
Package ‘fixest’
July 13, 2020

Type Package

Title Fast Fixed-Effects Estimations

Version 0.6.0

Imports stats, graphics, grDevices, utils, Formula, numDeriv, nlme,
sandwich, Rcpp, dreamerr(>= 1.2.0)

Suggests knitr, rmarkdown, data.table, plm, lfe, MASS

LinkingTo Rcpp

Depends R(>= 3.1.0)

Description Fast and user-friendly estimation of econometric models with multiple fixed-effects. In-
cludes ordinary least squares (OLS), generalized linear models (GLM) and the negative binomial.
The core of the package is based on optimized parallel C++ code, scaling espe-
cially well for large data sets. The method to obtain the fixed-effects coeffi-
cients is based on Berge (2018) <https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13>.
Further provides tools to export and view the results of several estimations with intuitive de-
sign to cluster the standard-errors.

License GPL-3

BugReports https://github.com/lrberge/fixest/issues

SystemRequirements C++11

VignetteBuilder knitr

LazyData true

RoxygenNote 7.1.0

Encoding UTF-8

NeedsCompilation yes

Author Laurent Berge [aut, cre]

Maintainer Laurent Berge <laurent.berge@uni.lu>

Repository CRAN

Date/Publication 2020-07-13 11:50:03 UTC

1

https://github.com/lrberge/fixest/issues

2 R topics documented:

R topics documented:
AIC.fixest . 3
base_did . 4
BIC.fixest . 5
bread.fixest . 6
coef.fixest . 7
coefplot . 8
coeftable . 17
collinearity . 19
confint.fixest . 20
demean . 21
deviance.fixest . 23
did_means . 24
dof . 26
estfun.fixest . 29
etable . 30
f . 39
feglm . 41
femlm . 48
feNmlm . 54
feols . 61
fitted.fixest . 67
fixef.fixest . 68
formula.fixest . 70
hatvalues.fixest . 71
i . 72
lag.formula . 73
logLik.fixest . 75
model.matrix.fixest . 77
nobs.fixest . 78
obs2remove . 79
panel . 80
plot.fixest.fixef . 82
predict.fixest . 83
print.fixest . 84
r2 . 86
resid.fixest . 87
setFixest_coefplot . 88
setFixest_dict . 93
setFixest_na_inf.rm . 94
setFixest_notes . 95
setFixest_nthreads . 96
setFixest_print.type . 97
setFixest_se . 98
sigma.fixest . 99
summary.fixest . 100
summary.fixest.fixef . 102

AIC.fixest 3

summary.fixest.obs2remove . 103
terms.fixest . 104
to_integer . 105
trade . 106
unpanel . 107
update.fixest . 108
vcov.fixest . 109
weights.fixest . 111
xpd . 112
[.fixest_panel . 113
index . 115

Index 116

AIC.fixest Aikake’s an information criterion

Description

This function computes the AIC (Aikake’s, an information criterion) from a fixest estimation.

Usage

S3 method for class 'fixest'
AIC(object, ..., k = 2)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

... Optionally, more fitted objects.

k A numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC (i.e. AIC=-2*LL+k*nparams).

Details

The AIC is computed as:

AIC = −2× LogLikelihood+ k × nbParams

with k the penalty parameter.

You can have more information on this criterion on AIC.

Value

It return a numeric vector, with length the same as the number of objects taken as arguments.

Author(s)

Laurent Berge

4 base_did

See Also

See also the main estimation functions femlm, feols or feglm. Other statictics methods: BIC.fixest,
logLik.fixest, nobs.fixest.

Examples

two fitted models with different expl. variables:
res1 = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)
res2 = femlm(Sepal.Length ~ Petal.Width | Species, iris)

AIC(res1, res2)
BIC(res1, res2)

base_did Sample data for difference in difference

Description

This data has been generated to illustrate the use of difference in difference functions in package
fixest. This is a balanced panel of 104 individuals and 10 periods. About half the individuals are
treated, the treatment having a positive effect on the dependent variable y after the 5th period. The
effect of the treatment on y is gradual.

Usage

data(base_did)

Format

base_did is a data frame with 1,040 observations and 6 variables named y, x1, id, period, post
and treat.

• y: The dependent variable affected by the treatment.

• x1: An explanatory variable.

• id: Identifier of the individual.

• period: From 1 to 10

• post: Indicator taking value 1 if the period is strictly greater than 5, 0 otherwise.

• treat: Indicator taking value 1 if the individual is treated, 0 otherwise.

Source

This data has been generated from R.

BIC.fixest 5

See Also

The DiD functions of the package fixest are did_estimate_yearly_effects and did_plot_yearly_effects.

BIC.fixest Bayesian information criterion

Description

This function computes the BIC (Bayesian information criterion) from a fixest estimation.

Usage

S3 method for class 'fixest'
BIC(object, ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

... Optionally, more fitted objects.

Details

The BIC is computed as follows:

BIC = −2× LogLikelihood+ log(nobs)× nbParams

with k the penalty parameter.

You can have more information on this criterion on AIC.

Value

It return a numeric vector, with length the same as the number of objects taken as arguments.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Other statistics functions: AIC.fixest,
logLik.fixest.

6 bread.fixest

Examples

two fitted models with different expl. variables:
res1 = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)
res2 = femlm(Sepal.Length ~ Petal.Width | Species, iris)

AIC(res1, res2)
BIC(res1, res2)

bread.fixest Extracts the bread matrix from fixest objects

Description

Extracts the bread matrix from fixest objects to be used to compute sanwich variance-covariance
matrices.

Usage

S3 method for class 'fixest'
bread(x, ...)

Arguments

x A fixest object, obtained for instance from feols.

... Not currently used.

Value

Returns a matrix of the same dimension as the number of variables used in the estimation.

Examples

est = feols(Petal.Length ~ Petal.Width + Sepal.Width, iris)
bread(est)

coef.fixest 7

coef.fixest Extracts the coefficients from a fixest estimation

Description

This function extracts the coefficients obtained from a model estimated with femlm, feols or feglm.

Usage

S3 method for class 'fixest'
coef(object, ...)

coefficients.fixest

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

... Not currently used.

Format

An object of class function of length 1.

Details

The coefficients are the ones that have been found to maximize the log-likelihood of the specified
model. More information can be found on the models from the estimations help pages: femlm,
feols or feglm.

Note that if the model has been estimated with fixed-effects, to obtain the fixed-effect coefficients,
you need to use the function fixef.fixest.

Value

This function returns a named numeric vector.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. summary.fixest, confint.fixest,
vcov.fixest, etable, fixef.fixest.

8 coefplot

Examples

simple estimation on iris data, using "Species" fixed-effects
res = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

the coefficients of the variables:
coef(res)

the fixed-effects coefficients:
fixef(res)

coefplot Plots confidence intervals and point estimates

Description

This function plots the results of estimations (coefficients and confidence intervals). It is flexible
and handles interactions in a special way.

Usage

coefplot(
object,
...,
style,
sd,
ci_low,
ci_high,
x,
x.shift = 0,
horiz = FALSE,
dict = getFixest_dict(),
keep,
drop,
order,
ci.width = "1%",
ci_level = 0.95,
add = FALSE,
pt.pch = 20,
pt.bg = NULL,
cex = 1,
pt.cex = cex,
col = 1:8,
pt.col = col,

coefplot 9

ci.col = col,
lwd = 1,
pt.lwd = lwd,
ci.lwd = lwd,
ci.lty = 1,
grid = TRUE,
grid.par = list(lty = 3, col = "gray"),
zero = TRUE,
zero.par = list(col = "black", lwd = 1),
pt.join = FALSE,
pt.join.par = list(col = pt.col, lwd = lwd),
ci.join = FALSE,
ci.join.par = list(lwd = lwd, col = col, lty = 2),
ci.fill = FALSE,
ci.fill.par = list(col = "lightgray", alpha = 0.5),
ref = "auto",
ref.line = "auto",
ref.line.par = list(col = "black", lty = 2),
lab.cex,
lab.min.cex = 0.85,
lab.max.mar = 0.25,
lab.fit = "auto",
xlim.add,
ylim.add,
only.params = FALSE,
only.inter = TRUE,
sep,
as.multiple = FALSE,
bg,
group = "auto",
group.par = list(lwd = 2, line = 3, tcl = 0.75),
main = "Effect on __depvar__",
value.lab = "Estimate and __ci__ Conf. Int.",
ylab = NULL,
xlab = NULL,
sub = NULL

)

Arguments

object Can be either: i) an estimation object (obtained for example from feols, ii) a list
of estimation objects (several results will be plotted at once), iii) a matrix of co-
efficients table, iv) a numeric vector of the point estimates – the latter requiring
the extra arguments sd or ci_low and ci_high.

... Other arguments to be passed to summary, if object is an estimation, and/or to
the function plot or lines (if add = TRUE).

style A character scalar giving the style of the plot to be used. You can set styles with
the function setFixest_coefplot, setting all the default values of the func-

10 coefplot

tion. If missing, then it switches to either "default", "interaction" or "multiple",
depending on the data given in input.

sd The standard errors of the estimates. It may be missing.

ci_low If sd is not provided, the lower bound of the confidence interval. For each
estimate.

ci_high If sd is not provided, the upper bound of the confidence interval. For each
estimate.

x The value of the x-axis. If missing, the names of the argument estimate are
used.

x.shift Shifts the confidence intervals bars to the left or right, depending on the value
of x.shift. Default is 0.

horiz A logical scalar, default is FALSE. Whether to display the confidence intervals
horizontally instead of vertically.

dict A named character vector or a logical scalar. It changes the original variable
names to the ones contained in the dictionary. E.g. to change the variables
named a and b3 to (resp.) “$log(a)$” and to “$bonus^3$”, use dict=c(a="$log(a)$",b3="$bonus^3$").
By default, if Tex output is requested or if argument file is not missing, it is
equal to getFixest_dict(), a default dictionary which can be set with setFixest_dict.
The default is not to change names if a data.frame is requested (i.e. tex =
FALSE); if so, you can use dict = TRUE to use the dictionary you’ve set globally
with setFixest_dict().

keep Character vector. This element is used to display only a subset of variables.
This should be a vector of regular expressions (see regex help for more info).
Each variable satisfying any of the regular expressions will be kept. This ar-
gument is applied post aliasing (see argument dict). Example: you have the
variable x1 to x55 and want to display only x1 to x9, then you could use keep
= "x[[:digit:]]$". If the first character is an exclamation mark, the effect is
reversed (e.g. keep = "!Intercept" means: every variable that does not contain
“Intercept” is kept). See details.

drop Character vector. This element is used if some variables are not to be displayed.
This should be a vector of regular expressions (see regex help for more info).
Each variable satisfying any of the regular expressions will be discarded. This
argument is applied post aliasing (see argument dict). Example: you have the
variable x1 to x55 and want to display only x1 to x9, then you could use drop
= "x[[:digit:]]{2}". If the first character is an exclamation mark, the effect
is reversed (e.g. drop = "!Intercept" means: every variable that does not contain
“Intercept” is dropped). See details.

order Character vector. This element is used if the user wants the variables to be
ordered in a certain way. This should be a vector of regular expressions (see
regex help for more info). The variables satisfying the first regular expression
will be placed first, then the order follows the sequence of regular expressions.
This argument is applied post aliasing (see argument dict). Example: you have
the following variables: month1 to month6, then x1 to x5, then year1 to year6.
If you want to display first the x’s, then the years, then the months you could
use: order = c("x","year"). If the first character is an exclamation mark, the

coefplot 11

effect is reversed (e.g. order = "!Intercept" means: every variable that does not
contain “Intercept” goes first). See details.

ci.width The width of the extremities of the confidence intervals. Default is 0.1.

ci_level Scalar between 0 and 1: the level of the CI. By default it is equal to 0.95.

add Default is FALSE, if the intervals are to be added to an existing graph. Note that
if it is the case, then the argument x MUST be numeric.

pt.pch The patch of the coefficient estimates. Default is 1 (circle).

pt.bg The background color of the point estimate (when the pt.pch is in 21 to 25).
Defaults to NULL.

cex Numeric, default is 1. Expansion factor for the points

pt.cex The size of the coefficient estimates. Default is the other argument cex.

col The color of the points and the confidence intervals. Default is 1 ("black"). Note
that you can set the colors separately for each of them with pt.col and ci.col.

pt.col The color of the coefficient estimates. Default is equal to the other argument
col.

ci.col The color of the confidence intervals. Default is equal to the other argument
col.

lwd General liwe with. Default is 1.

pt.lwd The line width of the coefficient estimates. Default is equal to the other argument
lwd.

ci.lwd The line width of the confidence intervals. Default is equal to the other argument
lwd.

ci.lty The line type of the confidence intervals. Default is 1.

grid Logical, default is TRUE. Whether a grid should be displayed. You can set the
display of the grid with the argument grid.par.

grid.par List. Parameters of the grid. The default values are: lty = 3 and col = "gray".
You can add any graphical parameter that will be passed to abline. You also
have two additional arguments: use horiz = FALSE to disable the horizontal
lines, and use vert = FALSE to disable the vertical lines. Eg: grid.par = list(vert
= FALSE,col = "red",lwd = 2).

zero Logical, default is TRUE. Whether the 0-line should be emphasized. You can set
the parameters of that line with the argument zero.par.

zero.par List. Parameters of the zero-line. The default values are col = "black" and
lwd = 1. You can add any graphical parameter that will be passed to abline.
Example: zero.par = list(col = "darkblue",lwd = 3).

pt.join Logical, default depends on the situation. If TRUE, then the coefficient estimates
are joined with a line. By default, it is equal to TRUE only if: i) interactions are
plotted, ii) the x values are numeric and iii) a reference is found.

pt.join.par List. Parameters of the line joining the cofficients. The default values are: col =
pt.col and lwd = lwd. You can add any graphical parameter that will be passed
to lines. Eg: pt.join.par = list(lty = 2).

12 coefplot

ci.join Logical default to FALSE. Whether to join the extremities of the confidence in-
tervals. If TRUE, then you can set the graphical parameters with the argument
ci.join.par.

ci.join.par A list of parameters to be passed to lines. Only used if ci.join=TRUE. By
default it is equal to list(lwd = lwd,col = col,lty = 2).

ci.fill Logical default to FALSE. Whether to fille the confidence intervals with a color.
If TRUE, then you can set the graphical parameters with the argument ci.fill.par.

ci.fill.par A list of parameters to be passed to polygon. Only used if ci.fill=TRUE. By
default it is equal to list(col = "lightgray",alpha = 0.5). Note that alpha
is a special parameter that adds transparency to the color (ranges from 0 to 1).

ref Only used in interactions. Either: i) "auto" (default), ii) a character vector of
length 1, iii) a list of length 1, or iv) a named integer vector of length 1. It gives
the value that has been set as a reference in the estimation of the interactions.
By default, if the estimation has been done with fixest, the reference is auto-
matically found. If ii), ie a character scalar, then that coefficient equal to zero
is added as the first coefficient. If a list or a named integer vector of length 1,
then the integer gives the position of the reference among the coefficients and
the name gives the coefficient name.

ref.line Logical, default is "auto", the behavior depending on the situation. It is TRUE
only if: i) interactions are plotted, ii) the x values are numeric and iii) a reference
is found. If TRUE, then a vertical line is drawn at the level of the reference value.
You can set the parameters of this line with the argument ref.line.par.

ref.line.par List. Parameters of the vertical line on the reference. The default values are:
col = "black" and lty = 2. You can add any graphical parameter that will be
passed to abline. Eg: ref.line.par = list(lty = 1,lwd = 3).

lab.cex The size of the labels of the coefficients. Default is missing. It is automati-
cally set by an internal algorithm which can go as low as lab.min.cex (another
argument).

lab.min.cex The minimum size of the coefficients labels, as set by the internal algorithm.
Default is 0.85.

lab.max.mar The maximum size the left margin can take when trying to fit the coefficient
labels into it (only when horiz = TRUE). This is used in the internal algorithm
fitting the coefficient labels. Default is 0.25.

lab.fit The method to fit the coefficient labels into the plotting region (only when horiz
= FALSE). Can be "auto" (the default), "simple", "multi" or "tilted". If
"simple", then the classic axis is drawn. If "multi", then the coefficient labels
are fit horizontally across several lines, such that they don’t collide. If "tilted",
then the labels are tilted. If "auto", an automatic choice between the three is
made.

xlim.add A numeric vector of length 1 or 2. It represents an extension factor of xlim, in
percentage. Eg: xlim.add = c(0,0.5) extends xlim of 50% on the right. If
of lentgh 1, positive values represent the right, and negative values the left (Eg:
xlim.add = -0.5 is equivalent to xlim.add = c(0.5,0)).

ylim.add A numeric vector of length 1 or 2. It represents an extension factor of ylim, in
percentage. Eg: ylim.add = c(0,0.5) extends ylim of 50% on the top. If of

coefplot 13

lentgh 1, positive values represent the top, and negative values the bottom (Eg:
ylim.add = -0.5 is equivalent to ylim.add = c(0.5,0)).

only.params Logical, default is FALSE. If TRUE no graphic is displayed, only the values of x
and y used in the plot are returned.

only.inter Logical, default is TRUE. If an interaction of the type of var::fe (see feols
help for details) is found, then only these interactions are plotted. If FALSE, then
interactions are treated as regular coefficients.

sep The distance between two estimates – only when argument object is a list of
estimation results.

as.multiple Logical: default is FALSE. Only when object is a single estimation result:
whether each coefficient should have a different color, line type, etc. By de-
fault they all get the same style.

bg Background color for the plot. By default it is white.

group A list, default is missing. Each element of the list reports the coefficients to be
grouped while the name of the element is the group name. Each element of the
list can be either: i) a character vector of length 1, ii) of length 2, or ii) a numeric
vector. If equal to: i) then it is interpreted as a pattern: all element fitting the reg-
ular expression will be grouped, if ii) it corrsponds to the first and last elements
to be grouped, if iii) it corresponds to the coefficients numbers to be grouped. If
equal to a character vector, you can use a percentage to tell the algorithm to look
at the coefficients before aliasing (e.g. "%varname"). Example of valid uses:
group=list(group_name=\"pattern\"), group=list(group_name=c(\"var_start\",\"var_end\")),
group=list(group_name=1:2)). See details.

group.par A list of parameters controlling the display of the group. The parameters con-
trolling the line are: lwd, tcl (length of the tick), line.adj (adjustment of the
position, default is 0), tick (whether to add the ticks), lwd.ticks, col.ticks.
Then the parameters controlling the text: text.adj (adjustment of the position,
default is 0), text.cex, text.font, text.col.

main The title of the plot. Default is "Effect on __depvar__". You can use the
special variable __depvar__ to set the title (useful when you set the plot default
with setFixest_coefplot).

value.lab The label to appear on the side of the coefficient values. If horiz = FALSE, the
label appears in the y-axis. If horiz = TRUE, then it appears on the x-axis. The
default is equal to "Estimate and __ci__ Conf. Int.", with __ci__ a special
variable giving the value of the confidence interval.

ylab The label of the y-axis, default is NULL. Note that if horiz = FALSE, it overrides
the value of the argument value.lab.

xlab The label of the x-axis, default is NULL. Note that if horiz = TRUE, it overrides
the value of the argument value.lab.

sub A subtitle, default is NULL.

Setting custom default values

The function coefplot dispose of many arguments to parametrize the plots. Most of these argu-
ments can be set once an for all using the function setFixest_coefplot. See Example 3 below
for a demonstration.

14 coefplot

Arguments keep, drop and order

The arguments keep, drop and order use regular expressions. If you are not aware of regular
expressions, I urge you to learn it, since it is an extremely powerful way to manipulate character
strings (and it exists across most programming languages).

For example drop = "Wind" would drop any variable whose name contains "Wind". Note that
variables such as "Temp:Wind" or "StrongWind" do contain "Wind", so would be dropped. To drop
only the variable named "Wind", you need to use drop = "^Wind$" (with "^" meaning beginning,
resp. "$" meaning end, of the string => this is the language of regular expressions).

Although you can combine several regular expressions in a single character string using pipes, drop
also accepts a vector of regular expressions.

You can use the special character "!" (exclamation mark) to reverse the effect of the regular expres-
sion (this feature is specific to this fonction). For example drop = "!Wind" would drop any variable
that does not contain "Wind".

You can use the special character "

The argument order takes in a vector of regular expressions, the order will follow the elments
of this vector. The vector gives a list of priorities, on the left the elements with highest priority.
For example, order = c("Wind", "!Inter", "!Temp") would give highest priorities to the variables
containing "Wind" (which would then appear first), second highest priority is the variables not
containing "Inter", last, with lowest priority, the variables not containing "Temp". If you had the
following variables: (Intercept), Temp:Wind, Wind, Temp you would end up with the following
order: Wind, Temp:Wind, Temp, (Intercept).

Author(s)

Laurent Berge

See Also

See setFixest_coefplot to set the default values of coefplot, and the estimation functions: e.g.
feols, fepois, feglm, fenegbin.

Examples

#
Example 1: Stacking two sets of results on the same graph
#

Estimation on Iris data with one fixed-effect (Species)
est = feols(Petal.Length ~ Petal.Width + Sepal.Length +

Sepal.Width | Species, iris)

Estimation results with clustered standard-errors
(the default when fixed-effects are present)
est_clu = summary(est)
Now with "regular" standard-errors
est_std = summary(est, se = "standard")

coefplot 15

You can plot the two results at once
coefplot(list(est_clu, est_std))

Alternatively, you can use the argument x.shift
to do it sequentially:

First graph with clustered standard-errors
coefplot(est, x.shift = -.2)

'x.shift' was used to shift the coefficients on the left.

Second set of results: this time with
standard-errors that are not clustered.
coefplot(est, se = "standard", x.shift = .2,

add = TRUE, col = 2, ci.lty = 2, pch=15)

Note that we used 'se', an argument that will
be passed to summary.fixest

legend("topright", col = 1:2, pch = 20, lwd = 1, lty = 1:2,
legend = c("Clustered", "Standard"), title = "Standard-Errors")

#
Example 2: Interactions
#

Now we estimate and plot the "yearly" treatment effects

data(base_did)
base_inter = base_did

We interact the variable 'period' with the variable 'treat'
est_did = feols(y ~ x1 + i(treat, period, 5) | id+period, base_inter)

You could have written the following formula instead:
y ~ x1 + treat::period(5) | id+period

In the estimation, the variable treat is interacted
with each value of period but 5, set as a reference

When estimations contain interactions, as before,
the default behavior of coefplot changes,
it now only plots interactions:
coefplot(est_did)

We can see that the graph is different from before:
- only interactions are shown,
- the reference is present,
- the estimates are joined.
=> this is fully flexible

16 coefplot

coefplot(est_did, ref.line = FALSE, pt.join = FALSE)

Now to display all coefficients, use 'only.inter'
coefplot(est_did, only.inter = FALSE)

#
What if the interacted variable is not numeric?

Let's create a "month" variable
all_months = c("aug", "sept", "oct", "nov", "dec", "jan",

"feb", "mar", "apr", "may", "jun", "jul")
base_inter$period_month = all_months[base_inter$period]

The new estimation
est = feols(y ~ x1 + i(treat, period_month, "oct") | id+period, base_inter)
Since 'period_month' of type character, coefplot sorts it
coefplot(est)

To respect a plotting order, use a factor
base_inter$month_factor = factor(base_inter$period_month, levels = all_months)
est = feols(y ~ x1 + i(treat, month_factor, "oct") | id+period, base_inter)
coefplot(est)

#
Example 3: Setting defaults
#

coefplot has many arguments, which makes it highly flexible.
If you don't like the default style of coefplot. No worries,
you can set *your* default by using the function
setFixest_coefplot()

dict = c("Petal.Length"="Length (Petal)", "Petal.Width"="Width (Petal)",
"Sepal.Length"="Length (Sepal)", "Sepal.Width"="Width (Sepal)")

setFixest_coefplot(ci.col = 2, pt.col = "darkblue", ci.lwd = 3,
pt.cex = 2, pt.pch = 15, ci.width = 0, dict = dict)

est = feols(Petal.Length ~ Petal.Width + Sepal.Length +
Sepal.Width | Species, iris)

Tadaaa! (Although the colors could be better)
coefplot(est)

To reset to the default settings:
setFixest_coefplot(reset = TRUE)
coefplot(est)

coeftable 17

coeftable Obtain various statistics from an estimation

Description

Set of functions to directly extract some commonly used statistics, like the p-value or the table of
coefficients, from estimations. This was first implemented for fixest estimations, but has some
support for other models.

Usage

coeftable(object, se, cluster, ...)

ctable

pvalue(object, se, cluster, ...)

tstat(object, se, cluster, ...)

se(object, se, cluster, ...)

Arguments

object An estimation. For example obtained from feols.

se [Fixest specific.] Character scalar. Which kind of standard error should be com-
puted: “standard”, “White”, “cluster”, “twoway”, “threeway” or “fourway”? By
default if there are clusters in the estimation: se = "cluster", otherwise se =
"standard". Note that this argument can be implicitly deduced from the argu-
ment cluster.

cluster [Fixest specific.] Tells how to cluster the standard-errors (if clustering is re-
quested). Can be either a list of vectors, a character vector of variable names,
a formula or an integer vector. Assume we want to perform 2-way clustering
over var1 and var2 contained in the data.frame base used for the estimation.
All the following cluster arguments are valid and do the same thing: cluster
= base[,c("var1,"var2")]},\code{cluster = c("var1,"var2"), cluster
= ~var1+var2. If the two variables were used as clusters in the estimation, you
could further use cluster = 1:2 or leave it blank with se = "twoway" (assum-
ing var1 [resp. var2] was the 1st [res. 2nd] cluster).

... Other arguments to be passed to summary.

Format

An object of class function of length 1.

18 coeftable

Details

This set of functions is primarily constructed for fixest estimations. Although it can work for
non-fixest estimations, support for exotic estimation procedures that do not report standardized
coefficient tables is highly limited.

Value

Returns a table of coefficients, with in rows the variables and four columns: the estimate, the
standard-error, the t-statistic and the p-value.

Functions

• pvalue: Extracts the p-value of an estimation

• tstat: Extracts the t-statistics of an estimation

• se: Extracts the standard-error of an estimation

Examples

Some data and estimation
data(trade)
est = fepois(Euros ~ log(dist_km) | Origin^Product + Year, trade)

#
Coeftable/se/tstat/pvalue
#

Default is clustering along Origin^Product
coeftable(est)
se(est)
tstat(est)
pvalue(est)

Now with two-way clustered standard-errors
and using ctable(), the alias to coeftable()

ctable(est, cluster = ~Origin + Product)
se(est, cluster = ~Origin + Product)
pvalue(est, cluster = ~Origin + Product)
tstat(est, cluster = ~Origin + Product)

Or you can cluster only once:
est_sum = summary(est, cluster = ~Origin + Product)
ctable(est_sum)
se(est_sum)
tstat(est_sum)
pvalue(est_sum)

collinearity 19

collinearity Collinearity diagnostics for fixest objects

Description

In some occasions, the optimization algorithm of femlm may fail to converge, or the variance-
covariance matrix may not be available. The most common reason of why this happens is col-
llinearity among variables. This function helps to find out which set of variables is problematic.

Usage

collinearity(x, verbose)

Arguments

x A fixest object obtained from, e.g. functions femlm, feols or feglm.

verbose An integer. If higher than or equal to 1, then a note is prompted at each step
of the algorithm. By default verbose = 0 for small problems and to 1 for large
problems.

Details

This function tests: 1) collinearity with the fixed-effect variables, 2) perfect multi-collinearity be-
tween the variables, 4) perfect multi-collinearity between several variables and the fixed-effects,
and 4) identification issues when there are non-linear in parameters parts.

Value

It returns a text message with the identified diagnostics.

Author(s)

Laurent Berge

Examples

Creating an example data base:
set.seed(1)
fe_1 = sample(3, 100, TRUE)
fe_2 = sample(20, 100, TRUE)
x = rnorm(100, fe_1)**2
y = rnorm(100, fe_2)**2
z = rnorm(100, 3)**2
dep = rpois(100, x*y*z)
base = data.frame(fe_1, fe_2, x, y, z, dep)

creating collinearity problems:

20 confint.fixest

base$v1 = base$v2 = base$v3 = base$v4 = 0
base$v1[base$fe_1 == 1] = 1
base$v2[base$fe_1 == 2] = 1
base$v3[base$fe_1 == 3] = 1
base$v4[base$fe_2 == 1] = 1

Estimations:

Collinearity with the fixed-effects:
res_1 = femlm(dep ~ log(x) + v1 + v2 + v4 | fe_1 + fe_2, base)
collinearity(res_1)

=> collinearity with the first fixed-effect identified, we drop v1 and v2
res_1bis = femlm(dep ~ log(x) + v4 | fe_1 + fe_2, base)
collinearity(res_1bis)

Multi-Collinearity:
res_2 = femlm(dep ~ log(x) + v1 + v2 + v3 + v4, base)
collinearity(res_2)

confint.fixest Confidence interval for parameters estimated with fixest

Description

This function computes the confidence interval of parameter estimates obtained from a model esti-
mated with femlm, feols or feglm.

Usage

S3 method for class 'fixest'
confint(object, parm, level = 0.95, se, cluster, dof = getFixest_dof(), ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

parm The parameters for which to compute the confidence interval (either an integer
vector OR a character vector with the parameter name). If missing, all parame-
ters are used.

level The confidence level. Default is 0.95.

se Character scalar. Which kind of standard error should be computed: “standard”,
“White”, “cluster”, “twoway”, “threeway” or “fourway”? By default if there are
clusters in the estimation: se = "cluster", otherwise se = "standard". Note
that this argument can be implicitly deduced from the argument cluster.

demean 21

cluster Tells how to cluster the standard-errors (if clustering is requested). Can be either
a list of vectors, a character vector of variable names, a formula or an integer vec-
tor. Assume we want to perform 2-way clustering over var1 and var2 contained
in the data.frame base used for the estimation. All the following cluster argu-
ments are valid and do the same thing: cluster = base[,c("var1,"var2")]},\code{cluster
= c("var1,"var2"), cluster = ~var1+var2. If the two variables were used as
clusters in the estimation, you could further use cluster = 1:2 or leave it blank
with se = "twoway" (assuming var1 [resp. var2] was the 1st [res. 2nd] cluster).

dof An object of class dof.type obtained with the function dof. Represents how the
degree of freedom correction should be done.You must use the function dof for
this argument. The arguments and defaults of the function dof are: adj = TRUE,
fixef.K="nested", cluster.adj = TRUE, cluster.df = "conventional", t.df
= "conventional", fixef.force_exact=FALSE). See the help of the function
dof for details.

... Not currently used.

Value

Returns a data.frame with two columns giving respectively the lower and upper bound of the confi-
dence interval. There is as many rows as parameters.

Author(s)

Laurent Berge

Examples

Load trade data
data(trade)

We estimate the effect of distance on trade (with 3 fixed-effects)
est_pois = femlm(Euros ~ log(dist_km) + log(Year) | Origin + Destination +

Product, trade)

confidence interval with "normal" VCOV
confint(est_pois)

confidence interval with "clustered" VCOV (w.r.t. the Origin factor)
confint(est_pois, se = "cluster")

demean Centers a set of variables around a set of factors

Description

Centers a set of variables around a set of factors

22 demean

Usage

demean(
X,
fe,
weights,
nthreads = getFixest_nthreads(),
notes = getFixest_notes(),
iter = 2000,
tol = 1e-06,
im_confident = FALSE

)

Arguments

X A matrix, vector or a list. The vectors to be centered. There must be the same
number of observations as in the factors used for centering (argument fe).

fe A matrix, vector or list. The factors used to center the variables in argument X.
(Note: fe stands for fixed-effects.)

weights Vector, can be missing or NULL. If present, it must contain the same number of
observations as in X.

nthreads Number of threads to be used. By default it is equal to getFixest_nthreads().

notes Logical, whether to display a message when NA values are removed. By default
it is equal to getFixest_notes().

iter Number of iterations, default is 2000.

tol Stopping criterion of the algorithm. Default is 1e-6. The algorithm stops when
the maximum absolute increase in the coefficients values is lower than tol.

im_confident Logical, default is FALSE. FOR EXPERT USERS ONLY! This argument allows
to skip some of the preprocessing of the arguments given in input. If TRUE, then
X MUST be a numeric matrix (not integer, numeric), fe MUST be a list and
weights, if given, MUST be numeric (not integer!). Further the three MUST
NOT contain any NA values and MUST have the same number of observations.
Non compliance to these rules may simply lead your R session to break.

Value

It returns a matrix of the same number of columns as X in input. The number of rows is equal to the
number of rows of X minus the number of NA values (contained in X, fe or weights).

Examples

Illustration of the FWL theorem
data(trade)

base = trade
base$ln_dist = log(base$dist_km)
base$ln_euros = log(base$Euros)

deviance.fixest 23

We center the two variables ln_dist and ln_euros
on the factors Origin and Destination
X_demean = demean(X = base[, c("ln_dist", "ln_euros")],

fe = base[, c("Origin", "Destination")])
base[, c("ln_dist_dm", "ln_euros_dm")] = X_demean

est = feols(ln_euros_dm ~ ln_dist_dm, base)
est_fe = feols(ln_euros ~ ln_dist | Origin + Destination, base)

The results are the same as if we used the two factors
as fixed-effects
etable(est, est_fe, se = "st")

deviance.fixest Extracts the deviance of a fixest estimation

Description

Returns the deviance from a fixest estimation.

Usage

S3 method for class 'fixest'
deviance(object, ...)

Arguments

object A fixest object.

... Not currently used.

Value

Returns a numeric scalar equal to the deviance.

See Also

feols, fepois, feglm, fenegbin, feNmlm.

24 did_means

Examples

est = feols(Petal.Length ~ Petal.Width, iris)
deviance(est)

est_pois = fepois(Petal.Length ~ Petal.Width, iris)
deviance(est_pois)

did_means Treated and control sample descriptives

Description

This function shows the means and standard-deviations of several variables conditional on whether
they are from the treated or the control group. The groups can further be split according to a pre/post
variable. Results can be seamlessly be exported to Latex.

Usage

did_means(
fml,
base,
treat_var,
post_var,
tex = FALSE,
treat_dict,
dict = getFixest_dict(),
file,
replace = FALSE,
title,
label,
raw = FALSE,
indiv,
treat_first,
prepostnames = c("Before", "After"),
diff.inv = FALSE

)

Arguments

fml Either a formula of the type var1 + ... + var[N] ~ treat or var1 + ... + var[N]
~ treat | post. Either a data.frame/matrix containing all the variables for which
the means are to be computed (they must be numeric of course). Both the treat-
ment and the post variables must contain only exactly two values. You can use
a point to select all the variables of the data set: . ~ treat.

base A data base containing all the variables in the formula fml.

did_means 25

treat_var Only if argument fml is *not* a formula. The vector identifying the treated and
the control observations (the vector can be of any type but must contain only
two possible values). Must be of the same length as the data.

post_var Only if argument fml is *not* a formula. The vector identifying the periods
(pre/post) of the observations (the vector can be of any type but must contain
only two possible values). The first value (in the sorted sense) of the vector is
taken as the pre period. Must be of the same length as the data.

tex Should the result be displayed in Latex? Default is FALSE. Automatically set to
TRUE if the table is to be saved in a file using the argument file.

treat_dict A character vector of length two. What are the names of the treated and the con-
trol? This should be a dictionnary: e.g. c("1"="Treated","0" = "Control").

dict A named character vector. A dictionnary between the variables names and an
alias. For instance dict=c("x"="Inflation Rate") would replace the variable
name x by “Inflation Rate”.

file A file path. If given, the table is written in Latex into this file.

replace Default is TRUE, which means that when the table is exported, the existing file is
not erased.

title Character string giving the Latex title of the table. (Only if exported.)

label Character string giving the Latex label of the table. (Only if exported.)

raw Logical, default is FALSE. If TRUE, it returns the information without formatting.

indiv Either the variable name of individual identifiers, a one sided formula, or a vec-
tor. If the data is that of a panel, this can be used to track the number of individ-
uals per group.

treat_first Which value of the ’treatment’ vector should appear on the left? By default the
max value appears first (e.g. if the treatment variable is a 0/1 vector, 1 appears
first).

prepostnames Only if there is a ’post’ variable. The names of the pre and post periods to be
displayed in Latex. Default is c("Before","After").

diff.inv Logical, default to FALSE. Whether to inverse the difference.

Details

By default, when the user tries to apply this function to nun-numeric variables, an error is raised.
The exception is when the all variables are selected with the dot (like in . ~ treat. In this case,
non-numeric variables are automatically omitted (with a message).

NAs are removed automatically: if the data contains NAs an information message will be prompted.
First all observations containing NAs relating to the treatment or post variables are removed. Then
if there are still NAs for the variables, they are excluded separately for each variable, and a new
message detailing the NA breakup is prompted.

Value

It returns a data.frame or a Latex table with the conditional means and statistical differences between
the groups.

26 dof

Examples

Playing around with the DiD data
data(base_did)

means of treat/control
did_means(y+x1+period~treat, base_did)

same but inverting the difference
did_means(y+x1+period~treat, base_did, diff.inv = TRUE)

now treat/control, before/after
did_means(y+x1+period~treat|post, base_did)

same but with a new line giving the number of unique "indiv" for each case
did_means(y+x1+period~treat|post, base_did, indiv = "id")

same but with the treat case "0" coming first
did_means(y+x1+period~treat|post, base_did, indiv = ~id, treat_first = 0)

Selecting all the variables with "."
did_means(.~treat|post, base_did, indiv = "id")

dof Type of degree of freedom in fixest summary

Description

Provides how the degrees of freedom should be calculated in vcov.fixest/summary.fixest.

Usage

dof(
adj = TRUE,
fixef.K = "nested",
cluster.adj = TRUE,
cluster.df = "conventional",
t.df = "conventional",
fixef.force_exact = FALSE

)

setFixest_dof(dof.type = dof())

getFixest_dof

dof 27

Arguments

adj Logical scalar, defaults to TRUE. Whether to apply a small sample adjustment of
the form (n -1) / (n -K), with K the number of estimated parameters. If FALSE,
then no adjustment is made.

fixef.K Character scalar equal to "nested" (default), "none" or "full". In the small
sample adjustment, how to account for the fixed-effects parameters. If "none",
the fixed-effects parameters are discarded, meaning the number of parameters
(K) is only equal to the number of variables. If "full", then the number of
parameters is equal to the number of variables plus the number of fixed-effects.
Finally, if "nested", then the number of parameters is equal to the number of
variables plus the number of fixed-effects that *are not* nested in the clusters
used to cluster the standard-errors.

cluster.adj Logical scalar, default is TRUE. How to make the small sample correction when
clustering the standard-errors? If TRUE a G/(G-1) correction is performed with
G the number of cluster values.

cluster.df Either "conventional" (default) or "min". Only relevant when the variance-
covariance matrix is two-way clustered (or higher). It governs how the small
sample adjustment for the clusters is to be performed. [Sorry for the jargon that
follows.] By default the i-th "sandwich" matrix is adjusted with G_i/(G_i-1)
with G_i the number of unique clusters. If cluster.df="min", a unique adjust-
ment is made, of the form G_min/(G_min-1) with G_min the smallest G_i.

t.df Either "conventional" (default) or "min". Only relevant when the variance-
covariance matrix is clustered. It governs how the p-values should be com-
puted. By default, the degrees of freedom of the Student t distribution is equal
to the number of observations minus the number of estimated variables. If
t.df="min", then the degrees of freedom of the Student t distribution is equal
to the minimum size of the clusters with which the VCOV has been clustered.

fixef.force_exact

Logical, default is FALSE. If there are 2 or more fixed-effects, these fixed-effects
they can be irregular, meaning they can provide the same information. If so,
the "real" number of parameters should be lower than the total number of fixed-
effects. If fixef.force_exact = TRUE, then fixef.fixest is first run to deter-
mine the exact number of parameters among the fixed-effects. Mostly, panels of
the type individual-firm require fixef.force_exact = TRUE (but it adds com-
putational costs).

dof.type An object of class dof.type obtained with the function dof.

Format

An object of class function of length 1.

Details

The following vignette: On standard-errors, describes in details how the standard-errors are com-
puted in fixest and how you can replicate standard-errors from other software.

https://cran.r-project.org/package=fixest/vignettes/standard_errors.html

28 dof

Value

It returns a dof.type object.

Author(s)

Laurent Berge

See Also

summary.fixest, vcov.fixest

Examples

#
Equivalence with lm/glm standard-errors
#

LM
In the absence of fixed-effects,
by default, the standard-errors are computed in the same way

res = feols(Petal.Length ~ Petal.Width + Species, iris)
res_lm = lm(Petal.Length ~ Petal.Width + Species, iris)
vcov(res) / vcov(res_lm)

GLM
By default, there is no small sample adjustment in glm, as opposed to feglm.
To get the same SEs, we need to use dof(adj = FALSE)

res_pois = fepois(round(Petal.Length) ~ Petal.Width + Species, iris)
res_glm = glm(round(Petal.Length) ~ Petal.Width + Species, iris, family = poisson())
vcov(res_pois, dof = dof(adj = FALSE)) / vcov(res_glm)

Same example with the Gamma
res_gamma = feglm(round(Petal.Length) ~ Petal.Width + Species, iris, family = Gamma())
res_glm_gamma = glm(round(Petal.Length) ~ Petal.Width + Species, iris, family = Gamma())
vcov(res_gamma, dof = dof(adj = FALSE)) / vcov(res_glm_gamma)

#
Fixed-effects corrections
#

We create "irregular" FEs
base = data.frame(x = rnorm(10))
base$y = base$x + rnorm(10)
base$fe1 = rep(1:3, c(4, 3, 3))
base$fe2 = rep(1:5, each = 2)

est = feols(y ~ x | fe1 + fe2, base)

fe1: 3 FEs

estfun.fixest 29

fe2: 5 FEs

#
Clustered standard-errors: by fe1
#

Default: fixef.K = "nested"
=> adjustment K = 1 + 5 (i.e. x + fe2)
summary(est)
attributes(vcov(est))[c("dof.type", "dof.K")]

fixef.K = FALSE
=> adjustment K = 1 (i.e. only x)
summary(est, dof = dof(fixef.K = "none"))
attr(vcov(est, dof = dof(fixef.K = "none")), "dof.K")

fixef.K = TRUE
=> adjustment K = 1 + 3 + 5 - 1 (i.e. x + fe1 + fe2 - 1 restriction)
summary(est, dof = dof(fixef.K = "full"))
attr(vcov(est, dof = dof(fixef.K = "full")), "dof.K")

fixef.K = TRUE & fixef.force_exact = TRUE
=> adjustment K = 1 + 3 + 5 - 2 (i.e. x + fe1 + fe2 - 2 restrictions)
summary(est, dof = dof(fixef.K = "full", fixef.force_exact = TRUE))
attr(vcov(est, dof = dof(fixef.K = "full", fixef.force_exact = TRUE)), "dof.K")

There are two restrictions:
attr(fixef(est), "references")

#
To permanently set the default dof:
#

eg to set it a la Stata's reghdfe:
setFixest_dof(dof(cluster.df = "min", t.df = "min"))

To reset it
setFixest_dof()

estfun.fixest Extracts the scores from a fixest estimation

Description

Extracts the scores from a fixest estimation.

30 etable

Usage

S3 method for class 'fixest'
estfun(x, ...)

Arguments

x A fixest object, obtained for instance from feols.

... Not currently used.

Value

Returns a matrix of the same number of rows as the number of observations used for the estimation,
and the same number of columns as there were variables.

Examples

est = feols(Petal.Length ~ Petal.Width + Sepal.Width, iris)
head(estfun(est))

etable Estimations table (export the results of multiples estimations to a DF
or to Latex)

Description

Aggregates the results of multiple estimations and displays them in the form of either a Latex table
or a data.frame.

Usage

etable(
...,
se = c("standard", "white", "cluster", "twoway", "threeway", "fourway"),
dof = getFixest_dof(),
cluster,
digits = 4,
tex,
fitstat,
title,
coefstat = c("se", "tstat", "confint"),
ci = 0.95,
sdBelow = TRUE,
keep,
drop,
order,

etable 31

dict,
file,
replace = FALSE,
convergence,
signifCode,
label,
float,
subtitles,
fixef_sizes = FALSE,
fixef_sizes.simplify = TRUE,
yesNo = "Yes",
keepFactors = TRUE,
family,
powerBelow = -5,
interaction.combine = " $\\times $ ",
depvar,
style = list(),
notes = NULL,
group = NULL,
extraline = NULL,
tablefoot = TRUE

)

esttex(
...,
se = c("standard", "white", "cluster", "twoway", "threeway", "fourway"),
dof = getFixest_dof(),
cluster,
digits = 4,
fitstat,
coefstat = c("se", "tstat", "confint"),
ci = 0.95,
title,
float = float,
sdBelow = TRUE,
keep,
drop,
order,
dict,
file,
replace = FALSE,
convergence,
signifCode = c(`***` = 0.01, `**` = 0.05, `*` = 0.1),
label,
subtitles,
fixef_sizes = FALSE,
fixef_sizes.simplify = TRUE,
yesNo = "Yes",

32 etable

keepFactors = TRUE,
family,
powerBelow = -5,
interaction.combine = " $\\times $ ",
style = list(),
notes = NULL,
group = NULL,
tablefoot = TRUE,
extraline = NULL

)

esttable(
...,
se = c("standard", "white", "cluster", "twoway", "threeway", "fourway"),
dof = getFixest_dof(),
cluster,
coefstat = c("se", "tstat", "confint"),
ci = 0.95,
depvar,
keep,
drop,
dict,
order,
digits = 4,
fitstat,
convergence,
signifCode = c(`***` = 0.001, `**` = 0.01, `*` = 0.05, . = 0.1),
subtitles,
keepFactors = FALSE,
family,
group = NULL,
extraline = NULL

)

setFixest_etable(
digits = 4,
fitstat,
coefstat = c("se", "tstat", "confint"),
ci = 0.95,
sdBelow = TRUE,
keep,
drop,
order,
dict,
signifCode,
float,
fixef_sizes = FALSE,
fixef_sizes.simplify = TRUE,

etable 33

yesNo = c("Yes", "No"),
family,
powerBelow = -5,
interaction.combine = " $\\times $ ",
depvar,
style = list(),
notes = NULL,
group = NULL,
extraline = NULL,
tablefoot = TRUE,
reset = FALSE

)

getFixest_etable()

Arguments

... Used to capture different fixest estimation objects (obtained with femlm, feols
or feglm). Note that any other type of element is discarded. Note that you can
give a list of fixest objects.

se Character scalar. Which kind of standard error should be computed: “standard”,
“White”, “cluster”, “twoway”, “threeway” or “fourway”? By default if there are
clusters in the estimation: se = "cluster", otherwise se = "standard". Note
that this argument can be implicitly deduced from the argument cluster.

dof An object of class dof.type obtained with the function dof. Represents how the
degree of freedom correction should be done.You must use the function dof for
this argument. The arguments and defaults of the function dof are: adj = TRUE,
fixef.K="nested", cluster.adj = TRUE, cluster.df = "conventional", t.df
= "conventional", fixef.force_exact=FALSE). See the help of the function
dof for details.

cluster Tells how to cluster the standard-errors (if clustering is requested). Can be either
a list of vectors, a character vector of variable names, a formula or an integer vec-
tor. Assume we want to perform 2-way clustering over var1 and var2 contained
in the data.frame base used for the estimation. All the following cluster argu-
ments are valid and do the same thing: cluster = base[,c("var1,"var2")]},\code{cluster
= c("var1,"var2"), cluster = ~var1+var2. If the two variables were used as
clusters in the estimation, you could further use cluster = 1:2 or leave it blank
with se = "twoway" (assuming var1 [resp. var2] was the 1st [res. 2nd] cluster).

digits Integer, default is 4. The number of digits to be displayed.

tex Logical: whether the results should be a data.frame or a Latex table. By default,
this argument is TRUE if the argument file (used for exportation) is not missing;
it is equal to FALSE otherwise.

fitstat A character vector or a one sided formula. A vector listing which fit statis-
tics to display. The valid types are ’ll’, ’aic’, ’bic’ and r2 types like ’r2’,
’pr2’, ’war2’, etc (see all valid types in r2). The default value depends on the
models to display. Example of use: fitstat=c('sq.cor','ar2','war2'), or
fitstat=~sq.cor+ar2+war2 using a formula.

34 etable

title (Tex only.) Character scalar. The title of the Latex table.
coefstat One of "se" (default), "tstat" or "confint". The statistic to report for each

coefficient: the standard-error, the t-statistics or the confidence interval. You can
adjust the confidence interval with the argument ci.

ci Level of the confidence interval, defaults to 0.95. Only used if coefstat =
confint.

sdBelow (Tex only.) Logical, default is TRUE. Should the standard-errors be displayed
below the coefficients?

keep Character vector. This element is used to display only a subset of variables.
This should be a vector of regular expressions (see regex help for more info).
Each variable satisfying any of the regular expressions will be kept. This ar-
gument is applied post aliasing (see argument dict). Example: you have the
variable x1 to x55 and want to display only x1 to x9, then you could use keep
= "x[[:digit:]]$". If the first character is an exclamation mark, the effect is
reversed (e.g. keep = "!Intercept" means: every variable that does not contain
“Intercept” is kept). See details.

drop Character vector. This element is used if some variables are not to be displayed.
This should be a vector of regular expressions (see regex help for more info).
Each variable satisfying any of the regular expressions will be discarded. This
argument is applied post aliasing (see argument dict). Example: you have the
variable x1 to x55 and want to display only x1 to x9, then you could use drop
= "x[[:digit:]]{2}". If the first character is an exclamation mark, the effect
is reversed (e.g. drop = "!Intercept" means: every variable that does not contain
“Intercept” is dropped). See details.

order Character vector. This element is used if the user wants the variables to be
ordered in a certain way. This should be a vector of regular expressions (see
regex help for more info). The variables satisfying the first regular expression
will be placed first, then the order follows the sequence of regular expressions.
This argument is applied post aliasing (see argument dict). Example: you have
the following variables: month1 to month6, then x1 to x5, then year1 to year6.
If you want to display first the x’s, then the years, then the months you could
use: order = c("x","year"). If the first character is an exclamation mark, the
effect is reversed (e.g. order = "!Intercept" means: every variable that does not
contain “Intercept” goes first). See details.

dict A named character vector or a logical scalar. It changes the original variable
names to the ones contained in the dictionary. E.g. to change the variables
named a and b3 to (resp.) “$log(a)$” and to “$bonus^3$”, use dict=c(a="$log(a)$",b3="$bonus^3$").
By default, if Tex output is requested or if argument file is not missing, it is
equal to getFixest_dict(), a default dictionary which can be set with setFixest_dict.
The default is not to change names if a data.frame is requested (i.e. tex =
FALSE); if so, you can use dict = TRUE to use the dictionary you’ve set globally
with setFixest_dict().

file A character scalar. If provided, the Latex (or data frame) table will be saved in
a file whose path is file. If you provide this argument, then a Latex table will
be exported, to export a regular data.frame, use argument tex = FALSE.

replace Logical, default is FALSE. Only used if option file is used. Should the exported
table be written in a new file that replaces any existing file?

etable 35

convergence Logical, default is missing. Should the convergence state of the algorithm be dis-
played? By default, convergence information is displayed if at least one model
did not converge.

signifCode Named numeric vector, used to provide the significance codes with respect to the
p-value of the coefficients. Default is c("***"=0.01,"**"=0.05,"*"=0.10)
for a Latex table and c("***"=0.001,"**"=0.01,"*"=0.05,"."=0.10) for a
data.frame (to conform with R’s default). To supress the significance codes, use
signifCode=NA or signifCode=NULL. Can also be equal to "letters", then
the default becomes c("a"=0.01,"b"=0.05,"c"=0.10).

label (Tex only.) Character scalar. The label of the Latex table.

float (Tex only.) Logical. By default, if the argument title or label is provided, it
is set to TRUE. Otherwise, it is set to FALSE.

subtitles Character vector of the same length as the number of models to be displayed. If
provided, subtitles are added underneath the dependent variable name.

fixef_sizes (Tex only.) Logical, default is FALSE. If TRUE and fixed-effects were used in
the models, then the number of "individuals" per fixed-effect dimension is also
displayed.

fixef_sizes.simplify

Logical, default is TRUE. Only used if fixef_sizes = TRUE. If TRUE, the fixed-
effects sizes will be displayed in parentheses instead of in a separate line if there
is no ambiguity (i.e. if the size is constant across models).

yesNo (Tex only.) A character vector of length 1 or 2. Default is c("Yes","No"). This
is the message displayed when a given fixed-effect is (or is not) included in a
regression. If yesNo is of length 1, then the second element is the empty string.

keepFactors Logical, default is TRUE. If FALSE, then factor variables are displayed as fixed-
effects and no coefficient is shown.

family Logical, default is missing. Whether to display the families of the models. By
default this line is displayed when at least two models are from different fami-
lies.

powerBelow (Tex only.) Integer, default is -5. A coefficient whose value is below 10**(powerBelow+1)
is written with a power in Latex. For example 0.0000456 would be written
4.56$\times 10^{-5}$ by default. Setting powerBelow = -6 would lead to
0.00004 in Latex.

interaction.combine

(Tex only.) Character scalar, defaults to " \times ". When the estimation
contains interactions, then the variables names (after aliasing) are combined
with this argument. For example: if dict = c(x1="Wind",x2="Rain") and you
have the following interaction x1:x2, then it will be renamed (by default) Wind
\times Rain – using interaction.combine = "*" would lead to Wind*Rain.

depvar (Data frame only.) Logical, default is missing. Whether a first line containing
the dependent variables should be shown. By default, the dependent variables
are shown only if they differ across models or if the argumen file is not missing.

style A list. You can change the general style of the table with this argument. It
should be of the form style = list(keyword="key1:value1;key2:value2")
etc. The available keywords are lines (to manage the type of lines appearing

36 etable

in the table), and depvar, model, var, fixef, slopes, fixef.sizes, stats
and notes. Most of these keywords accept the key title: which affects the
title appearing just before the section. Eg to drop the Variables header, just
use style=list("title:"). Note that if you use style=list("title: ")
(note the space after ":"), then an empty line will still be there. The keywords
fixef, slopes and fixef.sizes also accept the keys prefix and suffix. E.g. if
style=list(fixef="suffix: FE"), then there will be no header showing but
the text " FE" will be appended to the ficed-effects variable names. The keys
accepted in lines are top, bottom, foot and sep.

notes Character vector. If provided, a "notes" section will be added at the end right
after the end of the table, containing the text of this argument. Note that if it is a
vector, it will be collapsed with new lines.

group A list. The list elements should be vectors of regular expressions. For each ele-
ments of this list: A new line in the table is created, all variables that are matched
by the regular expressions are discarded (same effect as the argument drop) and
TRUE or FALSE will appear in the model cell, depending on whether some of the
previous variables were found in the model. Example: group=list("Controls:
personal traits"=c("gender","height","weight")) will create an new line
with "Controls: personal traits" in the leftmost cell, all three variables
gender, height and weight are discared, TRUE appearing in each model con-
taining at least one of the three variables (the style of TRUE/FALSE is governed
by the argument yesNo). You can control the style with the title and where
keywords in curly brackets. For example group=list("{title:Controls;
where:stats}Personal traits"=c("gender","height","weight")) will add
an extra line right before with "Control" written in it, and the group information
will appear after the statistics. The keyword where can be equal to either var
(default), fixef or stats.

extraline A list. The list elements should be either a single logical or a vector of the same
length as the number of models. For each elements of this list: A new line
in the table is created, the list name being the row name and the vector being
the content of the cells. Example: extraline=list("Sub-sample"=c("<20
yo","all",">50 yo")) will create an new line with "Sub-sample" in the left-
most cell, the vector filling the content of the cells for the three models. You can
control the style with the title and where keywords in curly brackets. For
example group=list("{title:Sub-sample; where:stats}By age"=c("<20
yo","all",">50 yo")) will add an extra line right before with "Sub-sample"
written in it, and the extraline information will appear after the statistics section.
The keyword where can be equal to either var (default), fixef or stats.

tablefoot Logical, default is TRUE. Whether to display the table footer containing the in-
formation on the way the standard-errors where computed and the meaning of
the significance codes.

reset (setFixest_etable only.) Logical, default is FALSE. If TRUE, this will reset all
the default values that were already set by the user in previous calls.

Details

The function esttex is equivalent to the function etable with argument tex = TRUE.

etable 37

The function esttable is equivalent to the function etable with argument tex = FALSE.

You can permanently change the way your table looks in Latex by using setFixest_etable. The
following vignette gives and example as well as illustrates how to use the argument style: Export-
ing estimation tables.

Value

If tex = TRUE, the lines composing the Latex table are returned invisibly while the table is directly
prompted on the console.

If tex = FALSE, the data.frame is directly returned. If the argument file is not missing, the data.frame
is returned invisibly.

Functions

• esttex: Exports the results of multiple fixest estimations in a Latex table.
• esttable: Facility to display the results of multiple fixest estimations.

Arguments keep, drop and order

The arguments keep, drop and order use regular expressions. If you are not aware of regular
expressions, I urge you to learn it, since it is an extremely powerful way to manipulate character
strings (and it exists across most programming languages).

For example drop = "Wind" would drop any variable whose name contains "Wind". Note that
variables such as "Temp:Wind" or "StrongWind" do contain "Wind", so would be dropped. To drop
only the variable named "Wind", you need to use drop = "^Wind$" (with "^" meaning beginning,
resp. "$" meaning end, of the string => this is the language of regular expressions).

Although you can combine several regular expressions in a single character string using pipes, drop
also accepts a vector of regular expressions.

You can use the special character "!" (exclamation mark) to reverse the effect of the regular expres-
sion (this feature is specific to this fonction). For example drop = "!Wind" would drop any variable
that does not contain "Wind".

You can use the special character "

The argument order takes in a vector of regular expressions, the order will follow the elments
of this vector. The vector gives a list of priorities, on the left the elements with highest priority.
For example, order = c("Wind", "!Inter", "!Temp") would give highest priorities to the variables
containing "Wind" (which would then appear first), second highest priority is the variables not
containing "Inter", last, with lowest priority, the variables not containing "Temp". If you had the
following variables: (Intercept), Temp:Wind, Wind, Temp you would end up with the following
order: Wind, Temp:Wind, Temp, (Intercept).

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Use summary.fixest to see the
results with the appropriate standard-errors, fixef.fixest to extract the fixed-effects coefficients.

https://cran.r-project.org/package=fixest/vignettes/exporting_tables.html
https://cran.r-project.org/package=fixest/vignettes/exporting_tables.html

38 etable

Examples

aq = airquality
aq$Month = factor(aq$Month)

est1 = feols(Ozone ~ Month / Wind + Temp, data = aq)
est2 = feols(Ozone ~ Wind + Temp | Month, data = aq)

Displaying the two results in a single table
etable(est1, est2)

keep/drop: keeping only interactions
etable(est1, est2, keep = ":")
or using drop (see regexp help):
etable(est1, est2, drop = "^[[:alnum:]]+$")

keep/drop: dropping interactions
etable(est1, est2, drop = ":")
or using keep ("!" reverses the effect):
etable(est1, est2, keep = "!:")

order: Wind variable first, intercept last
etable(est1, est2, order = c("Wind", "Month"))
etable(est1, est2, order = c("^Wind", "Wind", "Month"))
Interactions, then Intercept, last ("!" reverses the effect)
etable(est1, est2, order = c("!Int", "!:"))

dict + keep/drop/order: using "%" to match the original names
dict = c("Month5"="May", "Month6"="Jun", "Month7"="Jul",

"Month8"="Aug", "Month9"="Sep")
etable(est1, est2, tex = TRUE, dict = dict)
keeping only June and July
etable(est1, est2, tex = TRUE, dict = dict, keep = c("%Month6", "Jul"))
All months variabes first
etable(est1, est2, tex = TRUE, dict = dict, order = c("%Month"))

signifCode
etable(est1, est2, signifCode = c(" A"=0.01, " B"=0.05, " C"=0.1,

" D"=0.15, " F"=1))

fitstat
etable(est1, est2, fitstat = ~r2+ar2+apr2+war2)

Adding a dictionnary (Tex only)
dict = c(Month5="May", Month6="Jun", Month7="Jul", Month8="Aug", Month9="Sep")
etable(est1, est2, dict = dict, tex = TRUE)

#
Using the argument style to customize Latex exports
#

If you don't like the default layout of the table, no worries!

f 39

You can modify many parameters with the argument style

To drop the headers before each section, use:
style_noHeaders = list(var="", fixef="suffix: FE", stats = "")
etable(est1, est2, dict = dict, tex = TRUE, style = style_noHeaders)

To change the lines of the table
style_lines = list(lines = "top:\\toprule;bottom:\\bottomrule;sep:\\midrule;foot:\\midrule")
etable(est1, est2, dict = dict, tex = TRUE, style = style_lines)

#
Group and extraline
#

Sometimes it's useful to group control variables into a single line
You can achieve that with the group argument

setFixest_fml(..ctrl = ~ poly(Wind, 2) + poly(Temp, 2))
est_c0 = feols(Ozone ~ Solar.R, data = aq)
est_c1 = feols(Ozone ~ Solar.R + ..ctrl, data = aq)
est_c2 = feols(Ozone ~ Solar.R + I(Solar.R**2) + ..ctrl, data = aq)

etable(est_c0, est_c1, est_c2, group = list(Controls = "poly"))

'group' here does the same as drop = "poly", but adds an extra line
with TRUE/FALSE where the variables were found

'extraline' adds an extra line, where you can add the value for each model
est_all = feols(Ozone ~ Solar.R + Temp + Wind, data = aq)
est_sub1 = feols(Ozone ~ Solar.R + Temp + Wind, data = aq[aq$Month %in% 5:6,])
est_sub2 = feols(Ozone ~ Solar.R + Temp + Wind, data = aq[aq$Month %in% 7:8,])
est_sub3 = feols(Ozone ~ Solar.R + Temp + Wind, data = aq[aq$Month == 9,])

etable(est_all, est_sub1, est_sub2, est_sub3,
extraline = list("Sub-sample" = c("All", "May-June", "Jul.-Aug.", "Sept.")))

When exporting to Latex, you can add meta arguments to 'group' and 'extraline'
Two keywords are allowed: 'title' and 'where'
'title' adds a line just before with the content of 'title' in the leftmost cell
'where' governs the location of the line. It can be equal to 'var', 'stats' or 'fixef'.
The syntax is: {title:Controls; where:stats}Group name.
Note that starting with curly braces is mandatory.

Examples
etable(est_c0, est_c1, est_c2, tex = TRUE, group = list("{where:stats}Controls" = "poly"))
etable(est_all, est_sub1, est_sub2, est_sub3, tex = TRUE,

extraline = list("{title:\\midrule}Sub-sample" =
c("All", "May-June", "Jul.-Aug.", "Sept.")))

40 f

f Lags a variable in a fixest estimation

Description

Produce lags or leads in the formulas of fixest estimations or when creating variables in a data.table.
The data must be set as a panel beforehand (either with the function panel or with the argument
panel.id in the estimation).

Usage

f(x, lead = 1, fill = NA)

l(x, lag = 1, fill = NA)

Arguments

x The variable.

lead A vector of integers giving the number of leads. Negative values lead to lags.
This argument can be a vector when using it in fixest estimations. When creating
variables in a data.table, it **must** be of length one.

fill A scalar, default is NA. How to fill the missing values due to the lag/lead? Note
that in a fixest estimation, ’fill’ must be numeric (not required when creating
new variables).

lag A vector of integers giving the number of lags. Negative values lead to leads.
This argument can be a vector when using it in fixest estimations. When creating
variables in a data.table, it **must** be of length one.

Value

These functions can only be used i) in a formula of a fixest estimation, or ii) when creating vari-
ables within a fixest_panel object (obtained with function panel) which is alaos a data.table.

Functions

• f: Forwards a variable (inverse of lagging) in a fixest estimation

See Also

The function panel changes data.frames into a panel from which the functions l and f can be
called. Otherwise you can set the panel ’live’ during the estimation using the argument panel.id
(see for example in the function feols).

Examples

data(base_did)

Setting a data set as a panel...

feglm 41

pdat = panel(base_did, ~id+period)

...then using the functions l and f
est1 = feols(y~l(x1, 0:1), pdat)
est2 = feols(f(y)~l(x1, -1:1), pdat)
est3 = feols(l(y)~l(x1, 0:3), pdat)
etable(est1, est2, est3, order = c("f", "^x"), drop="Int")

or using the argument panel.id
feols(f(y)~l(x1, -1:1), base_did, panel.id = ~id+period)

l() and f() can also be used within a data.table:
if(require("data.table")){

pdat_dt = panel(as.data.table(base_did), ~id+period)
Now since pdat_dt is also a data.table
you can create lags/leads directly
pdat_dt[, x1_l1 := l(x1)]
pdat_dt[, c("x1_l1_fill0", "y_f2") := .(l(x1, fill = 0), f(y, 2))]

}

feglm Fixed-effects GLM estimations

Description

Estimates GLM models with any number of fixed-effects.

Usage

feglm(
fml,
data,
family = "poisson",
offset,
weights,
panel.id,
start = NULL,
etastart = NULL,
mustart = NULL,
fixef,
fixef.tol = 1e-06,
fixef.iter = 10000,
glm.iter = 25,
glm.tol = 1e-08,
na_inf.rm = getFixest_na_inf.rm(),
nthreads = getFixest_nthreads(),

42 feglm

warn = TRUE,
notes = getFixest_notes(),
verbose = 0,
combine.quick,
...

)

feglm.fit(
y,
X,
fixef_mat,
family = "poisson",
offset,
weights,
start = NULL,
etastart = NULL,
mustart = NULL,
fixef.tol = 1e-06,
fixef.iter = 10000,
glm.iter = 25,
glm.tol = 1e-08,
na_inf.rm = getFixest_na_inf.rm(),
nthreads = getFixest_nthreads(),
warn = TRUE,
notes = getFixest_notes(),
verbose = 0,
...

)

fepois(
fml,
data,
offset,
weights,
panel.id,
start = NULL,
etastart = NULL,
mustart = NULL,
fixef,
fixef.tol = 1e-06,
fixef.iter = 10000,
glm.iter = 25,
glm.tol = 1e-08,
na_inf.rm = getFixest_na_inf.rm(),
nthreads = getFixest_nthreads(),
warn = TRUE,
notes = getFixest_notes(),
verbose = 0,

feglm 43

combine.quick,
...

)

Arguments

fml A formula representing the relation to be estimated. For example: fml = z~x+y.
To include fixed-effects, insert them in this formula using a pipe: e.g. fml =
z~x+y | fe_1+fe_2. You can combine two fixed-effects with ^: e.g. fml =
z~x+y|fe_1^fe_2, see details. You can also use variables with varying slopes
using square brackets: e.g. in fml = z~y|fe_1[x] + fe_2 the variable x will
have one coefficient for each value of fe_1 – if you use varying slopes, please
have a look at the details section (can’t describe it all here).

data A data.frame containing the necessary variables to run the model. The vari-
ables of the non-linear right hand side of the formula are identified with this
data.frame names. Can also be a matrix.

family Family to be used for the estimation. Defaults to poisson(). See family for
details of family functions.

offset A formula or a numeric vector. An offset can be added to the estimation. If equal
to a formula, it should be of the form (for example) ~0.5*x**2. This offset is
linearly added to the elements of the main formula ’fml’.

weights A formula or a numeric vector. Each observation can be weighted, the weights
must be greater than 0. If equal to a formula, it should be of one-sided: for
example ~ var_weight.

panel.id The panel identifiers. Can either be: i) a one sided formula (e.g. panel.id =
~id+time), ii) a character vector of length 2 (e.g. panel.id=c('id','time'),
or iii) a character scalar of two variables separated by a comma (e.g. panel.id='id,time').
Note that you can combine variables with ^ only inside formulas (see the dedi-
cated section in feols).

start Starting values for the coefficients. Can be: i) a numeric of length 1 (e.g. start
= 0), ii) a numeric vector of the exact same length as the number of variables,
or iii) a named vector of any length (the names will be used to initialize the
appropriate coefficients). Default is missing.

etastart Numeric vector of the same length as the data. Starting values for the linear
predictor. Default is missing.

mustart Numeric vector of the same length as the data. Starting values for the vector of
means. Default is missing.

fixef Character vector. The names of variables to be used as fixed-effects. These
variables should contain the identifier of each observation (e.g., think of it as a
panel identifier). Note that the recommended way to include fixed-effects is to
insert them directly in the formula.

fixef.tol Precision used to obtain the fixed-effects. Defaults to 1e-6. It corresponds to the
maximum absolute difference allowed between two coefficients of successive
iterations.

fixef.iter Maximum number of iterations in fixed-effects algorithm (only in use for 2+
fixed-effects). Default is 10000.

44 feglm

glm.iter Number of iterations of the glm algorithm. Default is 25.

glm.tol Tolerance level for the glm algorithm. Default is 1e-8.

na_inf.rm Logical, default is TRUE. If the variables necessary for the estimation contain
NA/Infs and na_inf.rm = TRUE, then all observations containing NA are re-
moved prior to estimation and a note is displayed detailing the number of obser-
vations removed. Otherwise, an error is raised.

nthreads Integer: Number of nthreads to be used (accelerates the algorithm via the use of
openMP routines). The default is to use the total number of nthreads available
minus two. You can set permanently the number of threads used within this
package using the function setFixest_nthreads.

warn Logical, default is TRUE. Whether warnings should be displayed (concerns warn-
ings relating to convergence state).

notes Logical. By default, three notes are displayed: when NAs are removed, when
some fixed-effects are removed because of only 0 (or 0/1) outcomes, or when a
variable is dropped because of collinearity. To avoid displaying these messages,
you can set notes = FALSE. You can remove these messages permanently by
using setFixest_notes(FALSE).

verbose Integer. Higher values give more information. In particular, it can detail the
number of iterations in the demeaning algoritmh (the first number is the left-
hand-side, the other numbers are the right-hand-side variables). It can also detail
the step-halving algorithm.

combine.quick Logical. When you combine different variables to transform them into a single
fixed-effects you can do e.g. y ~ x | paste(var1,var2). The algorithm pro-
vides a shorthand to do the same operation: y ~ x | var1^var2. Because pasting
variables is a costly operation, the internal algorithm may use a numerical trick
to hasten the process. The cost of doing so is that you lose the labels. If you are
interested in getting the value of the fixed-effects coefficients after the estima-
tion, you should use combine.quick = FALSE. By default it is equal to FALSE if
the number of observations is lower than 50,000, and to TRUE otherwise.

... Not currently used.

y Numeric vector of the dependent variable.

X Numeric matrix of the regressors.

fixef_mat Matrix/data.frame of the fixed-effects.

Details

The core of the GLM are the weighted OLS estimations. These estimations are performed with
feols. The method used to demean each variable along the fixed-effects is based on Berge (2018),
since this is the same problem to solve as for the Gaussian case in a ML setup.

Value

A fixest object.

nobs The number of observations.

fml The linear formula of the call.

feglm 45

call The call of the function.

method The method used to estimate the model.

family The family used to estimate the model.

fml_full [where relevant] The "full" formula containing the linear part and the fixed-
effects.

nparams The number of parameters of the model.

fixef_vars The names of each fixed-effect dimension.

fixef_id The list (of length the number of fixed-effects) of the fixed-effects identifiers for
each observation.

fixef_sizes The size of each fixed-effect (i.e. the number of unique identifierfor each fixed-
effect dimension).

y [where relevant] The dependent variable (used to compute the within-R2 when
fixed-effects are present).

convStatus Logical, convergence status of the IRWLS algorithm.

irls_weights The weights of the last iteration of the IRWLS algorithm.

obsRemoved [where relevant] In the case there were fixed-effects and some observations were
removed because of only 0/1 outcome within a fixed-effect, it gives the row num-
bers of the observations that were removed. Also reports the NA observations
that were removed.

fixef_removed [where relevant] In the case there were fixed-effects and some observations were
removed because of only 0/1 outcome within a fixed-effect, it gives the list (for
each fixed-effect dimension) of the fixed-effect identifiers that were removed.

coefficients The named vector of estimated coefficients.

coeftable The table of the coefficients with their standard errors, z-values and p-values.

loglik The loglikelihood.

deviance Deviance of the fitted model.

iterations Number of iterations of the algorithm.

ll_null Log-likelihood of the null model (i.e. with the intercept only).

ssr_null Sum of the squared residuals of the null model (containing only with the inter-
cept).

pseudo_r2 The adjusted pseudo R2.

fitted.values The fitted values are the expected value of the dependent variable for the fitted
model: that is E(Y |X).

linear.predictors

The linear predictors.

residuals The residuals (y minus the fitted values).

sq.cor Squared correlation between the dependent variable and the expected predictor
(i.e. fitted.values) obtained by the estimation.

hessian The Hessian of the parameters.

cov.unscaled The variance-covariance matrix of the parameters.

46 feglm

se The standard-error of the parameters.

scores The matrix of the scores (first derivative for each observation).

residuals The difference between the dependent variable and the expected predictor.

sumFE The sum of the fixed-effects coefficients for each observation.

offset [where relevant] The offset formula.

weights [where relevant] The weights formula.

collin.var [where relevant] Vector containing the variables removed because of collinear-
ity.

collin.coef [where relevant] Vector of coefficients, where the values of the variables re-
moved because of collinearity are NA.

Combining the fixed-effects

You can combine two variables to make it a new fixed-effect using ^. The syntax is as follows:
fe_1^fe_2. Here you created a new variable which is the combination of the two variables fe_1
and fe_2. This is identical to doing paste0(fe_1,"_",fe_2) but more convenient.

Note that pasting is a costly operation, especially for large data sets. Thus, the internal algorithm
uses a numerical trick which is fast, but the drawback is that the identity of each observation is lost
(i.e. they are now equal to a meaningless number instead of being equal to paste0(fe_1,"_",fe_2)).
These “identities” are useful only if you’re interested in the value of the fixed-effects (that you can
extract with fixef.fixest). If you’re only interested in coefficients of the variables, it doesn’t
matter. Anyway, you can use combine.quick = FALSE to tell the internal algorithm to use paste
instead of the numerical trick. By default, the numerical trick is performed only for large data sets.

Varying slopes

You can add variables with varying slopes in the fixed-effect part of the formula. The syntax is as
follows: fixef_var[var1, var2]. Here the variables var1 and var2 will be with varying slopes (one
slope per value in fixef_var) and the fixed-effect fixef_var will also be added.

To add only the variables with varying slopes and not the fixed-effect, use double square brackets:
fixef_var[[var1, var2]].

In other words:

• fixef_var[var1, var2] is equivalent to fixef_var + fixef_var[[var1]] + fixef_var[[var2]]

• fixef_var[[var1, var2]] is equivalent to fixef_var[[var1]] + fixef_var[[var2]]

Lagging variables

To use leads/lags of variables in the estimation, you can: i) either provide the argument panel.id,
ii) either set your data set as a panel with the function panel. Doing either of the two will give you
acceess to the lagging functions l and f.

You can provide several leads/lags at once: e.g. if your formula is equal to f(y) ~ l(x,-1:1),
it means that the dependent variable is equal to the lead of y, and you will have as explanatory
variables the lead of x1, x1 and the lag of x1. See the examples in function l for more details.

feglm 47

Interactions

You can interact a numeric variable with a "factor-like" variable by using interact(var,fe,ref),
where fe is the variable to be interacted with and the argument ref is a value of fe taken as a
reference (optional). Instead of using the function interact, you can use the alias i(var,fe,ref)
or even the highly specific syntax var::fe(ref).

It is important to note that *if you do not care about the standard-errors of the interactions*, then you
can add interactions in the fixed-effects part of the formula (using the syntax fe[[var]], as explained
in the section “Varying slopes”).

Using this specific way to create interactions leads to a different display of the interacted values in
etable and offers a special representation of the interacted coefficients in the function coefplot.
See examples.

The function interact has in fact more arguments, please see details in its associated help page.

On standard-errors

Standard-errors can be computed in different ways, you can use the arguments se and dof in
summary.fixest to define how to compute them. By default, in the presence of fixed-effects,
standard-errors are automatically clustered.

The following vignette: On standard-errors describes in details how the standard-errors are com-
puted in fixest and how you can replicate standard-errors from other software.

You can use the functions setFixest_se and setFixest_dof to permanently set the way the
standard-errors are computed.

Author(s)

Laurent Berge

References

Berge, Laurent, 2018, "Efficient estimation of maximum likelihood models with multiple fixed-
effects: the R package FENmlm." CREA Discussion Papers, 13 (https://wwwen.uni.lu/content/
download/110162/1299525/file/2018_13).

For models with multiple fixed-effects:

Gaure, Simen, 2013, "OLS with multiple high dimensional category variables", Computational
Statistics & Data Analysis 66 pp. 8–18

See Also

See also summary.fixest to see the results with the appropriate standard-errors, fixef.fixest
to extract the fixed-effects coefficients, and the function etable to visualize the results of multiple
estimations. And other estimation methods: feols, femlm, fenegbin, feNmlm.

Examples

Default is a poisson model
res = feglm(Sepal.Length ~ Sepal.Width + Petal.Length | Species, iris)

https://cran.r-project.org/package=fixest/vignettes/standard_errors.html
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13

48 femlm

You could also use fepois
res_pois = fepois(Sepal.Length ~ Sepal.Width + Petal.Length | Species, iris)

With the fit method:
res_fit = feglm.fit(iris$Sepal.Length, iris[, 2:3], iris$Species)

All results are identical:
etable(res, res_pois, res_fit)

femlm Fixed-effects maximum likelihood model

Description

This function estimates maximum likelihood models with any number of fixed-effects.

Usage

femlm(
fml,
data,
family = c("poisson", "negbin", "logit", "gaussian"),
start = 0,
fixef,
offset,
panel.id,
na_inf.rm = getFixest_na_inf.rm(),
fixef.tol = 1e-05,
fixef.iter = 10000,
nthreads = getFixest_nthreads(),
verbose = 0,
warn = TRUE,
notes = getFixest_notes(),
theta.init,
combine.quick,
...

)

fenegbin(
fml,
data,
theta.init,
start = 0,
fixef,
offset,

femlm 49

panel.id,
na_inf.rm = getFixest_na_inf.rm(),
fixef.tol = 1e-05,
fixef.iter = 10000,
nthreads = getFixest_nthreads(),
verbose = 0,
warn = TRUE,
notes = getFixest_notes(),
combine.quick,
...

)

Arguments

fml A formula representing the relation to be estimated. For example: fml = z~x+y.
To include fixed-effects, you can 1) either insert them in this formula using
a pipe (e.g. fml = z~x+y|fixef_1+fixef_2), or 2) either use the argument
fixef.

data A data.frame containing the necessary variables to run the model. The vari-
ables of the non-linear right hand side of the formula are identified with this
data.frame names. Can also be a matrix.

family Character scalar. It should provide the family. The possible values are "pois-
son" (Poisson model with log-link, the default), "negbin" (Negative Binomial
model with log-link), "logit" (LOGIT model with log-link), "gaussian" (Gaus-
sian model).

start Starting values for the coefficients. Can be: i) a numeric of length 1 (e.g. start
= 0, the default), ii) a numeric vector of the exact same length as the number
of variables, or iii) a named vector of any length (the names will be used to
initialize the appropriate coefficients).

fixef Character vector. The names of variables to be used as fixed-effects. These
variables should contain the identifier of each observation (e.g., think of it as a
panel identifier). Note that the recommended way to include fixed-effects is to
insert them directly in the formula.

offset A formula or a numeric vector. An offset can be added to the estimation. If equal
to a formula, it should be of the form (for example) ~0.5*x**2. This offset is
linearly added to the elements of the main formula ’fml’.

panel.id The panel identifiers. Can either be: i) a one sided formula (e.g. panel.id =
~id+time), ii) a character vector of length 2 (e.g. panel.id=c('id','time'),
or iii) a character scalar of two variables separated by a comma (e.g. panel.id='id,time').
Note that you can combine variables with ^ only inside formulas (see the dedi-
cated section in feols).

na_inf.rm Logical, default is TRUE. If the variables necessary for the estimation contain
NA/Infs and na_inf.rm = TRUE, then all observations containing NA are re-
moved prior to estimation and a note is displayed detailing the number of obser-
vations removed. Otherwise, an error is raised.

50 femlm

fixef.tol Precision used to obtain the fixed-effects. Defaults to 1e-5. It corresponds to the
maximum absolute difference allowed between two coefficients of successive it-
erations. Argument fixef.tol cannot be lower than 10000*.Machine$double.eps.
Note that this parameter is dynamically controlled by the algorithm.

fixef.iter Maximum number of iterations in fixed-effects algorithm (only in use for 2+
fixed-effects). Default is 10000.

nthreads Integer: Number of nthreads to be used (accelerates the algorithm via the use of
openMP routines). The default is to use the total number of nthreads available
minus two. You can set permanently the number of threads used within this
package using the function setFixest_nthreads.

verbose Integer, default is 0. It represents the level of information that should be re-
ported during the optimisation process. If verbose=0: nothing is reported. If
verbose=1: the value of the coefficients and the likelihood are reported. If
verbose=2: 1 + information on the computing time of the null model, the fixed-
effects coefficients and the hessian are reported.

warn Logical, default is TRUE. Whether warnings should be displayed (concerns warn-
ings relating to convergence state).

notes Logical. By default, two notes are displayed: when NAs are removed (to show
additional information) and when some observations are removed because of
only 0 (or 0/1) outcomes in a fixed-effect setup (in Poisson/Neg. Bin./Logit
models). To avoid displaying these messages, you can set notes = FALSE. You
can remove these messages permanently by using setFixest_notes(FALSE).

theta.init Positive numeric scalar. The starting value of the dispersion parameter if family="negbin".
By default, the algorithm uses as a starting value the theta obtained from the
model with only the intercept.

combine.quick Logical. When you combine different variables to transform them into a single
fixed-effects you can do e.g. y ~ x | paste(var1,var2). The algorithm pro-
vides a shorthand to do the same operation: y ~ x | var1^var2. Because pasting
variables is a costly operation, the internal algorithm may use a numerical trick
to hasten the process. The cost of doing so is that you lose the labels. If you are
interested in getting the value of the fixed-effects coefficients after the estima-
tion, you should use combine.quick = FALSE. By default it is equal to FALSE if
the number of observations is lower than 50,000, and to TRUE otherwise.

... Not currently used.

Details

Note that the functions feglm and femlm provide the same results when using the same families
but differ in that the latter is a direct maximum likelihood optimization (so the two can really have
different convergence rates).

Value

A fixest object.

nobs The number of observations.

fml The linear formula of the call.

femlm 51

call The call of the function.
method The method used to estimate the model.
family The family used to estimate the model.
fml_full [where relevant] The "full" formula containing the linear part and the fixed-

effects.
nparams The number of parameters of the model.
fixef_vars The names of each fixed-effect dimension.
fixef_id The list (of length the number of fixed-effects) of the fixed-effects identifiers for

each observation.
fixef_sizes The size of each fixed-effect (i.e. the number of unique identifierfor each fixed-

effect dimension).
convStatus Logical, convergence status.
message The convergence message from the optimization procedures.
obsRemoved [where relevant] In the case there were fixed-effects and some observations were

removed because of only 0/1 outcome within a fixed-effect, it gives the row num-
bers of the observations that were removed. Also reports the NA observations
that were removed.

fixef_removed [where relevant] In the case there were fixed-effects and some observations were
removed because of only 0/1 outcome within a fixed-effect, it gives the list (for
each fixed-effect dimension) of the fixed-effect identifiers that were removed.

coefficients The named vector of estimated coefficients.
coeftable The table of the coefficients with their standard errors, z-values and p-values.
loglik The log-likelihood.
iterations Number of iterations of the algorithm.
ll_null Log-likelihood of the null model (i.e. with the intercept only).
ll_fe_only Log-likelihood of the model with only the fixed-effects.
ssr_null Sum of the squared residuals of the null model (containing only with the inter-

cept).
pseudo_r2 The adjusted pseudo R2.
fitted.values The fitted values are the expected value of the dependent variable for the fitted

model: that is E(Y |X).
residuals The residuals (y minus the fitted values).
sq.cor Squared correlation between the dependent variable and the expected predictor

(i.e. fitted.values) obtained by the estimation.
hessian The Hessian of the parameters.
cov.unscaled The variance-covariance matrix of the parameters.
se The standard-error of the parameters.
scores The matrix of the scores (first derivative for each observation).
residuals The difference between the dependent variable and the expected predictor.
sumFE The sum of the fixed-effects coefficients for each observation.
offset [where relevant] The offset formula.
weights [where relevant] The weights formula.

52 femlm

Combining the fixed-effects

You can combine two variables to make it a new fixed-effect using ^. The syntax is as follows:
fe_1^fe_2. Here you created a new variable which is the combination of the two variables fe_1
and fe_2. This is identical to doing paste0(fe_1,"_",fe_2) but more convenient.

Note that pasting is a costly operation, especially for large data sets. Thus, the internal algorithm
uses a numerical trick which is fast, but the drawback is that the identity of each observation is lost
(i.e. they are now equal to a meaningless number instead of being equal to paste0(fe_1,"_",fe_2)).
These “identities” are useful only if you’re interested in the value of the fixed-effects (that you can
extract with fixef.fixest). If you’re only interested in coefficients of the variables, it doesn’t
matter. Anyway, you can use combine.quick = FALSE to tell the internal algorithm to use paste
instead of the numerical trick. By default, the numerical trick is performed only for large data sets.

Lagging variables

To use leads/lags of variables in the estimation, you can: i) either provide the argument panel.id,
ii) either set your data set as a panel with the function panel. Doing either of the two will give you
acceess to the lagging functions l and f.

You can provide several leads/lags at once: e.g. if your formula is equal to f(y) ~ l(x,-1:1),
it means that the dependent variable is equal to the lead of y, and you will have as explanatory
variables the lead of x1, x1 and the lag of x1. See the examples in function l for more details.

Interactions

You can interact a numeric variable with a "factor-like" variable by using interact(var,fe,ref),
where fe is the variable to be interacted with and the argument ref is a value of fe taken as a
reference (optional). Instead of using the function interact, you can use the alias i(var,fe,ref)
or even the highly specific syntax var::fe(ref).

It is important to note that *if you do not care about the standard-errors of the interactions*, then you
can add interactions in the fixed-effects part of the formula (using the syntax fe[[var]], as explained
in the section “Varying slopes”).

Using this specific way to create interactions leads to a different display of the interacted values in
etable and offers a special representation of the interacted coefficients in the function coefplot.
See examples.

The function interact has in fact more arguments, please see details in its associated help page.

On standard-errors

Standard-errors can be computed in different ways, you can use the arguments se and dof in
summary.fixest to define how to compute them. By default, in the presence of fixed-effects,
standard-errors are automatically clustered.

The following vignette: On standard-errors describes in details how the standard-errors are com-
puted in fixest and how you can replicate standard-errors from other software.

You can use the functions setFixest_se and setFixest_dof to permanently set the way the
standard-errors are computed.

https://cran.r-project.org/package=fixest/vignettes/standard_errors.html

femlm 53

Author(s)

Laurent Berge

References

Berge, Laurent, 2018, "Efficient estimation of maximum likelihood models with multiple fixed-
effects: the R package FENmlm." CREA Discussion Papers, 13 (https://wwwen.uni.lu/content/
download/110162/1299525/file/2018_13).

For models with multiple fixed-effects:

Gaure, Simen, 2013, "OLS with multiple high dimensional category variables", Computational
Statistics & Data Analysis 66 pp. 8–18

On the unconditionnal Negative Binomial model:

Allison, Paul D and Waterman, Richard P, 2002, "Fixed-Effects Negative Binomial Regression
Models", Sociological Methodology 32(1) pp. 247–265

See Also

See also summary.fixest to see the results with the appropriate standard-errors, fixef.fixest
to extract the fixed-effects coefficients, and the function etable to visualize the results of multiple
estimations. And other estimation methods: feols, feglm, fepois, feNmlm.

Examples

#
Linear examples
#

Load trade data
data(trade)

We estimate the effect of distance on trade => we account for 3 fixed-effects
1) Poisson estimation
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

2) Log-Log Gaussian estimation (with same FEs)
est_gaus = update(est_pois, log(Euros+1) ~ ., family="gaussian")

Comparison of the results using the function esttable
esttable(est_pois, est_gaus)
Now using two way clustered standard-errors
esttable(est_pois, est_gaus, se = "twoway")

Comparing different types of standard errors
sum_white = summary(est_pois, se = "white")
sum_oneway = summary(est_pois, se = "cluster")
sum_twoway = summary(est_pois, se = "twoway")
sum_threeway = summary(est_pois, se = "threeway")

esttable(sum_white, sum_oneway, sum_twoway, sum_threeway)

https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13

54 feNmlm

feNmlm Fixed effects nonlinear maximum likelihood models

Description

This function estimates maximum likelihood models (e.g., Poisson or Logit) with non-linear in
parameters right-hand-sides and is efficient to handle any number of fixed effects. If you do not use
non-linear in parameters right-hand-side, use femlm or feglm instead (design is simpler).

Usage

feNmlm(
fml,
data,
family = c("poisson", "negbin", "logit", "gaussian"),
NL.fml,
fixef,
na_inf.rm = getFixest_na_inf.rm(),
NL.start,
lower,
upper,
NL.start.init,
offset,
panel.id,
start = 0,
jacobian.method = "simple",
useHessian = TRUE,
hessian.args = NULL,
opt.control = list(),
nthreads = getFixest_nthreads(),
verbose = 0,
theta.init,
fixef.tol = 1e-05,
fixef.iter = 10000,
deriv.tol = 1e-04,
deriv.iter = 1000,
warn = TRUE,
notes = getFixest_notes(),
combine.quick,
...

)

feNmlm 55

Arguments

fml A formula. This formula gives the linear formula to be estimated (it is simi-
lar to a lm formula), for example: fml = z~x+y. To include fixed-effects vari-
ables, you can 1) either insert them in this formula using a pipe (e.g. fml =
z~x+y|fixef_1+fixef_2), or 2) either use the argument fixef. To include a
non-linear in parameters element, you must use the argment NL.fml.

data A data.frame containing the necessary variables to run the model. The vari-
ables of the non-linear right hand side of the formula are identified with this
data.frame names. Can also be a matrix.

family Character scalar. It should provide the family. The possible values are "pois-
son" (Poisson model with log-link, the default), "negbin" (Negative Binomial
model with log-link), "logit" (LOGIT model with log-link), "gaussian" (Gaus-
sian model).

NL.fml A formula. If provided, this formula represents the non-linear part of the right
hand side (RHS). Note that contrary to the fml argument, the coefficients must
explicitly appear in this formula. For instance, it can be ~a*log(b*x + c*x^3),
where a, b, and c are the coefficients to be estimated. Note that only the RHS of
the formula is to be provided, and NOT the left hand side.

fixef Character vector. The names of variables to be used as fixed-effects. These
variables should contain the identifier of each observation (e.g., think of it as a
panel identifier). Note that the recommended way to include fixed-effects is to
insert them directly in the formula.

na_inf.rm Logical, default is TRUE. If the variables necessary for the estimation contain
NA/Infs and na_inf.rm = TRUE, then all observations containing NA are re-
moved prior to estimation and a note is displayed detailing the number of obser-
vations removed. Otherwise, an error is raised.

NL.start (For NL models only) A list of starting values for the non-linear parameters.
ALL the parameters are to be named and given a staring value. Example:
NL.start=list(a=1,b=5,c=0). Though, there is an exception: if all parame-
ters are to be given the same starting value, you can use the argument NL.start.init.

lower (For NL models only) A list. The lower bound for each of the non-linear pa-
rameters that requires one. Example: lower=list(b=0,c=0). Beware, if the
estimated parameter is at his lower bound, then asymptotic theory cannot be ap-
plied and the standard-error of the parameter cannot be estimated because the
gradient will not be null. In other words, when at its upper/lower bound, the
parameter is considered as ’fixed’.

upper (For NL models only) A list. The upper bound for each of the non-linear pa-
rameters that requires one. Example: upper=list(a=10,c=50). Beware, if the
estimated parameter is at his upper bound, then asymptotic theory cannot be ap-
plied and the standard-error of the parameter cannot be estimated because the
gradient will not be null. In other words, when at its upper/lower bound, the
parameter is considered as ’fixed’.

NL.start.init (For NL models only) Numeric scalar. If the argument NL.start is not pro-
vided, or only partially filled (i.e. there remain non-linear parameters with no
starting value), then the starting value of all remaining non-linear parameters is
set to NL.start.init.

56 feNmlm

offset A formula or a numeric vector. An offset can be added to the estimation. If equal
to a formula, it should be of the form (for example) ~0.5*x**2. This offset is
linearly added to the elements of the main formula ’fml’.

panel.id The panel identifiers. Can either be: i) a one sided formula (e.g. panel.id =
~id+time), ii) a character vector of length 2 (e.g. panel.id=c('id','time'),
or iii) a character scalar of two variables separated by a comma (e.g. panel.id='id,time').
Note that you can combine variables with ^ only inside formulas (see the dedi-
cated section in feols).

start Starting values for the coefficients in the linear part (for the non-linear part, use
NL.start). Can be: i) a numeric of length 1 (e.g. start = 0, the default), ii)
a numeric vector of the exact same length as the number of variables, or iii) a
named vector of any length (the names will be used to initialize the appropriate
coefficients).

jacobian.method

(For NL models only) Character scalar. Provides the method used to numeri-
cally compute the Jacobian of the non-linear part. Can be either "simple" or
"Richardson". Default is "simple". See the help of jacobian for more infor-
mation.

useHessian Logical. Should the Hessian be computed in the optimization stage? Default is
TRUE.

hessian.args List of arguments to be passed to function genD. Defaults is missing. Only used
with the presence of NL.fml.

opt.control List of elements to be passed to the optimization method nlminb. See the help
page of nlminb for more information.

nthreads Integer: Number of nthreads to be used (accelerates the algorithm via the use of
openMP routines). The default is to use the total number of nthreads available
minus two. You can set permanently the number of threads used within this
package using the function setFixest_nthreads.

verbose Integer, default is 0. It represents the level of information that should be re-
ported during the optimisation process. If verbose=0: nothing is reported. If
verbose=1: the value of the coefficients and the likelihood are reported. If
verbose=2: 1 + information on the computing time of the null model, the fixed-
effects coefficients and the hessian are reported.

theta.init Positive numeric scalar. The starting value of the dispersion parameter if family="negbin".
By default, the algorithm uses as a starting value the theta obtained from the
model with only the intercept.

fixef.tol Precision used to obtain the fixed-effects. Defaults to 1e-5. It corresponds to the
maximum absolute difference allowed between two coefficients of successive it-
erations. Argument fixef.tol cannot be lower than 10000*.Machine$double.eps.
Note that this parameter is dynamically controlled by the algorithm.

fixef.iter Maximum number of iterations in fixed-effects algorithm (only in use for 2+
fixed-effects). Default is 10000.

deriv.tol Precision used to obtain the fixed-effects derivatives. Defaults to 1e-4. It
corresponds to the maximum absolute difference allowed between two coef-
ficients of successive iterations. Argument deriv.tol cannot be lower than
10000*.Machine$double.eps.

feNmlm 57

deriv.iter Maximum number of iterations in the algorithm to obtain the derivative of the
fixed-effects (only in use for 2+ fixed-effects). Default is 1000.

warn Logical, default is TRUE. Whether warnings should be displayed (concerns warn-
ings relating to convergence state).

notes Logical. By default, two notes are displayed: when NAs are removed (to show
additional information) and when some observations are removed because of
only 0 (or 0/1) outcomes in a fixed-effect setup (in Poisson/Neg. Bin./Logit
models). To avoid displaying these messages, you can set notes = FALSE. You
can remove these messages permanently by using setFixest_notes(FALSE).

combine.quick Logical. When you combine different variables to transform them into a single
fixed-effects you can do e.g. y ~ x | paste(var1,var2). The algorithm pro-
vides a shorthand to do the same operation: y ~ x | var1^var2. Because pasting
variables is a costly operation, the internal algorithm may use a numerical trick
to hasten the process. The cost of doing so is that you lose the labels. If you are
interested in getting the value of the fixed-effects coefficients after the estima-
tion, you should use combine.quick = FALSE. By default it is equal to FALSE if
the number of observations is lower than 50,000, and to TRUE otherwise.

... Not currently used.

Details

This function estimates maximum likelihood models where the conditional expectations are as fol-
lows:

Gaussian likelihood:
E(Y |X) = Xβ

Poisson and Negative Binomial likelihoods:

E(Y |X) = exp(Xβ)

where in the Negative Binomial there is the parameter θ used to model the variance as µ + µ2/θ,
with µ the conditional expectation. Logit likelihood:

E(Y |X) =
exp(Xβ)

1 + exp(Xβ)

When there are one or more fixed-effects, the conditional expectation can be written as:

E(Y |X) = h(Xβ +
∑
k

∑
m

γkm × Ck
im),

where h(.) is the function corresponding to the likelihood function as shown before. Ck is the
matrix associated to fixed-effect dimension k such that Ck

im is equal to 1 if observation i is of
category m in the fixed-effect dimension k and 0 otherwise.

When there are non linear in parameters functions, we can schematically split the set of regressors
in two:

f(X,β) = X1β1 + g(X2, β2)

with first a linear term and then a non linear part expressed by the function g. That is, we add a non-
linear term to the linear terms (which are X ∗ beta and the fixed-effects coefficients). It is always

58 feNmlm

better (more efficient) to put into the argument NL.fml only the non-linear in parameter terms, and
add all linear terms in the fml argument.

To estimate only a non-linear formula without even the intercept, you must exclude the intercept
from the linear formula by using, e.g., fml = z~0.

The over-dispersion parameter of the Negative Binomial family, theta, is capped at 10,000. If theta
reaches this high value, it means that there is no overdispersion.

Value

A fixest object.

coefficients The named vector of coefficients.

coeftable The table of the coefficients with their standard errors, z-values and p-values.

loglik The loglikelihood.

iterations Number of iterations of the algorithm.

nobs The number of observations.

nparams The number of parameters of the model.

call The call.

fml The linear formula of the call.

ll_null Log-likelihood of the null model (i.e. with the intercept only).

pseudo_r2 The adjusted pseudo R2.

message The convergence message from the optimization procedures.

sq.cor Squared correlation between the dependent variable and the expected predictor
(i.e. fitted.values) obtained by the estimation.

hessian The Hessian of the parameters.

fitted.values The fitted values are the expected value of the dependent variable for the fitted
model: that is E(Y |X).

cov.unscaled The variance-covariance matrix of the parameters.

se The standard-error of the parameters.

scores The matrix of the scores (first derivative for each observation).

family The ML family that was used for the estimation.

residuals The difference between the dependent variable and the expected predictor.

sumFE The sum of the fixed-effects for each observation.

offset The offset formula.

NL.fml The nonlinear formula of the call.

bounds Whether the coefficients were upper or lower bounded. – This can only be the
case when a non-linear formula is included and the arguments ’lower’ or ’upper’
are provided.

isBounded The logical vector that gives for each coefficient whether it was bounded or
not. This can only be the case when a non-linear formula is included and the
arguments ’lower’ or ’upper’ are provided.

feNmlm 59

fixef_vars The names of each fixed-effect dimension.

fixef_id The list (of length the number of fixed-effects) of the fixed-effects identifiers for
each observation.

fixef_sizes The size of each fixed-effect (i.e. the number of unique identifierfor each fixed-
effect dimension).

obsRemoved In the case there were fixed-effects and some observations were removed be-
cause of only 0/1 outcome within a fixed-effect, it gives the row numbers of the
observations that were removed. Also reports the NA observations that were
removed.

fixef_removed In the case there were fixed-effects and some observations were removed be-
cause of only 0/1 outcome within a fixed-effect, it gives the list (for each fixed-
effect dimension) of the fixed-effect identifiers that were removed.

theta In the case of a negative binomial estimation: the overdispersion parameter.

@seealso See also summary.fixest to see the results with the appropriate standard-errors, fixef.fixest
to extract the fixed-effects coefficients, and the function etable to visualize the results of multiple
estimations.

And other estimation methods: feols, femlm, feglm, fepois, fenegbin.

Lagging variables

To use leads/lags of variables in the estimation, you can: i) either provide the argument panel.id,
ii) either set your data set as a panel with the function panel. Doing either of the two will give you
acceess to the lagging functions l and f.

You can provide several leads/lags at once: e.g. if your formula is equal to f(y) ~ l(x,-1:1),
it means that the dependent variable is equal to the lead of y, and you will have as explanatory
variables the lead of x1, x1 and the lag of x1. See the examples in function l for more details.

Interactions

You can interact a numeric variable with a "factor-like" variable by using interact(var,fe,ref),
where fe is the variable to be interacted with and the argument ref is a value of fe taken as a
reference (optional). Instead of using the function interact, you can use the alias i(var,fe,ref)
or even the highly specific syntax var::fe(ref).

It is important to note that *if you do not care about the standard-errors of the interactions*, then you
can add interactions in the fixed-effects part of the formula (using the syntax fe[[var]], as explained
in the section “Varying slopes”).

Using this specific way to create interactions leads to a different display of the interacted values in
etable and offers a special representation of the interacted coefficients in the function coefplot.
See examples.

The function interact has in fact more arguments, please see details in its associated help page.

On standard-errors

Standard-errors can be computed in different ways, you can use the arguments se and dof in
summary.fixest to define how to compute them. By default, in the presence of fixed-effects,
standard-errors are automatically clustered.

60 feNmlm

The following vignette: On standard-errors describes in details how the standard-errors are com-
puted in fixest and how you can replicate standard-errors from other software.

You can use the functions setFixest_se and setFixest_dof to permanently set the way the
standard-errors are computed.

Author(s)

Laurent Berge

References

Berge, Laurent, 2018, "Efficient estimation of maximum likelihood models with multiple fixed-
effects: the R package FENmlm." CREA Discussion Papers, 13 (https://wwwen.uni.lu/content/
download/110162/1299525/file/2018_13).

For models with multiple fixed-effects:

Gaure, Simen, 2013, "OLS with multiple high dimensional category variables", Computational
Statistics & Data Analysis 66 pp. 8–18

On the unconditionnal Negative Binomial model:

Allison, Paul D and Waterman, Richard P, 2002, "Fixed-Effects Negative Binomial Regression
Models", Sociological Methodology 32(1) pp. 247–265

Examples

This section covers only non-linear in parameters examples
For linear relationships: use femlm or feglm instead

Generating data for a simple example
set.seed(1)
n = 100
x = rnorm(n, 1, 5)**2
y = rnorm(n, -1, 5)**2
z1 = rpois(n, x*y) + rpois(n, 2)
base = data.frame(x, y, z1)

Estimating a 'linear' relation:
est1_L = femlm(z1 ~ log(x) + log(y), base)
Estimating the same 'linear' relation using a 'non-linear' call
est1_NL = feNmlm(z1 ~ 1, base, NL.fml = ~a*log(x)+b*log(y), NL.start = list(a=0, b=0))
we compare the estimates with the function esttable (they are identical)
esttable(est1_L, est1_NL)

Now generating a non-linear relation (E(z2) = x + y + 1):
z2 = rpois(n, x + y) + rpois(n, 1)
base$z2 = z2

Estimation using this non-linear form
est2_NL = feNmlm(z2~0, base, NL.fml = ~log(a*x + b*y),

NL.start = list(a=1, b=2), lower = list(a=0, b=0))
we can't estimate this relation linearily

https://cran.r-project.org/package=fixest/vignettes/standard_errors.html
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13

feols 61

=> closest we can do:
est2_L = femlm(z2~log(x)+log(y), base)

Difference between the two models:
esttable(est2_L, est2_NL)

Plotting the fits:
plot(x, z2, pch = 18)
points(x, fitted(est2_L), col = 2, pch = 1)
points(x, fitted(est2_NL), col = 4, pch = 2)

feols Fixed-effects OLS estimation

Description

Estimates OLS with any number of fixed-effects.

Usage

feols(
fml,
data,
weights,
offset,
panel.id,
fixef,
fixef.tol = 1e-06,
fixef.iter = 10000,
na_inf.rm = getFixest_na_inf.rm(),
nthreads = getFixest_nthreads(),
verbose = 0,
warn = TRUE,
notes = getFixest_notes(),
combine.quick,
demeaned = FALSE,
...

)

Arguments

fml A formula representing the relation to be estimated. For example: fml = z~x+y.
To include fixed-effects, insert them in this formula using a pipe: e.g. fml =
z~x+y | fe_1+fe_2. You can combine two fixed-effects with ^: e.g. fml =
z~x+y|fe_1^fe_2, see details. You can also use variables with varying slopes
using square brackets: e.g. in fml = z~y|fe_1[x] + fe_2 the variable x will

62 feols

have one coefficient for each value of fe_1 – if you use varying slopes, please
have a look at the details section (can’t describe it all here).

data A data.frame containing the necessary variables to run the model. The vari-
ables of the non-linear right hand side of the formula are identified with this
data.frame names. Can also be a matrix.

weights A formula or a numeric vector. Each observation can be weighted, the weights
must be greater than 0. If equal to a formula, it should be of one-sided: for
example ~ var_weight.

offset A formula or a numeric vector. An offset can be added to the estimation. If equal
to a formula, it should be of the form (for example) ~0.5*x**2. This offset is
linearly added to the elements of the main formula ’fml’.

panel.id The panel identifiers. Can either be: i) a one sided formula (e.g. panel.id =
~id+time), ii) a character vector of length 2 (e.g. panel.id=c('id','time'),
or iii) a character scalar of two variables separated by a comma (e.g. panel.id='id,time').
Note that you can combine variables with ^ only inside formulas (see the dedi-
cated section in feols).

fixef Character vector. The names of variables to be used as fixed-effects. These
variables should contain the identifier of each observation (e.g., think of it as a
panel identifier). Note that the recommended way to include fixed-effects is to
insert them directly in the formula.

fixef.tol Precision used to obtain the fixed-effects. Defaults to 1e-5. It corresponds to the
maximum absolute difference allowed between two coefficients of successive it-
erations. Argument fixef.tol cannot be lower than 10000*.Machine$double.eps.
Note that this parameter is dynamically controlled by the algorithm.

fixef.iter Maximum number of iterations in fixed-effects algorithm (only in use for 2+
fixed-effects). Default is 10000.

na_inf.rm Logical, default is TRUE. If the variables necessary for the estimation contain
NA/Infs and na_inf.rm = TRUE, then all observations containing NA are re-
moved prior to estimation and a note is displayed detailing the number of obser-
vations removed. Otherwise, an error is raised.

nthreads Integer: Number of nthreads to be used (accelerates the algorithm via the use of
openMP routines). The default is to use the total number of nthreads available
minus two. You can set permanently the number of threads used within this
package using the function setFixest_nthreads.

verbose Integer. Higher values give more information. In particular, it can detail the
number of iterations in the demeaning algoritmh (the first number is the left-
hand-side, the other numbers are the right-hand-side variables).

warn Logical, default is TRUE. Whether warnings should be displayed (concerns warn-
ings relating to convergence state).

notes Logical. By default, two notes are displayed: when NAs are removed (to show
additional information) and when some observations are removed because of
collinearity. To avoid displaying these messages, you can set notes = FALSE.
You can remove these messages permanently by using setFixest_notes(FALSE).

feols 63

combine.quick Logical. When you combine different variables to transform them into a single
fixed-effects you can do e.g. y ~ x | paste(var1,var2). The algorithm pro-
vides a shorthand to do the same operation: y ~ x | var1^var2. Because pasting
variables is a costly operation, the internal algorithm may use a numerical trick
to hasten the process. The cost of doing so is that you lose the labels. If you are
interested in getting the value of the fixed-effects coefficients after the estima-
tion, you should use combine.quick = FALSE. By default it is equal to FALSE if
the number of observations is lower than 50,000, and to TRUE otherwise.

demeaned Logical, default is FALSE. Only used in the presence of fixed-effects: should the
centered variables be returned? If TRUE, it creates the items y_demeaned and
X_demeaned.

... Not currently used.

Details

The method used to demean each variable along the fixed-effects is based on Berge (2018), since
this is the same problem to solve as for the Gaussian case in a ML setup.

Value

A fixest object.

nobs The number of observations.

fml The linear formula of the call.

call The call of the function.

method The method used to estimate the model.

family The family used to estimate the model.

fml_full [where relevant] The "full" formula containing the linear part and the fixed-
effects.

nparams The number of parameters of the model.

fixef_vars The names of each fixed-effect dimension.

fixef_id The list (of length the number of fixed-effects) of the fixed-effects identifiers for
each observation.

fixef_sizes The size of each fixed-effect (i.e. the number of unique identifierfor each fixed-
effect dimension).

coefficients The named vector of estimated coefficients.

multicol Logical, if multicollinearity was found.

coeftable The table of the coefficients with their standard errors, z-values and p-values.

loglik The loglikelihood.

ssr_null Sum of the squared residuals of the null model (containing only with the inter-
cept).

ssr_fe_only Sum of the squared residuals of the model estimated with fixed-effects only.

ll_null The log-likelihood of the null model (containing only with the intercept).

64 feols

ll_fe_only The log-likelihood of the model estimated with fixed-effects only.

pseudo_r2 The adjusted pseudo R2.

fitted.values The fitted values.
linear.predictors

The linear predictors.

residuals The residuals (y minus the fitted values).

sq.cor Squared correlation between the dependent variable and the expected predictor
(i.e. fitted.values) obtained by the estimation.

hessian The Hessian of the parameters.

cov.unscaled The variance-covariance matrix of the parameters.

se The standard-error of the parameters.

scores The matrix of the scores (first derivative for each observation).

residuals The difference between the dependent variable and the expected predictor.

sumFE The sum of the fixed-effects coefficients for each observation.

offset [where relevant] The offset formula.

weights [where relevant] The weights formula.

collin.var [where relevant] Vector containing the variables removed because of collinear-
ity.

collin.coef [where relevant] Vector of coefficients, where the values of the variables re-
moved because of collinearity are NA.

y_demeaned Only when demeaned = TRUE: the centered dependent variable.

X_demeaned Only when demeaned = TRUE: the centered explanatory variable.

Combining the fixed-effects

You can combine two variables to make it a new fixed-effect using ^. The syntax is as follows:
fe_1^fe_2. Here you created a new variable which is the combination of the two variables fe_1
and fe_2. This is identical to doing paste0(fe_1,"_",fe_2) but more convenient.

Note that pasting is a costly operation, especially for large data sets. Thus, the internal algorithm
uses a numerical trick which is fast, but the drawback is that the identity of each observation is lost
(i.e. they are now equal to a meaningless number instead of being equal to paste0(fe_1,"_",fe_2)).
These “identities” are useful only if you’re interested in the value of the fixed-effects (that you can
extract with fixef.fixest). If you’re only interested in coefficients of the variables, it doesn’t
matter. Anyway, you can use combine.quick = FALSE to tell the internal algorithm to use paste
instead of the numerical trick. By default, the numerical trick is performed only for large data sets.

Varying slopes

You can add variables with varying slopes in the fixed-effect part of the formula. The syntax is as
follows: fixef_var[var1, var2]. Here the variables var1 and var2 will be with varying slopes (one
slope per value in fixef_var) and the fixed-effect fixef_var will also be added.

To add only the variables with varying slopes and not the fixed-effect, use double square brackets:
fixef_var[[var1, var2]].

In other words:

feols 65

• fixef_var[var1, var2] is equivalent to fixef_var + fixef_var[[var1]] + fixef_var[[var2]]
• fixef_var[[var1, var2]] is equivalent to fixef_var[[var1]] + fixef_var[[var2]]

Lagging variables

To use leads/lags of variables in the estimation, you can: i) either provide the argument panel.id,
ii) either set your data set as a panel with the function panel. Doing either of the two will give you
acceess to the lagging functions l and f.

You can provide several leads/lags at once: e.g. if your formula is equal to f(y) ~ l(x,-1:1),
it means that the dependent variable is equal to the lead of y, and you will have as explanatory
variables the lead of x1, x1 and the lag of x1. See the examples in function l for more details.

Interactions

You can interact a numeric variable with a "factor-like" variable by using interact(var,fe,ref),
where fe is the variable to be interacted with and the argument ref is a value of fe taken as a
reference (optional). Instead of using the function interact, you can use the alias i(var,fe,ref)
or even the highly specific syntax var::fe(ref).

It is important to note that *if you do not care about the standard-errors of the interactions*, then you
can add interactions in the fixed-effects part of the formula (using the syntax fe[[var]], as explained
in the section “Varying slopes”).

Using this specific way to create interactions leads to a different display of the interacted values in
etable and offers a special representation of the interacted coefficients in the function coefplot.
See examples.

The function interact has in fact more arguments, please see details in its associated help page.

On standard-errors

Standard-errors can be computed in different ways, you can use the arguments se and dof in
summary.fixest to define how to compute them. By default, in the presence of fixed-effects,
standard-errors are automatically clustered.

The following vignette: On standard-errors describes in details how the standard-errors are com-
puted in fixest and how you can replicate standard-errors from other software.

You can use the functions setFixest_se and setFixest_dof to permanently set the way the
standard-errors are computed.

Author(s)

Laurent Berge

References

Berge, Laurent, 2018, "Efficient estimation of maximum likelihood models with multiple fixed-
effects: the R package FENmlm." CREA Discussion Papers, 13 (https://wwwen.uni.lu/content/
download/110162/1299525/file/2018_13).

For models with multiple fixed-effects:

Gaure, Simen, 2013, "OLS with multiple high dimensional category variables", Computational
Statistics & Data Analysis 66 pp. 8–18

https://cran.r-project.org/package=fixest/vignettes/standard_errors.html
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13

66 feols

See Also

See also summary.fixest to see the results with the appropriate standard-errors, fixef.fixest
to extract the fixed-effects coefficients, and the function etable to visualize the results of multiple
estimations. For plotting coefficients: see coefplot.

And other estimation methods: femlm, feglm, fepois, fenegbin, feNmlm.

Examples

#
Just one set of fixed-effects:
#

res = feols(Sepal.Length ~ Sepal.Width + Petal.Length | Species, iris)
summary(res)

#
Varying slopes:
#

res = feols(Sepal.Length ~ Petal.Length | Species[Sepal.Width], iris)
summary(res)

#
Combining the FEs:
#

base = iris
base$fe_2 = rep(1:10, 15)
res_comb = feols(Sepal.Length ~ Petal.Length | Species^fe_2, base)
summary(res_comb)
fixef(res_comb)[[1]]

#
Using leads/lags:
#

data(base_did)
We need to set up the panel with the arg. panel.id
est1 = feols(y~l(x1, 0:1), base_did, panel.id = ~id+period)
est2 = feols(f(y)~l(x1, -1:1), base_did, panel.id = ~id+period)
etable(est1, est2, order = "f", drop="Int")

#
Using interactions:
#

NOTA: in fixest estimations, i(var, fe, ref) is equivalent to var::fe(ref)

data(base_did)
We interact the variable 'period' with the variable 'treat'

fitted.fixest 67

est_did = feols(y ~ x1 + i(treat, period, 5) | id+period, base_did)

You could have used the following formula instead:
y ~ x1 + treat::period(5) | id+period

Now we can plot the result of the interaction with coefplot
coefplot(est_did)
You have many more example in coefplot help

fitted.fixest Extracts fitted values from a fixest fit

Description

This function extracts the fitted values from a model estimated with femlm, feols or feglm. The
fitted values that are returned are the expected predictor.

Usage

S3 method for class 'fixest'
fitted(object, type = c("response", "link"), ...)

fitted.values.fixest

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

type Character either equal to "response" (default) or "link". If type="response",
then the output is at the level of the response variable, i.e. it is the expected pre-
dictor E(Y |X). If "link", then the output is at the level of the explanatory
variables, i.e. the linear predictor X · β.

... Not currently used.

Format

An object of class function of length 1.

Details

This function returns the expected predictor of a fixest fit. The likelihood functions are detailed
in femlm help page.

68 fixef.fixest

Value

It returns a numeric vector of length the number of observations used to estimate the model.

If type = "response", the value returned is the expected predictor, i.e. the expected value of the
dependent variable for the fitted model: E(Y |X). If type = "link", the value returned is the linear
predictor of the fitted model, that is X · β (remind that E(Y |X) = f(X · β)).

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. resid.fixest, predict.fixest,
summary.fixest, vcov.fixest, fixef.fixest.

Examples

simple estimation on iris data, using "Species" fixed-effects
res_poisson = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

we extract the fitted values
y_fitted_poisson = fitted(res_poisson)

Same estimation but in OLS (Gaussian family)
res_gaussian = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris, family = "gaussian")

y_fitted_gaussian = fitted(res_gaussian)

comparison of the fit for the two families
plot(iris$Sepal.Length, y_fitted_poisson)
points(iris$Sepal.Length, y_fitted_gaussian, col = 2, pch = 2)

fixef.fixest Extract the Fixed-Effects from a fixest estimation.

Description

This function retrieves the fixed effects from a fixest estimation. It is useful only when there are
one or more fixed-effect dimensions.

Usage

S3 method for class 'fixest'
fixef(object, notes = getFixest_notes(), ...)

fixef.fixest 69

Arguments

object A fixest estimation (e.g. obtained using feols or feglm).
notes Logical. Whether to display a note when the fixed-effects coefficients are not

regular.
... Not currently used.

Details

If the fixed-effect coefficients not regular, then several reference points need to be set, leading to the
coefficients to be NOT interpretable. If this is the case, then a warning is raised.

Value

A list containing the vectors of the fixed effects.

If there is more than 1 fixed-effect, then the attribute “references” is created. This is a vector of
length the number of fixed-effects, each element contains the number of coefficients set as refer-
ences. By construction, the elements of the first fixed-effect dimension are never set as references.
In the presence of regular fixed-effects, there should be Q-1 references (with Q the number of fixed-
effects).

Author(s)

Laurent Berge

See Also

plot.fixest.fixef. See also the main estimation functions femlm, feols or feglm. Use summary.fixest
to see the results with the appropriate standard-errors, fixef.fixest to extract the fixed-effect co-
efficients, and the function etable to visualize the results of multiple estimations.

Examples

data(trade)

We estimate the effect of distance on trade => we account for 3 fixed-effects
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

Obtaining the fixed-effects coefficients:
fe_trade = fixef(est_pois)

The fixed-effects of the first fixed-effect dimension:
head(fe_trade$Origin)

Summary information:
summary(fe_trade)

Plotting them:
plot(fe_trade)

70 formula.fixest

formula.fixest Extract the formula of a fixest fit

Description

This function extracts the formula from a fixest estimation (obtained with femlm, feols or
feglm). If the estimation was done with fixed-effects, they are added in the formula after a pipe
(“|”). If the estimation was done with a non linear in parameters part, then this will be added in the
formula in between I().

Usage

S3 method for class 'fixest'
formula(x, type = c("full", "linear", "NL"), ...)

Arguments

x An object of class fixest. Typically the result of a femlm, feols or feglm
estimation.

type A character scalar. Default is type = "full" which gives back a formula con-
taining the linear part of the model along with the fixed-effects (if any) and the
non-linear in parameters part (if any). If type = "linear" then only the linear
formula is returned. If type = "NL" then only the non linear in parameters part
is returned.

... Not currently used.

Value

It returns a formula.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. model.matrix.fixest, update.fixest,
summary.fixest, vcov.fixest.

Examples

simple estimation on iris data, using "Species" fixed-effects
res = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

formula with the fixed-effect variable
formula(res)

hatvalues.fixest 71

linear part without the fixed-effects
formula(res, "linear")

hatvalues.fixest Hat values for fixest objects

Description

Computes the hat values for feols or feglm estimations. Only works when there are no fixed-
effects.

Usage

S3 method for class 'fixest'
hatvalues(model, ...)

Arguments

model A fixest object. For instance from feols or feglm.

... Not currently used.

Details

Hat values are not available for fenegbin, femlm and feNmlm estimations.

When there are fixed-effects, the hat values of the reduced form are different from the hat values
of the full model. And we cannot get costlessly the hat values of the full model from the reduced
form. It would require to reestimate the model with the fixed-effects as regular variables.

Value

Returns a vector of the same length as the number of observations used in the estimation.

Examples

est = feols(Petal.Length ~ Petal.Width + Sepal.Width, iris)
head(hatvalues(est))

72 i

i Interact variables with factors

Description

Interacts a variable with another treated as a factor, and sets a reference

Usage

i(var, fe, ref, drop, keep)

interact

Arguments

var A vector.

fe A vector (of any type). Must be of the same length as var.

ref A single value that belongs to the interacted variable (fe). Can be missing.

drop A vector of values that belongs to the interacted variable (fe). If provided, all
values from fe that match drop will be removed.

keep A vector of values that belongs to the interacted variable (fe). If provided, only
the values from fe that match keep will be kept.

Format

An object of class function of length 1.

Value

It returns a matrix with number of rows the length of var. The number of columns is equal to the
number of cases contained in fe minus the reference.

Shorthand in fixest estimations

In fixest estimations, instead of using i(var,fe,ref), you can instead use the following writing
var::fe(ref).

Author(s)

Laurent Berge

See Also

coefplot to plot interactions, feols for OLS estimation with multiple fixed-effects.

lag.formula 73

Examples

#
Simple illustration
#

x = rnorm(10)
y = rep(1:4, 3)[1:10]

cbind(x, y, i(x, y, 1))

#
In fixest estimations
#

NOTA: in fixest estimations, i(var, fe, ref) is equivalent to var::fe(ref)

data(base_did)
We interact the variable 'period' with the variable 'treat'
est_did = feols(y ~ x1 + i(treat, period, 5) | id+period, base_did)

You could have used the following formula instead:
y ~ x1 + treat::period(5) | id+period

lag.formula Lags a variable using a formula

Description

Lags a variable using panel id + time identifiers in a formula.

Usage

S3 method for class 'formula'
lag(
x,
k = 1,
data,
time.step = "unitary",
fill = NA,
duplicate.method = c("none", "first"),
...

)

Arguments

x A formula of the type var ~ id + time where var is the variable to be lagged,
id is a variable representing the panel id, and time is the time variable of the
panel.

74 lag.formula

k An integer giving the number of lags. Default is 1. For leads, just use a negative
number.

data Optional, the data.frame in which to evaluate the formula. If not provided, vari-
ables will be fetched in the current environment.

time.step The method to compute the lags. Can be equal to: "unitary" (default), "consecutive",
"within.consecutive", or to a number. If "unitary", then the largest com-
mon divisor between consecutive time periods is used (typically if the time
variable represents years, it will be 1). This method can apply only to inte-
ger (or convertible to integer) variables. If "consecutive", then the time vari-
able can be of any type: two successive time periods represent a lag of 1. If
"witihn.consecutive" then **within a given id**, two successive time peri-
ods represent a lag of 1. Finally, if the time variable is numeric, you can provide
your own numeric time step.

fill Scalar. How to fill the observations without defined lead/lag values. Default is
NA.

duplicate.method

If several observations have the same id and time values, then the notion of lag
is not defined for them. If duplicate.method = "none" (default) and dupli-
cate values are found, this leads to an error. You can use duplicate.method
= "first" so that the first occurrence of identical id/time observations will be
used as lag.

... Not currently used.

Value

It returns a vector of the same type and length as the variable to be lagged in the formula.

Author(s)

Laurent Berge

See Also

Alternatively, the function panel changes a data.frame into a panel from which the functions l
and f (creating leads and lags) can be called. Otherwise you can set the panel ’live’ during the
estimation using the argument panel.id (see for example in the function feols).

Examples

simple example with an unbalanced panel
base = data.frame(id = rep(1:2, each = 4),

time = c(1, 2, 3, 4, 1, 4, 6, 9), x = 1:8)

base$lag1 = lag(x~id+time, 1, base) # lag 1
base$lead1 = lag(x~id+time, -1, base) # lead 1
base$lag2_fill0 = lag(x~id+time, 2, base, fill = 0)
with time.step = "consecutive"
base$lag1_consecutive = lag(x~id+time, 1, base, time.step = "consecutive")
=> works for indiv. 2 because 9 (resp. 6) is consecutive to 6 (resp. 4)

logLik.fixest 75

base$lag1_within.consecutive = lag(x~id+time, 1, base, time.step = "within")
=> now two consecutive years within each indiv is one lag

print(base)

Argument time.step = "consecutive" is
mostly useful when the time variable is not a number:
e.g. c("1991q1", "1991q2", "1991q3") etc

with duplicates
base_dup = data.frame(id = rep(1:2, each = 4),

time = c(1, 1, 1, 2, 1, 2, 2, 3), x = 1:8)

Error because of duplicate values for (id, time)
try(lag(x~id+time, 1, base_dup))

Error is bypassed, lag corresponds to first occurence of (id, time)
lag(x~id+time, 1, base_dup, duplicate.method = "first")

Playing with time steps
base = data.frame(id = rep(1:2, each = 4),

time = c(1, 2, 3, 4, 1, 4, 6, 9), x = 1:8)

time step: 0.5 (here equivalent to lag of 1)
lag(x~id+time, 2, base, time.step = 0.5)

Error: wrong time step
try(lag(x~id+time, 2, base, time.step = 7))

Adding NAs + unsorted IDs
base = data.frame(id = rep(1:2, each = 4),

time = c(4, NA, 3, 1, 2, NA, 1, 3), x = 1:8)

base$lag1 = lag(x~id+time, 1, base)
base$lag1_within = lag(x~id+time, 1, base, time.step = "w")
base_bis = base[order(base$id, base$time),]

print(base_bis)

You can create variables without specifying the data within data.table:
if(require("data.table")){

base = data.table(id = rep(1:2, each = 3), year = 1990 + rep(1:3, 2), x = 1:6)
base[, x.l1 := lag(x~id+year, 1)]

}

76 logLik.fixest

logLik.fixest Extracts the log-likelihood

Description

This function extracts the log-likelihood from a fixest estimation.

Usage

S3 method for class 'fixest'
logLik(object, ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

... Not currently used.

Details

This function extracts the log-likelihood based on the model fit. You can have more information on
the likelihoods in the details of the function femlm.

Value

It returns a numeric scalar.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Other statistics functions: AIC.fixest,
BIC.fixest.

Examples

simple estimation on iris data with "Species" fixed-effects
res = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

nobs(res)
logLik(res)

model.matrix.fixest 77

model.matrix.fixest Design matrix of a femlm model

Description

This function creates a design matrix of the linear part of a femlm, feols or feglm estimation. Note
that it is only the linear part. The fixed-effects variables (which can be considered as factors) are
excluded from the matrix.

Usage

S3 method for class 'fixest'
model.matrix(object, data, na.rm = TRUE, ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

data If missing (default) then the original data is obtained by evaluating the call.
Otherwise, it should be a data.frame.

na.rm Default is TRUE. Should observations with NAs be removed from the matrix?

... Not currently used.

Value

It returns a design matrix.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. formula.fixest, update.fixest,
summary.fixest, vcov.fixest.

Examples

simple estimation on iris data, using "Species" fixed-effects
res = femlm(Sepal.Length ~ Sepal.Width*Petal.Length +

Petal.Width | Species, iris)

head(model.matrix(res))

78 nobs.fixest

nobs.fixest Extracts the number of observations form a fixest object

Description

This function simply extracts the number of observations form a fixest object, obtained using the
functions femlm, feols or feglm.

Usage

S3 method for class 'fixest'
nobs(object, ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

... Not currently used.

Value

It returns an interger.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Use summary.fixest to see the
results with the appropriate standard-errors, fixef.fixest to extract the fixed-effects coefficients,
and the function etable to visualize the results of multiple estimations.

Examples

simple estimation on iris data with "Species" fixed-effects
res = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

nobs(res)
logLik(res)

obs2remove 79

obs2remove Finds observations to be removed from ML estimation with fixed-
effects

Description

For Poisson, Negative Binomial or Logit estimations with fixed-effects, when the dependent vari-
able is only equal to 0 (or 1 for Logit) for one fixed-effect value this leads to a perfect fit for that
fixed-effect value by setting its associated fixed-effect coefficient to -Inf. Thus these observations
need to be removed before estimation. This function gives the observations to be removed. Note
that by default the function femlm or feglm drops them before performing the estimation.

Usage

obs2remove(fml, data, family = c("poisson", "negbin", "logit"))

Arguments

fml A formula containing the dependent variable and the fixed-effects. It can be
of the type: y ~ fixef_1 + fixef_2 or y ~ x1 | fixef_1 + fixef_1 (in which
case variables before the pipe are ignored).

data A data.frame containing the variables in the formula.

family Character scalar: either “poisson” (default), “negbin” or “logit”.

Value

It returns an integer vector of observations to be removed. If no observations are to be removed,
an empty integer vector is returned. In both cases, it is of class fixest.obs2remove. The vector
has an attribute fixef which is a list giving the IDs of the fixed-effects that have been removed, for
each fixed-effect dimension.

Examples

base = iris
v6: Petal.Length with only 0 values for 'setosa'
base$v6 = base$Petal.Length
base$v6[base$Species == "setosa"] = 0

(x = obs2remove(v6 ~ Species, base))
attr(x, "fixef")

The two results are identical:
res_1 = femlm(v6 ~ Petal.Width | Species, base)
=> note + obsRemoved is created

res_2 = femlm(v6 ~ Petal.Width | Species, base[-x,])
=> no note because observations are removed before

80 panel

esttable(res_1, res_2)

all(res_1$obsRemoved == x)

panel Constructs a fixest panel data base

Description

Constructs a fixest panel data base out of a data.frame which allows to use leads and lags in
fixest estimations and to create new variables from leads and lags if the data.frame was also a
data.table.

Usage

panel(
data,
panel.id,
time.step = "unitary",
duplicate.method = c("none", "first")

)

Arguments

data A data.frame.

panel.id The panel identifiers. Can either be: i) a one sided formula (e.g. panel.id =
~id+time), ii) a character vector of length 2 (e.g. panel.id=c('id','time'),
or iii) a character scalar of two variables separated by a comma (e.g. panel.id='id,time').
Note that you can combine variables with ^ only inside formulas (see the dedi-
cated section in feols).

time.step The method to compute the lags. Can be equal to: "unitary" (default), "consecutive",
"within.consecutive", or to a number. If "unitary", then the largest com-
mon divisor between consecutive time periods is used (typically if the time
variable represents years, it will be 1). This method can apply only to inte-
ger (or convertible to integer) variables. If "consecutive", then the time vari-
able can be of any type: two successive time periods represent a lag of 1. If
"witihn.consecutive" then **within a given id**, two successive time peri-
ods represent a lag of 1. Finally, if the time variable is numeric, you can provide
your own numeric time step.

duplicate.method

If several observations have the same id and time values, then the notion of lag
is not defined for them. If duplicate.method = "none" (default) and dupli-
cate values are found, this leads to an error. You can use duplicate.method
= "first" so that the first occurrence of identical id/time observations will be
used as lag.

panel 81

Details

This function allows you to use leads and lags in a fixest estimation without having to provide
the argument panel.id. It also offers more options on how to set the panel (with the additional
arguments ’time.step’ and ’duplicate.method’).

When the initial data set was also a data.table, not all operations are supported and some may
dissolve the fixest_panel. This is the case when creating subselections of the initial data with
additional attributes (e.g. pdt[x>0, .(x, y, z)] would dissolve the fixest_panel, meaning only a
data.table would be the result of the call).

If the initial data set was also a data.table, then you can create new variables from lags and leads
using the functions l() and f(). See the example.

Value

It returns a data base identical to the one given in input, but with an additional attribute: “panel_info”.
This attribute contains vectors used to efficiently create lags/leads of the data. When the data is sub-
selected, some bookeeping is performed on the attribute “panel_info”.

Author(s)

Laurent Berge

See Also

The estimation methods feols, fepois and feglm.

The functions l and f to create lags and leads within fixest_panel objects.

Examples

data(base_did)

Setting a data set as a panel...
pdat = panel(base_did, ~id+period)

...then using the functions l and f
est1 = feols(y~l(x1, 0:1), pdat)
est2 = feols(f(y)~l(x1, -1:1), pdat)
est3 = feols(l(y)~l(x1, 0:3), pdat)
etable(est1, est2, est3, order = c("f", "^x"), drop="Int")

or using the argument panel.id
feols(f(y)~l(x1, -1:1), base_did, panel.id = ~id+period)

You can use panel.id in various ways:
pdat = panel(base_did, ~id+period)
is identical to:
pdat = panel(base_did, c("id", "period"))
and also to:
pdat = panel(base_did, "id,period")

82 plot.fixest.fixef

l() and f() can also be used within a data.table:
if(require("data.table")){

pdat_dt = panel(as.data.table(base_did), ~id+period)
Now since pdat_dt is also a data.table
you can create lags/leads directly
pdat_dt[, x1_l1 := l(x1)]
pdat_dt[, c("x1_l1_fill0", "y_f2") := .(l(x1, fill = 0), f(y, 2))]

}

plot.fixest.fixef Displaying the most notable fixed-effects

Description

This function plots the 5 fixed-effects with the highest and lowest values, for each of the fixed-effect
dimension. It takes as an argument the fixed-effects obtained from the function fixef.fixest after
an estimation using femlm, feols or feglm.

Usage

S3 method for class 'fixest.fixef'
plot(x, n = 5, ...)

Arguments

x An object obtained from the function fixef.fixest.

n The number of fixed-effects to be drawn. Defaults to 5.

... Not currently used.
Note that the fixed-effect coefficients might NOT be interpretable. This function
is useful only for fully regular panels.
If the data are not regular in the fixed-effect coefficients, this means that sev-
eral ‘reference points’ are set to obtain the fixed-effects, thereby impeding their
interpretation. In this case a warning is raised.

Author(s)

Laurent Berge

See Also

fixef.fixest to extract clouster coefficients. See also the main estimation function femlm, feols
or feglm. Use summary.fixest to see the results with the appropriate standard-errors, the function
etable to visualize the results of multiple estimations.

predict.fixest 83

Examples

data(trade)

We estimate the effect of distance on trade
=> we account for 3 fixed-effects
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

obtaining the fixed-effects coefficients
fe_trade = fixef(est_pois)

plotting them
plot(fe_trade)

predict.fixest Predict method for fixest fits

Description

This function obtains prediction from a fitted model estimated with femlm, feols or feglm.

Usage

S3 method for class 'fixest'
predict(object, newdata, type = c("response", "link"), ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

newdata A data.frame containing the variables used to make the prediction. If not pro-
vided, the fitted expected (or linear if type = "link") predictors are returned.

type Character either equal to "response" (default) or "link". If type="response",
then the output is at the level of the response variable, i.e. it is the expected pre-
dictor E(Y |X). If "link", then the output is at the level of the explanatory
variables, i.e. the linear predictor X · β.

... Not currently used.

Value

It returns a numeric vector of length equal to the number of observations in argument newdata.

Author(s)

Laurent Berge

84 print.fixest

See Also

See also the main estimation functions femlm, feols or feglm. update.fixest, summary.fixest,
vcov.fixest, fixef.fixest.

Examples

Estimation on iris data
res = femlm(Sepal.Length ~ Petal.Length | Species, iris)

what would be the prediction if the data was all setosa?
newdata = data.frame(Petal.Length = iris$Petal.Length, Species = "setosa")
pred_setosa = predict(res, newdata = newdata)

Let's look at it graphically
plot(c(1, 7), c(3, 11), type = "n", xlab = "Petal.Length",

ylab = "Sepal.Length")

newdata = iris[order(iris$Petal.Length),]
newdata$Species = "setosa"
lines(newdata$Petal.Length, predict(res, newdata))

versicolor
newdata$Species = "versicolor"
lines(newdata$Petal.Length, predict(res, newdata), col=2)

virginica
newdata$Species = "virginica"
lines(newdata$Petal.Length, predict(res, newdata), col=3)

The original data
points(iris$Petal.Length, iris$Sepal.Length, col = iris$Species, pch = 18)
legend("topleft", lty = 1, col = 1:3, legend = levels(iris$Species))

print.fixest A print facility for fixest objects.

Description

This function is very similar to usual summary functions as it provides the table of coefficients along
with other information on the fit of the estimation. The type of output is customizable by the user
(using function setFixest_print.type).

Usage

S3 method for class 'fixest'
print(x, n, type = getFixest_print.type(), ...)

print.fixest 85

Arguments

x A fixest object. Obtained using the methods femlm, feols or feglm.

n Integer, number of coefficients to display. By default, only the first 8 coefficients
are displayed if x does not come from summary.fixest.

type Either "table" (default) to display the coefficients table or "coef" to display
only the coefficients. By default the value is getFixest_print.type() which
can be permanently set with setFixest_print.type).

... Other arguments to be passed to vcov.fixest.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Use summary.fixest to see the
results with the appropriate standard-errors, fixef.fixest to extract the fixed-effects coefficients,
and the function etable to visualize the results of multiple estimations.

Examples

Load trade data
data(trade)

We estimate the effect of distance on trade
=> we account for 3 fixed-effects (FEs)
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

displaying the results
(by default SEs are clustered if FEs are used)
print(est_pois)

By default the coefficient table is displayed.
If the user wished to display only the coefficents, use option type:
print(est_pois, type = "coef")

To permanently display coef. only, use setFixest_print.type:
setFixest_print.type("coef")
est_pois
back to default:
setFixest_print.type("table")

86 r2

r2 R2s of fixest models

Description

Reports different R2s for fixest estimations (e.g. feglm or feols).

Usage

r2(x, type = "all", full_names = FALSE)

Arguments

x A fixest object, e.g. obtained with function feglm or feols.

type A character vector representing the R2 to compute. The R2 codes are of the
form: "wapr2" with letters "w" (within), "a" (adjusted) and "p" (pseudo) possi-
bly missing. E.g. to get the regular R2: use type = "r2", the within adjusted
R2: use type = "war2", the pseudo R2: use type = "pr2", etc. Use "sq.cor"
for the squared correlation. By default, all R2s are computed.

full_names Logical scalar, default is FALSE. If TRUE then names of the vector in output will
have full names instead of keywords (e.g. Squared Correlation instead of
sq.cor, etc).

Details

For R2s with no theoretical justification, like e.g. regular R2s for maximum likelihood models –
or within R2s for models without fixed-effects, NA is returned. The single measure to possibly
compare all kinds of models is the squared correlation between the dependent variable and the
expected predictor.

The pseudo-R2 is also returned in the OLS case, it corresponds to the pseudo-R2 of the equivalent
GLM model with a Gaussian family.

For the adjusted within-R2s, the adjustment factor is (n -nb_fe) / (n -nb_fe -K) with n the num-
ber of observations, nb_fe the number of fixed-effects and K the number of variables.

Value

Returns a named vector.

Author(s)

Laurent Berge

resid.fixest 87

Examples

Load trade data
data(trade)

We estimate the effect of distance on trade (with 3 fixed-effects)
est = feols(log(Euros) ~ log(dist_km)|Origin+Destination+Product, trade)

Squared correlation:
r2(est, "sq.cor")

"regular" r2:
r2(est, "r2")

pseudo r2 (equivalent to GLM with Gaussian family)
r2(est, "pr2")

adjusted within r2
r2(est, "war2")

all four at once
r2(est, c("sq.cor", "r2", "pr2", "war2"))

same with full names instead of codes
r2(est, c("sq.cor", "r2", "pr2", "war2"), full_names = TRUE)

resid.fixest Extracts residuals from a fixest object

Description

This function extracts residuals from a fitted model estimated with femlm, feols or feglm.

Usage

S3 method for class 'fixest'
resid(object, type = c("response", "deviance", "pearson", "working"), ...)

residuals.fixest

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

type A character scalar, either "response" (default), "deviance", "pearson", or
"working". Note that the "working" corresponds to the residuals from the
weighted least square and only applies to feglm models.

... Not currently used.

88 setFixest_coefplot

Format

An object of class function of length 1.

Details

The residuals returned are the difference between the dependent variable and the expected predictor.

Value

It returns a numeric vector of the length the number of observations used for the estimation.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. fitted.fixest, predict.fixest,
summary.fixest, vcov.fixest, fixef.fixest.

Examples

simple estimation on iris data, using "Species" fixed-effects
res_poisson = femlm(Sepal.Length ~ Sepal.Width + Petal.Length +

Petal.Width | Species, iris)

we plot the residuals
plot(resid(res_poisson))

setFixest_coefplot Sets the defaults of coefplot

Description

You can set the default values of most arguments of coefplot with this function.

Usage

setFixest_coefplot(
style,
horiz = FALSE,
dict = getFixest_dict(),
keep,
ci.width = "1%",
ci_level = 0.95,
pt.pch = 20,

setFixest_coefplot 89

pt.bg = NULL,
cex = 1,
pt.cex = cex,
col = 1:8,
pt.col = col,
ci.col = col,
lwd = 1,
pt.lwd = lwd,
ci.lwd = lwd,
ci.lty = 1,
grid = TRUE,
grid.par = list(lty = 3, col = "gray"),
zero = TRUE,
zero.par = list(col = "black", lwd = 1),
pt.join = FALSE,
pt.join.par = list(col = pt.col, lwd = lwd),
ci.join = FALSE,
ci.join.par = list(lwd = lwd, col = col, lty = 2),
ci.fill = FALSE,
ci.fill.par = list(col = "lightgray", alpha = 0.5),
ref.line = "auto",
ref.line.par = list(col = "black", lty = 2),
lab.cex,
lab.min.cex = 0.85,
lab.max.mar = 0.25,
lab.fit = "auto",
xlim.add,
ylim.add,
sep,
bg,
group = "auto",
group.par = list(lwd = 2, line = 3, tcl = 0.75),
main = "Effect on __depvar__",
value.lab = "Estimate and __ci__ Conf. Int.",
ylab = NULL,
xlab = NULL,
sub = NULL,
reset = FALSE

)

Arguments

style A character scalar giving the style of the plot to be used. You can set styles with
the function setFixest_coefplot, setting all the default values of the func-
tion. If missing, then it switches to either "default", "interaction" or "multiple",
depending on the data given in input.

horiz A logical scalar, default is FALSE. Whether to display the confidence intervals
horizontally instead of vertically.

90 setFixest_coefplot

dict A named character vector or a logical scalar. It changes the original variable
names to the ones contained in the dictionary. E.g. to change the variables
named a and b3 to (resp.) “$log(a)$” and to “$bonus^3$”, use dict=c(a="$log(a)$",b3="$bonus^3$").
By default, if Tex output is requested or if argument file is not missing, it is
equal to getFixest_dict(), a default dictionary which can be set with setFixest_dict.
The default is not to change names if a data.frame is requested (i.e. tex =
FALSE); if so, you can use dict = TRUE to use the dictionary you’ve set globally
with setFixest_dict().

keep Character vector. This element is used to display only a subset of variables.
This should be a vector of regular expressions (see regex help for more info).
Each variable satisfying any of the regular expressions will be kept. This ar-
gument is applied post aliasing (see argument dict). Example: you have the
variable x1 to x55 and want to display only x1 to x9, then you could use keep
= "x[[:digit:]]$". If the first character is an exclamation mark, the effect is
reversed (e.g. keep = "!Intercept" means: every variable that does not contain
“Intercept” is kept). See details.

ci.width The width of the extremities of the confidence intervals. Default is 0.1.

ci_level Scalar between 0 and 1: the level of the CI. By default it is equal to 0.95.

pt.pch The patch of the coefficient estimates. Default is 1 (circle).

pt.bg The background color of the point estimate (when the pt.pch is in 21 to 25).
Defaults to NULL.

cex Numeric, default is 1. Expansion factor for the points

pt.cex The size of the coefficient estimates. Default is the other argument cex.

col The color of the points and the confidence intervals. Default is 1 ("black"). Note
that you can set the colors separately for each of them with pt.col and ci.col.

pt.col The color of the coefficient estimates. Default is equal to the other argument
col.

ci.col The color of the confidence intervals. Default is equal to the other argument
col.

lwd General liwe with. Default is 1.

pt.lwd The line width of the coefficient estimates. Default is equal to the other argument
lwd.

ci.lwd The line width of the confidence intervals. Default is equal to the other argument
lwd.

ci.lty The line type of the confidence intervals. Default is 1.

grid Logical, default is TRUE. Whether a grid should be displayed. You can set the
display of the grid with the argument grid.par.

grid.par List. Parameters of the grid. The default values are: lty = 3 and col = "gray".
You can add any graphical parameter that will be passed to abline. You also
have two additional arguments: use horiz = FALSE to disable the horizontal
lines, and use vert = FALSE to disable the vertical lines. Eg: grid.par = list(vert
= FALSE,col = "red",lwd = 2).

zero Logical, default is TRUE. Whether the 0-line should be emphasized. You can set
the parameters of that line with the argument zero.par.

setFixest_coefplot 91

zero.par List. Parameters of the zero-line. The default values are col = "black" and
lwd = 1. You can add any graphical parameter that will be passed to abline.
Example: zero.par = list(col = "darkblue",lwd = 3).

pt.join Logical, default depends on the situation. If TRUE, then the coefficient estimates
are joined with a line. By default, it is equal to TRUE only if: i) interactions are
plotted, ii) the x values are numeric and iii) a reference is found.

pt.join.par List. Parameters of the line joining the cofficients. The default values are: col =
pt.col and lwd = lwd. You can add any graphical parameter that will be passed
to lines. Eg: pt.join.par = list(lty = 2).

ci.join Logical default to FALSE. Whether to join the extremities of the confidence in-
tervals. If TRUE, then you can set the graphical parameters with the argument
ci.join.par.

ci.join.par A list of parameters to be passed to lines. Only used if ci.join=TRUE. By
default it is equal to list(lwd = lwd,col = col,lty = 2).

ci.fill Logical default to FALSE. Whether to fille the confidence intervals with a color.
If TRUE, then you can set the graphical parameters with the argument ci.fill.par.

ci.fill.par A list of parameters to be passed to polygon. Only used if ci.fill=TRUE. By
default it is equal to list(col = "lightgray",alpha = 0.5). Note that alpha
is a special parameter that adds transparency to the color (ranges from 0 to 1).

ref.line Logical, default is "auto", the behavior depending on the situation. It is TRUE
only if: i) interactions are plotted, ii) the x values are numeric and iii) a reference
is found. If TRUE, then a vertical line is drawn at the level of the reference value.
You can set the parameters of this line with the argument ref.line.par.

ref.line.par List. Parameters of the vertical line on the reference. The default values are:
col = "black" and lty = 2. You can add any graphical parameter that will be
passed to abline. Eg: ref.line.par = list(lty = 1,lwd = 3).

lab.cex The size of the labels of the coefficients. Default is missing. It is automati-
cally set by an internal algorithm which can go as low as lab.min.cex (another
argument).

lab.min.cex The minimum size of the coefficients labels, as set by the internal algorithm.
Default is 0.85.

lab.max.mar The maximum size the left margin can take when trying to fit the coefficient
labels into it (only when horiz = TRUE). This is used in the internal algorithm
fitting the coefficient labels. Default is 0.25.

lab.fit The method to fit the coefficient labels into the plotting region (only when horiz
= FALSE). Can be "auto" (the default), "simple", "multi" or "tilted". If
"simple", then the classic axis is drawn. If "multi", then the coefficient labels
are fit horizontally across several lines, such that they don’t collide. If "tilted",
then the labels are tilted. If "auto", an automatic choice between the three is
made.

xlim.add A numeric vector of length 1 or 2. It represents an extension factor of xlim, in
percentage. Eg: xlim.add = c(0,0.5) extends xlim of 50% on the right. If
of lentgh 1, positive values represent the right, and negative values the left (Eg:
xlim.add = -0.5 is equivalent to xlim.add = c(0.5,0)).

92 setFixest_coefplot

ylim.add A numeric vector of length 1 or 2. It represents an extension factor of ylim, in
percentage. Eg: ylim.add = c(0,0.5) extends ylim of 50% on the top. If of
lentgh 1, positive values represent the top, and negative values the bottom (Eg:
ylim.add = -0.5 is equivalent to ylim.add = c(0.5,0)).

sep The distance between two estimates – only when argument object is a list of
estimation results.

bg Background color for the plot. By default it is white.

group A list, default is missing. Each element of the list reports the coefficients to be
grouped while the name of the element is the group name. Each element of the
list can be either: i) a character vector of length 1, ii) of length 2, or ii) a numeric
vector. If equal to: i) then it is interpreted as a pattern: all element fitting the reg-
ular expression will be grouped, if ii) it corrsponds to the first and last elements
to be grouped, if iii) it corresponds to the coefficients numbers to be grouped. If
equal to a character vector, you can use a percentage to tell the algorithm to look
at the coefficients before aliasing (e.g. "%varname"). Example of valid uses:
group=list(group_name=\"pattern\"), group=list(group_name=c(\"var_start\",\"var_end\")),
group=list(group_name=1:2)). See details.

group.par A list of parameters controlling the display of the group. The parameters con-
trolling the line are: lwd, tcl (length of the tick), line.adj (adjustment of the
position, default is 0), tick (whether to add the ticks), lwd.ticks, col.ticks.
Then the parameters controlling the text: text.adj (adjustment of the position,
default is 0), text.cex, text.font, text.col.

main The title of the plot. Default is "Effect on __depvar__". You can use the
special variable __depvar__ to set the title (useful when you set the plot default
with setFixest_coefplot).

value.lab The label to appear on the side of the coefficient values. If horiz = FALSE, the
label appears in the y-axis. If horiz = TRUE, then it appears on the x-axis. The
default is equal to "Estimate and __ci__ Conf. Int.", with __ci__ a special
variable giving the value of the confidence interval.

ylab The label of the y-axis, default is NULL. Note that if horiz = FALSE, it overrides
the value of the argument value.lab.

xlab The label of the x-axis, default is NULL. Note that if horiz = TRUE, it overrides
the value of the argument value.lab.

sub A subtitle, default is NULL.

reset Logical, default is TRUE. If TRUE, then the arguments that *are not* set during
the call are reset to their "factory"-default values. If FALSE, on the other hand,
arguments that have already been modified are not changed.

Value

Doesn’t return anything.

See Also

coefplot

setFixest_dict 93

Examples

coefplot has many arguments, which makes it highly flexible.
If you don't like the default style of coefplot. No worries,
you can set *your* default by using the function
setFixest_coefplot()

Estimation
est = feols(Petal.Length ~ Petal.Width + Sepal.Length +

Sepal.Width | Species, iris)

Plot with default style
coefplot(est)

Now we permanently change some arguments
dict = c("Petal.Length"="Length (Petal)", "Petal.Width"="Width (Petal)",

"Sepal.Length"="Length (Sepal)", "Sepal.Width"="Width (Sepal)")

setFixest_coefplot(ci.col = 2, pt.col = "darkblue", ci.lwd = 3,
pt.cex = 2, pt.pch = 15, ci.width = 0, dict = dict)

Tadaaa!
coefplot(est)

To reset to the default settings:
setFixest_coefplot()
coefplot(est)

setFixest_dict Sets/gets the dictionary relabeling the variables

Description

Sets/gets the default dictionary used in the function etable, did_means and coefplot. The dictio-
naries are used to relabel variables (usually towards a fancier, more explicit formatting) when ex-
porting them into a Latex table or displaying in graphs. By setting the dictionary with setFixest_dict,
you can avoid providing the argument dict.

Usage

setFixest_dict(dict)

getFixest_dict

Arguments

dict A named character vector. E.g. to change my variable named "a" and "b" to
(resp.) "$log(a)$" and "$bonus^3$", then use dict = c(a="$log(a)$",b3="$bonus^3$").

94 setFixest_na_inf.rm

This dictionary is used in Latex tables or in graphs by the function coefplot. If
you want to separate Latex rendering from rendering in graphs, use an amper-
sand first to make the variable specific to coefplot.

Format

An object of class function of length 1.

Author(s)

Laurent Berge

Examples

data(trade)
est = feols(log(Euros) ~ log(dist_km)|Origin+Destination+Product, trade)
we export the result & rename some variables
esttex(est, dict = c("log(Euros)"="Euros (ln)", Origin="Country of Origin"))

If you export many tables, it can be more convenient to use setFixest_dict:
setFixest_dict(c("log(Euros)"="Euros (ln)", Origin="Country of Origin"))
esttex(est) # variables are properly relabeled

setFixest_na_inf.rm Sets/gets whether to remove NA/Inf values from fixest estimations

Description

Sets/gets the default policy of NA/Inf behavior in fixest estimations. By default, NA/Inf values are
removed (and a note is displayed). If you prefer a no NA policy, just set setFixest_na_inf.rm(FALSE).

Usage

setFixest_na_inf.rm(x)

getFixest_na_inf.rm

Arguments

x A Logical.

Format

An object of class function of length 1.

Author(s)

Laurent Berge

setFixest_notes 95

Examples

base = iris
base[1, 1] = NA
default: NAs removed
res = feols(Sepal.Length ~ Sepal.Width, base)
no tolerance: estimation fails
try(feols(Sepal.Length ~ Sepal.Width, base, na_inf.rm = FALSE))

to set no tolerance as default:
setFixest_na_inf.rm(FALSE)
try(feols(Sepal.Length ~ Sepal.Width, base))

Reset it on:
setFixest_na_inf.rm(TRUE)

setFixest_notes Sets/gets whether to display notes in fixest estimation functions

Description

Sets/gets the default values of whether notes (informing for NA and observations removed) should
be displayed in fixest estimation functions.

Usage

setFixest_notes(x)

getFixest_notes

Arguments

x A logical. If FALSE, then notes are permanently removed.

Format

An object of class function of length 1.

Author(s)

Laurent Berge

96 setFixest_nthreads

Examples

Change default with
setFixest_notes(FALSE)

Back to default which is TRUE
getFixest_notes()

setFixest_nthreads Sets/gets the number of threads to use in fixest functions

Description

Sets/gets the default number of threads to used in fixest estimation functions. The default is the
maximum number of threads minus two.

Usage

setFixest_nthreads(nthreads)

getFixest_nthreads

Arguments

nthreads An integer strictly greater than one and lower than the maximum number of
threads (if OpenMP is available). If missing, the default is the maximum number
of threads minus two.

Format

An object of class function of length 1.

Author(s)

Laurent Berge

Examples

Gets the current number of threads
getFixest_nthreads()

To set multi-threading off:
setFixest_nthreads(1)

To set it back to default:
setFixest_nthreads()

setFixest_print.type 97

setFixest_print.type Sets/gets what print does to fixest estimations

Description

Sets/gets the default behavior of the print method for non-summary fixest estimations. Default
is to display the coefficients table but it can be changed to displaying only the coefficients.

Usage

setFixest_print.type(x)

getFixest_print.type

Arguments

x Either "table" or "coef".

Format

An object of class function of length 1.

Author(s)

Laurent Berge

Examples

res = feols(Sepal.Length ~ Sepal.Width + Petal.Length, iris)
default is coef. table:
res
can be changed to only the coefficients:
print(res, type = "coef")
setFixest_print.type("coef")
res # only the coefs

back to default
setFixest_print.type("table")

98 setFixest_se

setFixest_se Sets the default type of standard errors to be used

Description

This functions defines or extracts the default type of standard-errors to computed in fixest summary,
and vcov.

Usage

setFixest_se(no_FE = "standard", one_FE = "cluster", two_FE = "cluster")

getFixest_se()

Arguments

no_FE Character scalar equal to either: "standard" (default), or "white". The type of
standard-errors to use by default for estimations without fixed-effects.

one_FE Character scalar equal to either: "standard", "white", or "cluster" (default).
The type of standard-errors to use by default for estimations with one fixed-
effect.

two_FE Character scalar equal to either: "standard", "white", "cluster", or "twoway"
(default). The type of standard-errors to use by default for estimations with two
or more fixed-effects.

Value

The function getFixest_se() returns a list with three elements containing the default for estima-
tions i) wihtout, ii) with one, or iii) with two or more fixed-effects.

Examples

By default:
- no fixed-effect (FE): standard
- one or more FEs: cluster

data(base_did)
est_no_FE = feols(y ~ x1, base_did)
est_one_FE = feols(y ~ x1 | id, base_did)
est_two_FE = feols(y ~ x1 | id + period, base_did)

etable(est_no_FE, est_one_FE, est_two_FE)

Changing the default standard-errors
setFixest_se(no_FE = "white", one_FE = "standard", two_FE = "twoway")
etable(est_no_FE, est_one_FE, est_two_FE)

sigma.fixest 99

Reseting the defaults
setFixest_se()

sigma.fixest Residual standard deviation of fixest estimations

Description

Extract the estimated standard deviation of the errors from fixest estimations.

Usage

S3 method for class 'fixest'
sigma(object, ...)

Arguments

object A fixest object.

... Not currently used.

Value

Returns a numeric scalar.

See Also

feols, fepois, feglm, fenegbin, feNmlm.

Examples

est = feols(Petal.Length ~ Petal.Width, iris)
sigma(est)

100 summary.fixest

summary.fixest Summary of a fixest object. Computes different types of standard
errors.

Description

This function is similar to print.fixest. It provides the table of coefficients along with other
information on the fit of the estimation. It can compute different types of standard errors. The new
variance covariance matrix is an object returned.

Usage

S3 method for class 'fixest'
summary(
object,
se,
cluster,
dof = getFixest_dof(),
.vcov,
forceCovariance = FALSE,
keepBounded = FALSE,
n,
...

)

summ

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

se Character scalar. Which kind of standard error should be computed: “standard”,
“White”, “cluster”, “twoway”, “threeway” or “fourway”? By default if there are
clusters in the estimation: se = "cluster", otherwise se = "standard". Note
that this argument can be implicitly deduced from the argument cluster.

cluster Tells how to cluster the standard-errors (if clustering is requested). Can be either
a list of vectors, a character vector of variable names, a formula or an integer vec-
tor. Assume we want to perform 2-way clustering over var1 and var2 contained
in the data.frame base used for the estimation. All the following cluster argu-
ments are valid and do the same thing: cluster = base[,c("var1,"var2")]},\code{cluster
= c("var1,"var2"), cluster = ~var1+var2. If the two variables were used as
clusters in the estimation, you could further use cluster = 1:2 or leave it blank
with se = "twoway" (assuming var1 [resp. var2] was the 1st [res. 2nd] cluster).

dof An object of class dof.type obtained with the function dof. Represents how the
degree of freedom correction should be done.You must use the function dof for
this argument. The arguments and defaults of the function dof are: adj = TRUE,
fixef.K="nested", cluster.adj = TRUE, cluster.df = "conventional", t.df

summary.fixest 101

= "conventional", fixef.force_exact=FALSE). See the help of the function
dof for details.

.vcov A user provided covariance matrix. Must be a square matrix of the same number
of rows as the number of variables estimated.

forceCovariance

(Advanced users.) Logical, default is FALSE. In the peculiar case where the
obtained Hessian is not invertible (usually because of collinearity of some vari-
ables), use this option to force the covariance matrix, by using a generalized
inverse of the Hessian. This can be useful to spot where possible problems
come from.

keepBounded (Advanced users – feNmlm with non-linear part and bounded coefficients only.)
Logical, default is FALSE. If TRUE, then the bounded coefficients (if any) are
treated as unrestricted coefficients and their S.E. is computed (otherwise it is
not).

n Integer, default is missing (means Inf). Number of coefficients to display when
the print method is used.

... Not currently used.

Format

An object of class function of length 1.

Value

It returns a fixest object with:

cov.scaled The new variance-covariance matrix (computed according to the argument se).

se The new standard-errors (computed according to the argument se).

coeftable The table of coefficients with the new standard errors.

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. Use fixef.fixest to extract the
fixed-effects coefficients, and the function etable to visualize the results of multiple estimations.

Examples

Load trade data
data(trade)

We estimate the effect of distance on trade (with 3 fixed-effects)
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

Comparing different types of standard errors

102 summary.fixest.fixef

sum_standard = summary(est_pois, se = "standard")
sum_white = summary(est_pois, se = "white")
sum_oneway = summary(est_pois, se = "cluster")
sum_twoway = summary(est_pois, se = "twoway")
sum_threeway = summary(est_pois, se = "threeway")

etable(sum_standard, sum_white, sum_oneway, sum_twoway, sum_threeway)

Alternative ways to cluster the SE:

two-way clustering: Destination and Product
(Note that arg. se = "twoway" is implicitly deduced from the argument cluster)
summary(est_pois, cluster = c("Destination", "Product"))
summary(est_pois, cluster = trade[, c("Destination", "Product")])
summary(est_pois, cluster = list(trade$Destination, trade$Product))
summary(est_pois, cluster = ~Destination+Product)
Since Destination and Product are used as fixed-effects, you can also use:
summary(est_pois, cluster = 2:3)

summary.fixest.fixef Summary method for fixed-effects coefficients

Description

This function summarizes the main characteristics of the fixed-effects coefficients. It shows the
number of fixed-effects that have been set as references and the first elements of the fixed-effects.

Usage

S3 method for class 'fixest.fixef'
summary(object, n = 5, ...)

Arguments

object An object returned by the function fixef.fixest.

n Positive integer, defaults to 5. The n first fixed-effects for each fixed-effect di-
mension are reported.

... Not currently used.

Value

It prints the number of fixed-effect coefficients per fixed-effect dimension, as well as the number of
fixed-effects used as references for each dimension, and the mean and variance of the fixed-effect
coefficients. Finally, it reports the first 5 (arg. n) elements of each fixed-effect.

summary.fixest.obs2remove 103

Author(s)

Laurent Berge

See Also

femlm, fixef.fixest, plot.fixest.fixef.

Examples

data(trade)

We estimate the effect of distance on trade
=> we account for 3 fixed-effects effects
est_pois = femlm(Euros ~ log(dist_km)|Origin+Destination+Product, trade)

obtaining the fixed-effects coefficients
fe_trade = fixef(est_pois)

printing some summary information on the fixed-effects coefficients:
summary(fe_trade)

summary.fixest.obs2remove

Summary method for fixest.obs2remove objects

Description

This function synthesizes the information of function obs2remove. It reports the number of obser-
vations to be removed as well as the number of fixed-effects removed per fixed-effect dimension.

Usage

S3 method for class 'fixest.obs2remove'
summary(object, ...)

Arguments

object A fixest.obs2remove object obtained from function obs2remove.

... Not currently used.

104 terms.fixest

Examples

base = iris
v6: Petal.Length with only 0 values for 'setosa'
base$v6 = base$Petal.Length
base$v6[base$Species == "setosa"] = 0

x = obs2remove(v6 ~ Species, base)
summary(x)

terms.fixest Extract the terms

Description

This function extracts the terms of a fixest estimation, excluding the fixed-effects part.

Usage

S3 method for class 'fixest'
terms(x, ...)

Arguments

x A fixest object. Obtained using the functions femlm, feols or feglm.

... Not currently used.

Value

An object of class c("terms","formula") which contains the terms representation of a symbolic
model.

Examples

simple estimation on iris data, using "Species" fixed-effects
res = feols(Sepal.Length ~ Sepal.Width*Petal.Length +

Petal.Width | Species, iris)

Terms of the linear part
terms(res)

to_integer 105

to_integer Fast transform of any type of vector(s) into an integer vector

Description

Tool to transform any type of vector, or even combination of vectors, into an integer vector ranging
from 1 to the number of unique values. This actually creates an unique identifier vector.

Usage

to_integer(
...,
sorted = FALSE,
add_items = FALSE,
items.list = FALSE,
multi.join = FALSE

)

Arguments

... Vectors of any type, to be transformed in integer.

sorted Logical, default is FALSE. Whether the integer vector should make reference to
sorted values?

add_items Logical, default is FALSE. Whether to add the unique values of the original vec-
tor(s). If requested, an attribute items is created containing the values (alterna-
tively, they can appear in a list if items.list=TRUE).

items.list Logical, default is FALSE. Only used if add_items=TRUE. If TRUE, then a list of
length 2 is returned with x the integer vector and items the vector of items.

multi.join Logical, or character, scalar, defaults to FALSE. Only used if multiple vectors are
to be transformed into integers. If multi.join is not FALSE, the the values of
the different vectors will be collated using paste with collapse=multi.join.

Details

If multiple vectors have to be combined and add_items=TRUE, to have user readable values in the
items, you should add the argument multi.join so that the values of the vectors are combined in a
"user-readable" way. Note that in the latter case, the algorithm is much much slower.

Value

Reruns a vector of the same length as the input vectors. If add_items=TRUE and items.list=TRUE,
a list of two elements is returned: x being the integer vector and items being the unique values to
which the values in x make reference.

106 trade

Examples

x1 = iris$Species
x2 = as.integer(iris$Sepal.Length)

transforms the species vector into integers
to_integer(x1)

To obtain the "items":
to_integer(x1, add_items = TRUE)
same but in list form
to_integer(x1, add_items = TRUE, items.list = TRUE)

transforms x2 into an integer vector from 1 to 4
to_integer(x2, add_items = TRUE)

To have the sorted items:
to_integer(x2, add_items = TRUE, sorted = TRUE)

The result can safely be used as an index
res = to_integer(x2, add_items = TRUE, sorted = TRUE, items.list = TRUE)
all(res$items[res$x] == x2)

#
Multiple vectors
#

by default, the two vector are fast combined, and items are meaningless
to_integer(x1, x2, add_items = TRUE)

You can use multi.join to have human-readable values for the items:
to_integer(x1, x2, add_items = TRUE, multi.join = TRUE)

to_integer(x1, x2, add_items = TRUE, multi.join = "; ")

trade Trade data sample

Description

This data reports trade information between countries of the European Union (EU15).

Usage

data(trade)

unpanel 107

Format

trade is a data frame with 38,325 observations and 6 variables named Destination, Origin,
Product, Year, dist_km and Euros.

• Origin: 2-digits codes of the countries of origin of the trade flow.

• Destination: 2-digits codes of the countries of destination of the trade flow.

• Products: Number representing the product categories (from 1 to 20).

• Year: Years from 2007 to 2016

• dist_km: Geographic distance in km between the centers of the countries of origin and desti-
nation.

• Euros: The total amount in euros of the trade flow for the specific year/product category/origin-
destination country pair.

Source

This data has been extrated from Eurostat on October 2017.

unpanel Dissolves a fixest panel

Description

Transforms a fixest_panel object into a regular data.frame.

Usage

unpanel(x)

Arguments

x A fixest_panel object (obtained from function panel).

Value

Returns a data set of the exact same dimension. Only the attribute ’panel_info’ is erased.

Author(s)

Laurent Berge

See Also

Alternatively, the function panel changes a data.frame into a panel from which the functions l
and f (creating leads and lags) can be called. Otherwise you can set the panel ’live’ during the
estimation using the argument panel.id (see for example in the function feols).

108 update.fixest

Examples

data(base_did)

Setting a data set as a panel
pdat = panel(base_did, ~id+period)

... allows you to use leads and lags in estimations
feols(y~l(x1, 0:1), pdat)

Now unpanel => returns the initial data set
class(pdat) ; dim(pdat)
new_base = unpanel(pdat)
class(new_base) ; dim(new_base)

update.fixest Updates a fixest estimation

Description

Updates and re-estimates a fixest model (estimated with femlm, feols or feglm). This function
updates the formulas and use previous starting values to estimate a new fixest model. The data is
obtained from the original call.

Usage

S3 method for class 'fixest'
update(object, fml.update, nframes = 1, ...)

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

fml.update Changes to be made to the original argument fml. See more information on
update.formula. You can add/withdraw both variables and fixed-effects. E.g.
. ~ . + x2 | . + z2 would add the variable x2 and the cluster z2 to the former
estimation.

nframes (Advanced users.) Defaults to 1. Number of frames up the stack where to per-
form the evaluation of the updated call. By default, this is the parent frame.

... Other arguments to be passed to the functions femlm, feols or feglm.

Value

It returns a fixest object (see details in femlm, feols or feglm).

vcov.fixest 109

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. predict.fixest, summary.fixest,
vcov.fixest, fixef.fixest.

Examples

Example using trade data
data(trade)

main estimation
est_pois <- femlm(Euros ~ log(dist_km) | Origin + Destination, trade)

we add the variable log(Year)
est_2 <- update(est_pois, . ~ . + log(Year))

we add another fixed-effect: "Product"
est_3 <- update(est_2, . ~ . | . + Product)

we remove the fixed-effect "Origin" and the variable log(dist_km)
est_4 <- update(est_3, . ~ . - log(dist_km) | . - Origin)

Quick look at the 4 estimations
esttable(est_pois, est_2, est_3, est_4)

vcov.fixest Extracts the variance/covariance of a femlm fit

Description

This function extracts the variance-covariance of estimated parameters from a model estimated with
femlm, feols or feglm.

Usage

S3 method for class 'fixest'
vcov(
object,
se,
cluster,
dof = getFixest_dof(),
forceCovariance = FALSE,
keepBounded = FALSE,
...

)

110 vcov.fixest

Arguments

object A fixest object. Obtained using the functions femlm, feols or feglm.

se Character scalar. Which kind of standard error should be computed: “standard”,
“White”, “cluster”, “twoway”, “threeway” or “fourway”? By default if there are
clusters in the estimation: se = "cluster", otherwise se = "standard". Note
that this argument can be implicitly deduced from the argument cluster.

cluster Tells how to cluster the standard-errors (if clustering is requested). Can be either
a list of vectors, a character vector of variable names, a formula or an integer vec-
tor. Assume we want to perform 2-way clustering over var1 and var2 contained
in the data.frame base used for the estimation. All the following cluster argu-
ments are valid and do the same thing: cluster = base[,c("var1,"var2")]},\code{cluster
= c("var1,"var2"), cluster = ~var1+var2. If the two variables were used as
clusters in the estimation, you could further use cluster = 1:2 or leave it blank
with se = "twoway" (assuming var1 [resp. var2] was the 1st [res. 2nd] cluster).

dof An object of class dof.type obtained with the function dof. Represents how the
degree of freedom correction should be done.You must use the function dof for
this argument. The arguments and defaults of the function dof are: adj = TRUE,
fixef.K="nested", cluster.adj = TRUE, cluster.df = "conventional", t.df
= "conventional", fixef.force_exact=FALSE). See the help of the function
dof for details.

forceCovariance

(Advanced users.) Logical, default is FALSE. In the peculiar case where the
obtained Hessian is not invertible (usually because of collinearity of some vari-
ables), use this option to force the covariance matrix, by using a generalized
inverse of the Hessian. This can be useful to spot where possible problems
come from.

keepBounded (Advanced users – feNmlm with non-linear part and bounded coefficients only.)
Logical, default is FALSE. If TRUE, then the bounded coefficients (if any) are
treated as unrestricted coefficients and their S.E. is computed (otherwise it is
not).

... Other arguments to be passed to summary.fixest.
The computation of the VCOV matrix is first done in summary.fixest.

Value

It returns a N × N square matrix where N is the number of variables of the fitted model. This
matrix has an attribute “type” specifying how this variance/covariance matrix has been computed
(i.e. was it created using White correction, or was it clustered along a specific factor, etc).

Author(s)

Laurent Berge

See Also

See also the main estimation functions femlm, feols or feglm. summary.fixest, confint.fixest,
resid.fixest, predict.fixest, fixef.fixest.

weights.fixest 111

Examples

Load trade data
data(trade)

We estimate the effect of distance on trade (with 3 fixed-effects)
est_pois = femlm(Euros ~ log(dist_km) + log(Year) | Origin + Destination +

Product, trade)

By default, in the presence of FEs
the VCOV is clustered along the first FE
vcov(est_pois)

"white" VCOV
vcov(est_pois, se = "white")

"clustered" VCOV (with respect to the Product factor)
vcov(est_pois, se = "cluster", cluster = trade$Product)
another way to make the same request:
note that previously arg. se was optional since deduced from arg. cluster
vcov(est_pois, cluster = "Product")
yet another way:
vcov(est_pois, cluster = ~Product)

Another estimation without fixed-effects:
est_pois_simple = femlm(Euros ~ log(dist_km) + log(Year), trade)

We can still get the clustered VCOV,
but we need to give the argument cluster:
vcov(est_pois_simple, cluster = ~Product)

weights.fixest Extracts the weights from a fixest object

Description

Simply extracts the weights used to estimate a fixest model.

Usage

S3 method for class 'fixest'
weights(object, ...)

Arguments

object A fixest object.

... Not currently used.

112 xpd

Value

Returns a vector of the same length as the number of observations in the original data set. Ignored
observations due to NA or perfect fit are re-introduced and their weights set to NA.

See Also

feols, fepois, feglm, fenegbin, feNmlm.

Examples

est = feols(Petal.Length ~ Petal.Width, iris, weights = ~as.integer(Sepal.Length) - 3.99)
weights(est)

xpd Sets/gets and expands formula macros

Description

You can set formula macros globally with setFixest_fml. These macros can then be used in
fixest estimations or when using the function xpd.

Usage

xpd(fml, ...)

setFixest_fml(..., reset = FALSE)

getFixest_fml()

Arguments

fml A formula containing macros variables. The macro variables can be set globally
using setFixest_fml, or can be defined in

... Definition of the macro variables. Each argument name corresponds to the
name of the macro variable. It is required that each macro variable name starts
with two dots (e.g. ..ctrl). The value of each argument must be a one-
sided formula, it is the definition of the macro variable. Example of a valid
call: setFixest_fml(..ctrl = ~ var1 + var2). In the function xpd, the de-
fault macro variables are taken from getFixest_fml, any variable in ... will
replace these values.

reset A logical scalar, defaults to FALSE. If TRUE, all macro variables are first reset
(i.e. deleted).

[.fixest_panel 113

Details

In xpd, the default macro variables are taken from getFixest_fml. Any value in the ... argument
of xpd will replace these default values.

The definitions of the macro variables will replace in verbatim the macro variables. Therefore,
you can include multipart formulas if you wish but then beware of the order the the macros vari-
able in the formula. For example, using the airquality data, say you want to set as controls the
variable Temp and Day fixed-effects, you can do setFixest_fml(..ctrl = ~Temp | Day), but then
feols(Ozone ~ Wind + ..ctrl,airquality) will be quite different from feols(Ozone ~ ..ctrl
+ Wind,airquality), so beware!

Value

The function getFixest_fml() returns a list of character strings, the names corresponding to the
macro variable names, the character strings corresponding to their definition.

Examples

Small examples with airquality data
data(airquality)
we set two macro variables
setFixest_fml(..ctrl = ~ Temp + Day,

..ctrl_long = ~ poly(Temp, 2) + poly(Day, 2))

Using the macro in lm with xpd:
lm(xpd(Ozone ~ Wind + ..ctrl), airquality)
lm(xpd(Ozone ~ Wind + ..ctrl_long), airquality)

You can use the macros without xpd() in fixest estimations
a <- feols(Ozone ~ Wind + ..ctrl, airquality)
b <- feols(Ozone ~ Wind + ..ctrl_long, airquality)
etable(a, b, keep = "Int|Win")

[.fixest_panel Method to subselect from a fixest_panel

Description

Subselection from a fixest_panel which has been created with the function panel. Also allows
to create lag/lead variables with functions l()/f() if the fixest_panel is also a data.table.

Usage

S3 method for class 'fixest_panel'
x[i, j, ...]

114 [.fixest_panel

Arguments

x A fixest_panel object, created with the function panel.

i Row subselection. Allows data.table style selection (provided the data is also
a data.table).

j Variable selection. Allows data.table style selection/variable creation (pro-
vided the data is also a data.table).

... Other arguments to be passed to [.data.frame or data.table (or whatever the
class of the initial data).

Details

If the original data was also a data.table, some calls to [.fixest_panel may dissolve the fixest_panel
object and return a regular data.table. This is the case for subselections with additional arguments.
If so, a note is displayed on the console.

Value

It returns a fixest_panel data base, with the attributes allowing to create lags/leads properly book-
keeped.

Author(s)

Laurent Berge

See Also

Alternatively, the function panel changes a data.frame into a panel from which the functions l
and f (creating leads and lags) can be called. Otherwise you can set the panel ’live’ during the
estimation using the argument panel.id (see for example in the function feols).

Examples

data(base_did)

Creating a fixest_panel object
pdat = panel(base_did, ~id+period)

Subselections of fixest_panel objects bookkeeps the leads/lags engine
pdat_small = pdat[!pdat$period %in% c(2, 4),]
a = feols(y~l(x1, 0:1), pdat_small)

we obtain the same results, had we created the lags "on the fly"
base_small = base_did[!base_did$period %in% c(2, 4),]
b = feols(y~l(x1, 0:1), base_small, panel.id = ~id+period)
etable(a, b)

Using data.table to create new lead/lag variables
if(require("data.table")){

index 115

pdat_dt = panel(as.data.table(base_did), ~id+period)

Variable creation
pdat_dt[, x_l1 := l(x1)]
pdat_dt[, c("x_l1", "x_f1_2") := .(l(x1), f(x1)**2)]

Estimation on a subset of the data
(the lead/lags work appropriately)
feols(y~l(x1, 0:1), pdat_dt[!period %in% c(2, 4)])

}

index Fast and User-Friendly Fixed-Effects Estimations

Description

The package fixest provides a family of functions to perform estimations with multiple fixed-effects.
Standard-errors can be easily and intuitively clustered. It also includes tools to seamlessly export
the results of various estimations.

• To get started, look at the introduction.

Details

The main features are:

• Estimation. The core functions are: feols, feglm and femlm to estimate, respectively, lin-
ear models, generalized linear models and maximum likelihood models with multiple fixed-
effects. The function feNmlm allows the inclusion of non-linear in parameters right hand sides.
Finally fepois and fenegbin are shorthands to estimate Poisson and Negative Binomial mod-
els.

• Easy and flexible clustering of standard-errors. By using the arguments se and dof (see
summary.fixest). To have a sense of how the standard errors are computed, see the vignette
On standard-errors.

• Visualization and exportation of results. You can visualize the results of multiple estimations
in R, or export them in Latex using the function etable. This vignette details how to cus-
tomize the Latex tables: Exporting estimation tables.

• Plot multiple results. You can plot the coefficients and confidence intervals of estimations
easily with the function coefplot. This function also offers a specific layout for interactions.

References

Berge, Laurent, 2018, "Efficient estimation of maximum likelihood models with multiple fixed-
effects: the R package FENmlm." CREA Discussion Papers, 13 (https://wwwen.uni.lu/content/
download/110162/1299525/file/2018_13).

https://cran.r-project.org/package=fixest/vignettes/fixest_walkthrough.html
https://cran.r-project.org/package=fixest/vignettes/standard_errors.html
https://cran.r-project.org/package=fixest/vignettes/exporting_tables.html
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13

Index

∗ datasets
base_did, 4
coef.fixest, 7
coeftable, 17
dof, 26
fitted.fixest, 67
i, 72
resid.fixest, 87
setFixest_dict, 93
setFixest_na_inf.rm, 94
setFixest_notes, 95
setFixest_nthreads, 96
setFixest_print.type, 97
summary.fixest, 100
trade, 106

[.fixest_panel, 113
index, 115

abline, 11, 12, 90, 91
AIC, 3, 5
AIC.fixest, 3, 5, 76

base_did, 4
BIC.fixest, 4, 5, 76
bread.fixest, 6

coef.fixest, 7
coefficients.fixest (coef.fixest), 7
coefplot, 8, 47, 52, 59, 65, 66, 72, 88, 92–94,

115
coeftable, 17
collinearity, 19
confint.fixest, 7, 20, 110
ctable (coeftable), 17

data.table, 40, 80, 113, 114
demean, 21
deviance.fixest, 23
did_estimate_yearly_effects, 5
did_means, 24, 93

did_plot_yearly_effects, 5
dof, 21, 26, 27, 33, 100, 101, 110

estfun.fixest, 29
esttable (etable), 30
esttex (etable), 30
etable, 7, 30, 47, 52, 53, 59, 65, 66, 69, 78,

82, 85, 93, 101, 115

f, 39, 46, 52, 59, 65, 81, 113
family, 43
feglm, 3–5, 7, 14, 19, 20, 23, 33, 37, 41, 50,

53, 54, 59, 66–71, 76–79, 81–88,
99–101, 104, 108–110, 112, 115

femlm, 3–5, 7, 19, 20, 33, 37, 47, 48, 50, 54,
59, 66–71, 76–79, 82–85, 87, 88,
100, 101, 103, 104, 108–110, 115

fenegbin, 14, 23, 47, 59, 66, 71, 99, 112, 115
fenegbin (femlm), 48
feNmlm, 23, 47, 53, 54, 66, 71, 99, 112, 115
feols, 3–7, 9, 13, 14, 17, 19, 20, 23, 30, 33,

37, 40, 43, 44, 47, 49, 53, 56, 59, 61,
62, 67–72, 74, 76–78, 80–88,
99–101, 104, 107–110, 112, 114,
115

fepois, 14, 23, 53, 59, 66, 81, 99, 112, 115
fepois (feglm), 41
fitted.fixest, 67, 88
fitted.values.fixest (fitted.fixest), 67
fixef.fixest, 7, 27, 37, 46, 47, 52, 53, 59,

64, 66, 68, 68, 69, 78, 82, 84, 85, 88,
101–103, 109, 110

fixest (_index_), 115
fixest-package (_index_), 115
formula.fixest, 70, 77

genD, 56
getFixest_dict (setFixest_dict), 93
getFixest_dof (dof), 26
getFixest_etable (etable), 30

116

INDEX 117

getFixest_fml (xpd), 112
getFixest_na_inf.rm

(setFixest_na_inf.rm), 94
getFixest_notes (setFixest_notes), 95
getFixest_nthreads

(setFixest_nthreads), 96
getFixest_print.type

(setFixest_print.type), 97
getFixest_se (setFixest_se), 98

hatvalues.fixest, 71

i, 72
interact, 47, 52, 59, 65
interact (i), 72

jacobian, 56

l, 46, 52, 59, 65, 81, 113
l (f), 40
lag.formula, 73
lines, 11, 12, 91
logLik.fixest, 4, 5, 75

model.matrix.fixest, 70, 77

nlminb, 56
nobs.fixest, 4, 78

obs2remove, 79, 103

panel, 40, 46, 52, 59, 65, 74, 80, 107, 113, 114
paste, 105
plot.fixest.fixef, 69, 82, 103
polygon, 12, 91
predict.fixest, 68, 83, 88, 109, 110
print.fixest, 84
pvalue (coeftable), 17

r2, 33, 86
regex, 10, 34, 90
resid.fixest, 68, 87, 110
residuals.fixest (resid.fixest), 87

se (coeftable), 17
setFixest_coefplot, 9, 13, 14, 88, 89, 92
setFixest_dict, 10, 34, 90, 93
setFixest_dof, 47, 52, 60, 65
setFixest_dof (dof), 26
setFixest_etable (etable), 30

setFixest_fml (xpd), 112
setFixest_na_inf.rm, 94
setFixest_notes, 95
setFixest_nthreads, 44, 50, 56, 62, 96
setFixest_print.type, 84, 85, 97
setFixest_se, 47, 52, 60, 65, 98
sigma.fixest, 99
summ (summary.fixest), 100
summary, 98
summary.fixest, 7, 26, 28, 37, 47, 52, 53, 59,

65, 66, 68–70, 77, 78, 82, 84, 85, 88,
100, 109, 110, 115

summary.fixest.fixef, 102
summary.fixest.obs2remove, 103

terms.fixest, 104
to_integer, 105
trade, 106
tstat (coeftable), 17

unpanel, 107
update.fixest, 70, 77, 84, 108
update.formula, 108

vcov, 98
vcov.fixest, 7, 26, 28, 68, 70, 77, 84, 85, 88,

109, 109

weights.fixest, 111

xpd, 112, 112

	AIC.fixest
	base_did
	BIC.fixest
	bread.fixest
	coef.fixest
	coefplot
	coeftable
	collinearity
	confint.fixest
	demean
	deviance.fixest
	did_means
	dof
	estfun.fixest
	etable
	f
	feglm
	femlm
	feNmlm
	feols
	fitted.fixest
	fixef.fixest
	formula.fixest
	hatvalues.fixest
	i
	lag.formula
	logLik.fixest
	model.matrix.fixest
	nobs.fixest
	obs2remove
	panel
	plot.fixest.fixef
	predict.fixest
	print.fixest
	r2
	resid.fixest
	setFixest_coefplot
	setFixest_dict
	setFixest_na_inf.rm
	setFixest_notes
	setFixest_nthreads
	setFixest_print.type
	setFixest_se
	sigma.fixest
	summary.fixest
	summary.fixest.fixef
	summary.fixest.obs2remove
	terms.fixest
	to_integer
	trade
	unpanel
	update.fixest
	vcov.fixest
	weights.fixest
	xpd
	[.fixest_panel
	index
	Index

