
Package ‘firebase’
March 30, 2020

Title Integrates 'Google Firebase' Authentication Method with 'Shiny'
Version 0.1.0
Date 2020-03-28
Description Authenticate users in 'Shiny' applications using 'Google Firebase'

with any of the many methods provided; email and password, email link, or
using a third-party provider such as 'Github', 'Twitter', or 'Google'.

License AGPL-3
Encoding UTF-8
LazyData true
Imports R6, cli, shiny
RoxygenNote 7.1.0

URL https://firebase.john-coene.com/,
https://github.com/JohnCoene/firebase

BugReports https://github.com/JohnCoene/firebase/issues

NeedsCompilation no
Author John Coene [aut, cre]
Maintainer John Coene <jcoenep@gmail.com>

Repository CRAN
Date/Publication 2020-03-30 15:50:05 UTC

R topics documented:
check_urls . 2
create_config . 2
dependencies . 3
FirebaseEmailLink . 3
FirebaseEmailPassword . 6
FirebaseOauthProviders . 11
FirebaseSocial . 12
FirebaseUI . 14
reqSignin . 18
reqSignout . 19

1

https://firebase.john-coene.com/
https://github.com/JohnCoene/firebase
https://github.com/JohnCoene/firebase/issues

2 create_config

Index 20

check_urls Check URLs

Description

Check that tos and privacy policy urls are set.

Usage

check_urls(fireblaze_ui)

Arguments

fireblaze_ui An object of class FirebaseUI.

create_config Config

Description

Create the configuration file necessary to running fireblaze.

Usage

create_config(api_key, project_id, auth_domain = NULL, overwrite = FALSE)

Arguments

api_key API key of your project.
project_id Id of your web project.
auth_domain Authentication domain, if omitted uses, attempts to build firebase’s default do-

main.
overwrite Whether to overwrite any existing configuration file.

Details

Do not share this file with anyone.

Value

Path to file.

Examples

Not run: create_config("xXxxx", "my-project")

dependencies 3

dependencies Dependencies

Description

Include dependencies in your Shiny application. use_firebase must be included in every applica-
tion.

Usage

useFirebase(analytics = TRUE, firestore = FALSE)

useFirebaseUI()

Arguments

analytics Whether to include analytics.

firestore Whether to include firestore.

Functions

• useFirebase Is required for every app that uses this package

• useFirebaseUI Is required for applications that use FirebaseUI

FirebaseEmailLink Email Link

Description

Sign in the user by emailing them a link.

Super class

firebase::Firebase -> FirebaseEmailLink

Active bindings

email_verification Email verification results

email_sent Email send results

4 FirebaseEmailLink

Methods

Public methods:
• FirebaseEmailLink$config()

• FirebaseEmailLink$send()

• FirebaseEmailLink$get_email_sent()

• FirebaseEmailLink$get_email_verification()

• FirebaseEmailLink$clone()

Method config():
Usage:
FirebaseEmailLink$config(url, ...)

Arguments:

url The link is handled in the web action widgets, this is the deep link in the continueUrl query
parameter. Likely, your shiny application link.

... Any other parameter from the official documentation.

Details: Configure

Examples:

\dontrun{
f <- FirebaseEmailLink$
new()$ # create
config(url = "https://me.shinyapps.io/myApp/")

}

Method send():
Usage:
FirebaseEmailLink$send(email)

Arguments:

email Email to send verification to.

Details: Send email verification link.

Returns: self

Examples:

\dontrun{
f <- FirebaseEmailLink$
new()$ # create
config(url = "https://me.shinyapps.io/myApp/")$
send("user@email.com")

}

Method get_email_sent():
Usage:
FirebaseEmailLink$get_email_sent()

https://firebase.google.com/docs/auth/web/passing-state-in-email-actions?authuser=0#passing_statecontinue_url_in_email_actions

FirebaseEmailLink 5

Details: Get whether email verification was correctly sent.

Returns: A list of length 2 containing success a boolean indicating wherther sending the email
was successful and response containing the email used to sign in or the error if sending failed.

Method get_email_verification():
Usage:
FirebaseEmailLink$get_email_verification()

Details: Get whether user is signing in from email verification.

Returns: A list of length 2 containing success a boolean indicating wherther signing in from
the verification link was successful and response containing the result of the sign in or the error
if signing in failed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FirebaseEmailLink$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

Other methods to pick up whether user signs in still apply. This is for added security measures.

Examples

library(shiny)
library(firebase)

options(shiny.port = 3000)

ui <- fluidPage(
useFirebase(),
textInput("email", "Your email"),
actionButton("submit", "Submit")

)

server <- function(input, output){

f <- FireblazeEmailLink$
new()$
config(url = "http://127.0.0.1:3000")

observeEvent(input$submit, {
if(input$email == "")

return()

f$send(input$email)
})

observeEvent(f$get_email_sent(), {

6 FirebaseEmailPassword

sent <- f$get_email_sent()

if(sent$success)
showNotification("Email sent", type = "message")

})

observeEvent(f$get_email_verification(), {
print(f$get_email_verification())

})

}

Not run: shinyApp(ui, server)

--
Method `FirebaseEmailLink$config`
--

Not run:
f <- FirebaseEmailLink$
new()$ # create
config(url = "https://me.shinyapps.io/myApp/")

End(Not run)

--
Method `FirebaseEmailLink$send`
--

Not run:
f <- FirebaseEmailLink$
new()$ # create
config(url = "https://me.shinyapps.io/myApp/")$
send("user@email.com")

End(Not run)

FirebaseEmailPassword Email & Password

Description

Manage users using email and password.

Super class

firebase::Firebase -> FirebaseEmailPassword

FirebaseEmailPassword 7

Active bindings

created Results of account creation

Methods

Public methods:
• FirebaseEmailPassword$create()

• FirebaseEmailPassword$sign_in()

• FirebaseEmailPassword$get_created()

• FirebaseEmailPassword$reset_password()

• FirebaseEmailPassword$get_reset()

• FirebaseEmailPassword$send_verification_email()

• FirebaseEmailPassword$get_verification_email()

• FirebaseEmailPassword$set_password()

• FirebaseEmailPassword$get_password()

• FirebaseEmailPassword$re_authenticate()

• FirebaseEmailPassword$get_re_authenticated()

• FirebaseEmailPassword$clone()

Method create():
Usage:
FirebaseEmailPassword$create(email, password)

Arguments:

email, password Credentials as entered by the user.

Details: Create an account

Returns: self

Method sign_in():
Usage:
FirebaseEmailPassword$sign_in(email, password)

Arguments:

email, password Credentials as entered by the user.

Details: Sign in with email

Returns: NULL if successful, the error otherwise.

Method get_created():
Usage:
FirebaseEmailPassword$get_created()

Details: Get account creation results

Returns: A list of length 2 containing success a boolean indicating wherther creation was
successful and response containing the result of account creation or the error if failed.

8 FirebaseEmailPassword

Method reset_password():
Usage:
FirebaseEmailPassword$reset_password(email = NULL)

Arguments:

email Email to send reset link to, if missing looks for current logged in user’s email.

Details: Reset user password

Returns: self

Method get_reset():
Usage:
FirebaseEmailPassword$get_reset()

Details: Get whether password reset email was successfully sent

Returns: A list of length 2 containing success a boolean indicating whether email reset was
successful and response containing successful or the error.

Method send_verification_email():
Usage:
FirebaseEmailPassword$send_verification_email()

Details: Send the user a verification email

Returns: self

Method get_verification_email():
Usage:
FirebaseEmailPassword$get_verification_email()

Details: Get result of verification email sending procedure

Returns: A list of length 2 containing success a boolean indicating whether email verification
was successfully sent and response containing successful or the error.

Method set_password():
Usage:
FirebaseEmailPassword$set_password(password)

Arguments:
password The authenticated user password, the user should be prompted to enter it.

Details: Set user password
Useful to provide ability to change password.

Returns: self

Method get_password():
Usage:
FirebaseEmailPassword$get_password()

Details: Get response from set_password

FirebaseEmailPassword 9

Returns: A list of length 2 containing success a boolean indicating whether setting password
was successfully set and response containing successful as string or the error.

Method re_authenticate():
Usage:
FirebaseEmailPassword$re_authenticate(password)

Arguments:
password The authenticated user password, the user should be prompted to enter it.

Details: Re-authenticate the user.
Some security-sensitive actions—such as deleting an account, setting a primary email address,
and changing a password—require that the user has recently signed in. If you perform one of
these actions, and the user signed in too long ago, the action fails with an error.

Returns: self

Method get_re_authenticated():
Usage:
FirebaseEmailPassword$get_re_authenticated()

Details: Get response from re_authenticate

Returns: A list of length 2 containing success a boolean indicating whether re-authentication
was successful and response containing successful as string or the error.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FirebaseEmailPassword$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

Also signs in the user if successful.

Examples

library(shiny)
library(firebase)

modals
register <- modalDialog(

title = "Register",
textInput("email_create", "Your email"),
passwordInput("password_create", "Your password"),
footer = actionButton("create", "Register")

)

sign_in <- modalDialog(
title = "Sign in",
textInput("email_signin", "Your email"),

10 FirebaseEmailPassword

passwordInput("password_signin", "Your password"),
footer = actionButton("signin", "Sign in")

)

ui <- fluidPage(
useFirebase(), # import dependencies
actionButton("register_modal", "Register"),
actionButton("signin_modal", "Signin"),
plotOutput("plot")

)

server <- function(input, output){

f <- FirebaseEmailPassword$new()

open modals
observeEvent(input$register_modal, {

showModal(register)
})

observeEvent(input$signin_modal, {
showModal(sign_in)

})

create the user
observeEvent(input$create, {

f$create(input$email_create, input$password_create)
})

check if creation sucessful
observeEvent(f$get_created(), {

created <- f$get_created()

if(created$success){
removeModal()
showNotification("Account created!", type = "message")

} else {
showNotification("Error!", type = "error")

}

print results to the console
print(created)

})

observeEvent(input$signin, {
removeModal()
f$sign_in(input$email_signin, input$password_signin)

})

output$plot <- renderPlot({
f$req_sign_in()
plot(cars)

})

FirebaseOauthProviders 11

}

Not run: shinyApp(ui, server)

FirebaseOauthProviders

OAuth Providers

Description

Use OAuth provides such as Github or Facebook to allow users to conveniently sign in.

Super class

firebase::Firebase -> FirebaseOauthProviders

Methods

Public methods:
• FirebaseOauthProviders$set_provider()

• FirebaseOauthProviders$launch()

• FirebaseOauthProviders$clone()

Method set_provider():
Usage:
FirebaseOauthProviders$set_provider(provider)

Arguments:
provider The provider to user, e.g.: microsoft.com, yahoo.com or google.com.

Details: Define provider to use

Returns: self

Method launch():
Usage:
FirebaseOauthProviders$launch(flow = c("popup", "redirect"))

Arguments:
flow Authentication flow, either popup or redirect.

Details: Launch sign in with Google.

Returns: self

Method clone(): The objects of this class are cloneable with this method.
Usage:
FirebaseOauthProviders$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

12 FirebaseSocial

Examples

library(shiny)
library(firebase)

ui <- fluidPage(
useFirebase(),
actionButton("signin", "Sign in with Microsoft", icon = icon("microsoft")),
plotOutput("plot")

)

server <- function(input, output, session){
f <- FirebaseOauthProviders$
new()$
set_provider("microsoft.com")

observeEvent(input$signin, {
f$launch()

})

output$plot <- renderPlot({
f$req_sign_in()
plot(cars)

})

}

Not run: shinyApp(ui, server)

FirebaseSocial Social

Description

Use social sites for authentication.

Super class

firebase::Firebase -> FirebaseSocial

Methods

Public methods:
• FirebaseSocial$set_scope()

• FirebaseSocial$launch_google()

• FirebaseSocial$launch_github()

• FirebaseSocial$launch_facebook()

• FirebaseSocial$launch_twitter()

FirebaseSocial 13

• FirebaseSocial$clone()

Method set_scope():
Usage:
FirebaseSocial$set_scope(scope)

Arguments:

scope Google scope.

Details: Define the scope to request from Google.

Returns: self

Method launch_google():
Usage:
FirebaseSocial$launch_google(flow = c("popup", "redirect"))

Arguments:

flow Authentication flow, either popup or redirect.

Details: Launch sign in with Google.

Returns: self

Method launch_github():
Usage:
FirebaseSocial$launch_github(flow = c("popup", "redirect"))

Arguments:

flow Authentication flow, either popup or redirect.

Details: Launch sign in with Github.

Returns: self

Method launch_facebook():
Usage:
FirebaseSocial$launch_facebook(flow = c("popup", "redirect"))

Arguments:

flow Authentication flow, either popup or redirect.

Details: Launch sign in with Facebook.

Returns: self

Method launch_twitter():
Usage:
FirebaseSocial$launch_twitter(flow = c("popup", "redirect"))

Arguments:

flow Authentication flow, either popup or redirect.

Details: Launch sign in with Facebook.

14 FirebaseUI

Returns: self

Method clone(): The objects of this class are cloneable with this method.

Usage:
FirebaseSocial$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(shiny)
library(firebase)

define signin
signin <- modalDialog(

title = "Login",
actionButton("google", "Google", icon = icon("google"), class = "btn-danger"),
actionButton("github", "Github", icon = icon("github")),
footer = NULL

)

ui <- fluidPage(
useFirebase()

)

server <- function(input, output) {
showModal(signin)

f <- FirebaseSocial$new()

observeEvent(input$google, {
f$launch_google()

})

observeEvent(input$github, {
f$launch_github()

})
}

Not run: shinyApp(ui, server)

FirebaseUI Prebuilt UI

Description

Use fireblaze to manage authentications.

FirebaseUI 15

Super class

firebase::Firebase -> FirebaseUI

Public fields

tos_url URL to the Terms of Service page.

privacy_policy_url The URL to the Privacy Policy page.

Methods

Public methods:
• FirebaseUI$set_providers()

• FirebaseUI$set_tos_url()

• FirebaseUI$set_privacy_policy_url()

• FirebaseUI$launch()

• FirebaseUI$reset_password()

• FirebaseUI$get_reset()

• FirebaseUI$send_verification_email()

• FirebaseUI$get_verification_email()

• FirebaseUI$set_password()

• FirebaseUI$get_password()

• FirebaseUI$re_authenticate()

• FirebaseUI$get_re_authenticated()

• FirebaseUI$clone()

Method set_providers():
Usage:
FirebaseUI$set_providers(
google = FALSE,
facebook = FALSE,
twitter = FALSE,
github = FALSE,
email = FALSE,
microsoft = FALSE,
apple = FALSE,
yahoo = FALSE,
phone = FALSE,
anonymous = FALSE

)

Arguments:

google, facebook, twitter, github, email, microsoft, apple, yahoo, phone, anonymous
Set to TRUE the providers you want to use, at least one.

Details: Define signin and login providers.

Returns: self

16 FirebaseUI

Method set_tos_url():
Usage:
FirebaseUI$set_tos_url(url)

Arguments:

url URL to use.

Details: Defines Tterms of Services URL

Returns: self

Method set_privacy_policy_url():
Usage:
FirebaseUI$set_privacy_policy_url(url)

Arguments:

url URL to use.

Details: Defines Privacy Policy URL

Returns: self

Method launch():
Usage:
FirebaseUI$launch(flow = c("popup", "redirect"), account_helper = FALSE)

Arguments:

flow The signin flow to use, popup or redirect.
account_helper Wether to use accountchooser.com upon signing in or signing up with email,

the user will be redirected to the accountchooser.com website and will be able to select one
of their saved accounts. You can disable it by specifying the value below.

... Any other option to pass to Firebase UI.

Details: Setup the signin form.

Returns: self

Method reset_password():
Usage:
FirebaseUI$reset_password(email = NULL)

Arguments:

email Email to send reset link to, if missing looks for current logged in user’s email

Details: Reset user password

Returns: self

Method get_reset():
Usage:
FirebaseUI$get_reset()

Details: Get whether password reset email was successfully sent

FirebaseUI 17

Returns: A list of length 2 containing success a boolean indicating whether email reset was
successful and response containing successful or the error.

Method send_verification_email():
Usage:
FirebaseUI$send_verification_email()

Details: Send the user a verification email

Returns: self

Method get_verification_email():
Usage:
FirebaseUI$get_verification_email()

Details: Get result of verification email sending procedure

Returns: A list of length 2 containing success a boolean indicating whether email verification
was successfully sent and response containing successful or the error.

Method set_password():
Usage:
FirebaseUI$set_password(password)

Arguments:
password The authenticated user password, the user should be prompted to enter it.

Details: Set user password
Useful to provide ability to change password.

Returns: self

Method get_password():
Usage:
FirebaseUI$get_password()

Details: Get response from set_password

Returns: A list of length 2 containing success a boolean indicating whether setting password
was successfully set and response containing successful as string or the error.

Method re_authenticate():
Usage:
FirebaseUI$re_authenticate(password)

Arguments:
password The authenticated user password, the user should be prompted to enter it.

Details: Re-authenticate the user.
Some security-sensitive actions—such as deleting an account, setting a primary email address,
and changing a password—require that the user has recently signed in. If you perform one of
these actions, and the user signed in too long ago, the action fails with an error.

Method get_re_authenticated():

18 reqSignin

Usage:
FirebaseUI$get_re_authenticated()

Details: Get response from re_authenticate

Returns: A list of length 2 containing success a boolean indicating whether re-authentication
was successful and response containing successful as string or the error.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FirebaseUI$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(shiny)
library(firebase)

ui <- fluidPage(
useFirebase(), # import dependencies
useFirebaseUI() # import UI

)

server <- function(input, output){
f <- FirebaseUI$
new()$ # instantiate
set_providers(# define providers

email = TRUE,
google = TRUE

)
}

Not run: shinyApp(ui, server)

reqSignin Requires Signin

Description

Define UI element that require the user to be signed in. This will hide them viusally until the user
signs in. Note that this is not secure as someone can easily change the CSS when visiting the page
to reveal those elements.

Usage

reqSignin(...)

reqSignout 19

Arguments

... Any valid tags.

See Also

reqSignout

reqSignout Requires Signout

Description

Define UI element that requires no user to be signed in. This will hide them viusally if no user is
signed in. Note that this is not secure as someone can easily change the CSS when visiting the page
to reveal those elements.

Usage

reqSignout(...)

Arguments

... Any valid tags.

See Also

reqSignin

Index

check_urls, 2
create_config, 2

dependencies, 3

firebase::Firebase, 3, 6, 11, 12, 15
FirebaseEmailLink, 3
FirebaseEmailPassword, 6
FirebaseOauthProviders, 11
FirebaseSocial, 12
FirebaseUI, 2, 3, 14

reqSignin, 18, 19
reqSignout, 19, 19

tags, 19

useFirebase (dependencies), 3
useFirebaseUI (dependencies), 3

20

	check_urls
	create_config
	dependencies
	FirebaseEmailLink
	FirebaseEmailPassword
	FirebaseOauthProviders
	FirebaseSocial
	FirebaseUI
	reqSignin
	reqSignout
	Index

