
Package ‘filehash’
April 17, 2019

Version 2.4-2

Depends R (>= 3.0.0), methods

Collate filehash.R filehash-DB1.R filehash-RDS.R coerce.R dump.R
hash.R queue.R stack.R zzz.R

Title Simple Key-Value Database

Author Roger D. Peng <rdpeng@jhu.edu>

Maintainer Roger D. Peng <rdpeng@jhu.edu>

Description Implements a simple key-value style database where character string keys
are associated with data values that are stored on the disk. A simple interface is provided for in-
serting,
retrieving, and deleting data from the database. Utilities are provided that allow 'file-
hash' databases to be
treated much like environments and lists are already used in R. These utilities are provided to en-
courage
interactive and exploratory analysis on large datasets. Three different file formats for represent-
ing the
database are currently available and new formats can easily be incorporated by third par-
ties for use in the
'filehash' framework.

License GPL (>= 2)

URL http://github.com/rdpeng/filehash

NeedsCompilation yes

Repository CRAN

Date/Publication 2019-04-17 10:10:03 UTC

R topics documented:
createQ . 2
createS . 3
dbInit . 3
dbLoad . 4
dumpObjects . 6

1

http://github.com/rdpeng/filehash

2 createQ

filehash-class . 7
filehashFormats . 9
filehashOption . 9
queue-class . 10
stack-class . 11
stackqueue . 12

Index 13

createQ Create/Initialize Queue

Description

Create or initialize a queue data structure using filehash databases

Usage

createQ(filename)
initQ(filename)

Arguments

filename character, file name for storing the queue data structure

Details

A new queue can be created using createQ, which creates a file for storing the queue information
and returns an object of class "queue".

Value

The createQ and initQ functions both return an object of class "queue".

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

createS 3

createS Create/Initialize Stack

Description

Create or initialize a stack data structure using filehash databases

Usage

createS(filename)
initS(filename)

Arguments

filename character, file name for storing the stack data structure

Details

A new stack can be created using createS, which creates a file for storing the stack information
and returns an object of class "stack".

Value

The createS and initS functions both return an object of class "stack".

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

dbInit Simple file-based hash table

Description

Interface for creating and initializing a simple file-based hash table

Usage

dbCreate(db, ...)
dbInit(db, ...)

S4 method for signature 'ANY'
dbCreate(db, type = NULL, ...)
S4 method for signature 'ANY'
dbInit(db, type = NULL, ...)

4 dbLoad

Arguments

db name of database or a database object
type type of database format. If missing, the default type will be used
... other arguments passed to methods

Details

dbCreate creates the necessary files or directory for the database. If those files already exist nothing
is done.

dbInit takes a database name and returns an object inheriting from class "filehash".

The type argument specifies the format in which the database should be stored on the disk. If not
specified, the default type will be used (as specified by filehashOption).

Value

dbCreate returns TRUE upon success and FALSE in the event of an error. dbInit returns an object
inheriting from class "filehash"

Note

The function dbInitialize has been deprecated. Use dbInit instead.

Author(s)

Roger D. Peng

See Also

See filehash-class more information and examples and filehashOption for setting the default
database type.

dbLoad Load database into environment

Description

Load entire database into an environment

Usage

db2env(db)
dbLoad(db, ...)
dbLazyLoad(db, ...)

S4 method for signature 'filehash'
dbLoad(db, env = parent.frame(2), keys = NULL, ...)
S4 method for signature 'filehash'
dbLazyLoad(db, env = parent.frame(2), keys = NULL, ...)

dbLoad 5

Arguments

db database object

env an environment

keys character vector of database keys to load

... other arguments passed to methods

Details

db2env loads the entire database db into an environment via calls to makeActiveBinding. There-
fore, the data themselves are not stored in the environment, but a function pointing to the data in
the database is stored. When an element of the environment is accessed, the function is called to
retrieve the data from the database. If the data in the database is changed, the changes will be
reflected in the environment.

dbLoad loads objects in the database directly into the environment specified, like load does except
with active bindings. dbLoad takes a second argument env, which is an environment, and the default
for env is parent.frame().

The use of makeActiveBinding in db2env and dbLoad allows for potentially large databases to, at
least conceptually, be used in R, as long as you don’t need simultaneous access to all of the elements
in the database.

With dbLazyLoad database objects are "lazy-loaded" into the environment. Promises to load the
objects are created in the environment specified by env. Upon first access, those objects are copied
into the environment and will from then on reside in memory. Changes to the database will not
be reflected in the object residing in the environment after first access. Conversely, changes to the
object in the environment will not be reflected in the database. This type of loading is useful for
read-only databases.

Value

For db2env, an environment is returned, the elements of which are the keys of the database. For
dbLoad and dbLazyLoad, a character vector is returned (invisibly) containing the keys associated
with the values loaded into the environment.

Author(s)

Roger D. Peng

See Also

dbInit and filehash-class

Examples

dbCreate("myDB")
db <- dbInit("myDB")
dbInsert(db, "a", rnorm(100))
dbInsert(db, "b", 1:10)

env <- db2env(db)

6 dumpObjects

ls(env) ## "a", "b"
print(env$b)
mean(env$a)
env$a <- rnorm(100)
mean(env$a)

env$b[1:5] <- 5:1
print(env$b)

env <- new.env()
dbLoad(db, env)
ls(env)

env <- new.env()
dbLazyLoad(db, env)
ls(env)

as(db, "list")

dumpObjects Dump objects of database

Description

Dump R objects to a filehash database

Usage

dumpObjects(..., list = character(0), dbName, type = NULL, envir = parent.frame())
dumpImage(dbName = "Rworkspace", type = NULL)
dumpDF(data, dbName = NULL, type = NULL)
dumpList(data, dbName = NULL, type = NULL)
dumpEnv(env, dbName)

Arguments

... R objects to dump

list character vector of names of objects to dump

dbName character, name of database to which objects should be dumped

type type of database to create

envir environment from which to obtain objects

data a data frame or a list

env an environment

filehash-class 7

Details

Objects dumped to a database can later be loaded via dbLoad or can be accessed with dbFetch,
dbList, etc. Alternatively, the with method can be used to evaluate code in the context of a
database. If a database with name dbName already exists, objects will be inserted into the exist-
ing database (and values for already-existing keys will be overwritten).

dumpDF is different in that each variable in the data frame is stored as a separate object in the
database. So each variable can be read from the database separately rather than having to load the
entire data frame into memory. dumpList works in a simlar way.

The dumpEnv function takes an environment and stores each element of the environment in a
filehash database.

Value

An object of class "filehash" is returned and a database is created.

Author(s)

Roger D. Peng

Examples

data <- data.frame(y = rnorm(100), x = rnorm(100), z = rnorm(100))
db <- dumpDF(data, dbName = "dataframe.dump")
fit <- with(db, lm(y ~ x + z))
summary(fit)

db <- dumpList(list(a = 1, b = 2, c = 3), "list.dump")
db$a

filehash-class Class "filehash"

Description

These functions form the interface for a simple file-based key-value database (i.e. hash table).

Objects from the Class

Objects can be created by calls of the form new("filehash", ...).

Slots

name: Object of class "character", name of the database.

Additional slots for "filehashDB1"

datafile: full path to the database file.

meta: list containing an environment for database metadata.

8 filehash-class

Additional slots for "filehashRDS"

dir: Directory where files are stored.

Methods

dbDelete The dbDelete function is for deleting elements, but for the "DB1" format all it does is
remove the key from the lookup table. The actual data are still in the database (but inacces-
sible). If you reinsert data for the same key, the new data are simply appended on to the end
of the file. Therefore, it’s possible to have multiple copies of data lying around after a while,
potentially making the database file big. The "RDS" format does not have this problem.

dbExists check to see if a key exists.

dbFetch retrieve the value associated with a given key.

dbMultiFetch retrieve values associated with multiple keys (a list of those values is returned).

dbInsert insert a key-value pair into the database. If that key already exists, its associated value is
overwritten. For "RDS" type databases, there is a safe option (defaults to TRUE) which allows
the user to insert objects somewhat more safely (objects should not be lost in the event of an
interrupt).

dbList list all keys in the database.

dbReorganize The dbReorganize function is there for the purpose of rewriting the database to
remove all of the stale entries. Basically, this function creates a new copy of the database and
then overwrites the old copy. This function has not been tested extensively and so should be
considered experimental. dbReorganize is not needed when using the "RDS" format.

dbUnlink delete an entire database from the disk

show print method

with allows with to be used with "filehash" objects much like it can be used with lists or data
frames

[[,[[<- elements of a database can be accessed using the [[operator much like a list or environment,
but only character indices are allowed

$,$<- elements of a database can be accessed using the $ operator much like with a list or environ-
ment

lapply works much like lapply with lists; a list is returned.

names returns all of the keys in the database

length returns the number of elements in the database

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

Examples

dbCreate("myDB") ## Create database 'myDB'
db <- dbInit("myDB")
dbInsert(db, "a", 1:10)
dbInsert(db, "b", rnorm(1000))
dbExists(db, "b") ## 'TRUE'

filehashFormats 9

dbList(db) ## c("a", "b")
dbDelete(db, "a")
dbList(db) ## "b"

with(db, mean(b))

filehashFormats List and register filehash formats

Description

List and register filehash backend database formats.

Usage

registerFormatDB(name, funlist)
filehashFormats(...)

Arguments

name character, name of database format

funlist list of functions for creating and initializing a database format

... list of functions for registering a new database format

Details

registerFormatDB can be used to register new filehash backend database formats. filehashFormats
called with no arguments lists information on available formats.

Value

filehashFormats returns a list containing information on the available filehash formats.

filehashOption Set filehash options

Description

Set global filehash options

Usage

filehashOption(...)

10 queue-class

Arguments

... name-value pairs for options

Details

Currently, the only option that can be set is the default database type (defaultType) which can be
"DB1", "RDS" or "DB".

Value

filehashOptions returns a list of current settings for all options.

Author(s)

Roger D. Peng

queue-class Class "queue"

Description

A queue implementation using a filehash database

Objects from the Class

Objects can be created by calls of the form new("queue", ...) or by calling createQ. Existing
queues can be initialized with initQ.

Slots

queue: Object of class "filehashDB1"

name: Object of class "character": the name of the queue (default is the file name in which the
queue data are stored)

Methods

isEmpty signature(db = "queue"): returns TRUE/FALSE depending on whether there are ele-
ments in the queue.

pop signature(db = "queue"): returns the value of the "top" (i.e. head) of the queue and
subsequently removes that element from the queue; an error is signaled if the queue is empty

push signature(db = "queue"): adds an element to the tail ("bottom") of the queue

show signature(object = "queue"): prints the name of the queue

top signature(db = "queue"): returns the value of the "top" (i.e. head) of the queue; an error is
signaled if the queue is empty

stack-class 11

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

Examples

showClass("queue")

stack-class Class "stack"

Description

A stack implementation using a filehash database

Objects from the Class

Objects can be created by calls of the form new("stack", ...) or by calling createS. Existing
queues can be initialized with initS.

Slots

stack: Object of class "filehashDB1"

name: Object of class "character": the name of the stack (default is the file name in which the
stack data are stored)

Methods

isEmpty signature(db = "stack"): returns TRUE/FALSE depending on whether there are ele-
ments in the stack.

pop signature(db = "stack"): returns the value of the top of the stack and subsequently re-
moves that element from the stack; an error is signaled if the stack is empty

push signature(db = "stack"): adds an element to the top of the stack

show signature(object = "stack"): prints the name of the stack

top signature(db = "stack"): returns the value of the top of the stack; an error is signaled if
the stack is empty

mpush signature(db = "stack"): works like push except it can push multiple objects in a list
on to the stack

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

Examples

showClass("stack")

12 stackqueue

stackqueue Operations on Stacks/Queues

Description

Functions for interacting with stack and queue data structures implemented using filehash databases.

Usage

push(db, val, ...)
mpush(db, vals, ...)
pop(db, ...)
top(db, ...)
isEmpty(db, ...)

Arguments

db an object of class "stack" or "queue"

val an R object

vals a list of R objects

... arguments passed to other methods

Details

Note that for mpush, if vals is not a list it will be coerced to a list via as.list. Currently, mpush is
only implemented for "stack"s.

Value

push and mpush return nothing useful; pop returns a value from the stack/queue and deletes that
value from the stack/queue; top returns the "top" value from the stack/queue; isEmpty returns
TRUE/FALSE depending on whether the stack/queue is empty or not. Both pop and top signal an
error if the stack/queue is empty.

Author(s)

Roger D. Peng <rpeng@jhsph.edu>

Index

∗Topic classes
filehash-class, 7
queue-class, 10
stack-class, 11

∗Topic database
createQ, 2
createS, 3
dbInit, 3
dbLoad, 4
dumpObjects, 6
filehashOption, 9
stackqueue, 12

∗Topic utilities
filehashFormats, 9

[,filehash,character,missing,missing-method
(filehash-class), 7

[[,filehash,character,missing-method
(filehash-class), 7

[[,filehash,numeric,missing-method
(filehash-class), 7

[[<-,filehash,character,missing-method
(filehash-class), 7

[[<-,filehash,numeric,missing-method
(filehash-class), 7

$,filehash-method (filehash-class), 7
$<-,filehash-method (filehash-class), 7

coerce,filehash,list-method
(filehash-class), 7

coerce,filehashDB,filehashDB1-method
(filehash-class), 7

coerce,filehashDB,filehashRDS-method
(filehash-class), 7

coerce,filehashDB1,filehashRDS-method
(filehash-class), 7

coerce,filehashDB1,list-method
(filehash-class), 7

coerce,filehashRDS,filehashDB-method
(filehash-class), 7

createQ, 2

createS, 3

db2env (dbLoad), 4
dbCreate (dbInit), 3
dbCreate,ANY-method (dbInit), 3
dbDelete (filehash-class), 7
dbDelete,filehashDB,character-method

(filehash-class), 7
dbDelete,filehashDB1,character-method

(filehash-class), 7
dbDelete,filehashRDS,character-method

(filehash-class), 7
dbExists (filehash-class), 7
dbExists,filehashDB,character-method

(filehash-class), 7
dbExists,filehashDB1,character-method

(filehash-class), 7
dbExists,filehashRDS,character-method

(filehash-class), 7
dbFetch (filehash-class), 7
dbFetch,filehashDB,character-method

(filehash-class), 7
dbFetch,filehashDB1,character-method

(filehash-class), 7
dbFetch,filehashRDS,character-method

(filehash-class), 7
dbInit, 3, 5
dbInit,ANY-method (dbInit), 3
dbInitialize (dbInit), 3
dbInsert (filehash-class), 7
dbInsert,filehashDB,character-method

(filehash-class), 7
dbInsert,filehashDB1,character-method

(filehash-class), 7
dbInsert,filehashRDS,character-method

(filehash-class), 7
dbLazyLoad (dbLoad), 4
dbLazyLoad,filehash-method (dbLoad), 4
dbList (filehash-class), 7

13

14 INDEX

dbList,filehashDB-method
(filehash-class), 7

dbList,filehashDB1-method
(filehash-class), 7

dbList,filehashRDS-method
(filehash-class), 7

dbLoad, 4
dbLoad,filehash-method (dbLoad), 4
dbMultiFetch (filehash-class), 7
dbMultiFetch,filehashDB1,character-method

(filehash-class), 7
dbMultiFetch,filehashDB1-method

(filehash-class), 7
dbMultiFetch,filehashRDS,character-method

(filehash-class), 7
dbReorganize (filehash-class), 7
dbReorganize,filehashDB-method

(filehash-class), 7
dbReorganize,filehashDB1-method

(filehash-class), 7
dbUnlink (filehash-class), 7
dbUnlink,filehashDB-method

(filehash-class), 7
dbUnlink,filehashDB1-method

(filehash-class), 7
dbUnlink,filehashRDS-method

(filehash-class), 7
dumpDF (dumpObjects), 6
dumpEnv (dumpObjects), 6
dumpImage (dumpObjects), 6
dumpList (dumpObjects), 6
dumpObjects, 6

filehash-class, 7
filehashDB-class (filehash-class), 7
filehashDB1-class (filehash-class), 7
filehashFormats, 9
filehashOption, 4, 9
filehashRDS-class (filehash-class), 7

initQ (createQ), 2
initS (createS), 3
isEmpty (stackqueue), 12
isEmpty,queue-method (queue-class), 10
isEmpty,stack-method (stack-class), 11

lapply,filehash-method
(filehash-class), 7

length,filehash-method
(filehash-class), 7

mpush (stackqueue), 12
mpush,stack-method (stack-class), 11

names,filehash-method (filehash-class),
7

pop (stackqueue), 12
pop,queue-method (queue-class), 10
pop,stack-method (stack-class), 11
push (stackqueue), 12
push,queue-method (queue-class), 10
push,stack-method (stack-class), 11

queue-class, 10

registerFormatDB (filehashFormats), 9

show,filehash-method (filehash-class), 7
show,queue-method (queue-class), 10
show,stack-method (stack-class), 11
stack-class, 11
stackqueue, 12

top (stackqueue), 12
top,queue-method (queue-class), 10
top,stack-method (stack-class), 11

with,filehash-method (filehash-class), 7

	createQ
	createS
	dbInit
	dbLoad
	dumpObjects
	filehash-class
	filehashFormats
	filehashOption
	queue-class
	stack-class
	stackqueue
	Index

