Package ‘fitdc’

September 18, 2016
Title Garmin FIT File Decoder
Version 0.0.1

Description A pure R package for decoding activity files written in the FIT (""Flexible and Interopera-
ble Data Transfer") format. A format that is fast becoming the standard for recording run-
ning and cycling data. Details of the FIT proto-
col can be found at <https://www.thisisant.com/resources/fit>.

Depends R (>=3.3.1)
License MIT + file LICENSE
Encoding UTF-8

LazyData true

URL https://github.com/jmackie4/fitdc
RoxygenNote 5.0.1

NeedsCompilation no

Author Jordan Mackie [aut, cre]

Maintainer Jordan Mackie <jmackie@protonmail.com>
Repository CRAN

Date/Publication 2016-09-18 08:56:52

R topics documented:

fitdc e e 2
read_fit e e 2
unpack e e e 3
Index 5

https://github.com/jmackie4/fitdc

2 read_fit

fitdc fitdc: R package for decoding FIT files.

Description

A pure R FIT file decoder. After having a package pulled from CRAN due to licensing issues with
the FIT SDK, the only way to bring that package back from the dead was to put this together. As
far as I’'m concerned, it is fit for purpose, but I am aware it is not a complete implementation. If this
does not meet your needs in its current state, feel free to submit a patch.

Details

Anyhow, performance is suprisingly good, and the package is written to have no external depen-
dencies. I hope you find it useful!

read_fit Decode a FIT file

Description

Decode a FIT file

Usage

read_fit(file_path)

Arguments

file_path string; path to the FIT file to be read.

Value

decoded data messages from the FIT file.

Examples

An example of generating a table of record messages
from the file provided with this package:

fp <- system.file("extdata/example.fit"”, package = "fitdc")
data_mesgs <- read_fit(fp)

Filter out the record messages:

is_record <- function(mesg) mesg$name == "record”
records <- Filter(is_record, data_mesgs)

unpack 3

format_record <- function(record) {
out <- record$fields
names(out) <- paste(names(out), record$units, sep = ".")
out

3
records <- lapply(records, format_record)
Some records have missing fields:

colnames_full <- names(records[[which.max(lengths(records))]1)
empty <- setNames(

as.list(rep(NA, length(colnames_full))),

colnames_full)

merge_lists <- function(ls_part, 1ls_full) {

extra <- setdiff(names(ls_full), names(ls_part))

append(ls_part, 1ls_full[extral)[names(ls_full)] # order as well
}

records <- lapply(records, merge_lists, empty)
records <- data.frame(

do.call(rbind, records))

head(records) # voila

unpack Read and unpack bytes from a binary file connection

Description

This function is exported mainly for my own benefit, but maybe others will find it useful. It is
written to bring the python syntax for binary file reading to R. See the source code of this package
for usage examples.

Note a limitation of this approach to binary file reading is that reading and unpacking are insepara-
ble, which can cause headaches in some cases.

Usage
unpack(fmt, conn, endianness = "little”, n =1, ...)
Arguments
fmt a format character according to the python struct library docs. The following are
currently supported: "xbBhHiIs".
conn a connection returned by file.

endianness string; passed to readBin. One of "big"” or "1little”.

https://docs.python.org/3.5/library/struct.html

4 unpack

n integer; the number of records to read. Also passed to readBin. NOTE: this
argument is ignored if fmt = "I", due to the way unsigned integers have to be
hacked together.

additional arguments to be passed to readBin.

Value

a "scalar" value according to fmt.

Index

file, 3
fitdc, 2
fitdc-package (fitdc), 2

read_fit, 2
readBin, 3, 4

unpack, 3

	fitdc
	read_fit
	unpack
	Index

