoid recalculation of predictions over and over if the functions is to be re-
peatedly called for different v and predictions are computationally expensive to
make. Only relevant for type = "predicted" and type = "ale". Not imple-
mented for multiflashlight.

pd_evaluate_at Vector with values of v used to evaluate the profile. Only relevant for type =
"partial dependence" and "ale".

pd_grid A data.frame with grid values, e.g. generated by expand.grid. Only used for
type = "partial dependence".

pd_indices A vector of row numbers to consider in calculating partial dependence profiles.
Only used for type = "partial dependence" and "ale".

pd_n_max Maximum number of ICE profiles to calculate (will be randomly picked from
data). Only used for type = "partial dependence" and "ale".

pd_seed Integer random seed used to select ICE profiles. Only used for type = "partial
dependence" and "ale".

pd_center How should ICE curves be centered? Default is "no". Choose "first", "middle",
or "last" to 0-center at specific evaluation points. Choose "mean" to center all
profiles at the within-group means. Choose "0" to mean-center curves at 0. Only
relevant for partial dependence.

ale_two_sided If TRUE, v is continuous and breaks are passed or being calculated, then two-
sided derivatives are calculated for ALE instead of left derivatives. More specif-
ically: Usually, local effects at value x are calculated using points between x-e
and x. Set ale_two_sided = TRUE to use points between x-e/2 and x+e/2.

Details

For numeric covariables v with more than n_bins disjoint values, its values are binned. Alterna-
tively, breaks can be provided to specify the binning. For partial dependence profiles (and partly
also ALE profiles), this behaviour can be overritten either by providing a vector of evaluation points
(pd_evaluate_at) or an evaluation pd_grid. By the latter we mean a data frame with column
name(s) with a (multi-)variate evaluation grid. For partial dependence, ALE, and prediction pro-
files, "model", "predict_function", linkinv" and "data" are required. For response profiles its "y",
"linkinv" and "data" and for shap profiles it is just "shap". "data" can be passed on the fly.

40 light_profile

Value

An object of classes light_profile, light (and a list) with the following elements.

• data A tibble containing results. Can be used to build fully customized visualizations. Its
column names are specified by all other items in this list.

• by Names of group by variable.

• v The variable(s) evaluated.

• type Same as input type. For information only.

• stats Same as input stats.

• value_name Same as input value_name.

• q1_name Same as input q1_name.

• q3_name Same as input q3_name.

• label_name Same as input label_name.

• type_name Same as input type_name.

• counts_name Same as input counts_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Profiles for flashlight.

• multiflashlight: Profiles for multiflashlight.

References

Friedman J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29:1189–1232.

Apley D. W. (2016). Visualizing the effects of predictor variables in black box supervised learning
models.

See Also

light_effects, plot.light_profile.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "iris", data = iris, y = "Sepal.Length")
light_profile(fl, v = "Species")
light_profile(fl, v = "Petal.Width", type = "residual")

light_recode 41

light_recode Recode Factor Columns

Description

Recodes factor levels of columns in data slots of an object of class light.

Usage

light_recode(x, ...)

Default S3 method:
light_recode(x, ...)

S3 method for class 'light'
light_recode(x, what, levels, labels, ...)

Arguments

x An object of class light.

... Further arguments passed to factor.

what Column identifier in x (not column name) to be recoded, e.g. "type_name",
"label_name".

levels Current levels/values of type_name column (in desired order).

labels New levels of type_name column in same order as levels.

Value

x with new factor levels of type_name column.

Methods (by class)

• default: Default method not implemented yet.

• light: Recoding factors in data slots of light object.

See Also

plot.light_effects.

Examples

fit_full <- lm(Sepal.Length ~ ., data = iris)
fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
mod_full <- flashlight(model = fit_full, label = "full", data = iris, y = "Sepal.Length")
mod_part <- flashlight(model = fit_part, label = "part", data = iris, y = "Sepal.Length")
mods <- multiflashlight(list(mod_full, mod_part))
eff <- light_effects(mods, v = "Species")

42 light_scatter

eff <- light_recode(eff, what = "type_name",
levels = c("response", "predicted", "partial dependence", "ale"),
labels = c("Observed", "Fitted", "PD", "ALE"))

plot(eff, use = "all")

light_scatter Scatter

Description

This function prepares values for drawing a scatter plot of predicted values, responses, residuals, or
SHAP values against a selected variable.

Usage

light_scatter(x, ...)

Default S3 method:
light_scatter(x, ...)

S3 method for class 'flashlight'
light_scatter(
x,
v,
data = x$data,
by = x$by,
type = c("predicted", "response", "residual", "shap"),
use_linkinv = TRUE,
n_max = 400,
seed = NULL,
value_name = "value",
label_name = "label",
type_name = "type",
...

)

S3 method for class 'multiflashlight'
light_scatter(x, ...)

Arguments

x An object of class flashlight or multiflashlight.

... Further arguments passed from or to other methods.

v The variable to be shown on the x-axis.

data An optional data.frame. Not relevant for type = "shap".

by An optional vector of column names used to additionally group the results.

light_scatter 43

type Type of the profile: Either "predicted", "response", "residual", or "shap".

use_linkinv Should retransformation function be applied? Default is TRUE. Not used for
type = "shap".

n_max Maximum number of data rows to select. Will be randomly picked from the
relevant data.

seed An integer random seed used for subsampling.

value_name Column name in resulting data containing the values belonging to type. De-
faults to "value".

label_name Column name in resulting data containing the label of the flashlight. Defaults
to "label".

type_name Column name in the resulting data with the plot type.

Value

An object of class light_scatter, light (and a list) with the following elements.

• data A tibble with results. Can be used to build fully customized visualizations.

• by Same as input by.

• v The variable evaluated.

• type Same as input type. For information only.

• value_name Same as input value_name.

• label_name Same as input label_name.

• type_name Same as input type_name.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Variable profile for a flashlight.

• multiflashlight: light_scatter for a multiflashlight.

See Also

plot.light_scatter.

Examples

fit_a <- lm(Sepal.Length ~ . -Petal.Length, data = iris)
fit_b <- lm(Sepal.Length ~ ., data = iris)
fl_a <- flashlight(model = fit_a, label = "without Petal.Length")
fl_b <- flashlight(model = fit_b, label = "all")
fls <- multiflashlight(list(fl_a, fl_b), data = iris, y = "Sepal.Length")
pr <- light_scatter(fls, v = "Petal.Length")
plot(light_scatter(fls, "Petal.Length", by = "Species", type = "residual"), alpha = 0.2)

44 most_important

midpoints Midpoints

Description

Internal function that takes a vector of breaks and calculates midpoints of subsequent unique breaks.

Usage

midpoints(breaks)

Arguments

breaks Numeric vector of cut points or a single number specifying the number of inter-
vals desired.

Value

Vector of the same length as x minus 1 with midpoints of breaks.

most_important Most Important Variables.

Description

Returns the most important variable names sorted descendingly.

Usage

most_important(x, top_m = Inf)

Default S3 method:
most_important(x, top_m = Inf)

S3 method for class 'light_importance'
most_important(x, top_m = Inf)

Arguments

x An object of class light_importance.

top_m Maximum number of important variables to be returned. Defaults to Inf, i.e.
return all variables in descending order of importance.

Value

A character vector of variable names sorted in descending order by importance.

multiflashlight 45

Methods (by class)

• default: Default method not implemented yet.

• light_importance: Extracts most important variables from an object of class light_importance.

See Also

light_importance.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "ols", data = iris, y = "Sepal.Length")
(imp <- light_importance(fl, seed = 4))
most_important(imp)
most_important(imp, 2)

multiflashlight Create or Update a multiflashlight

Description

Combines a list of flashlights to an object of class multiflashlight and/or updates a multiflash-
light.

Usage

multiflashlight(x, ...)

Default S3 method:
multiflashlight(x, ...)

S3 method for class 'flashlight'
multiflashlight(x, ...)

S3 method for class 'list'
multiflashlight(x, ...)

S3 method for class 'multiflashlight'
multiflashlight(x, ...)

Arguments

x An object of class multiflashlight, flashlight or a list of flashlights.

... Optional arguments in the flashlights to update, see examples.

Value

An object of class multiflashlight. This is a named list of flashlight objects.

46 plot.light_breakdown

Methods (by class)

• default: Used to create a flashlight object. No x has to be passed in this case.

• flashlight: Updates an existing flashlight object and turns into a multiflashlight.

• list: Creates (and updates) a multiflashlight from a list of flashlights.

• multiflashlight: Updates an object of class multiflashlight.

See Also

flashlight.

Examples

fit_lm <- lm(Sepal.Length ~ ., data = iris)
fit_glm <- glm(Sepal.Length ~ ., family = Gamma(link = log), data = iris)
mod_lm <- flashlight(model = fit_lm, label = "lm")
mod_glm <- flashlight(model = fit_glm, label = "glm")
(mods <- multiflashlight(list(mod_lm, mod_glm)))

mods <- multiflashlight(list(mod_lm, mod_glm),
data = iris, by = "Species", y = "Sepal.Length")

mod_lm <- mods$lm
mod_lm

plot.light_breakdown Visualize Variable Contribution Breakdown for Single Observation

Description

Minimal visualization of an object of class light_breakdown as waterfall plot. The object returned
is of class ggplot and can be further customized.

Usage

S3 method for class 'light_breakdown'
plot(x, facet_scales = "free", facet_ncol = 1, rotate_x = FALSE, ...)

Arguments

x An object of class light_breakdown.

facet_scales Scales argument passed to facet_wrap.

facet_ncol ncol argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? Default is FALSE.

... Further arguments passed to geom_label.

plot.light_effects 47

Details

The waterfall plot is to be read from top to bottom. The first line describes the (weighted) average
prediction in the query data used to start with. Then, each additional line shows how the prediction
changes due to the impact of the corresponding variable. The last line finally shows the original
prediction of the selected observation. Multiple flashlights are shown in different facets. Positive
and negative impacts are visualized with different colors.

Value

An object of class ggplot2.

See Also

light_importance.

Examples

fit <- lm(Sepal.Length ~ . + Petal.Length:Species, data = iris)
fl <- flashlight(model = fit, label = "lm", data = iris, y = "Sepal.Length")
plot(light_breakdown(fl, new_obs = iris[1,]))

plot.light_effects Visualize Multiple Types of Profiles Together

Description

Visualizes response-, prediction-, partial dependence, and/or ALE profiles of a (multi-)flashlight
with respect to a covariable v. Different flashlights or a single flashlight with one "by" variable are
separated by a facet wrap.

Usage

S3 method for class 'light_effects'
plot(
x,
use = c("response", "predicted", "pd"),
zero_counts = TRUE,
size_factor = 1,
facet_scales = "free_x",
facet_nrow = 1L,
rotate_x = TRUE,
show_points = TRUE,
...

)

48 plot.light_global_surrogate

Arguments

x An object of class light_effects.
use A vector of elements to show. Any subset of ("response", "predicted", "pd",

"ale") or "all". Defaults to all except "ale"
zero_counts Logical flag if 0 count levels should be shown on the x axis.
size_factor Factor used to enlarge default size in geom_point and geom_line.
facet_scales Scales argument passed to facet_wrap.
facet_nrow Number of rows in facet_wrap. Must be 1 if plot_counts should be used.
rotate_x Should x axis labels be rotated by 45 degrees?
show_points Should points be added to the line (default is TRUE).
... Further arguments passed to geoms.

Value

An object of class ggplot2.

See Also

light_effects, plot_counts.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "iris", data = iris, y = "Sepal.Length")
plot(light_effects(fl, v = "Species"))

plot.light_global_surrogate

Plot Global Surrogate Trees

Description

Using rpart.plot, trees fitted by light_global_surrogate are visualized.

Usage

S3 method for class 'light_global_surrogate'
plot(x, type = 5, auto_main = TRUE, mfrow = NULL, ...)

Arguments

x An object of class light_global_surrogate.
type Plot type, see help of rpart.plot. Default is 5.
auto_main Automatic plot titles (only if multiple trees are shown in the same figure).
mfrow If multiple trees are shown in the same figure: what value of mfrow to use in

par?
... Further arguments passed to rpart.plot.

plot.light_ice 49

Value

An object of class ggplot2.

See Also

light_global_surrogate.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
x <- flashlight(model = fit, label = "lm", data = iris)
plot(light_global_surrogate(x))

plot.light_ice Visualize ICE profiles

Description

Minimal visualization of an object of class light_ice as geom_line. The object returned is of
class ggplot and can be further customized.

Usage

S3 method for class 'light_ice'
plot(x, facet_scales = "fixed", rotate_x = FALSE, ...)

Arguments

x An object of class light_ice.

facet_scales Scales argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? Default is FALSE.

... Further arguments passed to geom_line.

Details

Each observation is visualized by a line. The first "by" variable is represented by the color, a second
"by" variable or a multiflashlight by facets.

Value

An object of class ggplot2.

See Also

light_ice.

50 plot.light_importance

Examples

fit_full <- lm(Sepal.Length ~ ., data = iris)
fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
mod_full <- flashlight(model = fit_full, label = "full", data = iris, y = "Sepal.Length")
mod_part <- flashlight(model = fit_part, label = "part", data = iris, y = "Sepal.Length")
mods <- multiflashlight(list(mod_full, mod_part))
plot(light_ice(mod_full, v = "Species"), alpha = 0.2)
indices <- (1:15) * 10
plot(light_ice(mods, v = "Species", indices = indices))
plot(light_ice(mods, v = "Species", indices = indices, center = "first"))
plot(light_ice(mods, v = "Petal.Width", by = "Species", n_bins = 5, indices = indices))

plot.light_importance Visualize Variable Importance

Description

Minimal visualization of an object of class light_importance as geom_bar. If available, standard
errors are added as geom_errorbar. The object returned is of class ggplot and can be further
customized.

Usage

S3 method for class 'light_importance'
plot(
x,
top_m = Inf,
swap_dim = FALSE,
facet_scales = "fixed",
rotate_x = FALSE,
error_bars = TRUE,
...

)

Arguments

x An object of class light_importance.

top_m Maximum number of important variables to be returned.

swap_dim If multiflashlight and one "by" variable or single flashlight with two "by" vari-
ables, swap the role of dodge/fill variable and facet variable. If multiflashlight
or one "by" variable, use facets instead of colors.

facet_scales Scales argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? Default is FALSE.

error_bars Should error bars be added? Defaults to TRUE. Only available if light_importance
was run with multiple permutations, i.e. by setting m_repetitions > 1.

... Further arguments passed to geom_bar.

plot.light_performance 51

Details

The plot is organized as a bar plot with variable names as x-aesthetic. Up to two additional di-
mensions (multiflashlight and one "by" variable or single flashlight with two "by" variables) can be
visualized by facetting and dodge/fill. Set swap_dim = FALSE to revert the role of these two dimen-
sions. One single additional dimension is visualized by a facet wrap, or - if swap_dim = FALSE - by
dodge/fill.

Value

An object of class ggplot2.

See Also

light_importance.

Examples

fit_full <- lm(Sepal.Length ~ ., data = iris)
fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
mod_full <- flashlight(model = fit_full, label = "full", data = iris, y = "Sepal.Length")
mod_part <- flashlight(model = fit_part, label = "part", data = iris, y = "Sepal.Length")
mods <- multiflashlight(list(mod_full, mod_part), by = "Species")
plot(light_importance(mod_part, m_repetitions = 4), fill = "darkred")
plot(light_importance(mods), swap_dim = TRUE)

plot.light_performance

Visualize Model Performance

Description

Minimal visualization of an object of class light_performance as geom_bar. The object returned
has class ggplot and can be further customized.

Usage

S3 method for class 'light_performance'
plot(
x,
swap_dim = FALSE,
geom = c("bar", "point"),
facet_scales = "free_y",
rotate_x = FALSE,
...

)

52 plot.light_profile

Arguments

x An object of class light_performance.

swap_dim Should representation of dimensions (either two "by" variables or one "by" vari-
able and multiflashlight) of x aesthetic and dodge fill aesthetic be swapped?
Default is FALSE.

geom Geometry of plot (either "bar" or "point")

facet_scales Scales argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? Default is FALSE.

... Further arguments passed to geom_bar or geom_point.

Details

The plot is organized as a bar plot as follows: For flashlights without "by" variable specified, a
single bar is drawn. Otherwise, the "by" variable (or the flashlight label if there is no "by" variable)
is represented by the "x" aesthetic. The flashlight label (in case of one "by" variable) is represented
by dodged bars. This strategy makes sure that performance of different flashlights can be compared
easiest. Set "swap_dim = TRUE" to revert the role of dodging and x aesthetic. Different metrics are
always represented by facets.

Value

An object of class ggplot2.

See Also

light_performance.

Examples

fit_full <- lm(Sepal.Length ~ ., data = iris)
fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
mod_full <- flashlight(model = fit_full, label = "full", data = iris, y = "Sepal.Length")
mod_part <- flashlight(model = fit_part, label = "part", data = iris, y = "Sepal.Length")
mods <- multiflashlight(list(mod_full, mod_part))
plot(light_performance(mods), fill = "darkred")
plot(light_performance(mods, by = "Species"))
plot(light_performance(mods, by = "Species"), swap_dim = TRUE)

plot.light_profile Visualize Profiles, e.g. of Partial Dependence

Description

Minimal visualization of an object of class light_profile. The object returned is of class ggplot
and can be further customized.

plot.light_profile 53

Usage

S3 method for class 'light_profile'
plot(
x,
swap_dim = FALSE,
facet_scales = "free_x",
rotate_x = x$type != "partial dependence",
show_points = TRUE,
...

)

Arguments

x An object of class light_profile.

swap_dim If multiflashlight and one "by" variable or single flashlight with two "by" vari-
ables, swap the role of dodge/fill variable and facet variable. If multiflashlight
or one "by" variable, use facets instead of colors.

facet_scales Scales argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? TRUE, except for type "partial
dependence".

show_points Should points be added to the line (default is TRUE).

... Further arguments passed to geom_point and geom_line.

Details

Either lines and points are plotted (if stats = "mean") or quartile boxes. If there is a "by" variable
or a multiflashlight, this first dimension is taken care by color (or if swap_dim = TRUE by facets).
If there are two "by" variables or a multiflashlight with one "by" variable, the first "by" variable is
visualized as color, the second one or the multiflashlight via facet (change with swap_dim).

Value

An object of class ggplot2.

See Also

light_profile, plot.light_effects.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "iris", data = iris, y = "Sepal.Length")
plot(light_profile(fl, v = "Species"))
plot(light_profile(fl, v = "Petal.Width", by = "Species", evaluate_at = 2:4))
plot(light_profile(fl, v = "Petal.Width", type = "predicted"))

54 plot.light_scatter

plot.light_scatter Scatter Plot

Description

Values are plotted against a variable. The object returned is of class ggplot and can be further
customized. To avoid overplotting, pass e.g. alpha = 0.2 or position = "jitter".

Usage

S3 method for class 'light_scatter'
plot(x, swap_dim = FALSE, facet_scales = "free_x", rotate_x = FALSE, ...)

Arguments

x An object of class light_scatter.

swap_dim If multiflashlight and one "by" variable or single flashlight with two "by" vari-
ables, swap the role of color variable and facet variable. If multiflashlight or one
"by" variable, use colors instead of facets.

facet_scales Scales argument passed to facet_wrap.

rotate_x Should x axis labels be rotated by 45 degrees? Default is FALSE.

... Further arguments passed to geom_point. Typical arguments would be alpha =
0.2 or position = "jitter" to avoid overplotting.

Value

An object of class ggplot2.

See Also

light_scatter.

Examples

fit_a <- lm(Sepal.Length ~ . -Petal.Length, data = iris)
fit_b <- lm(Sepal.Length ~ ., data = iris)
fl_a <- flashlight(model = fit_a, label = "without Petal.Length")
fl_b <- flashlight(model = fit_b, label = "all")
fls <- multiflashlight(list(fl_a, fl_b), data = iris, y = "Sepal.Length")
pr <- light_scatter(fls, v = "Petal.Length")
plot(pr, alpha = 0.2)
plot(light_scatter(fls, "Petal.Length", by = "Species"), alpha = 0.2)

plot_counts 55

plot_counts Add Counts to Effects Plot

Description

Add counts as labelled bar plot on top of light_effects plot.

Usage

plot_counts(
p,
x,
text_size = 3,
facet_scales = "free_x",
show_labels = TRUE,
big.mark = "'",
scientific = FALSE,
digits = 0,
...

)

Arguments

p The result of plot.light_effects.

x An object of class light_effects.

text_size Size of count labels.

facet_scales Scales argument passed to facet_wrap.

show_labels Should count labels be added as text?

big.mark Parameter passed to format the labels. Default is "’".

scientific Parameter passed to format the labels. Default is FALSE.

digits Used to round the labels. Default is 0.

... Further arguments passed to geom_bar.

Details

Experimental. Uses package ggpubr to rearrange the figure. Thus, the resulting plot cannot be
easily modified. Furthermore, adding counts only works if the legend in plot.light_effects is
not placed on the left or right side of the plot. It has to be placed inside or at the bottom.

Value

An object of class ggplot2.

See Also

plot.light_effects.

56 predict.flashlight

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "iris", data = iris, y = "Sepal.Length")
x <- light_effects(fl, v = "Species")
plot_counts(plot(x), x, width = 0.3, alpha = 0.2)

predict.flashlight Predictions for flashlight

Description

Predict method for an object of class flashlight. Pass additional elements to update the flashlight,
typically data.

Usage

S3 method for class 'flashlight'
predict(object, ...)

Arguments

object An object of class flashlight.

... Arguments used to update the flashlight.

Value

A vector with predictions.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
(fl <- flashlight(model = fit, data = iris, y = "Sepal.Length", label = "ols"))
predict(fl)[1:5]
predict(fl, data = iris[1:5,])
predict(fl, data = iris[1:5,], linkinv = exp)

predict.multiflashlight 57

predict.multiflashlight

Predictions for multiflashlight

Description

Predict method for an object of class multiflashlight. Pass additional elements to update the
flashlight, typically data.

Usage

S3 method for class 'multiflashlight'
predict(object, ...)

Arguments

object An object of class multiflashlight.

... Arguments used to update the multiflashlight.

Value

A named list of prediction vectors.

Examples

fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
fit_full <- lm(Sepal.Length ~ ., data = iris)
mod_full <- flashlight(model = fit_full, label = "full")
mod_part <- flashlight(model = fit_part, label = "part")
mods <- multiflashlight(list(mod_full, mod_part), data = iris, y = "Sepal.Length")
predict(mods, data = iris[1:5,])

print.flashlight Prints a flashlight

Description

Print method for an object of class flashlight.

Usage

S3 method for class 'flashlight'
print(x, ...)

58 print.light

Arguments

x A on object of class flashlight.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

flashlight.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
flashlight(model = fit, label = "lm", y = "Sepal.Length", data = iris)

print.light Prints light Object

Description

Print method for an object of class light.

Usage

S3 method for class 'light'
print(x, ...)

Arguments

x A on object of class light.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
fl <- flashlight(model = fit, label = "lm", y = "Sepal.Length", data = iris)
light_performance(fl, v = "Species")
light_effects(fl, v = "Sepal.Length")

print.multiflashlight 59

print.multiflashlight Prints a multiflashlight

Description

Print method for an object of class multiflashlight.

Usage

S3 method for class 'multiflashlight'
print(x, ...)

Arguments

x An object of class multiflashlight.

... Further arguments passed to print.flashlight.

Value

Invisibly, the input is returned.

See Also

multiflashlight.

Examples

fit_lm <- lm(Sepal.Length ~ ., data = iris)
fit_glm <- glm(Sepal.Length ~ ., family = Gamma(link = log), data = iris)
fl_lm <- flashlight(model = fit_lm, label = "lm")
fl_glm <- flashlight(model = fit_glm, label = "glm")
multiflashlight(list(fl_lm, fl_glm), data = iris)

residuals.flashlight Residuals for flashlight

Description

Residuals method for an object of class flashlight. Pass additional elements to update the flash-
light before calculation of residuals.

Usage

S3 method for class 'flashlight'
residuals(object, ...)

60 residuals.multiflashlight

Arguments

object An object of class flashlight.

... Arguments used to update the flashlight before calculating the residuals.

Value

A numeric vector with residuals.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
(fl <- flashlight(model = fit, data = iris, y = "Sepal.Length", label = "ols"))
residuals(fl)[1:5]
residuals(fl, data = iris[1:5,])
residuals(fl, data = iris[1:5,], linkinv = exp)
resid(fl)[1:5]

residuals.multiflashlight

Residuals for multiflashlight

Description

Residuals method for an object of class multiflashlight. Pass additional elements to update the
multiflashlight before calculation of residuals.

Usage

S3 method for class 'multiflashlight'
residuals(object, ...)

Arguments

object An object of class multiflashlight.

... Arguments used to update the multiflashlight before calculating the residuals.

Value

A named list with residuals per flashlight.

Examples

fit_part <- lm(Sepal.Length ~ Petal.Length, data = iris)
fit_full <- lm(Sepal.Length ~ ., data = iris)
mod_full <- flashlight(model = fit_full, label = "full")
mod_part <- flashlight(model = fit_part, label = "part")
mods <- multiflashlight(list(mod_full, mod_part), data = iris, y = "Sepal.Length")
residuals(mods, data = head(iris))

response 61

response Response of multi/-flashlight

Description

Extracts response from object of class flashlight.

Usage

response(object, ...)

Default S3 method:
response(object, ...)

S3 method for class 'flashlight'
response(object, ...)

S3 method for class 'multiflashlight'
response(object, ...)

Arguments

object An object of class flashlight.

... Arguments used to update the flashlight before extracting the response.

Value

A numeric vector of responses.

Methods (by class)

• default: Default method not implemented yet.

• flashlight: Extract response from flashlight object.

• multiflashlight: Extract responses from multiflashlight object.

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
(fl <- flashlight(model = fit, data = iris, y = "Sepal.Length", label = "ols"))
response(fl)[1:5]
response(fl, data = iris[1:5,])
response(fl, data = iris[1:5,], linkinv = exp)

Index

add_shap, 3
ale_profile, 5
all_identical, 6
auto_cut, 7

common_breaks, 8
cut3, 9

flashlight, 10, 46, 58

grouped_center, 11
grouped_counts, 12
grouped_stats, 13
grouped_weighted_mean, 14

is.flashlight, 15
is.light (is.flashlight), 15
is.light_breakdown (is.flashlight), 15
is.light_breakdown_multi

(is.flashlight), 15
is.light_effects (is.flashlight), 15
is.light_effects_multi (is.flashlight),

15
is.light_global_surrogate

(is.flashlight), 15
is.light_global_surrogate_multi

(is.flashlight), 15
is.light_ice (is.flashlight), 15
is.light_ice_multi (is.flashlight), 15
is.light_importance (is.flashlight), 15
is.light_importance_multi

(is.flashlight), 15
is.light_performance (is.flashlight), 15
is.light_performance_multi

(is.flashlight), 15
is.light_profile (is.flashlight), 15
is.light_profile_multi (is.flashlight),

15
is.light_scatter (is.flashlight), 15
is.light_scatter_multi (is.flashlight),

15

is.multiflashlight (is.flashlight), 15
is.shap (is.flashlight), 15

light_breakdown, 17
light_check, 20
light_combine, 21
light_effects, 22, 40, 48
light_global_surrogate, 25, 49
light_ice, 27, 34, 49
light_importance, 29, 45, 47, 51
light_interaction, 32
light_performance, 35, 52
light_profile, 25, 29, 37, 53
light_recode, 41
light_scatter, 42, 54

midpoints, 44
most_important, 32, 44
multiflashlight, 11, 45, 59

plot.light_breakdown, 19, 46
plot.light_effects, 25, 41, 47, 53, 55
plot.light_global_surrogate, 26, 48
plot.light_ice, 29, 49
plot.light_importance, 32, 50
plot.light_performance, 36, 51
plot.light_profile, 40, 52
plot.light_scatter, 43, 54
plot_counts, 48, 55
predict.flashlight, 56
predict.multiflashlight, 57
print.flashlight, 57
print.light, 58
print.multiflashlight, 59

residuals.flashlight, 59
residuals.multiflashlight, 60
response, 61

62

	add_shap
	ale_profile
	all_identical
	auto_cut
	common_breaks
	cut3
	flashlight
	grouped_center
	grouped_counts
	grouped_stats
	grouped_weighted_mean
	is.flashlight
	light_breakdown
	light_check
	light_combine
	light_effects
	light_global_surrogate
	light_ice
	light_importance
	light_interaction
	light_performance
	light_profile
	light_recode
	light_scatter
	midpoints
	most_important
	multiflashlight
	plot.light_breakdown
	plot.light_effects
	plot.light_global_surrogate
	plot.light_ice
	plot.light_importance
	plot.light_performance
	plot.light_profile
	plot.light_scatter
	plot_counts
	predict.flashlight
	predict.multiflashlight
	print.flashlight
	print.light
	print.multiflashlight
	residuals.flashlight
	residuals.multiflashlight
	response
	Index

