
Package ‘fields’
February 4, 2020

Version 10.3

Date 2020-03-02

Title Tools for Spatial Data

Maintainer Douglas Nychka <douglasnychka@gmail.com>

Description For curve, surface and function fitting with an emphasis
on splines, spatial data, geostatistics, and spatial statistics. The major methods
include cubic, and thin plate splines, Kriging, and compactly supported
covariance functions for large data sets. The splines and Kriging methods are
supported by functions that can determine the smoothing parameter
(nugget and sill variance) and other covariance function parameters by cross
validation and also by restricted maximum likelihood. For Kriging
there is an easy to use function that also estimates the correlation
scale (range parameter). A major feature is that any covariance function
implemented in R and following a simple format can be used for
spatial prediction. There are also many useful functions for plotting
and working with spatial data as images. This package also contains
an implementation of sparse matrix methods for large spatial data
sets and currently requires the sparse matrix (spam) package. Use
help(fields) to get started and for an overview. The fields source
code is deliberately commented and provides useful explanations of
numerical details as a companion to the manual pages. The commented
source code can be viewed by expanding source code version
and looking in the R subdirectory. The reference for fields can be generated
by the citation function in R and has DOI <doi:10.5065/D6W957CT>. Development
of this package was supported in part by the National Science Foundation Grant
1417857 and the National Center for Atmospheric Research. See the Fields URL
for a vignette on using this package and some background on spatial statistics.

License GPL (>= 2)

URL https://github.com/NCAR/Fields

Depends R (>= 3.0), methods, spam, maps

NeedsCompilation yes

Repository CRAN

1

https://github.com/NCAR/Fields

2 R topics documented:

Author Douglas Nychka [aut, cre],
Reinhard Furrer [aut],
John Paige [aut],
Stephan Sain [aut],
Florian Gerber [aut],
Matthew Iverson [aut],
University Corporation for Atmospheric Research [cph]

Date/Publication 2020-02-04 16:30:02 UTC

R topics documented:
add.image . 4
arrow.plot . 5
as.image . 6
as.surface . 8
BD . 10
bplot . 11
bplot.xy . 12
Chicago ozone test data . 13
CO2 . 14
Colorado Monthly Meteorological Data . 16
colorbar.plot . 20
compactToMat . 22
Covariance functions . 23
CovarianceUpper . 29
cover.design . 30
drape.plot . 36
envelopePlot . 39
Exponential, Matern, Radial Basis . 40
fields . 42
fields testing scripts . 45
fields-stuff . 46
fields.grid . 48
fields.hints . 49
flame . 53
gcv.Krig . 53
grid list . 56
image.cov . 59
image.plot . 63
image.smooth . 71
image2lz . 73
interp.surface . 76
Krig . 78
Krig.Amatrix . 87
Krig.null.function . 89
Krig.replicates . 90
lennon . 91

R topics documented: 3

minitri . 91
mKrig . 92
mKrig.MLE . 100
mKrigMLE . 104
MLESpatialProcess . 109
NorthAmericanRainfall . 113
ozone2 . 114
plot.Krig . 115
plot.surface . 116
poly.image . 118
predict.Krig . 120
predictSE . 123
predictSurface . 125
print.Krig . 127
pushpin . 128
qsreg . 129
QTps . 132
quilt.plot . 136
rat.diet . 138
RCMexample . 139
rdist . 140
rdist.earth . 142
registeringCode . 144
REML.test . 145
ribbon.plot . 149
RMprecip . 150
set.panel . 152
sim.rf . 153
sim.spatialProcess . 155
smooth.2d . 160
spam2lz . 162
spatialProcess . 164
splint . 171
sreg . 172
stats . 177
stats.bin . 178
summary.Krig . 179
summary.ncdf . 180
supportsArg . 180
surface.Krig . 181
The Engines: . 183
tim.colors . 187
Tps . 190
transformx . 198
US . 199
US.dat . 199
vgram . 200
vgram.matrix . 202

4 add.image

Wendland . 204
world . 206
WorldBankCO2 . 207
xline . 209
yline . 210

Index 211

add.image Adds an image to an existing plot.

Description

Adds an image to an existing plot. Simple arguments control the location and size.

Usage

add.image(xpos, ypos, z, adj.x = 0.5, adj.y = 0.5,
image.width = 0.15, image.height = NULL, col = tim.colors(256), ...)

Arguments

xpos X position of image in user coordinates

ypos Y position of image in user coordinates

z Matrix of intensities comprising the image.

adj.x Location of image relative to x coordinate. Most common values are .5 (cen-
tered), 0 (right side of image at x) and 1 (left side of image at x). These are the
same conventions that are used for adj in positioning text.

adj.y Location of image relative to y coordinate. Same rules as adj.x

image.width Width of image as a fraction of the plotting region in horizontal direction.

image.height Height of image as a fraction of the plotting region in horizontal direction. If
NULL height is scaled to make image pixels square.

col Color table for image. Default is tim.colors.

... Any other plotting arguments that are passed to the image function

See Also

image.plot, colorbar.plot, image, tim.colors

arrow.plot 5

Examples

plot(1:10, 1:10, type="n")
data(lennon)

add.image(5,4,lennon, col=grey((0:256)/256))
reference lines
xline(5, col=2)
yline(4,col=2)

#
add lennon right in the corner beyond the plotting region
#

par(new=TRUE, plt=c(0,1,0,1), mar=c(0,0,0,0), usr=c(0,1,0,1))
add.image(0,0, lennon, adj.x=0, adj.y=0)

arrow.plot Adds arrows to a plot

Description

Adds arrows at specified points where the arrow lengths are scaled to fit on the plot in a reasonable
manner. A classic use of this function is to depict a vector field. At each point (x,y) we have a
vector with components (u,v). Like the arrows function this adds arrows to an existing plot.

Usage

arrow.plot(a1, a2, u = NA, v = NA, arrow.ex = 0.05,
xpd = TRUE, true.angle = FALSE, arrowfun=arrows,...)

Arguments

a1 The x locations of the tails of the arrows or a 2 column matrix giving the x and
y coordinates of the arrow tails.

a2 The y locations of the tails of the arrows or a 2 column matrix giving the u and
v coordinates of the arrows.

u The u components of the direction vectors if they are not specified in the a1
argument

v The v components of the direction vectors if they are not specified in the a2
argument

arrow.ex Controls the length of the arrows. The length is in terms of the fraction of the
shorter axis in the plot. So with a default of .05 20 arrows of maximum length
can line up end to end along the shorter axis.

xpd If true does not clip arrows to fit inside the plot region, default is not to clip.

6 as.image

true.angle If true preserves the true angle of the (u,v) pair on the plot. E.g. if (u,v)=(1,1)
then the arrow will be drawn at 45 degrees.

arrowfun The actual arrow function to use. The default is standard R arrows. However,
Tamas K Papp suggests p.arrows from sfsmisc which makes prettier arrows.

... Graphics arguments passed to the arrows function that can can change the color
or arrow sizes. See help on this for details.

Details

This function is useful because (u,v) may be in very different scales from the locations (x,y). So
some careful scaling is needed to plot the arrows. The only tricky thing about this function is
whether you want the true angles on the plot. For overlaying a vector field on top of contours that
are the streamlines true.angle should be false. In this case you want u and v to be scaled in the same
way as the x and y variables. If the scaling is not the same then the arrows will not look like tangent
vectors to the streamlines. An application where the absolute angles are meaningful might be the
hands of a clock showing different times zones on a world map. Here true.angle=T is appropriate,
the clock hands should preserve the right angles.

See Also

arrows

Examples

#
20 random directions at 20 random points

x<- runif(20)
y<- runif(20)
u<- rnorm(20)
v<- rnorm(20)
plot(x,y)
arrow.plot(x,y,u,v) # a default that is unattractive

plot(x,y, type="n")
arrow.plot(x,y,u,v, arrow.ex=.2, length=.1, col='green', lwd=2)
thicker lines in green, smaller heads and longer tails. Note length, col and lwd are
options that the arrows function itself knows about.

as.image Creates image from irregular x,y,z

Description

Discretizes a set of 2-d locations to a grid and produces a image object with the z values in the right
cells. For cells with more than one Z value the average is used.

as.image 7

Usage

as.image(Z, ind=NULL, grid=NULL, x=NULL,weights=rep(1, length(Z)),
na.rm=FALSE, nx=64, ny=64, boundary.grid=FALSE, nrow=NULL, ncol=NULL,
FUN = NULL)

Arguments

Z Values of image.

ind A matrix giving the row and column subscripts for each image value in Z. (Not
needed if x is specified.)

grid A list with components x and y of equally spaced values describing the centers
of the grid points. The default is to use nrow and ncol and the ranges of the data
locations (x) to construct a grid.

x Locations of image values. Not needed if ind is specified.

nrow Same as nx this is depreciated.

ncol Same as ny this is depreciated.

weights If two or more values fall into the same pixel a weighted average is used to
represent the pixel value. Default is equal weights.

na.rm If true NA’s are removed from the Z vector.

nx Number of grid point in X coordinate.

ny Number of grid points in Y coordinate.

boundary.grid If FALSE grid points are assumed to be the grid midpoints. If TRUE they are
the grid box boundaries.

FUN The function to apply to common values in a grid box. The default is a mean (or
weighted mean). If FUN is specified the weights are not used.

Details

The discretization is straightforward once the grid is determined. If two or more Z values have
locations in the same cell the weighted average value is taken as the value. The weights component
that is returned can be used to account for means that have different numbers (or precisions) of
observations contributing to the grid point averages. The default weights are taken to be one for
each observation. See the source code to modify this to get more information about coincident
locations. (See the call to fast.1way)

Value

An list in image format with a few more components. Components x and y are the grid values , z
is a nrow X ncol matrix with the Z values. NA’s are placed at cell locations where Z data has not
been supplied. Component ind is a 2 column matrix with subscripts for the locations of the values
in the image matrix. Component weights is an image matrix with the sum of the individual weights
for each cell. If no weights are specified the default for each observation is one and so the weights
will be the number of observations in each bin.

8 as.surface

See Also

image.smooth, image.plot, Krig.discretize, Krig.replicates

Examples

convert precip data to 50X50 image
look<- as.image(RMprecip$y, x= RMprecip$x, nx=50, ny=50)
image.plot(look)

reduced grid extent compared to the domain
gridList<- list(x = seq(-105,-101,length.out=10),

y = seq(38, 42,length.out=10))
look2<- as.image(RMprecip$y, x= RMprecip$x,grid=gridList)
image.plot(look2)

number of obs in each cell -- in this case equal to the
aggregated weights because each obs had equal weight in the call

image.plot(look$x ,look$y, look$weights, col=terrain.colors(50))
hot spot is around Denver

as.surface Creates an "surface" object from grid values.

Description

Reformats the vector from evaluating a function on a grid of points into a list for use with surface
plotting function. The list has the usual components x,y and z and is suitable for use with persp,
contour, image and image.plot.

Usage

as.surface(obj, z, location=NULL, order.variables="xy")

Arguments

obj A description of the grid used to evaluate the function. This can either be in
the form of a grid.list (see help file for grid.list) or the matrix of grid of points
produced by make.surface.grid. In the later case obj is a matrix with the grid.list
as an attribute.

z The value of the function evaluated at the gridded points.

location A logical or two column matrix of indices indicating the location of the z values
within the image matrix.

order.variables

Either "xy" or "yx" specifies how the x and y variables used to evaluate the
function are matched with the x and y grids in the surface object.

as.surface 9

Details

This function was written to simply to go back and forth between a matrix of gridded values and
the stacked vector obtained by stacking columns. The main application is evaluating a function at
each grid point and then reforming the results for plotting. (See example below.)

If zimage is matrix of values then the input vector is c(zimage). To go from the stacked vector to
the matrix one needs the the nrow ncol and explains why grid information must also be specified.

Note that the z input argument must be in the order values in order of stacking columns of the image.
This is also the order of the grid points generated by make.surface.grid.

To convert irregular 2-d data to a surface object where there are missing cells see the function
as.image.

Value

A list of class surface. This object is a modest generalization of the list input format (x,y,z,) for the
S functions contour, image or persp.

x The grid values in the X-axis

y The grid values in the Y-axis

z A matrix of dimensions nrow= length of x and ncol= length of y with entries
being the grid point value reformatted from z.

See Also

grid.list, make.surface.grid, surface, contour, image.plot, as.image

Examples

Make a perspective of the surface Z= X**2 -Y**2
Do this by evaluating quadratic function on a 25 X 25 grid

grid.l<-list(abcissa= seq(-2,2,,15), ordinate= seq(-2,2,,20))
xg<-make.surface.grid(grid.l)
xg is a 300X2 matrix that has all pairs of X and Y grid values
z<- xg[,1]**2 - xg[,2]**2
now fold z in the matrix format needed for persp
out.p<-as.surface(xg, z)
persp(out.p)
also try plot(out.p) to see the default plot for a surface object

10 BD

BD Data frame of the effect of buffer compositions on DNA strand dis-
placement amplification. A 4-d regression data set with with replica-
tion. This is a useful test data set for exercising function fitting meth-
ods.

Description

The BD data frame has 89 rows and 5 columns. There are 89 runs with four buffer components
(KCL, MgCl2, KP04, dnTP) systematically varied in a space-filliing design. The response is the
DNA amplification rate.

Format

This data frame contains the following columns:

KCl Buffer component.

MgCl2 Buffer component.

KPO4 Buffer component.

dNTP Buffer component, deoxyribonucleotides.

lnya Exponential amplification rate on a log scale, i.e. the actual amplification rate.

Source

Thanks to Perry Haaland and Michael OConnell.

Becton Dickinson Research Center Research Triangle Park, NC

See Also

Tps

Examples

fitting a DNA strand
displacement amplification surface to various buffer compositions
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")
surface(fit) # plots fitted surface and contours

bplot 11

bplot boxplot

Description

Plots boxplots of several groups of data and allows for placement at different horizontal or vertical
positions or colors. It is also flexible in the input object, accepting either a list or matrix.

Usage

bplot(x, by, pos=NULL, at = pos, add = FALSE, boxwex =
0.8,xlim=NULL, ...)

Arguments

x Vector, matrix, list or data frame. A vector may be divided according to the
by argument. Matrices and data frames are separated by columns and lists by
components.

by If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets. Boxplots are then made for each
group.

pos The boxplots will be plotted vertically (horizontally) and pos gives the x (y)
locations for their centers. If omitted the boxes are equally spaced at integer
values. This is the same as at in the boxplot function

at Same as pos this is the name for this argument in the standard boxplot function.

add If true, do not create a new plots just add the boxplots to a current plot. Note that
the pos argument may be useful in this case and should be in the user coordinates
of the parent plot.

boxwex A boxplot argument to control the width of the boxplot. It behaves a little dif-
ferent than as an argumetn passed directly to boxplot. To make this a gen-
eral function it is useful to scale this according to size of positions. Within
bplot this happens as boxwex<-boxwex* min(diff(sort(at))). and then the
scaled version of boxwex is now passed to boxplot.

xlim Same as the usual argument used in plotting. The plotting limits for the x axis.

... Other arguments to be passed to the boxplot function some handy favorites are:
names Labels for each boxplot. horizontalIf TRUE draw boxplots horizontally
the default is false, produce vertical box plots. lwdWidth(s) of lines in box plots.
colColor(s) of bplots. See colors() for some choices.

Details

This function was created as a complement to the usual S/R function for boxplots. The current
function makes it possible to put the boxplots at unequal x or y positions in a rational way using the
at or pos arguments. This is useful for visually grouping a large set of boxplots into several groups.
Also placement of the boxplots with respect to the axis can add information to the plot. Another

12 bplot.xy

aspect is the emphasis on data structures for groups of data. One useful feature is the by option to
break up the x vector into distinct groups.

Use axis(3) (axis(4)) to add an axis along the top (right side) or omit the category names and
draw on the bottom axis(1) (left side axis(2)).

The older bplot function drew the boxplots from scratch and if one needs to do this refer to the old
functions: describe.bplot,draw.bplot.obj,bplot.xy,bplot.obj

Finally to bin data into groups based on a continuous variable and to make bplots of each group see
bplot.xy.

See Also

bplot.xy

Examples

#
set.seed(123)
temp<- matrix(rnorm(12*8), ncol=12)
pos<- c(1:6,9, 12:16)*100
bplot(temp)
#
par(las=2)
bplot(temp, pos=pos, names=paste("Data",1:12, sep=""))
add an axis along top for reference
axis(3)

#
Xmas boxplots in pleasing red and green
bplot(temp, pos=pos, col=c("red4", "green4"))
add an axis on top
axis(3)

bplot.xy Boxplots for conditional distribution

Description

Draws boxplots for y by binning on x. This gives a coarse, but quick, representation of the condi-
tional distrubtion of [Y|X] in terms of boxplots.

Usage

bplot.xy(x, y, N = 10, breaks = pretty(x, N, eps.correct = 1), plot=TRUE,
...)

Chicago ozone test data 13

Arguments

x Vector to use for bin membership

y Vector to use for constructing boxplot statistics.

N Number of bins on x. Default is 10.

breaks Break points defining bin boundaries. These can be unequally spaced.

plot If FALSE just returns a list with the statistics used for plotting the box plots, bin
centers, etc. – More stuff than you can imagine!

... Any other optional arguments passed to the standard boxplot function.

See Also

bplot, draw.bplot

Examples

condition on swim times to see how run times vary
bplot.xy(minitri$swim, minitri$run, N=5)

bivariate normal corr= .8
set.seed(123)
x<-rnorm(2000)
y<- .8*x + sqrt(1- .8**2)*rnorm(200)
#
bplot.xy(x,y)
#
bplot.xy(x,y, breaks=seq(-3, 3,,25) ,

xlim =c(-4,4), ylim =c(-4,4), col="grey80", lwd=2)
points(x,y,col=3, cex=.5)

Chicago ozone test data

Data set of ozone measurements at 20 Chicago monitoring stations.

Description

This data set used be named ozone but was changed to avoid conflict with other packages. The
ChicagoO3 data is a list of components, x and y. x component is longitude and latitude position
of each of the 20 Chicago monitoring stations, y is the average daily ozone values over the time
period 6/3/87-8/30/87. These data are used extensively for the test scripts and simple examples.
The lasting scientific value is probably minimal.

14 CO2

Format

This data set is a list containing the following components:

lon.lat Longitude-latitude positions of monitoring stations.
x An approximate Cartesian set of coordinates for the locations where the units are in miles. The

origin is in the center of the locations.
y Average daily ozone values over 1987 summer.

Source

AIRS, the EPA air quality data base.

See Also

Tps, Krig

Examples

fit<- Tps(ChicagoO3$x, ChicagoO3$y)
fitting a surface to ozone measurements.
surface(fit, type="I")

CO2 Simulated global CO2 observations

Description

This is an example of moderately large spatial data set and consists of simulated CO2 concentrations
that are irregularly sampled from a lon/lat grid. Also included is the complete CO2 field (CO2.true)
used to generate the synthetic observations.

Usage

data(CO2)

Format

The format of CO2 is a list with two components:

• lon.lat: 26633x2 matrix of the longitude/latitude locations. These are a subset of a larger
lon/lat grid (see example below).

• y: 26633 CO2 concentrations in parts per million.

The format of CO2.true is a list in "image" format with components:

• x longitude grid values.
• y latitude grid values.
• z an image matrix with CO2 concentration in parts per million
• mask a logical image that indicates with grid locations were selected for the synthetic data set
CO2.

CO2 15

Details

This data was generously provided by Dorit Hammerling and Randy Kawa as a test example for the
spatial analysis of remotely sensed (i.e. satellite) and irregular observations. The synthetic data is
based on a true CO2 field simulated from a geophysical, numerical model.

Examples

Not run:

data(CO2)
#
A quick look at the observations with world map
quilt.plot(CO2$lon.lat, CO2$y)
world(add=TRUE)

Note high concentrations in Borneo (biomass burning), Amazonia and
... Michigan (???).

spatial smoothing using the wendland compactly supported covariance
see help(fastTps) for details
First smooth using locations and Euclidean distances
note taper is in units of degrees
out<-fastTps(CO2$lon.lat, CO2$y, theta=4, lambda=2.0)
#summary of fit note about 7300 degrees of freedom
associated with fitted surface
print(out)

image plot on a grid (this takes a while)
surface(out, type="I", nx=300, ny=150)
smooth with respect to great circle distance
out2<-fastTps(CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, theta=4*68)
print(out2)
#surface(out2, type="I", nx=300, ny=150)

these data are actually subsampled from a grid.
create the image object that holds the data
#

temp<- matrix(NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z))
temp[CO2.true$mask] <- CO2$y

look at gridded object.
image.plot(CO2.true$x,CO2.true$y, temp)

to predict _exactly_ on this grid for the second fit;
(this take a while)
look<- predictSurface(out2, grid.list=list(x=CO2.true$x, y=CO2.true$y))
image.plot(look)

End(Not run)

16 Colorado Monthly Meteorological Data

Colorado Monthly Meteorological Data

Monthly surface meterology for Colorado 1895-1997

Description

Source: These is a group of R data sets for monthly min/max temperatures and precipitation over
the period 1895-1997. It is a subset extracted from the more extensive US data record. Temperature
is in degrees C and precipitation is total monthly accumulation in millimeters. Note that minimum
(maximum) monthly tempertuare is the mean of the daily minimum (maximum) temperatures.

Data domain:

A rectagular lon/lat region [-109.5,-101]x [36.5,41.5] larger than the boundary of Colorado com-
prises approximately 400 stations. Although there are additional stations reported in this domain,
stations that only report preicipitation or only report temperatures have been excluded. In addition
stations that have mismatches between locations and elevations from the two meta data files have
also been excluded. The net result is 367 stations that have colocated temperatures and precipitation.

Format

This group of data sets is organized with the following objects:

CO.info A data frame with columns: station id, elev, lon, lat, station name

CO.elev elevation in meters

CO.elevGrid An image object being elevation in meters on a 4 km grid covering Colorado.

CO.id alphanumeric station id codes

CO.loc locations in lon/lat

CO.Grid Just the grid.list used in the CO.elevGrid.

CO.ppt CO.tmax CO.tmin Monthly means as three dimensional arrays (Year, Month, Station).
Temperature is in degrees C and precipitation in total monthly accumulation in millimeters.

CO.ppt.MAM CO.tmax.MAM CO.tmin.MAM Spring seasonal means (March, April,May) as
two dimensional arrays (Year, Station).

CO.MAM.ppt.climate CO.MAM.tmax.climate CO.MAM.tmin.climate Spring seasonal means
(March, April,May) means by station for the period 1960-1990. If less than 15 years are
present over this period an NA is recorded. No detreding or other adjustments have been
made for these mean estimates.

Creation of data subset

Here is the precise R script used to create this data subset from the larger US monthly data set. This
parent, R binary file can be obtained by contacting Doug Nychka (nychka@mines.edu).

These technical details are not needed for casual use of the data – skip down to examples for some
R code that summarizes these data.

Colorado Monthly Meteorological Data 17

attach("RData.USmonthlyMet.bin")

#To find a subset that covers Colorado (with a bit extra):

indt<- UStinfo$lon< -101 & UStinfo$lon > -109.5
indt<- indt & UStinfo$lat<41.5 & UStinfo$lat>36.5

check US(); points(UStinfo[indt,3:4])

#find common names restricting choices to the temperature names
tn<- match(UStinfo$station.id, USpinfo$station.id)
indt<- !is.na(tn) & indt

compare metadata locations and elevations.
initial matches to precip stations
CO.id<- UStinfo[indt,1]
CO.names<- as.character(UStinfo[indt,5])
pn<- match(CO.id, USpinfo$station.id)

loc1<- cbind(UStinfo$lon[indt], UStinfo$lat[indt], UStinfo$elev[indt])
loc2<- cbind(USpinfo$lon[pn], USpinfo$lat[pn], USpinfo$elev[pn])

abs(loc1- loc2) -> temp
indbad<- temp[,1] > .02 | temp[,2]> .02 | temp[,3] > 100

tolerance at 100 meters set mainly to include the CLIMAX station
a high altitude station.

data.frame(CO.names[indbad], loc1[indbad,], loc2[indbad,], temp[indbad,])

CO.names.indbad. X1 X2 X3 X1.1 X2.1 X3.1 X1.2 X2.2 X3.2
#1 ALTENBERN -108.38 39.50 1734 -108.53 39.58 2074 0.15 0.08 340
#2 CAMPO 7 S -102.57 37.02 1311 -102.68 37.08 1312 0.11 0.06 1
#3 FLAGLER 2 NW -103.08 39.32 1519 -103.07 39.28 1525 0.01 0.04 6
#4 GATEWAY 1 SE -108.98 38.68 1391 -108.93 38.70 1495 0.05 0.02 104
#5 IDALIA -102.27 39.77 1211 -102.28 39.70 1208 0.01 0.07 3
#6 KARVAL -103.53 38.73 1549 -103.52 38.80 1559 0.01 0.07 10
#7 NEW RAYMER -103.85 40.60 1458 -103.83 40.58 1510 0.02 0.02 52

modify the indt list to exclude these mismatches (there are 7 here)

badones<- match(CO.id[indbad], UStinfo$station.id)
indt[badones] <- FALSE

now have working set of CO stations have both temp and precip

18 Colorado Monthly Meteorological Data

and are reasonably close to each other.

N<- sum(indt)
put data in time series order instead of table of year by month.
CO.tmax<- UStmax[,,indt]
CO.tmin<- UStmin[,,indt]

CO.id<- as.character(UStinfo[indt,1])
CO.elev<- UStinfo[indt,2]
CO.loc <- UStinfo[indt,3:4]
CO.names<- as.character(UStinfo[indt,5])

CO.years<- 1895:1997

now find precip stations that match temp stations
pn<- match(CO.id, USpinfo$station.id)
number of orphans
sum(is.na(pn))

pn<- pn[!is.na(pn)]
CO.ppt<- USppt[,,pn]

checks --- all should zero

ind<- match(CO.id[45], USpinfo$station.id)
mean(abs(c(USppt[,,ind]) - c(CO.ppt[,,45])) , na.rm=TRUE)

ind<- match(CO.id[45], UStinfo$station.id)
mean(abs(c((UStmax[,,ind])) - c(CO.tmax[,,45])), na.rm=TRUE)

mean(abs(c((UStmin[,,ind])) - c(CO.tmin[,,45])), na.rm=TRUE)

check order
ind<- match(CO.id, USpinfo$station.id)
sum(CO.id != USpinfo$station.id[ind])

ind<- match(CO.id, UStinfo$station.id)
sum(CO.id != UStinfo$station.id[ind])

(3 4 5) (6 7 8) (9 10 11) (12 1 2)
N<- ncol(CO.tmax)

CO.tmax.MAM<- apply(CO.tmax[,3:5,],c(1,3), "mean")

CO.tmin.MAM<- apply(CO.tmin[,3:5,],c(1,3), "mean")

CO.ppt.MAM<- apply(CO.ppt[,3:5,],c(1,3), "sum")

Colorado Monthly Meteorological Data 19

Now average over 1961-1990
ind<- CO.years>=1960 & CO.years < 1990

temp<- stats(CO.tmax.MAM[ind,])
CO.tmax.MAM.climate<- ifelse(temp[1,] >= 15, temp[2,], NA)

temp<- stats(CO.tmin.MAM[ind,])
CO.tmin.MAM.climate<- ifelse(temp[1,] >= 15, temp[2,], NA)

CO.tmean.MAM.climate<- (CO.tmin.MAM.climate + CO.tmin.MAM.climate)/2

temp<- stats(CO.ppt.MAM[ind,])
CO.ppt.MAM.climate<- ifelse(temp[1,] >= 15, temp[2,], NA)

save(list=c("CO.tmax", "CO.tmin", "CO.ppt",
"CO.id", "CO.loc","CO.years",
"CO.names","CO.elev",
"CO.tmin.MAM", "CO.tmax.MAM", "CO.ppt.MAM",
"CO.tmin.MAM.climate", "CO.tmax.MAM.climate",
"CO.ppt.MAM.climate", "CO.tmean.MAM.climate"),
file="COmonthlyMet.rda")

Examples

data(COmonthlyMet)

#Spatial plot of 1997 Spring average daily maximum temps
quilt.plot(CO.loc,CO.tmax.MAM[103,])
US(add=TRUE)
title("Recorded MAM max temperatures (1997)")

min and max temperatures against elevation

matplot(CO.elev, cbind(CO.tmax.MAM[103,], CO.tmin.MAM[103,]),
pch="o", type="p",
col=c("red", "blue"), xlab="Elevation (m)", ylab="Temperature (C)")

title("Recorded MAM max (red) and min (blue) temperatures 1997")

#Fitting a spatial model:
obj<- Tps(CO.loc,CO.tmax.MAM.climate, Z= CO.elev)
good<- !is.na(CO.tmax.MAM.climate)
out<- MLE.Matern(CO.loc[good,],CO.tmax.MAM.climate[good],

smoothness=1.0, Z= CO.elev[good])
#MLE search on range suggests Tps model

20 colorbar.plot

colorbar.plot Adds color scale strips to an existing plot.

Description

Adds one or more color scales in a horizontal orientation, vertical orientation to an existing plot.

Usage

colorbar.plot(x, y, strip, strip.width = 0.1, strip.length = 4 * strip.width,
zrange = NULL, adj.x = 0.5, adj.y = 0.5, col = tim.colors(256),
horizontal = TRUE, ...)

Arguments

x x position of strip in user coordinates

y y position of strip in user coordinates

strip Either a vector or matrix giving the values of the color strip(s). If a matrix then
strips are assumed to be the columns.

strip.width Width of strip as a fraction of the plotting region.

strip.length Length of strip as a function of the plotting region. Default is a pleasing 8 times
width.

zrange If a vector these are the common limits used for assigning the color scale. De-
fault is to use the range of values in strip. If a two column matrix, rows are used
as the limits for each strip.

adj.x Location of strip relative to x coordinate. Most common values are .5 (centered),
0 (right end at x) and 1 (left end of at x). These are the same conventions that
are used for adj in positioning text.

adj.y Location of strip relative to y coordinate. Same rules as adj.x

col Color table used for strip. Default is our favorite tim.colors being a scale from a
dark blue to dark red.

horizontal If TRUE draws strips horizontally. If FALSE strips are drawn vertically

... optional graphical arguments that are passed to the image function.

Details

This function draws the strips as a sequence of image plots added to the existing plot. The main
work is in creating a grid (x,y) for the image that makes sense when superimposed on the plot.
Note that although the columns of strip are considered as separate strips these can be oriented either
horizontally or vertically based on the value of horizontal. The rows of zrange are essentially the
zlim argument passed to the image function when each strip is drawn.

colorbar.plot 21

Don’t forget to use locator to interactively determine positions. text can be used to label points
neatly in conjunction with setting adj.x and adj.y. Although this function is inefficient for placing
images at arbitrary locations on a plot the code can be easily adapted to do this.

This function was created to depict univariate posterior distribution on a map. The values are
quantiles of the distribution and the strips when added under a common color scale give an overall
impression of location and scale for several distributions.

Author(s)

Doug Nychka

See Also

image.plot, arrow.plot, add.image

Examples

set up a plot but don't plot points and no "box"
plot(1:10, (1:10)*10, type="n", bty="n")
of course this could be anything

y<- cbind(1:15, (1:15)+25)

colorbar.plot(2.5, 30, y)
points(2.5,30, pch="+", cex=2, adj=.5)
note that strip is still in 1:8 aspect even though plot has very
different ranges for x and y.

adding legend using image.plot
zr<- range(c(y))
image.plot(legend.only=TRUE, zlim= zr)
see help(image.plot) to create more room in margin etc.

zr<- rbind(c(1,20), c(1,100)) # separate ranges for columns of y.
colorbar.plot(5, 70, y, adj.x=0, zrange= zr)
some reference lines to show placement
xline(5, lty=2) # strip starts at x=5
yline(70, lty=2) # strip is centered around y=7 (because adj.y=.5 by default)

many strips on common scale.

y<- matrix(1:200, ncol=10)
colorbar.plot(2, 75, y, horizontal=FALSE, col=rainbow(256))

Xmas strip
y<- cbind(rep(c(1,2),10))
y[15] <- NA # NA's should work
colorbar.plot(6, 45, y, adj.y=1,col=c("red", "green"))
text(6,48,"Christmas strip", cex=2)

lennon thumbnail
there are better ways to this ... see add.image for example.

22 compactToMat

data(lennon)
colorbar.plot(7.5,22, lennon,

strip.width=.25, strip.length=.25, col=grey(seq(0,1,,256)))

compactToMat Convert Matrix from Compact Vector to Standard Form

Description

compactToMat transforms a matrix from compact, vector form to a standard matrix. Only symmet-
ric matrices can be stored in this form, since a compact matrix is stored as a vector with elements
representing the upper triangle of the matrix. This function assumes the vector does not contain
diagonal elements of the matrix.

An example of a matrix stored in compact form is any matrix generated from the rdist function
with compact=TRUE.

Usage

compactToMat(compactMat, diagVal=0, lower.tri=FALSE, upper.tri=TRUE)

Arguments

compactMat A symmetric matrix stored as a vector containing elements for the lower-triangular
portion of the true matrix (and none of the diagonal elements), as returned by
rdist with compact=TRUE.

diagVal A number to put in the diagonal entries of the output matrix.

lower.tri Whether or not to fill in the upper triangle of the output matrix

upper.tri Whether or not to fill in the lower triangle of the output matrix

Value

The standard form matrix represented by the input compact matrix

Author(s)

John Paige

See Also

rdist, link{dist}

Covariance functions 23

Examples

################
#Calculate distance matrix from compact form:
################

#make a distance matrix
distOut = rdist(1:5, compact=TRUE)
print(distOut)

#note that distOut is in compact form:
print(c(distOut))

#convert to standard matrix form:
distMat = compactToMat(distOut)

################
#fast computation of covariance matrix:
################

#generate 5 random points on [0,1]x[0,1] square
x = matrix(runif(10), nrow=5)

#get compact distance matrix
distOut = rdist(x, compact=TRUE)

#evaluate Exponential covariance with range=1. Note that
#Covariance function is only evaluated over upper triangle
#so time is saved.
diagVal = Exponential(0, range=1)
compactCovMat = Exponential(distOut, range=1)
upperCovMat = compactToMat(compactCovMat, diagVal)
lowerCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=FALSE)
fullCovMat = compactToMat(compactCovMat, diagVal, lower.tri=TRUE, upper.tri=TRUE)
compactCovMat
lowerCovMat
upperCovMat
fullCovMat

Covariance functions Exponential family, radial basis functions,cubic spline, compactly sup-
ported Wendland family and stationary covariances.

Description

Given two sets of locations these functions compute the cross covariance matrix for some covariance
families. In addition these functions can take advantage of spareness, implement more efficient
multiplcation of the cross covariance by a vector or matrix and also return a marginal variance to be
consistent with calls by the Krig function.

24 Covariance functions

stationary.cov and Exp.cov have additional arguments for precomputed distance matrices and
for calculating only the upper triangle and diagonal of the output covariance matrix to save time.
Also, they support using the rdist function with compact=TRUE or input distance matrices in com-
pact form, where only the upper triangle of the distance matrix is used to save time.

Note: These functions have been been renamed from the previous fields functions using ’Exp’ in
place of ’exp’ to avoid conflict with the generic exponential function (exp(...))in R.

Usage

Exp.cov(x1, x2=NULL, theta = 1, p=1, distMat = NA,
C = NA, marginal = FALSE, onlyUpper=FALSE)

Exp.simple.cov(x1, x2, theta =1, C=NA,marginal=FALSE)

Rad.cov(x1, x2, p = 1, m=NA, with.log = TRUE, with.constant = TRUE,
C=NA,marginal=FALSE, derivative=0)

cubic.cov(x1, x2, theta = 1, C=NA, marginal=FALSE)

Rad.simple.cov(x1, x2, p=1, with.log = TRUE, with.constant = TRUE,
C = NA, marginal=FALSE)

stationary.cov(x1, x2=NULL, Covariance = "Exponential", Distance = "rdist",
Dist.args = NULL, theta = 1, V = NULL, C = NA, marginal = FALSE,
derivative = 0, distMat = NA, onlyUpper = FALSE, ...)

stationary.taper.cov(x1, x2, Covariance="Exponential",
Taper="Wendland",
Dist.args=NULL, Taper.args=NULL,
theta=1.0,V=NULL, C=NA, marginal=FALSE,
spam.format=TRUE,verbose=FALSE,...)

wendland.cov(x1, x2, theta = 1, V=NULL, k = 2, C = NA,
marginal =FALSE,Dist.args = list(method = "euclidean"),
spam.format = TRUE, derivative = 0, verbose=FALSE)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.

x2 Matrix of second set of locations where each row gives the coordinatesof a par-
ticular point. If this is missing x1 is used.

theta Range (or scale) parameter. This should be a scalar (use the V argument for other
scaling options). Any distance calculated for a covariance function is divided by
theta before the covariance function is evaluated.

V A matrix that describes the inverse linear transformation of the coordinates be-
fore distances are found. In R code this transformation is: x1 %*% t(solve(V))
Default is NULL, that is the transformation is just dividing distance by the scalar

Covariance functions 25

value theta. See Details below. If one has a vector of "theta’s" that are the scal-
ing for each coordinate then just express this as V = diag(theta) in the call to
this function.

C A vector with the same length as the number of rows of x2. If specified the
covariance matrix will be multiplied by this vector.

marginal If TRUE returns just the diagonal elements of the covariance matrix using the
x1 locations. In this case this is just 1.0. The marginal argument will trivial for
this function is a required argument and capability for all covariance functions
used with Krig.

p Exponent in the exponential covariance family. p=1 gives an exponential and
p=2 gives a Gaussian. Default is the exponential form. For the radial basis
function this is the exponent applied to the distance between locations.

m For the radial basis function p = 2m-d, with d being the dimension of the loca-
tions, is the exponent applied to the distance between locations. (m is a common
way of parametrizing this exponent.)

with.constant If TRUE includes complicated constant for radial basis functions. See the func-
tion radbad.constant for more details. The default is TRUE, include the con-
stant. Without the usual constant the lambda used here will differ by a constant
from spline estimators (e.g. cubic smoothing splines) that use the constant.
Also a negative value for the constant may be necessary to make the radial basis
positive definite as opposed to negative definite.

with.log If TRUE include a log term for even dimensions. This is needed to be a thin
plate spline of integer order.

Covariance Character string that is the name of the covariance shape function for the dis-
tance between locations. Choices in fields are Exponential, Matern

Distance Character string that is the name of the distance function to use. Choices in
fields are rdist, rdist.earth

Taper Character string that is the name of the taper function to use. Choices in fields
are listed in help(taper).

Dist.args A list of optional arguments to pass to the Distance function.

Taper.args A list of optional arguments to pass to the Taper function. theta should always
be the name for the range (or scale) paremeter.

spam.format If TRUE returns matrix in sparse matrix format implemented in the spam pack-
age. If FALSE just returns a full matrix.

k The order of the Wendland covariance function. See help on Wendland.

derivative If nonzero evaluates the partials of the covariance function at locations x1. This
must be used with the "C" option and is mainly called from within a predict
function. The partial derivative is taken with respect to x1.

verbose If TRUE prints out some useful information for debugging.

distMat If the distance matrix between x1 and x2 has already been computed, it can be
passed via this argument so it won’t need to be recomputed.

onlyUpper For internal use only, not meant to be set by the user. Automatically set to TRUE
by mKrigMLEJoint or mKrigMLEGrid if lambda.profile is set to TRUE, but set
to FALSE for the final parameter fit so output is compatible with rest of fields.

26 Covariance functions

If TRUE, only the upper triangle and diagonal of the covariance matrix is com-
puted to save time (although if a non-compact distance matrix is used, the on-
lyUpper argument is set to FALSE). If FALSE, the entire covariance matrix is
computed. In general, it should only be set to TRUE for mKrigMLEJoint and
mKrigMLEGrid, and the default is set to FALSE so it is compatible with all of
fields.

... Any other arguments that will be passed to the covariance function. e.g. smoothness
for the Matern.

Details

For purposes of illustration, the function Exp.cov.simple is provided in fields as a simple example
and implements the R code discussed below. List this function out as a way to see the standard
set of arguments that fields uses to define a covariance function. It can also serve as a template
for creating new covariance functions for the Krig and mKrig functions. Also see the higher level
function stationary.cov to mix and match different covariance shapes and distance functions.

A common scaling for stationary covariances: If x1 and x2 are matrices where nrow(x1)=m and
nrow(x2)=n then this function will return a mXn matrix where the (i,j) element is the covariance
between the locations x1[i,] and x2[j,]. The exponential covariance function is computed as
exp(-(D.ij)) where D.ij is a distance between x1[i,] and x2[j,] but having first been scaled by
theta. Specifically if theta is a matrix to represent a linear transformation of the coordinates, then
let u= x1%*% t(solve(theta)) and v= x2%*% t(solve(theta)). Form the mXn distance matrix
with elements:

D[i,j] = sqrt(sum((u[i,] -v[j,])**2)).

and the cross covariance matrix is found by exp(-D). The tapered form (ignoring scaling parame-
ters) is a matrix with i,j entry exp(-D[i,j])*T(D[i,j]). With T being a positive definite tapering
function that is also assumed to be zero beyond 1.

Note that if theta is a scalar then this defines an isotropic covariance function and the functional
form is essentially exp(-D/theta).

Implementation: The function r.dist is a useful FIELDS function that finds the cross Euclidean
distance matrix (D defined above) for two sets of locations. Thus in compact R code we have

exp(-rdist(u, v))

Note that this function must also support two other kinds of calls:

If marginal is TRUE then just the diagonal elements are returned (in R code diag(exp(-rdist(u,u))
)).

If C is passed then the returned value is exp(-rdist(u,v)) %*% C.

Some details on particular covariance functions:

Radial basis functions (Rad.cov: The functional form is Constant* rdist(u, v)**p for odd dimen-
sions and Constant* rdist(u,v)**p * log(rdist(u,v)) For an m th order thin plate spline in d
dimensions p= 2*m-d and must be positive. The constant, depending on m and d, is coded in
the fields function radbas.constant. This form is only a generalized covariance function – it
is only positive definite when restricted to linear subspace. See Rad.simple.cov for a coding
of the radial basis functions in R code.

Covariance functions 27

Stationary covariance stationary.cov: Here the computation is to apply the function Covari-
ance to the distances found by the Distance function. For example
Exp.cov(x1,x2,theta=MyTheta)

and
stationary.cov(x1,x2,theta=MyTheta,Distance= "rdist",Covariance="Exponential")

are the same. This also the same as
stationary.cov(x1,x2,theta=MyTheta,Distance= "rdist",Covariance="Matern",smoothness=.5).

Stationary tapered covariance stationary.taper.cov: The resulting cross covariance is the di-
rect or Shure product of the tapering function and the covariance. In R code given location
matrices, x1 and x2 and using Euclidean distance.
Covariance(rdist(x1,x2)/theta)*Taper(rdist(x1,x2)/Taper.args$theta)

By convention, the Taper function is assumed to be identically zero outside the interval [0,1].
Some efficiency is introduced within the function to search for pairs of locations that are
nonzero with respect to the Taper. This is done by the SPAM function nearest.dist. This
search may find more nonzero pairs than dimensioned internally and SPAM will try to increase
the space. One can also reset the SPAM options to avoid these warnings. For spam.format
TRUE the multiplication with the C argument is done with the spam sparse multiplication
routines through the "overloading" of the %*% operator.

About the FORTRAN: The actual function Exp.cov and Rad.cov call FORTRAN to make the
evaluation more efficient this is especially important when the C argument is supplied. So unfor-
tunately the actual production code in Exp.cov is not as crisp as the R code sketched above. See
Rad.simple.cov for a R coding of the radial basis functions.

Value

If the argument C is NULL the cross covariance matrix is returned. In general if nrow(x1)=m and
nrow(x2)=n then the returned matrix will be mXn. Moreover, if x1 is equal to x2 then this is the
covariance matrix for this set of locations.

If C is a vector of length n, then returned value is the multiplication of the cross covariance matrix
with this vector.

See Also

Krig, rdist, rdist.earth, gauss.cov, Exp.image.cov, Exponential, Matern, Wendland.cov, mKrig

Examples

exponential covariance matrix (marginal variance =1) for the ozone
#locations
out<- Exp.cov(ChicagoO3$x, theta=100)

out is a 20X20 matrix

out2<- Exp.cov(ChicagoO3$x[6:20,],ChicagoO3$x[1:2,], theta=100)
out2 is 15X2 matrix

Kriging fit where the nugget variance is found by GCV
Matern covariance shape with range of 100.

28 Covariance functions

#

fit<- Krig(ChicagoO3$x, ChicagoO3$y, Covariance="Matern", theta=100,smoothness=2)

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
Omit the NAs
good<- !is.na(y)
x<- x[good,]
y<- y[good]

example of calling the taper version directly
Note that default covariance is exponential and default taper is
Wendland (k=2).

stationary.taper.cov(x[1:3,],x[1:10,] , theta=1.5, Taper.args= list(k=2,theta=2.0,
dimension=2))-> temp

temp is now a tapered 3X10 cross covariance matrix in sparse format.

is.spam(temp) # evaluates to TRUE

should be identical to
the direct matrix product

temp2<- Exp.cov(x[1:3,],x[1:10,], theta=1.5) * Wendland(rdist(x[1:3,],x[1:10,]),
theta= 2.0, k=2, dimension=2)

test.for.zero(as.matrix(temp), temp2)

Testing that the "V" option works as advertized ...
x1<- x[1:20,]
x2<- x[1:10,]

V<- matrix(c(2,1,0,4), 2,2)
Vi<- solve(V)

u1<- t(Vi%*% t(x1))
u2<- t(Vi%*% t(x2))

look<- exp(-1*rdist(u1,u2))
look2<- stationary.cov(x1,x2, V= V)
test.for.zero(look, look2)

Here is an example of how the cross covariance multiply works
and lots of options on the arguments

Ctest<- rnorm(10)

temp<- stationary.cov(x,x[1:10,], C= Ctest,
Covariance= "Wendland",

CovarianceUpper 29

k=2, dimension=2, theta=1.5)

do multiply explicitly

temp2<- stationary.cov(x,x[1:10,],
Covariance= "Wendland",

k=2, dimension=2, theta=1.5)%*% Ctest

test.for.zero(temp, temp2)

use the tapered stationary version
cov.args is part of the argument list passed to stationary.taper.cov
within Krig.
This example needs the spam package.
#

Not run:

Krig(x,y, cov.function = "stationary.taper.cov", theta=1.5,
cov.args= list(Taper.args= list(k=2, dimension=2,theta=2.0))

) -> out2
NOTE: Wendland is the default taper here.

End(Not run)

BTW this is very similar to
Not run:
Krig(x,y, theta= 1.5)-> out

End(Not run)

CovarianceUpper Evaluate covariance over upper triangle of distance matrix

Description

Evaluates the covariance over the upper triangle of a distance matrix rather than over the entire
matrix to reduce computation time. Note that the chol function only requires the upper triangle of
the covariance matrix to perform the Cholesky decomposition.

Usage

ExponentialUpper(distMat, range = 1, alpha = 1/range)

30 cover.design

Arguments

distMat The distance matrix to evaluate the covariance over.

range Range parameter default is one. Note that the scale can also be specified through
the "theta" scaling argument used in fields covariance functions)

alpha 1/range

Value

The covariance matrix, where only the upper triangle is calculated.

Author(s)

John Paige

See Also

Exponential

Examples

set.seed(123)

#make distance matrix using the random locations
coords = matrix(runif(10), ncol=2)
distMat = rdist(coords)

#compute covariance matrix, but only over the upper triangle
upperCov = ExponentialUpper(distMat, range=.1)

print(distMat)
print(upperCov)

cover.design Computes Space-Filling "Coverage" designs using Swapping Algo-
rithm

Description

Finds the set of points on a discrete grid (Candidate Set) which minimize a geometric space-filling
criterion. The strength of this method is that the candidate set can satisfy whatever constraints are
important for the problem.

Usage

cover.design(R, nd, nruns = 1, nn = TRUE, num.nn = 100, fixed = NULL,
scale.type = "unscaled", R.center, R.scale, P = -20, Q = 20,
start = NULL, DIST = NULL, return.grid = TRUE, return.transform =

TRUE, max.loop=20, verbose=FALSE)

cover.design 31

Arguments

R A matrix of candidate points to be considered in the design. Each row is a
separate point.

nd Number of points to add to the design. If points exist and are to remain in the
design (see "fixed" option), nd is the number of points to add. If no points are
fixed, nd is the design size.

nruns The number of random starts to be optimized. Uses random starts unless "start"
is specified. If nruns is great than 1, the final results are the minimum.

nn Logical value specifying whether or not to consider only nearest neighbors in
the swapping algorithm. When nn=FALSE, then the swapping algorithm will
consider all points in the candidate space. When nn=TRUE, then the swapping
algorithm will consider only the num.nn closest points for possible swapping.
The default is to use nearest neighbors only (nn=TRUE).

num.nn Number of nearest-neighbors to search over. The default number is 100. If nn=F
then this argument will be ignore.

fixed A matrix or vector specifying points to be forced into the experimental design.
If fixed is a matrix, it gives coordinates of the fixed points in the design. In this
case fixed must be a subset of R. If fixed is a vector, then fixed gives the row
numbers from the candidate matrix R that identify the fixed points. The number
of points to be generated, nd, is in addition to the number of points specified by
fixed.

scale.type A character string that tells how to scale the candidate matrix, R, before calcu-
lating distances. The default is "unscaled", no transformation is done. Another
option is "range" in which case variables are scaled to a [0,1] range before ap-
plying any distance functions. Use "unscaled" when all of the columns of R are
commensurate; for example, when R gives x and y in spatial coordinates. When
the columns of R are not in the same units, then it is generally thought that an ap-
propriate choice of scaling will provide a better design. This would be the case,
for example, for a typical process optimization. Other choices for scale.type are
"unit.sd", which scales all columns of R to have 0 mean and unit standard devia-
tion, and "user", which allows a user specified scaling (see R.center and R.scale
arguments).

R.center A vector giving the centering values if scale.type=user.

R.scale A vector giving the scale values if scale.type=user.

P The "p" exponent of the coverage criterion (see below). It affects how the dis-
tance from a point x to a set of design points D is calculated. P=1 gives average
distance. P=-1 gives harmonic mean distance. P=-Inf would give minimum dis-
tance (not available as a value). As P gets large and negative, points will tend to
be more spread out.

Q The "q" exponent of the coverage criterion (see below).It affects how distances
from all points not in the design to points in the design are averaged. When Q=1,
simple averaging of the distances is employed. Q=Inf (not available as a value)
in combination with P=-Inf would give a classical minimax design.

start A matrix or vector giving the initial design from which to start optimization. If
start is a matrix, it gives the coordinates of the design points. In this case start

32 cover.design

must be a subset of the candidate set , R matrix. If start is a vector, then start
gives the row numbers of the initial design based on the rows of the candidate
matrix rows. The default is to use a random starting design.

DIST This argument is only for cover.design.S. A distance metric in the form of an S
function. Default is Euclidean distance (FIELDS rdist function) See details and
example below for the correct form.

return.grid Logical value that tells whether or not to return the candidate matrix as an at-
tribute of the computed design. The default is return.grid=T. If false this just re-
duces the returned object size. The candidate matrix is used by plot.spatial.design
if it is available.

return.transform

Logical value that tells whether or not to return the transformation attributes of
candidate set. The default is return.transform=T.

max.loop Maximum number of outer loops in algorithm. This is the maximum number of
passes through the design testing for swaps.

verbose If TRUE prints out debugging information.

Details

OTHER DISTANCE FUNCTIONS: You can supply an R/S-function to be used as the distance
metric. The expected calling sequence for this distance function is function(X1,X2){....} where X1
and X2 are matrices with coordinates as the rows. The returned value of this function should be the
pairwise distance matrix. If nrow(X1)=m and nrow(X2)=n then the function should return an m by
n matrix of all distances between these two sets of points. See the example for Manhattan distance
below.

The candidate set and DIST function can be flexible and the last example below using sample
correlation matrices is an example.

COVERAGE CRITERION: For nd design points in the set D and nc candidate points ci in the set
C, the coverage criteria is defined as:

M(D,C) = [sum(ci in C) [sum(di in D) (dist(di,ci)**P]**(Q/P)]**(1/Q)

Where P, less than 0, and Q, greater than 0, are parameters. The algorithm used in "cover.design" to
find the set of nd points in C that minimize this criterion is an iterative swapping algorithm which
will be described briefly. The resulting design is referred to as a "coverage design" from among the
class of space-filling designs. If fixed points are specified they are simply fixed in the design set and
are not allowed to be swapped out.

ALGORITHM: An initial set of nd points is chosen randomly if no starting configuration is pro-
vided. The nc x nd distance matrix between the points in C and the points in D is computed, and
raised to the power P. The "row sums" of this matrix are computed. Denote these as rs.i and the
vector of row sums as rs. Using rs, M(D,C) is computed as:

[sum i (rs.i)**(Q/P)]**(1/Q)

Note that if point d.i is "swapped" for point c.j, one must only recompute 1 column of the original
distance matrix, and 1 row. The row elements not in the ith column will be the same for all j and
so only need computing when the first swapping occurs for each d.i . Denote the sum of these off-i
elements as "newrow(i)". The index is i here since this is the same for all rows (j=1,...nc). Thus, for
each swap, the row sums vector is updated as

cover.design 33

rs(new) = rs(old) - column(i,old) + column(i,new)

And the jth element of rs(new) is replaced by:

rs(new)[j] = column(i,new)[k] + newrow(i)

Finally, M(D,C) is computed for this swap of the ith design point for the jth candidate point using
[2]. The point in C that when swapped produces the minimum value of M(D,C) replaces d.i. This is
done for all nd points in the design, and is iterated until M(D,C) does not change. When the nearest
neighbor option is selected, then the points considered for swapping are limited to the num.nn
nearest neighbors of the current design point.

STABILITY

The algorithm described above is guaranteed to converge. However, upon convergence, the solution
is sensitive to the initial configuration of points. Thus, it is recommended that multiple optimizations
be done (i.e. set nruns greater than 1). Also, the quality of the solution depends on the density of
the points on the region. At the same time, for large regions , optimization can be computationally
prohibitive unless the nearest neighbor option is employed.

Value

Returns a design object of class spatialDesign. Subscripting this object has the same effect as
subscripting the first component (the design). The returned list has the following components:

design The best design in the form of a matrix.
best.id Row numbers of the final design from the original candidate matrix, R.
fixed Row numbers of the fixed points from the original candidate matrix, R.
opt.crit Value of the optimality criterion for the final design.
start.design Row numbers of the starting design from the original candidate matrix, R.
start.crit Value of the optimality criterion for the starting design.
history The swapping history and corresponding values of the optimality criterion for

the best design.
other.designs The designs other than the best design generated when nruns is greater than 1.
other.crit The optimality criteria for the other designs when nrun is greate than 1.
DIST The distance function used in calculating the design criterion.
nn Logical value for nearest-neighbor search or not.
num.nn The number of nearest neighbor set.
grid The matrix R is returned if the argument return.grid=T.
transform The type of transformation used in scaling the data and the values of the center-

ing and scaling constants if the argument return.transform=T.
call The calling sequence.
P The parameter value for calculating criterion.
Q The parameter value for calculating criterion.
nhist The number of swaps performed.
nloop The number of outer loops required to reach convergence if nloop is less the

max.loop.
minimax.crit The minimax design criterion using DIST.
max.loop The maximum number of outer loops.

34 cover.design

References

Johnson, M.E., Moore, L.M., and Ylvisaker, D. (1990). Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26, 131-148. SAS/QC Software. Volume 2: Usage
and Reference. Version 6. First Edition (1995). "Proc Optex". SAS Institute Inc. SAS Campus
Drive,

See Also

rdist, rdist.earth

Examples

##
##
first generate candidate set
set.seed(123) # setting seed so that you get the same thing I do!
test.df <- matrix(runif(600), ncol=3)

test1.des<-cover.design(R=test.df,nd=10)

summary(test1.des)
plot(test1.des)

#
candidates<- make.surface.grid(list(seq(0,5,,20), seq(0,5,,20)))
out<- cover.design(candidates, 15)

find 10 more points keeping this original design fixed

out3<-cover.design(candidates, 10,fixed=out$best.id)
see what happened

plot(candidates[,1:2], pch=".")
points(out$design, pch="x")
points(out3$design, pch="o")

here is a strange graph illustrating the swapping history for the
the first design. Arrows show the swap done
at each pass through the design.

h<- out$history
cd<- candidates
plot(cd[,1:2], pch=".")
points(out$design, pch="O", col=2)
points(out$start.design, pch="x", col=5)

arrows(
cd[h[,2],1],
cd[h[,2],2],
cd[h[,3],1],
cd[h[,3],2],length=.1)
text(cd[h[,2],1],

cover.design 35

cd[h[,2],2], h[,1], cex=1.0)

#
try this out using "Manhattan distance"
(distance following a grid of city streets)

dist.man<- function(x1,x2) {
d<- ncol(x1)
temp<- abs(outer(x1[,1], x2[,1],'-'))
for (k in 2:d){

temp<- temp+abs(outer(x1[,k], x2[,k],'-'))
}
temp }

use the design from the Euclidean distance as the starting
#configuration.

cover.design(candidates, 15, DIST=dist.man, start= out3$best.id)-> out2
this takes a while ...
plot(out2$design)
points(out3$design, col=2)

find a design on the sphere
#

candidates<- make.surface.grid(list(x=seq(-180,180,,20), y= seq(-85,
85,,20)))

out4<-cover.design(candidates, 15, DIST=rdist.earth)
this takes a while

plot(candidates, pch="+", cex=2)
points(out4$design, pch="o", cex=2, col="blue")

covering based on correlation for 153 ozone stations
#
data(ozone2)

cor.mat<-cor(ozone2$y, use="pairwise")

cor.dist<- function(x1,x2)
{matrix(1-cor.mat[x1,x2], ncol=length(x2))}

#
find 25 points out of the 153
here the "locations" are just the index but the distance is
determined by the correlation function.
#
out5<-cover.design(cbind(1:153),25, DIST= cor.dist, scale.type="unscaled")

plot(ozone2$lon.lat, pch=".")
points(ozone2$lon.lat[out5$best.id,],pch="O", col=4)

36 drape.plot

#
this seems a bit strange probably due some funny correlation values
#

reset panel
set.panel(1,1)

drape.plot Perspective plot draped with colors in the facets.

Description

Function to produce the usual wireframe perspective plot with the facets being filled with different
colors. By default the colors are assigned from a color bar based on the z values. drape.color can
be used to create a color matrix different from the z matrix used for the wireframe.

Usage

drape.plot(x, y, z, z2=NULL, col = tim.colors(64), zlim = range(z, na.rm=TRUE),
zlim2 = NULL, add.legend = TRUE, horizontal = TRUE, theta = 30, phi = 20,
breaks=NA, ...)

drape.color(z, col = tim.colors(64), zlim = NULL,breaks,
transparent.color = "white", midpoint=TRUE, eps=1e-8)

Arguments

x grid values for x coordinate (or if x is a list the components x y and z are used.)

y grid values for y coordinate

z A matrix of z heights

z2 A matrix of z values to use for coloring facets. If NULL then z is used for this
purpose

col A color table for the z values that will be used for draping

zlim the z limits for z these are used to set up the scale of the persp plot. This defaults
to range(z, na.rm=TRUE) as in persp

zlim2 the z limits for z2 these are used to set up the color scale. This defaults to

add.legend If true a color strip is added as a legend.

horizontal If true color strip is put at bottom of the plot, if FALSE it is placed vertically on
the right side.

theta x-y rotation angle for perspective.

phi z-angle for perspective.
transparent.color

Color to use when given an NA in z

drape.plot 37

midpoint If TRUE color scale is formed for midpoints of z obtained by averaging 4 cor-
ners.

breaks Numerical divisions for the color scale. If the default (NA) is N+1 equally
spaced points in the range zlim where N is the number of colors in col. This
is the argument has the same effect as used in the image and image.plot func-
tions.

eps Amount to inflate the range (1+/- eps) to inlude points on break endpoints.

... Other arguments that will be passed to the persp function. The most common is
zlim the z limits for the 3-d plot and also the limits to set up the color scale. The
default for zlim is the range of z.

Details

The legend strip may obscure part of the plot. If so, add this as another step using image.plot.

When using drape.color just drop the results into the col argument of persp. Given this function
there are no surprises how the higher level drape.plot works: it calls drape.color followed by
persp and finally the legend strip is added with image.plot.

The color scales essentially default to the ranges of the z values. However, by specifying zlim and/or
zlim2 one has more control of how the perspective plot is scaled and the limits of the color scale
used to fill the facets. The color assignments are done by dividing up the zlim2 interval into equally
spaced bins and adding a very small inflation to these limits. The mean z2 values, comprising an
(M-1)X(N-1) matrix, for each facet are discretized to the bins. The bin numbers then become the
indices used for the color scale. If zlim2 is not specified it is the range of the z2 matrix is used
to generate the ranges of the color bar. Note that this may be different than the range of the mean
facets. If z2 is not passed then z is used in its place and in this case the zlim2 or zlim argument can
used to define the color scale.

This kind of plot is also supported through the wireframe function in the lattice package. The
advantage of the fields version is that it uses the standard R graphics functions – and is written in R
code.

The drape plot is also drawn by the fields surface function with type="P".

Value

drape.plot If an assignment is made the projection matrix from persp is returned. This information
can be used to add additional 3-d features to the plot. See the persp help file for an example how
to add additional points and lines using the trans3d function and also the example below.

drape.color If dim(z) = M,N this function returns a list with components:

color.index An (M-1)X(N-1) matrix (midpoint= TRUE) or MXN matrx (midpoint=FALSE)
where each element is a text string specifying the color.

breaks The breaks used to assign the numerical values in z to color categories.

Author(s)

D. Nychka

38 drape.plot

See Also

image.plot, quilt.plot, persp, plot.surface, surface, lattice, trans3d

Examples

an obvious choice:
Dr. R's favorite New Zealand Volcano!
data(volcano)
M<- nrow(volcano)
N<- ncol(volcano)
x<- seq(0,1,,M)
y<- seq(0,1,,N)

pm<- drape.plot(x,y,volcano, col=terrain.colors(128))

use different range for color scale and persp plot
setting of border omits the mesh lines

drape.plot(x,y,volcano, col=terrain.colors(128),zlim=c(0,300),
zlim2=c(120,165), border=NA)

note tranparent color for facets outside the zlim2 range

#The projection has been saved in pm
add a point marking the summit
max(volcano)-> zsummit
ix<- row(volcano)[volcano==zsummit]
iy<- col(volcano)[volcano==zsummit]
trans3d(x[ix], y[iy],zsummit,pm)-> uv
points(uv, col="magenta", pch="+", cex=2)

overlay volcano wireframe with gradient in x direction.

dz<- (
volcano[1:(M-1), 1:(N-1)] - volcano[2:(M), 1:(N-1)] +
volcano[1:(M-1), 2:(N)] - volcano[2:(M), 2:(N)]

)/2

convert dz to a color scale:
zlim<- range(c(dz), na.rm=TRUE)
zcol<-drape.color(dz, zlim =zlim, col = tim.colors(64))$color.index

wireframe with these colors
persp(volcano, col=zcol, theta=30, phi=20)

add legend using image.plot function
image.plot(zlim=zlim, legend.only =TRUE, horizontal =TRUE, col= tim.colors(64))

envelopePlot 39

envelopePlot Add a shaded the region between two functions to an existing plot

Description

This function shades the region vertically between two functions, specified as pairs of x and y
vectors, and draws the functions in a darker shade. More formally, it shades all points (x,y) such
that f1(x) < y < f2(x) or f2(x) < y < f1(x). When both functions have the same group of x values,
the x values only need to be set once but y2 needs to be passed in by name. If the two functions
intersect, the vertical space between the functions will be shaded on both sides, as implied in the
definition above.

Usage

envelopePlot(x1, y1, x2 = x1, y2,
col ="thistle1" , lineCol = "thistle3", ...)

Arguments

x1 The x coordinates for the first function (or possibly both functions).

y1 The y coordinates for the first function.

x2 The x coordinates for the second function.

y2 The y coordinates for the second function.

col The color to make the filling between the functions.

lineCol The color to make the lines representing the functions.

... Additional arguments to the base R function polygon

Author(s)

Matt Iverson

Examples

x <- seq(0, 2*pi,, 100)
y1 <- cos(x)
y2 <- sin(x)
plot(x, y1, type="l")
envelopePlot(x, y1, y2=y2)

x1 <- c(0, 0.5, 1)
y1 <- c(0, 2, 1)
x2 <- c(0, 1)
y2 <- c(-1, 0)
plot(x1, y1, type="l", ylim=c(-1, 2))
envelopePlot(x1, y1, x2, y2)

40 Exponential, Matern, Radial Basis

Exponential, Matern, Radial Basis

Covariance functions

Description

Functional form of covariance function assuming the argument is a distance between locations.
As they are defined here, they are in fact correlation functions. To set the marginal variance (sill)
parameter, use the rho argument in mKrig or Krig. To set the nugget variance, use te sigma2
argument in mKrig or Krig.

Usage

Exponential(d, range = 1, alpha = 1/range, phi=1.0)
Matern(d , range = 1,alpha=1/range, smoothness = 0.5,

nu= smoothness, phi=1.0)
Matern.cor.to.range(d, nu, cor.target=.5, guess=NULL,...)
RadialBasis(d,M,dimension, derivative = 0)

Arguments

d Vector of distances or for Matern.cor.to.range just a single distance.

range Range parameter default is one. Note that the scale can also be specified through
the "theta" scaling argument used in fields covariance functions)

alpha 1/range

phi This parameter option is added to be compatible with older versions of fields
and refers to the marginal variance of the process. e.g. phi* exp(-d/theta)
is the exponential covariance for points separated by distance and range theta.
Throughout fields this parameter is equivalent to rho and it recommended that
rho be used. If one is simulating random fields. See the help on sim.rf for more
details.

smoothness Smoothness parameter in Matern. Controls the number of derivatives in the
process. Default is 1/2 corresponding to an exponential covariance.

nu Same as smoothness

M Interpreted as a spline M is the order of the derivatives in the penalty.

dimension Dimension of function

cor.target Correlation used to match the range parameter. Default is .5.

guess An optional starting guess for solution. This should not be needed.

derivative If greater than zero finds the first derivative of this function.

... Additional arguments to pass to the bisection search function.

Exponential, Matern, Radial Basis 41

Details

Exponential:

exp(-d/range)

Matern:

con*(d\^nu) * besselK(d , nu)

Matern covariance function transcribed from Stein’s book page 31 nu==smoothness, alpha ==
1/range

GeoR parameters map to kappa==smoothness and phi == range check for negative distances

con is a constant that normalizes the expression to be 1.0 when d=0.

Matern.cor.to.range: This function is useful to find Matern covariance parameters that are compa-
rable for different smoothness parameters. Given a distance d, smoothness nu, target correlation
cor.target and range theta, this function determines numerically the value of theta so that

Matern(d,range=theta,nu=nu) == cor.target

See the example for how this might be used.

Radial basis functions:

C.m,d r**(2m-d) d- odd

C.m,d r**(2m-d)ln(r) d-even

where C.m.d is a constant based on spline theory and r is the radial distance between points. See
radbas.constant for the computation of the constant. NOTE: Earlier versions of fields used
ln(r^2) instead of ln(r) and so differ by a factor of 2.

Value

For the covariance functions: a vector of covariances.

For Matern.cor.to.range: the value of the range parameter.

Author(s)

Doug Nychka

References

Stein, M.L. (1999) Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer,
New York.

See Also

stationary.cov, stationary.image.cov, Wendland,stationary.taper.cov rad.cov

42 fields

Examples

a Matern correlation function
d<- seq(0,10,,200)
y<- Matern(d, range=1.5, smoothness=1.0)
plot(d,y, type="l")

Several Materns of different smoothness with a similar correlation
range

find ranges for nu = .5, 1.0 and 2.0
where the correlation drops to .1 at a distance of 10 units.

r1<- Matern.cor.to.range(10, nu=.5, cor.target=.1)
r2<- Matern.cor.to.range(10, nu=1.0, cor.target=.1)
r3<- Matern.cor.to.range(10, nu=2.0, cor.target=.1)

note that these equivalent ranges
with respect to this correlation length are quite different
due the different smoothness parameters.

d<- seq(0, 15,,200)
y<- cbind(Matern(d, range=r1, nu=.5),

Matern(d, range=r2, nu=1.0),
Matern(d, range=r3, nu=2.0))

matplot(d, y, type="l", lty=1, lwd=2)
xline(10)
yline(.1)

fields fields - tools for spatial data

Description

Fields is a collection of programs for curve and function fitting with an emphasis on spatial data and
spatial statistics. The major methods implemented include cubic and thin plate splines, universal
Kriging and Kriging for large data sets. One main feature is any covariance function implemented in
R code can be used for spatial prediction. Another important feature is that fields will take advantage
of compactly supported covariance functions in a seamless way through the spam package. See
library(help=fields) for a listing of all the fields contents and I recommend the excellent fields
vignette created by Ashton and Mitch: Fields Vignette

fields stives to have readable and tutorial code. Take a look at the source code for mKrig to see
how things work "under the hood" and how a statistical, linear algebra computation is overloaded
to handle sparse matrices.

To load fields with the comments retained in the source use keep.source = TRUE in the library
command. We also keep the source on-line: refer to the github directory https://github.com/
NCAR/Fields for commented source.

Major methods

https://github.com/NCAR/fields/blob/master/fieldsVignette.pdf
https://github.com/NCAR/Fields
https://github.com/NCAR/Fields

fields 43

• spatialProcess An easy to use method that fits a spatial process model (e.g. Kriging)
but also estimates the key spatial parameters: nugget variance, sill variance and range by
maximum likelihood. Default covariance model is a Matern covariance function.

• Tps Thin Plate spline regression including GCV and REML estimates for the smoothing pa-
rameter.

• Krig Spatial process estimation that is the core function of fields.
The Krig function allows you to supply a covariance function that is written in native R code.
See (stationary.cov) that includes several families of covariances and distance metrics in-
cluding the Matern and great circle distance.

• mKrig (micro Krig) are fastTps fast efficient Universal Kriging and spline-like functions,
that can take advantage of sparse covariance functions and thus handle very large numbers of
spatial locations. QTps A easy to use extension of thin plate splines for quantile and robust
surface fitting.

• mKrigMLEGrid for maximum likelihood estimates of covariance parameters. This function
also handles replicate fields assumed to be independent realizations at the same locations.

Other noteworthy functions

• vgram and vgram.matrix find variograms for spatial data (and with temporal replications.

• cover.design Generates space-filling designs where the distance function is expresed in R
code.

• as.image, image.plot, drape.plot, quilt.plot add.image, crop.image, half.image,
average.image, designer.colors, color.scale, in.poly Many convenient functions for
working with image data and rationally (well, maybe reasonably) creating and placing a color
scale on an image plot. See also grid.list for how fields works with grids and US and world
for adding a map quickly.

• sreg splint Fast 1-D smoothing splines and interpolating cubic splines.

Generic functions that support the methods
plot - diagnostic plots of fit
summary- statistical summary of fit
print- shorter version of summary
surface- graphical display of fitted surface
predict- evaluation fit at arbitrary points
predictSE- prediction standard errors at arbitrary points.
sim.rf- Simulate a random fields on a 2-d grid.

Getting Started
Try some of the examples from help files for Tps or spatialProcess.

Graphics tips
help(fields.hints) gives some R code tricks for setting up common legends and axes. And has
little to do with this package!

Testing See help(fields.tests) for testing fields.

Some fields datasets

• CO2 Global satelite CO2 concentrations (simulated field)

44 fields

• RCMexample Regional climate model output

• lennon Image of John Lennon

• COmonthlyMet Monthly mean temperatures and precip for Colorado

• RMelevation Digital elevations for the Rocky Mountain Empire

• ozone2 Daily max 8 hour ozone concentrations for the US midwest for summer 1987.

• PRISMelevation Digital elevations for the continental US at approximately 4km resolution

• NorthAmericanRainfall 50+ year average and trend for summer rainfall at 1700+ stations.

• rat.diet Small paired study on rat food intake over time.

• WorldBankCO2 Demographic and carbon emission data for 75 countries and for 1999.

DISCLAIMER: The authors can not guarantee the correctness of any function or program in this
package.

Examples

some air quality data, daily surface ozone measurements for the Midwest:
data(ozone2)
x<-ozone2$lon.lat
y<- ozone2$y[16,] # June 18, 1987

pixel plot of spatial data
quilt.plot(x,y)
US(add=TRUE) # add US map

fit<- Tps(x,y)
fits a GCV thin plate smoothing spline surface to ozone measurements.
Hey, it does not get any easier than this!

summary(fit) #diagnostic summary of the fit
set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.

quick plot of predicted surface
set.panel()
surface(fit) # contour/image plot of the fitted surface
US(add=TRUE, col="magenta", lwd=2) # US map overlaid
title("Daily max 8 hour ozone in PPB, June 18th, 1987")

fit2<- spatialProcess(x,y)
a "Kriging" model. The covariance defaults to a Matern with smoothness 1.0.
the nugget, sill and range parameters are found by maximum likelihood
summary, plot, and surface also work for fit2 !

fields testing scripts 45

fields testing scripts

Testing fields functions

Description

Some of the basic methods in fields can be tested by directly implementing the linear algebra us-
ing matrix expressions and other functions can be cross checked within fields. These compar-
isons are done in the the R source code test files in the tests subdirectory of fields. The function
test.for.zero is useful for comparing the tests in a meaninful and documented way.

Usage

test.for.zero(xtest, xtrue, tol= 1.0e-8, relative=TRUE, tag=NULL)

Arguments

xtest Vector of target values

xtrue Vector of reference values

tol Tolerance to judge whether the test passes.

relative If true a relative error comparison is used. (See details below.)

tag A text string to be printed out with the test results as a reference

Details

IMPORTANT: If the R object test.for.zero.flag exists with any value (e.g. test.for.zero.flag
<-1) then when the test fails this function will also generate an error in addition to printing a mes-
sage. This option is added to insure that any test scripts will generate an error when any individual
test fails.

An example:

> test.for.zero(1:10, 1:10 + 1e-10, tag="First test")
Testing: First test
PASSED test at tolerance 1e-08

> test.for.zero(1:10, 1:10 + 1e-10, tag="First test", tol=1e-12)
Testing: First test
FAILED test value = 1.818182e-10 at tolerance 1e-12

> test.for.zero.flag <- 1
Testing: First test
FAILED test value = 1.818182e-10 at tolerance 1e-12
Error in test.for.zero(1:10, 1:10 + 1e-10, tag = "First test", tol = 1e-12) :

The scripts in the tests subdirectory are

46 fields-stuff

Krig.test.R: Tests basic parts of the Krig and Tps functions including replicated and weighted
observations.

Krig.se.test.R: Tests computations of standard errors for the Kriging estimate.

Krig.se.grid.test.R Tests approximate standard errors for the Krig function found by Monte Carlo
conditional simulation.

Krig.test.W.R Tests predictions and A matrix when an off diagonal observation weight matrix is
used.

Krig.se.W.R Tests standard errors when an off diagonal observation weight matrix is used.

spam.test.R Tests sparse matrix formats and linear algebra.

Wend.test.R Tests form for Wendland covariance family and its use of sparse matrix formats.

diag.multiply.test.R Tests special (efficient) version of matrix multiply for diagonal matrices.

evlpoly.test.R Tests evaluation of univariate and multivariate polynomial evaluation.

mKrig.test.R Tests the micro Krig function with and without sparse matrix methods.

To run the tests just attach the fields library and source the testing file. In the fields source code
these are in a subdirectory "tests". Compare the output to the "XXX.Rout.save" text file.

test.for.zero is used to print out the result for each individual comparison. Failed tests are
potentially bad and are reported with a string beginning

"FAILED test value = ... "

If the object test.for.zero.flag exists then an error is also generated when the test fails.

FORM OF COMPARISON: The actual test done is the sum of absolute differnces:

test value = sum(abs(c(xtest) -c(xtrue))) /denom

Where denom is either mean(abs(c(xtrue))) for relative error or 1.0 otherwise.

Note the use of "c" here to stack any structure in xtest and xtrue into a vector.

fields-stuff Fields supporting functions

Description

Some supporting functions that are internal to fields top level methods. Variants of these might be
found in the R base but these have been written for cleaner code or efficiency.

Usage

fields.diagonalize2(A,B, verbose=FALSE)
fields.diagonalize(A,B)
fields.duplicated.matrix(mat, digits = 8)

fields.mkpoly(x, m = 2)

fields.derivative.poly(x, m,dcoef)

fields-stuff 47

fields.evlpoly(x, coef)

fields.evlpoly2(x, coef, ptab)

Arguments

A A positive definite matrix

B A positive definite matrix

mat Arbitrary matrix for examining rows

digits Number of significant digits to use for comparing elements to determine duplci-
ate values.

x Arbitrary matrix where rows are components of a multidimensional vector

m The null space degree – results in a polynomial of degree (m-1)

dcoef Coefficients of a multidimensional polynomial

coef Polynomial coefficients.

ptab Table of powers of different polnomial terms.

verbose If TRUE prints condition number of A+B

Details

Given two matrices A (positive definite) and B (nonnegative definite) fields.diagonalize and
fields.diagonalize2 finds the matrix transformation G that will convert A to a identity matrix
and B to a diagonal matrix:

G\^T A G= I G\^T B G= D.

fields.diagonalize2 is not as easy to follow as fields.diagonalize but may be more stable
and is the version used in the Krig engine.

fields.duplicated finds duplicate rows in a matrix. The digits arguments is the number of digits
that are considered in the comparison. The returned value is an array of integers from 1:M where M
is the number of unique rows and duplicate rows are referenced in the same order that they appear
as the rows of mat.

fields.mkpoly computes the complete matrix of all monomial terms up to degree (m-1). Each
row of x is are the componets of a vector. (The fields function mkpoly returns the number of these
terms.) In 2 dimensions with m=3 there 6 polynomial terms up to quadratic (3-1 =2) order and will
be returned as the matrix:

cbind(1 , x[,1], x[,2], x[,1]**2, x[,1]*x[,2], x[,2]**2)

This function is used for the fixed effects polynomial or spatial drift used in spatial estimating
functions Krig, Tps and mKrig. The matrix ptab is a table of the powers in each term for each
variable and is included as an attribute to the matrix returned by this function. See the attr function
for extracting an attribute from an object.

ptab for the example above is

48 fields.grid

[,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 1
[4,] 2 0
[5,] 1 1
[6,] 0 2

This information is used in finding derivatives of the polynomial.

fields.deriviative.poly finds the partial derivative matrix of a multidimensional polynomial
of degree (m-1) at different vector values and with coefficients dcoef. This function has been
orgainzed to be a clean utility for the predicting the derivative of the estimated function from Krig
or mKrig. Within the fields context the polynomial itself would be evaluated as fields.mkpoly(
x,m)%*%dcoef. If x has d columns (also the dimension of the polynomial) and n rows the partial
derivatives of this polynomial at the locations x can be organized in a nXd matrix. This is the object
returned by ths function.

evlpoly and evlpoly2 are FORTRAN based functions for evaluating univariate polynomials and
multivariate polynomials. The table of powers (ptab) needed for evlpoly2 is the same format as that
returned my the fields.mkpoly function.

Author(s)

Doug Nychka

See Also

Krig, Tps, as.image, predict.Krig, predict.mKrig, Krig.engine.default, Wendland

fields.grid Using MKrig for predicting on a grid.

Description

This is an extended example for using the sparse/fast interpolation methods in mKrig to evaluate a
Kriging estimate on a large grid.

Details

mKrig is a flexible function for surface fitting using a spatial process model. It can also exploit
sparse matrix methods forlarge data sets by using a compactly supported covariance. The example
below shows how ot evaluate a solution on a big grid. (Thanks to Jan Klennin for this example.)

fields.hints 49

Examples

x<- RMprecip$x
y<- RMprecip$y

Tps(x,y)-> obj

make up an 80X80 grid that has ranges of observations
use same coordinate names as the x matrix

glist<- fields.x.to.grid(x, nx=80, ny=80) # this is a cute way to get a default grid that covers x

convert grid list to actual x and y values (try plot(Bigx, pch="."))
make.surface.grid(glist)-> Bigx

include actual x locations along with grid.
Bigx<- rbind(x, Bigx)

evaluate the surface on this set of points (exactly)

predict(obj, x= Bigx)-> Bigy

set the range for the compact covariance function
this will involve less than 20 nearest neighbors that have
nonzero covariance
#

V<- diag(c(2.5*(glist$lon[2]-glist$lon[1]),
2.5*(glist$lat[2]-glist$lat[1])))

Not run:
this is an interplotation of the values using a compact
but thin plate spline like covariance.

mKrig(Bigx,Bigy, cov.function="wendland.cov",k=4, V=V,
lambda=0)->out2

the big evaluation this takes about 45 seconds on a Mac G4 latop
predictSurface(out2, nx=400, ny=400)-> look

End(Not run)

the nice surface
Not run:

surface(look)
US(add=TRUE, col="white")

End(Not run)

fields.hints fields - graphics hints

50 fields.hints

Description

Here are some technical hints for assembling multiple plots with common legends or axes and
setting the graphics parameters to make more readable figures. Also we an index to the defaultcol-
ors in R graphics and setting their definitions in LaTeX. All these hints use the standard graphics
environment.

Usage

fields.style()
fields.color.picker()

Details

fields.style is a simple function to enlarge the characters in a plot and set the colors. List this
out to modify the choices.

##Two examples of concentrating a panel of plots together
to conserve the white space.
see also the example in image.plot using split.screen.
The basic trick is to use the oma option to reserve some space around the
plots. Then unset the outer margins to use that room.

library(fields)

some hokey image data
x<- 1:20
y<- 1:15
z<- outer(x,y,"+")
zr<- range(c(z))

add common legend to 3X2 panel

par(oma=c(4,0,0,0))
set.panel(3,2)
par(mar=c(1,1,0,0))

squish plots together with just 1 space between
for (k in 1:6){
image(x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
}

par(oma=c(0,0,0,0))
image.plot(zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

you may have to play around with legend.mar and the oma settings to
get enough space.

fields.hints 51

##
also add some axes on the sides. in a lattice style
note oma adds some more room at bottom.

par(oma=c(8,6,1,1))
set.panel(3,2)
par(mar=c(1,1,0,0))
##
for (k in 1:6){
image(x,y,z, axes=FALSE, xlab="", ylab="", zlim=zr)
box() # box around figure

maybe draw an x axis
if(k %in% c(5,6)){
axis(1, cex.axis=1.5)
mtext(line=4, side=1, "Xstuff")}

maybe draw a y axis
if(k %in% c(1,3,5)){
axis(2, cex.axis=1.5)
mtext(line=4, side=2, "Ystuff")}

}

same trick of adding a legend strip.
par(oma=c(0,0,0,0))
image.plot(zlim=zr, legend.only=TRUE, horizontal=TRUE, legend.mar=5)

reset panel
set.panel()

####
show colors
the factory colors:

clab<- colors()
n<- length(clab)
N<- ceiling(sqrt(n))
M<- N
temp<- rep(NA,M*N)
temp[1:n] <- 1:n
z<- matrix(temp, M,N)

image(seq(.5,M+.5,,M+1), seq(.5,N+.5,,N+1)
, z, col=clab, axes=FALSE, xlab="", ylab="")

52 fields.hints

see the function fields.color.picker() to locate colors

dumping out colors by name for a latex document
this creates text strings that are the LaTeX color definitions
using the definecolor function.

grab all of the R default colors
clab<- colors()

for(nn in clab){
temp<- signif(col2rgb(nn)/256, 3)
cat(
"\definecolor{",

nn, "}",
"{rgb}{", temp[1],

",", temp[2],
",", temp[3],
"}", fill=TRUE , sep="")

}

this loop prints out definitions such as
\definecolor{yellowgreen}{rgb}{0.602,0.801,0.195}
having loaded the color package in LaTeX
defining this color
use the construction {\color{yellowgreen} THIS IS A COLOR}
to use this color in a talk or document.

this loop prints out all the colors in LaTeX language
as their names and can be converted to a pdf for handy reference.

sink("showcolors.tex")

clab<- colors()
for(nn in clab){

temp<- signif(col2rgb(nn)/256, 3)
cat(
"\definecolor{",

nn, "}",
"{rgb}{", temp[1],

",", temp[2],
",", temp[3],
"}", fill=TRUE , sep="")

cat(paste("{ \color{",nn,"} ", nn," \bullet \\ }", sep=""),
fill=TRUE)

}

flame 53

sink()

flame Response surface experiment ionizing a reagent

Description

The characteristics of an ionizing flame are varied with the intent of maximizing the intensity of
emitted light for lithuim in solution. Areas outside of the measurements are where the mixture may
explode! Note that the optimum is close to the boundary. Source of data is from a master’s level lab
experiment in analytical chemistry from Chuck Boss’s course at NCSU. <s-section name= "DATA
DESCRIPTION"> This is list with the following components

Arguments

x x is a 2 column matrix with the different Fuel and oxygen flow rates for the
burner.

y y is the response. The intensity of light at a particular wavelength indicative of
Lithium ions.

gcv.Krig Finds profile likelihood and GCV estimates of smoothing parameters
for splines and Kriging.

Description

This is a secondary function that will use the computed Krig object and find various estimates of
the smoothing parameter lambda. These are several different flavors of cross-validation, a moment
matching strategy and the profile likelihood. This function can also be used independently with
different data sets (the y’s) if the covariates (the x’s) are the same and thus reduce the computation.

Usage

gcv.Krig(
out, lambda.grid = NA, cost = 1, nstep.cv = 200, rmse

= NA, verbose = FALSE, tol = 1e-05, offset = 0, y =
NULL, give.warnings = TRUE)

gcv.sreg (
out, lambda.grid = NA, cost = 1, nstep.cv = 80, rmse =

NA, offset = 0, trmin = NA, trmax = NA, verbose =
FALSE, tol = 1e-05, give.warnings = TRUE)

54 gcv.Krig

Arguments

out A Krig or sreg object.

lambda.grid Grid of lambdas for coarse search. The default is equally spaced on effective
degree of freedom scale.

cost Cost used in GCV denominator

nstep.cv Number of grid points in coarse search.

rmse Target root mean squared error to match with the estimate of sigma**2

verbose If true prints intermediate results.

tol Tolerance in delcaring convergence of golden section search or bisection search.

offset Additional degrees of freedom to be added into the GCV denominator.

y A new data vector to be used in place of the one associated with the Krig object
(obj)

give.warnings If FALSE will suppress warnings about grid search being out of range for vari-
ous estimates based on GCV and REML.

trmin Minimum value of lambda for grid search specified in terms of effective degrees
of freedom.

trmax Maximum value for grid search.

Details

This function finds several estimates of the smoothing parameter using first a coarse grid search
followed by a refinement using a minimization (in the case of GCV or maximum likelihood) or
bisection in the case of mathcing the rmse. Details of the estimators can be found in the help file
for the Krig function.

The Krig object passed to this function has some matrix decompostions that facilitate rapid compu-
tation of the GCV and ML functions and do not depend on the independent variable. This makes
it possible to compute the Krig object once and to reuse the decompostions for multiple data sets.
(But keep in mind if the x values change then the object must be recalculated.) The example below
show show this can be used for a simulation study on the variability for estimating the smoothing
parameter.

Value

A list giving a summary of estimates and diagonostic details with the following components:

gcv.grid A matrix describing results of the coarse search rows are values of lambda and
the columns are lambda= value of smoothing parameter, trA=effective degrees
of freedom, GCV=Usual GCV criterion, GCV.one=GCV criterion leave-one-
out, GCV.model= GCV based on average response in the case of replicates,
shat= Implied estimate of sigma , -Log Profile= negative log of profiel likelihood
for the lambda.

lambda.est Summary table of all estimates Rows index different types of estimates: GCV,
GCV.model, GCV.one, RMSE, pure error, -Log Profile and the columns are the
estimated values for lambda, trA, GCV, shat.

gcv.Krig 55

Author(s)

Doug Nychka

See Also

Krig, Tps, predict.Krig

Examples

#
Tps(ChicagoO3$x, ChicagoO3$y)-> obj # default is to find lambda by GCV
summary(obj)

gcv.Krig(obj)-> out
print(out$lambda.est) # results agree with Tps summary

sreg(rat.diet$t, rat.diet$trt)-> out
gcv.sreg(out, tol=1e-10) # higher tolerance search for minimum
Not run:
a simulation example
x<- seq(0,1,,150)
f<- x**2*(1-x)
f<- f/sqrt(var(f))

set.seed(123) # let's all use the same seed
sigma<- .1
y<- f + rnorm(150)*sigma

Tps(x,y)-> obj # create Krig object

hold<- hold2<- matrix(NA, ncol=6, nrow=200)

for(k in 1:200){
look at GCV estimates of lambda
new data simulated

y<- f + rnorm(150)*sigma
save GCV estimates
lambdaTable<- gcv.Krig(obj, y=y, give.warnings=FALSE)$lambda.est
hold[k,]<- lambdaTable[1,]
hold2[k,]<- lambdaTable[6,]
}
matplot(cbind(hold[,2], hold2[,2]),cbind(hold[,4],hold2[,4]),
xlab="estimated eff. df", ylab="sigma hat", pch=16, col=c("orange3", "green2"), type="p")
yline(sigma, col="grey", lwd=2)

End(Not run)

56 grid list

grid list Some simple functions for working with gridded data and the grid for-
mat (grid.list) used in fields.

Description

The object grid.list refers to a list that contains information for evaluating a function on a 2-
dimensional grid of points. If a function has more than two independent variables then one also
needs to specify the constant levels for the variables that are not being varied. This format is used
in several places in fields for functions that evaluate function estimates and plot surfaces. These
functions provide some default conversions among information and the gird.list. The function
discretize.image is a useful tool for "registering" irregular 2-d points to a grid.

Usage

parse.grid.list(grid.list, order.variables="xy")
fields.x.to.grid(x,nx=80, ny=80, xy=c(1,2))
fields.convert.grid(midpoint.grid)
discretize.image(x, m = 64, n = 64, grid = NULL,

expand = c(1 + 1e-08, 1 + 1e-08),
boundary.grid = FALSE, na.rm = TRUE)

make.surface.grid(grid.list)
unrollZGrid(grid.list, ZGrid)

Arguments

grid.list No surprises here – a grid list! These can be unequally spaced.
order.variables

If "xy" the x variable will be subsequently plotted as the horizontal variable. If
"yx" the x variable will be on the vertical axis.

x A matrix of independent variables such as the locations of observations given to
Krig.

nx Number of grid points for x variable.

ny Number of grid points for y variable.

m Number of grid points for x variable.

n Number of grid points for y variable.

na.rm Remove missing values if TRUE

xy The column positions that locate the x and y variables for the grid.

grid A grid list!

expand A scalar or two column vector that will expand the grid beyond the range of the
observations.

midpoint.grid Grid midpoints to convert to grid boundaries.

boundary.grid If TRUE interpret grid points as boundaries of grid boxes. If FALSE interpret
as the midpoints of the boxes.

grid list 57

ZGrid An array or list form of covariates to use for prediction. This must match the
grid.list argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid
is an array then the first two indices are the x and y locations in the grid. The
third index, if present, indexes the covariates. e.g. For evaluation on a 10X15
grid and with 2 covariates. dim(ZGrid) == c(10,15,2). If ZGrid is a list
then the components x and y shold match those of grid.list and the z component
follows the shape described above for the no list case.

Details

The form of a grid.list is

list(var.name1= what1 ,var.name2=what2 ,... var.nameN=what3)

Here var.names are the names of the independent variables. The what options describe what should
be done with this variable when generating the grid. These should either an increasing sequence of
points or a single vaules. Obviously there should be only be two variables with sequences to define
a grid for a surface.

Most of time the gridding sequences are equally spaced and are easily generated using the seq
function. Also throughout fields the grid points are typically the midpoints of the grid rather the
grid box boundaries. However, these functions can handle unequally spaced grids and the logical
boundary.grid can indicate a grid being the box boundaries.

The variables in the list components are assumed to be in the same order as they appear in the data
matrix.

A useful function that expands the grid from the grid.list description into a full set of locations is
make.surface.grid and is just a wrapper around the R base function expand.grid. A typical
operation is to go from a grid.list to the set of grid locations. Evaluate a fucntion at these lcoations
and then reformat this as an image for plotting. Here is how to do this cleanly:

grid.list<- list(x= 1:10, y=1:15)
xg<- make.surface.grid(grid.list)
look at a surface dependin on xg locations
z<- xg[,1] + 2*xg[,2]
out<- list(x=grid.list$x, y= grid.list$y, z=matrix(z, nrow=10, ncol=15))
now for example
image.plot(out)

The key here is that xg and matrix both organize the grid in the same order.

Some fields internal functions that support interpreting grid list format are:

fields.x.to.grid: Takes an "x" matrix of locations or independent variables and creates a rea-
sonable grid list. This is used to evaluate predicted surfaces when a grid list is not explicited given
to predictSurface. The variables (i.e. columns of x) that are not part of the grid are set to the median
values. The x grid values are nx equally spaced points in the range x[,xy[1]]. The y grid values
are ny equally spaced points in the range x[,xy[2]].

parse.grid.list: Takes a grid list and returns the information in a more expanded list form that
is easy to use. This is used, for example, by predictSurface to figure out what to do!

fields.convert.grid: Takes a vector of n values assumed to be midpoints of a grid and returns
the n+1 boundaries. See how this is used in discretize.image with the cut function. This function
will handle unequally spaced grid values.

58 grid list

discretize.image: Takes a vector of locations and a 2-d grid and figures out to which boxes they
belong. The output matrix ind has the grid locations. If boundary.grid is FALSE then the grid list
(grid) is assumed to be grid midpoints. The grid boundaries are taken to be the point half way
between these midpoints. The first and last boundaries points are determined by extrapolating so
that the first and last box has the midpoint in its center. (See the code in fields.convert.grid for
details.) If grid is NULL then midpoints are found from m and n and the range of the x matrix.

unrollZGrid Checks that the ZGrid object is compatible with th e grid.list and concatenates the
grid arrays into vectors. This version of the covariates are used the usual predict function.

See Also

as.surface, predictSurface, plot.surface, surface, expand.grid, as.image

Examples

#Given below are some examples of grid.list objects and the results
#when they are used with make.surface.grid. Note that
#make.surface.grid returns a matrix that retains the grid.list
#information as an attribute.

grid.l<- list(1:3, 2:5)
make.surface.grid(grid.l)

grid.l <- list(1:3, 10, 1:3)
make.surface.grid(grid.l)

#The next example shows how the grid.list can be used to
#control surface plotting and evaluation of an estimated function.
first create a test function

set.seed(124)

X<- 2*cbind(runif(30), runif(30), runif(30)) -1

dimnames(X)<- list(NULL, c("X1","X2","X3"))
y<- X[,1]**2 + X[,2]**2 + exp(X[,3])

fit an interpolating thin plate spline
out<- Tps(X,y)

grid.l<- list(X1= seq(0,1,,20), X2=.5, X3=seq(0,1,,25))
surface(out, grid.list=grid.l)
surface plot based on a 20X25 grid in X1 an X3
over the square [0,2] and [0,2]
holding X2 equal to 1.0.
#

test of discretize to make sure points on boundaries are counted right
set.seed(123)

image.cov 59

x<- matrix(runif(200), 100,2)
look<- discretize.image(x, m=2,n=2)
xc<- seq(min(x[,1]), max(x[,1]),,5)
xc<- xc[2:4]
yc<- seq(min(x[,2]), max(x[,2]),,5)
yc<- yc[2:4]
grid <- list(x= xc, y= yc)
look2<- discretize.image(x, m=2,n=2)

table(look$index)
table(look2$index)

indicator image of discretized locations
look<- discretize.image(RMprecip$x, m=15, n=15)
image.plot(look$grid$x, look$grid$y,look$hist)
actual locations
points(RMprecip$x,col="magenta", pch=".")

image.cov Exponential, Matern and general covariance functions for 2-d gridded
locations.

Description

Given two sets of locations defined on a 2-d grid efficiently multiplies a cross covariance with
a vector. The intermediate compuations (the setup) can also be used for fast simulation of the
processes on a grid using the circulant embedding technique.

Usage

stationary.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE,
grid, M=NULL,N=NULL,cov.function="stationary.cov", delta = NULL, cov.args = NULL, ...)

Exp.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

Rad.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid, ...)

matern.image.cov(ind1, ind2, Y, cov.obj = NULL, setup = FALSE, grid,
M=NULL,N=NULL,theta= 1.0, smoothness=.5)

wendland.image.cov(ind1, ind2, Y, cov.obj = NULL,
setup = FALSE, grid, M = NULL, N = NULL, cov.args=NULL, ...)

60 image.cov

Arguments

ind1 Matrix of indices for first set of locations this is a two column matrix where each
row is the row/column index of the image element. If missing the default is to
use all grid locations.

ind2 Matrix of indices for second set of locations. If missing this is taken to be ind2.
If ind1 is missing ind2 is coerced to be all grid locations.

Y Vector to multiply by the cross covariance matrix. Y must be the same locations
as those referred to by ind2.

cov.args Any additional arguments or parameters to the covariance function.

cov.obj A list with the information needed to do the multiplication by convolutions. This
is usually found by using the returned list when setup=T.

cov.function Name of the (stationary) covariance function.

setup If true do not do the multiplication but just return the covariance object required
by this function.

delta A distance that indicates the range of the covariance when it has compact sup-
port. For example this is the theta parameter in the Wendland covariance.

grid A grid list giving the X and Y grids for the image. (See example below.) This is
only required if setup is true.

M Size of x-grid used to compute multiplication (see notes on image.smooth for
details) by the FFT. If NULL, the default for M is the largest power of 2 greater
than or equal to 2*m where m= length(grid\$x). This will give an exact result
but smaller values of M will yield an approximate, faster result.

N Size of y-grid used to compute multiplication by the FFT.

theta Scale parameter for Matern.

smoothness Smoothness parameter for Matern (.5=Exponential)

... Any arguments to pass to the covariance function in setting up the covariance
object. This is only required if setup is TRUE. For stationary.image.cov
one can include V a matrix reflecting a rotation and scaling of coordinates. See
stationary.cov for details.

Details

This function was provided to do fast computations for large numbers of spatial locations and sup-
ports the conjugate gradient solution in krig.image. In doing so the observations can be irregular
spaced but their coordinates must be 2-dimensional and be restricted to grid points. (The function
as.image will take irregular, continuous coordinates and overlay a grid on them.)

Returned value: If ind1 and ind2 are matrices where nrow(ind1)=m and nrow(ind2)=n then the
cross covariance matrix, Sigma is an mXn matrix (i,j) element is the covariance between the grid
locations indexed at ind1[i,] and ind2[j,]. The returned result is Sigma%*%Y. Note that one can
always recover the coordinates themselves by evaluating the grid list at the indices. e.g. cbind(
grid\$x[ind1[,1]], grid\$y[ind1[,2])) will give the coordinates associated with ind1. Clearly it is
better just to work with ind1!

image.cov 61

Functional Form: Following the same form as Exp.cov stationary.cov for irregular locations, the
covariance is defined as phi(D.ij) where D.ij is the Euclidean distance between x1[i,] and x2[j,] but
having first been scaled by theta. Specifically,

D.ij = sqrt(sum.k ((x1[i,k] - x2[j,k]) /theta[k])**2).

See Matern for the version of phi for the Matern family.

Note that if theta is a scalar then this defines an isotropic covariance function.

Implementation: This function does the multiplication on the full grid efficiently by a 2-d FFT. The
irregular pattern in Y is handled by padding with zeroes and once that multiplication is done only
the appropriate subset is returned.

As an example assume that the grid is 100X100 let big.Sigma denote the big covariance matrix
among all grid points (If the parent grid is 100x100 then big.Sigma is 10K by 10K !) Here are the
computing steps:

temp<- matrix(0, 100,100)

temp[ind2] <- Y

temp2<- big.Sigma%*% temp

temp2[ind1]

Notice how much we pad with zeroes or at the end throw away! Here the matrix multiplication is
effected through convolution/FFT tricks to avoid creating and multiplying big.Sigma explicitly. It
is often faster to multiply the regular grid and throw away the parts we do not need then to deal
directly with the irregular set of locations.

Note: In this entire discussion Y is treated as vector. However if one has complete data then Y
can also be interpreted as a image matrix conformed to correspond to spatial locations. See the last
example for this distinction.

Value

A vector that is the multiplication of the cross covariance matrix with the vector Y.

See Also

smooth.2d, as.image, krig.image, stationary.cov

Examples

multiply 2-d isotropic exponential with theta=4 by a random vector

junk<- matrix(rnorm(100*100), 100,100)

cov.obj<- stationary.image.cov(setup=TRUE,
grid=list(x=1:100,y=1:100),theta=8)

result<- stationary.image.cov(Y=junk,cov.obj=cov.obj)

image(matrix(result, 100,100)) # NOTE that is also a smoother!

to do it again, no setup is needed
e.g.
junk2<- matrix(rnorm(100**2, 100,100))

62 image.cov

result2<- stationary.image.cov(Y=junk2, cov.obj=cov.obj)

generate a grid and set of indices based on discretizing the locations
in the precip dataset

out<-as.image(RMprecip$y, x= RMprecip$x)
ind1<- out$ind
grid<- list(x= out$x, y=out$y)

#
discretized x locations to use for comparison

xd<- cbind(out$x[out$ind[,1]], out$y[out$ind[,2]])

setup to create cov.obj for exponential covariance with range= 1.25

cov.obj<- stationary.image.cov(setup=TRUE, grid=grid, theta=1.25)

multiply covariance matrix by an arbitrary vector
junk<- rnorm(nrow(ind1))
result<- stationary.image.cov(ind1, ind1, Y= junk,cov.obj=cov.obj)

The brute force way would be
result<- stationary.cov(xd, xd, theta=1.25, C=junk)
or
result<- stationary.cov(xd, xd, theta=1.25) %*% junk
both of these take much longer

evaluate the covariance between all grid points and the center grid point
Y<- matrix(0,cov.obj$m, cov.obj$n)
Y[32,32]<- 1
result<- stationary.image.cov(Y= Y,cov.obj=cov.obj)

covariance surface with respect to the grid point at (32,32)
#
reshape "vector" as an image
temp<- matrix(result, cov.obj$m,cov.obj$n)
image.plot(cov.obj$grid$x,cov.obj$grid$y, temp)

or persp(cov.obj$grid$x,cov.obj$grid$y, temp)

check out the Matern
grid<- list(x= seq(-105,-99,,64), y= seq(40,45,,64))
cov.obj<- matern.image.cov(

setup=TRUE, grid=grid, theta=.55, smoothness=1.0)
Y<- matrix(0,64,64)
Y[16,16]<- 1

result<- matern.image.cov(Y= Y,cov.obj=cov.obj)
temp<- matrix(result, cov.obj$m,cov.obj$n)
image.plot(cov.obj$grid$x,cov.obj$grid$y, temp)

Note we have centered at the location (grid$x[16],grid$y[16]) for this case
using sim.rf to simulate an Matern field

look<- sim.rf(cov.obj)

image.plot 63

image.plot(grid$x, grid$y, look)

image.plot Draws an image plot with a legend strip for the color scale based on
either a regular grid or a grid of quadrilaterals.

Description

This function combines the R image function with some automatic placement of a legend. This is
done by splitting the plotting region into two parts. Putting the image in one and the legend in the
other. After the legend is added the plot region is reset to the image plot. This function also allows
for plotting quadrilateral cells in the image format that often arise from regular grids transformed
with a map projection or a scaling and rotation of coordinates.

Usage

S3 method for class 'plot'
image(...,

add = FALSE,
breaks= NULL, nlevel = 64, col = NULL,

horizontal = FALSE, legend.shrink = 0.9, legend.width = 1.2,
legend.mar = ifelse(horizontal, 3.1, 5.1), legend.lab = NULL,
legend.line= 2,
graphics.reset = FALSE, bigplot = NULL, smallplot = NULL,
legend.only = FALSE, lab.breaks = NULL,

axis.args = NULL, legend.args = NULL, legend.cex=1.0, midpoint = FALSE, border = NA,
lwd = 1,verbose = FALSE)

Arguments

... The usual arguments to the image function as x,y,or z or as a list with x,y,z as
components. One can also include a breaks argument for an unequal spaced
color scale with color scale boundaries at the breaks (see example below). If a
"quadrilateral grid", arguments must be explicitly x,y and z with x, and y being
matrices of dimensions equal to, or one more than, z giving the grid locations.
The basic concept is that the coordinates of x and y still define a grid but the
image cells are quadrilaterals rather than being restricted to rectangles. NOTE:
graphical argruments passed here will only have impact on the image plot. To
change the graphical defaults for the legend use the individual legend arguments
and legend.arg listed below.

add If true add image and a legend strip to the existing plot.

bigplot Plot coordinates for image plot. If not passed these will be determined within
the function.

64 image.plot

border This only works if x and y are matrices – if NA the quadralaterals will have a
border color that is the same as the interior color. Otherwise this specifies the
color to use.

breaks Break points in sorted order to indicate the intervals for assigning the colors.
Note that if there are nlevel colors there should be (nlevel+1) breakpoints. If
breaks is not specified (nlevel+1) equally spaced breaks are created where the
first and last bin have their midpoints at the minimum and maximum values in z
or at zlim.

col Color table to use for image (See help file on image for details.). Default is
a pleasing range of 64 divisions suggested by Tim Hoar and is similar to the
MATLAB (TM) jet color scheme. Note that if breaks is specified there must be
one less color specified than the number of breaks.

graphics.reset If FALSE (default) the plotting region (plt in par) will not be reset and one can
add more information onto the image plot. (e.g. using functions such as points
or lines.) If TRUE will reset plot parameters to the values before entering the
function.

horizontal If false (default) legend will be a vertical strip on the right side. If true the legend
strip will be along the bottom.

lab.breaks If breaks are supplied these are text string labels to put at each break value. This
is intended to label axis on a transformed scale such as logs.

axis.args Additional arguments for the axis function used to create the legend axis. (See
example below adding a log scaling.)

legend.only If TRUE just add the legend to a the plot in the plot region defined by the coor-
dinates in smallplot. In the absence of other information the range for the legend
is determined from the zlim argument.

legend.args Arguments for a complete specification of the legend label, e.g. if you need to
the rotate text or other details. This is in the form of list and is just passed to the
mtext function and you will need to give both the side and line arguments for
positioning. This usually will not be needed. (See example below.)

legend.cex Character expansion to change size of the legend label.

legend.line Distance in units of character height (as in mtext) of the legend label from the
color bar. Make this larger if the label collides with the color axis labels.

legend.mar Width in characters of legend margin that has the axis. Default is 5.1 for a
vertical legend and 3.1 for a horizontal legend.

legend.lab Label for the axis of the color legend. Default is no label as this is usual evident
from the plot title.

legend.shrink Amount to shrink the size of legend relative to the full height or width of the
plot.

legend.width Width in characters of the legend strip. Default is 1.2, a little bigger that the
width of a character.

lwd Line width of bordering lines around pixels. This might need to be set less than
1.0 to avoid visible rounding of the pixel corners.

image.plot 65

midpoint This option for the case of unequally spaced grids with x and y being matrices
of grid point locations. If FALSE (default) the quadralaterals will be extended to
surround the z locations as midpoints. If TRUE z values will be averaged to yield
a midpoint value and the original grid points be used to define the quadralaterals.
(See help on poly.image for details). In most cases midpoint should be FALSE
to preserve exact values for z and let the grid polygons be modified.

nlevel Number of color levels used in legend strip

smallplot Plot coordinates for legend strip. If not passed these will be determined within
the function. Be sure to leave room for the axis labels. For example, if the
legend is on the right side smallplot= c(.85,.9,0,1) will leave (.1 in plot
coordinates) for the axis labels to the right of the color strip. This argument
is useful for drawing a plot with the legend that is the same size as the plots
without legends.

verbose If TRUE prints intermediate information about setting up plots (for debugging).

Details

This is a function using the basic R graphics. The coding was done to make it easier for users to see
how this function works and to modify.

How this function works: The strategy for image.plot is simple, divide the plotting region into
two smaller regions bigplot and smallplot. The image goes in one and the legend in the other.
This way there is always room for the legend. Some adjustments are made to this rule by not
shrinking the bigplot if there is already room for the legend strip and also sticking the legend strip
close to the image plot. One can specify the plot regions explicitly by bigplot and smallplot if
the default choices do not work.(Note that these in figure coordinates.) There may be problems
with small plotting regions in fitting both of these elements into the plot region and one may have
to change the default character sizes or margins to make things fit. Sometimes this function will not
reset the type of margins correctly and the "null" call par(mar = par("mar")) may help to fix this
issue.

The text is too small! This always seems to happen as one is rushing to finish a talk and the figures
have tiny default axis labels. Try just calling the function fields.style before plotting. List out
this function to see what is changed, however, all text is increased by 20% in size.

Why “image.plot" and not “image"? The R Base function image is very useful but it is awkward
to place a legend quickly. However, that said if you are drawing several image plots and want a
common legend use the image function and just just use image.plot to add the legend. See the
example in the help file. Note that you can use image to draw a bunch of images and then follow
with image.plot and legend.only=TRUE to add a common legend. (See examples below.)

Almost cloropleths too: It should be noted that this image function is slightly different than a
cloropleth map because the legend is assuming that a continous scale has been discretized into a
series of colors. To make the image.plot function as a cloropleth graphic one would of course use
the breaks option and for clarity perhaps code the different regions as different integer values. In
addition, for publication quality one would want to use the legend.args to add more descriptive
labels at the midpoints in the color strip.

Relationship of x, y and z: If the z component is a matrix then the user should be aware that this
function locates the matrix element z[i,j] at the grid locations (x[i], y[j]) this is very different than
simply listing out the matrix in the usual row column tabular form. See the example below for

66 image.plot

details on the difference in formatting. What does one do if you do not really have the "z" values on
a regular grid? See the functions quilt.plot.Rd and as.image to discretise irregular observations
to a grid. If the values makes sense as points on a smooth surface see Tps and fastTps for surface
interpolation.

Adding separate color to indicate the grid box boundaries. Sometimes you want to show to the
grid box borders to emphasize this is not a smooth surface. To our knowledge there is no easy way
to do this as an option in image. But if your image is formatted in the "poly image" style where x
and y are also matrices you can use the polyimage (see the border argument above) option to draw
in boundaries.

Grids with unequally spacing – quadrialteral pixels: If x and y are matrices that are a smooth
transformation of a regular grid then z[i,j] can be interperted as representing the average value in
a quadrilateral that is centered at x[i,j] and y[i,j] (midpoint TRUE). The details of how this cell is
found are buried in poly.image but it it essentially found using midpoints between the centers. If
midpoint is FALSE then x and y are interpreted as the corners of the quadrilateral cells. But what
about z? The four values of z are now averaged to represent a value at the midpoint of the cell and
this is what is used for plotting. Quadrilateral grids were added to help with plotting the gridded
output of geophysical models where the regular grid is defined according to one map projection but
the image plotting is required in another projection. Typically the regular grid becomes distorted
in a smooth way when this happens. See the regional climate example for a illustration of this
application. One can add border colors in this case easily because these choices are just passed onto
the polygon function.

Adding the pixel grid for rectangular images: For adding the grid of pixel borders to a rectangular
image try this example after calling image.plot.

dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,

length.out = length(x) +1)
ytemp<- seq(min(y)- dy/2, max(y)+ dy/2,

length.out = length(y) +1)
xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)

Here x and y here are the x and y grid values from the image list.

Fine tuning color scales: This function gives some flexibility in tuning the color scale to fit the
rendering of z values. This can either be specially designed color scale with specific colors (see
help on designer.colors), positioning the colors at specific points on the [0,1] scale, or mapping
distinct colors to intervals of z. The examples below show how to do each of these. In addition, by
supplying lab.break strings or axis parameters one can annotate the legend axis in an informative
matter.

Adding just the legend strip: Note that to add just the legend strip all the numerical information
one needs is the zlim argument and the color table! See examples for tricks in positioning.

About color tables: We like tim.colors as a default color scale and so if this what you use this can
be omitted. Unfortunately this is not the default for the image function. The topographic color scale
(topo.colors) is also a close second showing our geophysical bias. Users may find larry.colors
useful for coding distinct regions in the style of a cloropleith map. See also terrain.colors for

image.plot 67

a subset of the topo ones and designer.colors to "roll your own" color table. One nice option in
this last function is to fix color transitions at particular quantiles of the data rather than at equally
spaced intervals. For color choices see how the nlevels argument figures into the legend and main
plot number of colors. Also see the colors function for a listing of all the colors that come with
the R base environment.

The details of placing the legend and dividing up the plotting real estate: It is surprising how
hard it is to automatically add the legend! All "plotting coordinates" mentioned here are in de-
vice coordinates. The plot region is assumed to be [0,1]X[0,1] and plotting regions are defined as
rectangles within this square. We found these easier to work with than user coordinates.

legend.width and legend.mar are in units of character spaces. These units are helpful in thinking
about axis labels that will be put into these areas. To add more or less space between the legend and
the image plot alter the mar parameters. The default mar settings (5.1,5.1,5.1,2.1) leaves 2.1 spaces
for vertical legends and 5.1 spaces for horizontal legends.

There are always problems with default solutions to placing information on graphs but the choices
made here may be useful for most cases. The most annoying thing is that after using image.plot
and adding information the next plot that is made may have the slightly smaller plotting region
set by the image plotting. The user should set reset.graphics=TRUE to avoid the plotting size
from changing. The disadvantage, however, of resetting the graphics is that one can no longer add
additional graphics elements to the image plot. Note that filled.contour always resets the graphics
but provides another mechanism to pass through plotting commands. Apparently filled.contour,
while very pretty, does not work for multiple plots. levelplot that is part of the lattice package
has a very similar function to image.plot and a formula syntax in the call.

By keeping the zlim argument the same across images one can generate the same color scale. (See
the image help file.) One useful technique for a panel of images is to just draw the images with good
old image and then use image.plot to add a legend to the last plot. (See example below for messing
with the outer margins to make this work.) Usually a square plot (pty="s") done in a rectangular
plot region will have room for the legend stuck to the right side without any other adjustments. See
the examples below for more complicated arrangements of multiple image plots and a summary
legends.

Side Effects

After exiting, the plotting region may be changed to make it possible to add more features to the
plot. To be explicit, par()$plt may be changed to reflect a smaller plotting region that has accom-
modated room for the legend subplot.

If xlim and ylim are specified the pixels may overplot the axis lines. Just use the box function to
redraw them.

See Also

image, poly.image, filled.contour, quilt.plot, plot.surface, add.image, colorbar.plot, tim.colors, de-
signer.colors

Examples

x<- 1:10
y<- 1:15
z<- outer(x,y,"+")

68 image.plot

image.plot(x,y,z)

or
obj<- list(x=x,y=y,z=z)
image.plot(obj, legend.lab="Sverdrups")

add some points on diagonal using standard plot function
#(with some clipping beyond 10 anticipated)

points(5:12, 5:12, pch="X", cex=3)

adding breaks and distinct colors for intervals of z
with and without lab.breaks

brk<- quantile(c(z))
image.plot(x,y,z, breaks=brk, col=rainbow(4))

annotate legend strip at break values and add a label
image.plot(x,y,z, breaks=brk, col=rainbow(4),

lab.breaks=names(brk))
#
compare to

zp <-quantile(c(z), c(.05, .1,.5, .9,.95))
image.plot(x,y,z,

axis.args=list(at=zp, labels=names(zp)))
a log scaling for the colors

ticks<- c(1, 2,4,8,16,32)
image.plot(x,y,log(z), axis.args=list(at=log(ticks), labels=ticks))

see help file for designer.colors to generate a color scale that adapts to
quantiles of z.
Two add some color scales together here is an example of 5 blues to white to 5 reds
with white being a specific size.
colorTable<- designer.colors(11, c("blue","white", "red"))

breaks with a gap of 10 to 17 assigned the white color
brks<- c(seq(1, 10,,6), seq(17, 25,,6))
image.plot(x,y,z,breaks=brks, col=colorTable)

#
#fat (5 characters wide) and short (50% of figure) color bar on the bottom

image.plot(x,y,z,legend.width=5, legend.shrink=.5, horizontal=TRUE)

adding a label with all kinds of additional arguments.
use side=4 for vertical legend and side= 1 for horizontal legend
to be parallel to axes. See help(mtext).

image.plot(x,y,z,
legend.args=list(text="unknown units",

col="magenta", cex=1.5, side=4, line=2))

and finally add some grid lines
dx <- x[2] - x[1]
dy <- y[2] - y[1]
xtemp<- seq(min(x)- dx/2, max(x)+ dx/2,

length.out = length(x) +1)
ytemp<- seq(min(y)- dy/2, max(y)+ dy/2,

length.out = length(y) +1)

image.plot 69

xline(xtemp, col="grey", lwd=2)
yline(ytemp, col="grey", lwd=2)

#

example using a irregular quadrilateral grid
data(RCMexample)

image.plot(RCMexample$x, RCMexample$y, RCMexample$z[,,1])
ind<- 50:75 # make a smaller image to show bordering lines
image.plot(RCMexample$x[ind,ind], RCMexample$y[ind,ind], RCMexample$z[ind,ind,1],

border="grey50", lwd=2)

multiple images with a common legend

set.panel()

Here is quick but quirky way to add a common legend to several plots.
The idea is leave some room in the margin and then over plot in this margin

par(oma=c(0,0,0,4)) # margin of 4 spaces width at right hand side
set.panel(2,2) # 2X2 matrix of plots

now draw all your plots using usual image command
for (k in 1:4){

data<- matrix(rnorm(150), 10,15)
image(data, zlim=c(-4,4), col=tim.colors())

and just for fun add a contour plot
contour(data, add=TRUE)

}

par(oma=c(0,0,0,1))# reset margin to be much smaller.
image.plot(legend.only=TRUE, zlim=c(-4,4))

image.plot tricked into plotting in margin of old setting

set.panel() # reset plotting device

#
Here is a more learned strategy to add a common legend to a panel of
plots consult the split.screen help file for more explanations.
For this example we draw two
images top and bottom and add a single legend color bar on the right side

first divide screen into the figure region (left) and legend region (right)
split.screen(rbind(c(0, .8,0,1), c(.8,1,0,1)))

now subdivide up the figure region into two parts
split.screen(c(2,1), screen=1)-> ind
zr<- range(2,35)

first image
screen(ind[1])
image(x,y,z, col=tim.colors(), zlim=zr)

70 image.plot

second image
screen(ind[2])
image(x,y,z+10, col=tim.colors(), zlim =zr)

move to skinny region on right and draw the legend strip
screen(2)
image.plot(zlim=zr,legend.only=TRUE, smallplot=c(.1,.2, .3,.7),
col=tim.colors())

close.screen(all=TRUE)

you can always add a legend arbitrarily to any plot;
note that here the plot is too big for the vertical strip but the
horizontal fits nicely.
plot(1:10, 1:10)
image.plot(zlim=c(0,25), legend.only=TRUE)
image.plot(zlim=c(0,25), legend.only=TRUE, horizontal =TRUE)

combining the usual image function and adding a legend
first change margin for some more room
Not run:
par(mar=c(10,5,5,5))
image(x,y,z, col=topo.colors(64))
image.plot(zlim=c(0,25), nlevel=64,legend.only=TRUE, horizontal=TRUE,
col=topo.colors(64))

End(Not run)
#
#
sorting out the difference in formatting between matrix storage
and the image plot depiction
this really has not much to do with image.plot but I hope it is useful

A<- matrix(1:48, ncol=6, nrow=8)
first column of A will be 1:8
... second is 9:16

image.plot(1:8, 1:6, A)
add labels to each box
text(c(row(A)), c(col(A)), A)
and the indices ...
text(c(row(A)), c(col(A))-.25,

paste("(", c(row(A)), ",",c(col(A)),")", sep=""), col="grey")

"columns" of A are horizontal and rows are ordered from bottom to top!
#
matrix in its usual tabular form where the rows are y and columns are x
image.plot(t(A[8:1,]), axes=FALSE)

image.smooth 71

image.smooth Kernel smoother for irregular 2-d data

Description

Takes an image matrix and applies a kernel smoother to it. Missing values are handled using the
Nadaraya/Watson normalization of the kernel.

Usage

S3 method for class 'smooth'
image(x, wght = NULL, dx = 1, dy = 1,

kernel.function = double.exp,
theta = 1, grid = NULL, tol = 1e-08, xwidth = NULL, ywidth = NULL,
weights = NULL,...)

setup.image.smooth(nrow = 64, ncol = 64, dx = 1, dy = 1,
kernel.function = double.exp,

theta = 1, xwidth = nrow * dx, ywidth = ncol * dx, lambda=NULL, ...)

Arguments

x A matrix image. Missing values can be indicated by NAs.
wght FFT of smoothing kernel. If this is NULL the default is to compute this object.
grid A list with x and y components. Each are equally spaced and define the rectan-

gular. (see grid.list)
dx Grid spacing in x direction
dy Grid spacing in x direction
kernel.function

An R function that takes as its argument the squared distance between two points
divided by the bandwidth. The default is exp(-abs(x)) yielding a normal kernel

theta the bandwidth or scale parameter.
xwidth Amount of zero padding in horizontal dimension in units of the grid spacing. If

NULL the default value is equal to the width of the image the most conserva-
tive value but possibly inefficient for computation. Set this equal to zero to get
periodic wrapping of the smoother. This is useful to smooth a Mercator map
projection.

ywidth Same as xwidth but for the vertical dimension.
weights Weights to apply when smoothing.
tol Tolerance for the weights of the N-W kernel. This avoids kernel estimates that

are "far" away from data. Grid points with weights less than tol are set to NA.
nrow X dimension of image in setting up smoother weights
ncol Y dimension of image
lambda Smoothing parameter if smoother is interpreted in a spline-like way.
... Other arguments to be passed to the kernel function

72 image.smooth

Details

The function works by taking convolutions using an FFT. The missing pixels are taken into ac-
count and the kernel smoothing is correctly normalized for the edge effects following the classical
Nadaraya-Watson estimator. For this reason the kernel doe snot have to be a desity as it is automat-
ically normalized when the kernel weight function is found for the data. If the kernel has limited
support then the width arguments can be set to reduce the amount of computation. (See example
below.) For multiple smoothing compute the fft of the kernel just once using setup.image.smooth
and pass this as the wght argument to image.smooth. this will save an FFT in computations.

Value

The smoothed image in R image format. (A list with components x, y and z.) setup.image.smooth
returns a list with components W a matrix being the FFT of the kernel, dx, dy, xwidth and ywidth.

See Also

as.image, sim.rf, image.plot

Examples

first convert precip data to the 128X128 discretized image format (with
missing values to indicate where data is not observed)
#
out<- as.image(RMprecip$y, x= RMprecip$x, nx=128, ny=128)
out$z is the image matrix

dx<- out$x[2]- out$x[1]
dy<- out$y[2] - out$y[1]

#
grid scale in degrees and choose kernel bandwidth to be .25 degrees.

look<- image.smooth(out, theta= .25)

pass in a tophat kernel
topHat<- function(dd, h){ ifelse(dd <= h^2, 1, 0)}
dd is the distance squared
look2<- image.smooth(out, kernel.function=topHat, h=.8)

image.plot(look)
points(RMprecip$x)
US(add=TRUE, col="grey", lwd=2)

to save on computation, decrease the padding with zeroes
only pad 32 grid points around the margins ofthe image.

look<- image.smooth(out$z, dx=dx, dy=dy, theta= .25, xwidth=32*dx,ywidth=32*dy)

the range of these data is ~ 10 degrees and so
with a padding of 32 grid points 32*(10/128) = 2.5
about 10 standard deviations of the normal kernel so there is still

image2lz 73

lots of room for padding
a minimal choice might be xwidth = 4*(.25)= 1 4 SD for the normal kernel
creating weighting object outside the call
this is useful when one wants to smooth different data sets but on the
same grid with the same kernel function
#

#
random fields from smoothing white noise with this filter.
#
set.seed(123)
test.image<- matrix(rnorm(128**2),128,128)
dx<- .1
dy<- .8

wght<- setup.image.smooth(nrow=128, ncol=128, dx=dx, dy=dy,
theta=.25, xwidth=2.5, ywidth=2.5)

#
look<- image.smooth(test.image, dx=dx, dy=dy, wght)

NOTE: this is the same as using
#
image.smooth(test.image , 128,128), xwidth=2.5,
ywidth=2.5, dx=dx,dy=dy, theta=.25)
#
but the call to image.smooth is faster because the fft of kernel
has been precomputed.

periodic smoothing in the horizontal dimension

look<- image.smooth(test.image , xwidth=1.5,
ywidth=2.5, dx=dx,dy=dy, theta=1.5)

look2<- image.smooth(test.image , xwidth=0,
ywidth=2.5, dx=dx,dy=dy, theta=1.5)

compare these two
set.panel(1,2)
image.plot(look, legend.mar=7.1)
title("free boundaries")
image.plot(look2, legend.mar=7.1) # look for periodic continuity at edges!
title("periodic boundary in horizontal")
set.panel(1,1)

image2lz Some simple functions for subsetting images

Description

These function help in subsetting images or reducing its size by averaging adjecent cells.

74 image2lz

Usage

crop.image(obj, loc=NULL,...)
which.max.matrix(z)
which.max.image(obj)
get.rectangle()
average.image(obj, Q=2)
half.image(obj)
in.poly(xd, xp, convex.hull=FALSE, inflation=1e-07)
in.poly.grid(grid.list,xp, convex.hull=FALSE, inflation=1e-07)

Arguments

obj A list in image format with the usual x,y defining the grid and z a matrix of
image values.

loc A 2 column matrix of locations within the image region that define the sub-
set. If not specified then the image is plotted and the rectangle can be specified
interactively.

Q Number of pixels to average.

xd A 2 column matrix of locations that are the points to check for being inside a
polygon.

xp A 2 column matrix of locations that are vertices of a polygon. The last point is
assumed to be connected to the first.

convex.hull If TRUE then the convex hull of xp is used instead of the polygon.

grid.list A list with components x and y specifing the 2-d grid values. (See help(grid.list)
for more details.)

inflation A small expansion factor to insure that points precisely on the boundaries and
vertices of the convex hull are included as members.

z A matrix of numerical values

... Graphics arguments passed to image.plot. This is only relevant when loc is
NULL and the locator function is called via get.rectangle.

Details

If loc has more than 2 rows then the largest rectangle containing the locations is used.

crop.image Creates a subset of the image obj by taking using the largest rectangle in the locations
loc. This is useful if one needs to extract a image that is no bigger in extant than som edata
location. If locations are omitted the parent image is plotted and the locations from two mouse
clicks on the image. Returned value is an image with appropriate x,y and z components.

get.rectangle Given an image plots and waits for two mouse clicks that are returned.

which.max.image Returns a list with components x,y,z , and ind giving the location of the max-
imun and value of the maximum in the image based on the grid values and also on the indicies
of the image matrix.

image2lz 75

average.image, half.image Takes passed image and averages the pixel values and adjusts the grid
to create an image that has a smaller number of elements. If Q=2 in average.image it has the
same effect as half.image but might be slower – if the original image is mXn then half image
will be an image (m/2)X(n/2). This begs the question what happens when m or n is odd or
when (m/Q) or (n/Q) are not integers. In either case the largest rows or columns are dropped.
(For large Q the function might be modified to drop about half the pixels at both edges.)

in.poly, in.poly.grid Determines whether the points xd,yd are inside a polygon or outside. Return
value is a logical vector with TRUE being inside or on boundary of polygon. The test expands
the polygon slightly in size (on the order of single precision zero) to include points that are
at the vertices. in.poly does not really depend on an image format however the grid ver-
sion in.poly.grid is more efficient for considering the locations on a regular grid See also
in.land.grid that is hard coded to work with the fields world map.

Author(s)

Doug Nychka

See Also

drape.plot, image.plot, interp.surface, interp.surface.grid, in.land.grid

Examples

data(RMelevation)

region defining Colorado Front Range

loc<- rbind(c(-106.5, 40.8),
c(-103.9, 37.5))

extract elevations for just CO frontrange.
FR<- crop.image(RMelevation, loc)
image.plot(FR, col=terrain.colors(256))

which.max.image(FR)

average cells 4 to 1 by doing this twice!
temp<- half.image(RMelevation)
temp<- half.image(temp)

or in one step
temp<- average.image(RMelevation, Q=4)-> temp
image.plot(temp, col=terrain.colors(256))

a polygon (no special meaning entered with just locator)
x1p<- c(
-106.2017, -104.2418, -102.9182, -102.8163, -102.8927, -103.3254, -104.7763,
-106.5581, -108.2889, -109.1035, -109.3325, -108.7980)

x2p<- c(
43.02978, 42.80732, 41.89727, 40.84566, 39.81427, 38.17618, 36.53810, 36.29542,

76 interp.surface

36.90211, 38.29752, 39.45025, 41.02767)
xp<- cbind(x1p,x2p)

image.plot(temp)
polygon(xp[,1], xp[,2], lwd=2)

find all grid points inside poly
fullset<- make.surface.grid(list(x= temp$x, y= temp$y))
ind<- in.poly(fullset,xp)

take a look
plot(fullset, pch=".")
polygon(xp[,1], xp[,2], lwd=2)
points(fullset[ind,], pch="o", col="red", cex=.5)

masking out the image NA == white in the image plot
temp$z[!ind] <- NA
image.plot(temp)
polygon(xp[,1], xp[,2], lwd=2)

This is more efficient for large grids:
because the large number of grid location (xg above) is
never explicitly created.

ind<- in.poly.grid(list(x= temp$x, y= temp$y), xp)

now use ind in the same way as above to mask points outside of polygon

interp.surface Fast bilinear interpolator from a grid.

Description

Uses bilinear weights to interpolate values on a rectangular grid to arbitrary locations or to another
grid.

Usage

interp.surface(obj, loc)
interp.surface.grid(obj, grid.list)

Arguments

obj A list with components x,y, and z in the same style as used by contour, persp,
image etc. x and y are the X and Y grid values and z is a matrix with the
corresponding values of the surface

loc A matrix of (irregular) locations to interpolate. First column of loc isthe X
coordinates and second is the Y’s.

interp.surface 77

grid.list A list with components x and y describing the grid to interpolate. The grids do
not need to be equally spaced.

Details

Here is a brief explanation of the interpolation: Suppose that the location, (locx, locy) lies in be-
tween the first two grid points in both x an y. That is locx is between x1 and x2 and locy is between
y1 and y2. Let ex= (l1-x1)/(x2-x1) ey= (l2-y1)/(y2-y1). The interpolant is

(1-ex)(1-ey)*z11 + (1- ex)(ey)*z12 + (ex)(1-ey)*z21 + (ex)(ey)*z22

Where the z’s are the corresponding elements of the Z matrix.

Note that bilinear interpolation can produce some artifacts related to the grid and not reproduce
higher behavior in the surface. For, example the extrema of the interpolated surface will always
be at the parent grid locations. There is nothing special about about interpolating to another grid,
this function just includes a for loop over one dimension and a call to the function for irregular
locations. It was included in fields for convenience. since the grid format is so common.

See also the akima package for fast interpolation from irrgeular locations. Many thanks to Jean-
Olivier Irisson for making this code more efficient and concise.

Value

An vector of interpolated values. NA are returned for regions of the obj\$z that are NA and also for
locations outside of the range of the parent grid.

See Also

image.smooth, as.surface, as.image, image.plot, krig.image,Tps

Examples

#
evaluate an image at a finer grid
#

data(lennon)
create an example in the right list format like image or contour
obj<- list(x= 1:20, y=1:20, z= lennon[201:220, 201:220])

set.seed(123)
lots of random points
N<- 500
loc<- cbind(runif(N)*20, runif(N)*20)
z.new<- interp.surface(obj, loc)
compare the image with bilinear interpolation at scattered points
set.panel(2,2)
image.plot(obj)
quilt.plot(loc, z.new)

sample at 100X100 equally spaced points on a grid

78 Krig

grid.list<- list(x= seq(1,20,,100), y= seq(1,20,,100))

interp.surface.grid(obj, grid.list)-> look

take a look
set.panel(2,2)
image.plot(obj)
image.plot(look)

Krig Kriging surface estimate

Description

Fits a surface to irregularly spaced data. The Kriging model assumes that the unknown function is
a realization of a Gaussian random spatial processes. The assumed model is additive Y = P(x) +
Z(X) + e, where P is a low order polynomial and Z is a mean zero, Gaussian stochastic process with
a covariance that is unknown up to a scale constant. The main advantages of this function are the
flexibility in specifying the covariance as an R language function and also the supporting functions
plot, predict, predictSE, surface for subsequent analysis. Krig also supports a correlation model
where the mean and marginal variances are supplied.

Usage

Krig(x, Y, cov.function = "stationary.cov", lambda = NA, df
= NA, GCV = FALSE, Z = NULL, cost = 1, knots = NA,
weights = NULL, m = 2, nstep.cv = 200, scale.type =
"user", x.center = rep(0, ncol(x)), x.scale = rep(1,
ncol(x)), rho = NA, sigma2 = NA, method = "REML",
verbose = FALSE, mean.obj = NA, sd.obj = NA,
null.function = "Krig.null.function", wght.function =
NULL, offset = 0, na.rm = TRUE, cov.args = NULL,
chol.args = NULL, null.args = NULL, wght.args = NULL,
W = NULL, give.warnings = TRUE, ...)

S3 method for class 'Krig'
fitted(object,...)

S3 method for class 'Krig'
coef(object,...)

resid.Krig(object,...)

Krig 79

Arguments

chol.args Arguments to be passed to the cholesky decomposition in Krig.engine.fixed.
The default if NULL, assigned at the top level of this function, is list(pivot=FALSE).
This argument is useful when working with the sparse matrix package.

cov.args A list with the arguments to call the covariance function. (in addition to the
locations)

cov.function Covariance function for data in the form of an R function (see Exp.simple.cov
as an example). Default assumes that correlation is an exponential function
of distance. See also stationary.cov for more general choice of covariance
shapes. exponential.cov will be faster if only the exponential covariance form
is needed.

cost Cost value used in GCV criterion. Corresponds to a penalty for increased num-
ber of parameters. The default is 1.0 and corresponds to the usual GCV function.

df The effective number of parameters for the fitted surface. Conversely, N- df,
where N is the total number of observations is the degrees of freedom associated
with the residuals. This is an alternative to specifying lambda and much more
interpretable. NOTE: GCV argument defaults to TRUE if this argument is used.

GCV If TRUE matrix decompositions are done to allow estimating lambda by GCV or
REML and specifying smoothness by the effective degrees of freedom. So the
GCV switch does more than just supply a GCV estimate. Also if lambda or df
are passed the estimate will be evaluated at those values, not at the GCV/REML
estimates of lambda. If FALSE Kriging estimate is found under a fixed lambda
model.

give.warnings If TRUE warnings are given in gcv grid search limits. If FALSE warnings are
not given. Best to leave this TRUE! This argument is set ot FALSE if warn is
less than zero in the top level, R options function. See options()$warn

knots A matrix of locations similar to x. These can define an alternative set of basis
functions for representing the estimate. One choice may be a space-filling subset
of the original x locations, thinning out the design where locations cluster. The
default is to put a "knot" at all unique locations. (See details.)

lambda Smoothing parameter that is the ratio of the error variance (sigma**2) to the
scale parameter of the covariance function (rho). If omitted this is estimated by
GCV (see method below).

method Determines what "smoothing" parameter should be used. The default is to es-
timate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure
error and REML. The differences are explained below.

mean.obj Object to predict the mean of the spatial process. This used in when fitting a
correlation model with varying spatial means and varying marginal variances.
(See details.)

m A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. The "m" notation is from thin-plate splines where
m is the derivative in the penalty function. With m=2 as the default a linear
model in the locations will be fit a fixed part of the model.

80 Krig

na.rm If TRUE NAs will be removed from the y vector and the corresponding rows of
x – with a warning. If FALSE Krig will just stop with a message. Once NAs are
removed all subsequent analysis in fields does not use those data.

nstep.cv Number of grid points for the coarse grid search to minimize the GCV RMLE
and other related criteria for finding lambda, the smoothing parameter. Default
is 200, fairly large to avoid some cases of closely spaced local minima. Eval-
uations of the GCV and related objective functions are cheap given the matrix
decompositions described below.

null.args Extra arguments for the null space function null.function. If fields.mkpoly
is passed as null.function then this is set to a list with the value of m. So the
default is use a polynomial of degree m-1 for the null space (fixed part) of the
model.

null.function An R function that creates the matrices for the null space model. The default is
fields.mkpoly, an R function that creates a polynomial regression matrix with all
terms up to degree m-1. (See Details)

offset The offset to be used in the GCV criterion. Default is 0. This would be used
when Krig is part of a backfitting algorithm and the offset is other model degrees
of freedom from other regression components.

rho Scale factor for covariance.

scale.type This is a character string among: "range", "unit.sd", "user", "unscaled". The
independent variables and knots are scaled to the specified scale.type. By default
no scaling is done. This usuall makes sense for spatial locations. Scale type of
"range" scales the data to the interval (0,1) by forming (x-min(x))/range(x) for
each x. Scale type of "unit.sd" Scale type of "user" allows specification of an
x.center and x.scale by the user. The default for "user" is mean 0 and standard
deviation 1. Scale type of "unscaled" does not scale the data.

sd.obj Object to predict the marginal standard deviation of the spatial process.

sigma2 Variance of the errors, often called the nugget variance. If weights are specified
then the error variance is sigma2 divided by weights. Note that lambda is defined
as the ratio sigma2/rho.

verbose If true will print out all kinds of intermediate stuff. Default is false, of course as
this is used mainly for debugging.

weights Weights are proportional to the reciprocal variance of the measurement error.
The default is equal weighting i.e. vector of unit weights.

wght.function An R function that creates a weights matrix to the observations. This is only
needed if the weight matirx has off diagonal elements. The default is NULL
indicating that the weight matrix is a diagonal, based on the weights argument.
(See details)

W The observation weight matrix.

wght.args Optional arguments to be passed to the weight function (wght.function) used to
create the observation weight matrix.

x Matrix of independent variables. These could the locations for spatial data or
the indepedent variables in a regression.

x.center Centering values to be subtracted from each column of the x matrix.

Krig 81

x.scale Scale values that are divided into each column after centering.

Y Vector of dependent variables. These are the values of the surface (perhaps with
measurement error) at the locations or the dependent response in a regression.

Z A vector of matrix of covariates to be include in the fixed part of the model. If
NULL (default) no addtional covariates are included.

... Optional arguments that appear are assumed to be additional arguments to the
covariance function. Or are included in methods functions (resid, fitted, coef) as
a required argument.

object A Krig object

Details

This function produces a object of class Krig. With this object it is easy to subsequently predict
with this fitted surface, find standard errors, alter the y data (but not x), etc.

The Kriging model is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k

where ".k" means subscripted by k, Y is the dependent variable observed at location x.k, P is a low
order polynomial, Z is a mean zero, Gaussian field with covariance function K and e is assumed to
be independent normal errors. The estimated surface is the best linear unbiased estimate (BLUE)
of f(x)= P(x) + Z(x) given the observed data. For this estimate K, is taken to be rho*cov.function
and the errors have variance sigma**2. In more conventional geostatistical terms rho is the "sill"
if the covariance function is actually a correlation function and sigma**2 is the nugget variance or
measure error variance (the two are confounded in this model.) If the weights are given then the
variance of e.k is sigma**2/ weights.k . In the case that the weights are specified as a matrix, W,
using the wght.function option then the assumed covariance matrix for the errors is sigma**2 Wi,
where Wi is the inverse of W. It is straightforward to show that the estimate of f only depends on
sigma and rho through the ratio lambda = sigma**2/ rho. This parameter, termed the smoothing
parameter plays a central role in the statistical computations within Krig. See also the help for thin
plate splines, (Tps) to get another perspective on the smoothing parameter.

This function also supports a modest extension of the Generalized Kriging model to include other
covariates as fixed regression type components. In matrix form Y = Zb + F + E where Z is a matrix
of covariates and b a fixed parameter vector, F the vector of function values at the observations
and E a vector of errors. The The Z argument in the function is the way to specify this additional
component.

If the parameters rho and sigma2 are omitted in the call, then they are estimated in the following
way. If lambda is given, then sigma2 is estimated from the residual sum of squares divided by the
degrees of freedom associated with the residuals. Rho is found as the difference between the sums
of squares of the predicted values having subtracted off the polynomial part and sigma2. These
estimates are the MLE’s under Gaussian assumptions on the process and errors. If lambda is also
omitted is it estimated from the data using a variety of approaches and then the values for sigma
and rho are found in the same way from the estimated lambda.

A useful extension of a stationary correlation to a nonstationary covariance is what we term a
correlation model. If mean and marginal standard deviation objects are included in the call. Then
the observed data is standardized based on these functions. The spatial process is then estimated
with respect to the standardized scale. However for predictions and standard errors the mean and
standard deviation surfaces are used to produce results in the original scale of the observations.

82 Krig

The GCV function has several alternative definitions when replicate observations are present or if
one uses a reduced set knots. Here are the choices based on the method argument:

GCV: leave-one-out GCV. But if there are replicates it is leave one group out. (Wendy and Doug
prefer this one.)

GCV.one: Really leave-one-out GCV even if there are replicate points. This what the old tps
function used in FUNFITS.

rmse: Match the estimate of sigma**2 to a external value (called rmse)

pure error: Match the estimate of sigma**2 to the estimate based on replicated data (pure error
estimate in ANOVA language).

GCV.model: Only considers the residual sums of squares explained by the basis functions.

REML: The process and errors are assumed to the Gaussian and the likelihood is concentrated (or
profiled) with respect to lambda. The MLE of lambda is found from this criterion. Restricted means
that the likelihood is formed from a linear transformation of the observations that is orthogonal to
the column space of P(x).

WARNING: The covariance functions often have a nonlinear parameter(s) that often control the
strength of the correlations as a function of separation, usually referred to as the range parameter.
This parameter must be specified in the call to Krig and will not be estimated.

Value

A object of class Krig. This includes the predicted values in fitted.values and the residuals in
residuals. The results of the grid search to minimize the generalized cross validation function are
returned in gcv.grid.

The coef.Krig function only returns the coefficients, "d", associated with the fixed part of the model
(also known as the null space or spatial drift).

call Call to the function

y Vector of dependent variables.

x Matrix of independent variables.

weights Vector of weights.

knots Locations used to define the basis functions.

transform List of components used in centering and scaling data.

np Total number of parameters in the model.

nt Number of parameters in the null space.

matrices List of matrices from the decompositions (D, G, u, X, qr.T).

gcv.grid Matrix of values from the GCV grid search. The first column is the grid of
lambda values used in the search, the second column is the trace of the A matrix,
the third column is the GCV values and the fourth column is the estimated value
of sigma conditional on the vlaue of lambda.

lambda.est A table of estimated smoothing parameters with corresponding degrees of free-
dom and estimates of sigma found by different methods.

cost Cost value used in GCV criterion.

Krig 83

m Order of the polynomial space: highest degree polynomial is (m-1). This is a
fixed part of the surface often referred to as the drift or spatial trend.

eff.df Effective degrees of freedom of the model.

fitted.values Predicted values from the fit.

residuals Residuals from the fit.

lambda Value of the smoothing parameter used in the fit. Lambda is defined as sigma**2/rho.
See discussion in details.

yname Name of the response.

cov.function Covariance function of the model.

beta Estimated coefficients in the ridge regression format

d Estimated coefficients for the polynomial basis functions that span the null space
fitted.values.null

Fitted values for just the polynomial part of the estimate

trace Effective number of parameters in model.

c Estimated coefficients for the basis functions derived from the covariance.

coefficients Same as the beta vector.

just.solve Logical describing if the data has been interpolated using the basis functions.

shat Estimated standard deviation of the measurement error (nugget effect).

sigma2 Estimated variance of the measurement error (shat**2).

rho Scale factor for covariance. COV(h(x),h(x)) = rho*cov.function(x,x) If the
covariance is actually a correlation function then rho is also the "sill".

mean.var Normalization of the covariance function used to find rho.

best.model Vector containing the value of lambda, the estimated variance of the measure-
ment error and the scale factor for covariance used in the fit.

References

See "Additive Models" by Hastie and Tibshirani, "Spatial Statistics" by Cressie and the FIELDS
manual.

See Also

summary.Krig, predict.Krig, predictSE.Krig, predictSurfaceSE, predictSurface, plot.Krig, surface.Krig

Examples

a 2-d example
fitting a surface to ozone
measurements. Exponential covariance, range parameter is 20 (in miles)

fit <- Krig(ChicagoO3$x, ChicagoO3$y, theta=20)

summary(fit) # summary of fit

84 Krig

set.panel(2,2)
plot(fit) # four diagnostic plots of fit
set.panel()
surface(fit, type="C") # look at the surface

predict at data
predict(fit)

predict using 7.5 effective degrees of freedom:
predict(fit, df=7.5)

predict on a grid (grid chosen here by defaults)
out<- predictSurface(fit)
surface(out, type="C") # option "C" our favorite

predict at arbitrary points (10,-10) and (20, 15)
xnew<- rbind(c(10, -10), c(20, 15))
predict(fit, xnew)

standard errors of prediction based on covariance model.
predictSE(fit, xnew)

surface of standard errors on a default grid
predictSurfaceSE(fit)-> out.p # this takes some time!
surface(out.p, type="C")
points(fit$x)

Not run:
Using another stationary covariance.
smoothness is the shape parameter for the Matern.

fit <- Krig(ChicagoO3$x, ChicagoO3$y, Covariance="Matern", theta=10, smoothness=1.0)
summary(fit)

#
Roll your own: creating very simple user defined Gaussian covariance
#

test.cov <- function(x1,x2,theta,marginal=FALSE,C=NA){
return marginal variance

if(marginal) { return(rep(1, nrow(x1)))}

find cross covariance matrix
temp<- exp(-(rdist(x1,x2)/theta)**2)
if(is.na(C[1])){

return(temp)}
else{

return(temp%*%C)}
}

#
use this and put in quadratic polynomial fixed function

Krig 85

fit.flame<- Krig(flame$x, flame$y, cov.function="test.cov", m=3, theta=.5)

#
note how range parameter is passed to Krig.
BTW: GCV indicates an interpolating model (nugget variance is zero)
This is the content of the warning message.

take a look ...
surface(fit.flame, type="I")

End(Not run)

#
Thin plate spline fit to ozone data using the radial
basis function as a generalized covariance function
#
p=2 is the power in the radial basis function (with a log term added for
even dimensions)
If m is the degree of derivative in penalty then p=2m-d
where d is the dimension of x. p must be greater than 0.
In the example below p = 2*2 - 2 = 2
#

out<- Krig(ChicagoO3$x, ChicagoO3$y,cov.function="Rad.cov",
m=2,p=2,scale.type="range")

See also the Fields function Tps
out should be identical to Tps(ChicagoO3$x, ChicagoO3$y)
#

A Knot example

data(ozone2)
y16<- ozone2$y[16,]

there are some missing values -- remove them
good<- !is.na(y16)
y<- y16[good]
x<- ozone2$lon.lat[good,]

#
the knots can be arbitrary but just for fun find them with a space
filling design. Here we select 50 from the full set of 147 points
#
xknots<- cover.design(x, 50, num.nn= 75)$design # select 50 knot points

out<- Krig(x, y, knots=xknots, cov.function="Exp.cov", theta=300)
summary(out)

note that that trA found by GCV is around 17 so 50>17 knots may be a
reasonable approximation to the full estimator.
#
Not run:

86 Krig

the plot
surface(out, type="C")
US(add=TRUE)
points(x, col=2)
points(xknots, cex=2, pch="O")

End(Not run)
Not run:
A quick way to deal with too much data if you intend to smooth it anyway
Discretize the locations to a grid, then apply Krig
to the discretized locations:
##
RM.approx<- as.image(RMprecip$y, x=RMprecip$x, nx=20, ny=20)

take a look:
image.plot(RM.approx)
discretized data (observations averaged if in the same grid box)
336 locations -- down form the full 806

convert the image format to locations, obs and weight vectors
yd<- RM.approx$z[RM.approx$ind]
weights<- RM.approx$weights[RM.approx$ind] # takes into account averaging
xd<- RM.approx$xd

obj<- Krig(xd, yd, weights=weights, theta=4)

compare to the full fit:
Krig(RMprecip$x, RMprecip$y, theta=4)

End(Not run)

Not run:
A correlation model example
fit krig surface using a mean and sd function to standardize
first get stats from 1987 summer Midwest O3 data set
data(ozone2)
stats.o3<- stats(ozone2$y)
mean.o3<- Tps(ozone2$lon.lat, c(stats.o3[2,]))
sd.o3<- Tps(ozone2$lon.lat, c(stats.o3[3,]))

#
Now use these to fit particular day (day 16)
and use great circle distance

fit<- Krig(ozone2$lon.lat, ozone2$y[16,],
theta=350, mean.obj=mean.o3, sd.obj=sd.o3,
Covariance="Matern", Distance="rdist.earth",
smoothness=1.0,
na.rm=TRUE) #

the finale

Krig.Amatrix 87

surface(fit, type="I")
US(add=TRUE)
points(fit$x)
title("Estimated ozone surface")

End(Not run)
Not run:
#
#
explore some different values for the range and lambda using REML

theta <- seq(100,500,,40)
PLL<- matrix(NA, 40,80)

the loop
for(k in 1:40){

call to Krig with different ranges
also turn off warnings for GCV search
to avoid lots of messages. (not recommended in general!)

PLL[k,]<- Krig(ozone2$lon.lat,ozone2$y[16,],
cov.function="stationary.cov",
theta=theta[k], mean.obj=mean.o3, sd.obj=sd.o3,
Covariance="Matern",smoothness=.5,
Distance="rdist.earth", nstep.cv=80,
give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,7]

#
gcv.grid is the grid search output from
the optimization for estimating different estimates for lambda including
REML
default grid is equally spaced in eff.df scale (and should the same across theta)
here

}
get lambda grid from looping

k<- 1
lam<- Krig(ozone2$lon.lat,ozone2$y[16,],

cov.function="stationary.cov",
theta=theta[k], mean.obj=mean.o3, sd.obj=sd.o3,
Covariance="Matern",smoothness=.5,
Distance="rdist.earth", nstep.cv=80,
give.warnings=FALSE, na.rm=TRUE)$gcv.grid[,1]

see the 2 column of $gcv.grid to get the effective degress of freedom.
contour(theta,log(lam) , PLL)

End(Not run)

Krig.Amatrix Smoother (or "hat") matrix relating predicted values to the dependent
(Y) values.

88 Krig.Amatrix

Description

For a fixed value of the smoothing parameter or the covariance function some nonparametric curve
estimates are linear functions of the observed data. This is a intermediate level function that com-
putes the linear weights to be applied to the observations to estimate the curve at a particular point.
For example the predicted values can be represented as Ay where A is an N X N matrix of coeffi-
cients and Y is the vector of observed dependent variables. For linear smoothers the matrix A may
depend on the smoothing parameter (or covariance function and the independent variables (X) but
NOT on Y.

Usage

Krig.Amatrix(object, x0 = object$x, lambda=NULL,
eval.correlation.model = FALSE,...)

Arguments

Output object from fitting a data set using a FIELD regression method. Currently
this is supported only for Krig (and Tps) functions.

A Krig object produced by the Krig (or Tps) function.
objectx0 Locations for prediction default is the observation locations.
lambda Value of the smoothing parameter.
eval.correlation.model

This applies to a correlation model where the observations have been standard-
ized – e.g. y standardized = (yraw - mean) / (standard deviation). If TRUE the
prediction in the correlation scale is transformed by the standard deviation and
mean to give a prediction in the raw scale. If FALSE predictions are left in the
correlation scale.

... Other arguments that can used by predict.Krig.

Details

The main use of this function is in finding prediction standard errors.

For the Krig (and Tps) functions the A matrix is constructed based on the representation of the
estimate as a generalized ridge regression. The matrix expressions are explained in the references
from the FIELDS manual. For linear regression the matrix that gives predicted values is often
referred to as the "hat" matrix and is useful for regression diagnostics. For smoothing problems
the effective number of parameters in the fit is usually taken to be the trace of the A matrix. Note
that while the A matrix is usually constructed to predict the estimated curve at the data points
Amatrix.Krig does not have such restrictions. This is possible because any value of the estimated
curve will be a linear function of Y.

The actual calculation in this function is simple. It invovles loop through the unit vectors at each
observation and computation of the prediction for each of these delta functions. This approach
makes it easy to handle different options such as including covariates.

Value

A matrix where the number of rows is equal to the number of predicted points and the number of
columns is equal to the length of the Y vector.

Krig.null.function 89

References

Nychka (2000) "Spatial process estimates as smoothers."

See Also

Krig, Tps, predict.Krig

Examples

Compute the A matrix or "hat" matrix for a thin plate spline
check that this gives the same predicted values
tps.out<-Tps(ChicagoO3$x, ChicagoO3$y)
A<-Krig.Amatrix(tps.out, ChicagoO3$x)
test<- A%*%ChicagoO3$y
now compare this to predict(tps.out) or tps.out$fitted.values
they should be the same
stats(test- tps.out$fitted.values)

Krig.null.function Default function to create fixed matrix part of spatial process model.

Description

Constructs a matrix of terms representing a low order polynomial and binds additional columns due
to covariates (the Z matrix)

Usage

Krig.null.function(x, Z = NULL, drop.Z = FALSE, m)

Arguments

x Spatial locations

Z Other covariates to be associated with each location.

drop.Z If TRUE only the low order polynomial part is created.

m The polynomial order is (m-1).

Details

This function can be modified to produce a different fixed part of the spatial model. The arguments
x, Z and drop.Z are required but other arguments can be passed as part of a list in null.args in the
call to Krig.

Value

A matrix where the first columns are the polynomial terms and the following columns are from Z.

90 Krig.replicates

Author(s)

Doug Nychka

See Also

Krig

Krig.replicates Collapse repeated spatial locations into unique locations

Description

In case that several observations are available for a single spatial location find the group means and
replicate variability

Usage

Krig.replicates(out, x, y, Z, weights=rep(1, length(y)), verbose = FALSE)

Arguments

out A list with components x, y, weights, and possibily Z.

x Spatial locations.

y Spatial observations

Z Spatial covariates.

weights Weights proportional to reciprocal varainces of observations.

verbose If TRUE print out details for debugging.

Details

This function figures out which locations are the same and within the function fast.1way use tapply
to find replicate group means and standard deviations. NOTE: it is assumed the Z covariates are
unique at the locations. Currently these functions can not handle a model with common spatial
locations but different values for the Z covariates.

Value

A list with components:

yM Data at unique locations and where more than one observation is available this
is the mean of the replicates.

xM Unique spatial locations.

weightsM Weights matching the unique lcoations proportional to reciprocal variances This
is found as a combination of the original weights at each location.

ZM Values of the covariates at the unique lcoations.

lennon 91

uniquerows Index for unique rows of x.
shat.rep, shat.pure.error

Standard deviation of pure error estimate based on replicate groups (and adjust-
ing for possibly different weights.)

rep.info Integer tags indicating replicate groups.

Author(s)

Douglas Nychka

Examples

#create some spatial replicates
set.seed(123)
x0<- matrix(runif(10*2), 10,2)
x<- x0[c(rep(1,3), 2:8, rep(9,5),10) ,]
y<- rnorm(16)

out<- Krig.replicates(x=x, y=y)
compare
out$yM[1] ; mean(y[1:3])
out$yM[9] ; mean(y[11:15])
mean(y[out$rep.info==9])

lennon Gray image of John Lennon.

Description

A 256X256 image of John Lennon. Try:

image(lennon,col=grey(seq(0,1,,256)))

minitri Mini triathlon results

Description

Results from a mini triathlon sponsored by Bud Lite, held in Cary, NC, June 1990. Times are in
minutes for the male 30-34 group. Man was it hot and humid! (DN)

The events in order were swim: (1/2 mile) bike: (15 miles) run: (4 miles)

<s-section name= "DATA DESCRIPTION"> This is a dataframe. Row names are the place within
this age group based on total time.

92 mKrig

Arguments

swim swim times

bike bike times

run run times

mKrig "micro Krig" Spatial process estimate of a curve or surface, "kriging"
with a known covariance function.

Description

This is a simple version of the Krig function that is optimized for large data sets, sparse linear
algebra, and a clear exposition of the computations. Lambda, the smoothing parameter must be
fixed. This function is called higher level functions for maximum likelihood estimates of covariance
paramters.

Usage

mKrig(x, y, weights = rep(1, nrow(x)), Z = NULL,
cov.function = "stationary.cov", cov.args = NULL,
lambda = 0, m = 2, chol.args = NULL, find.trA = TRUE,
NtrA = 20, iseed = 123, llambda = NULL, na.rm = FALSE,
collapseFixedEffect = TRUE,
...)

S3 method for class 'mKrig'
predict(object, xnew=NULL,ynew=NULL, grid.list = NULL,
derivative=0,
Z=NULL,drop.Z=FALSE,just.fixed=FALSE,
collapseFixedEffect = object$collapseFixedEffect, ...)

S3 method for class 'mKrig'
summary(object, ...)

S3 method for class 'mKrig'
print(x, digits=4,...)
S3 method for class 'mKrigSummary'
print(x, digits=4,...)

mKrig.coef(object, y, collapseFixedEffect=TRUE)

mKrig.trace(object, iseed, NtrA)

mKrigCheckXY(x, y, weights, Z, na.rm)

mKrig 93

Arguments

collapseFixedEffect

If replicated fields are given to mKrig (i.e. y has more than one column) there
is the choice of estimating the fixed effect coefficients (d in the returned object)
separately for each replicate or pooling across replicates and deriving a single
estimate. If collapseFixedEffect is TRUE (default) the estimates are pooled.

chol.args A list of optional arguments (pivot, nnzR) that will be used with the call to
the cholesky decomposition. Pivoting is done by default to make use of sparse
matrices when they are generated. This argument is useful in some cases for
sparse covariance functions to reset the memory parameter nnzR. (See example
below.)

cov.args A list of optional arguments that will be used in calls to the covariance function.

cov.function The name, a text string of the covariance function.

derivative If zero the surface will be evaluated. If not zero the matrix of partial derivatives
will be computed.

digits Number of significant digits used in printed output.

drop.Z If true the fixed part will only be evaluated at the polynomial part of the fixed
model. The contribution from the other covariates will be omitted.

find.trA If TRUE will estimate the effective degrees of freedom using a simple Monte
Carlo method. This will add to the computational burden by approximately
NtrA solutions of the linear system but the cholesky decomposition is reused.

grid.list A grid.list to evaluate the surface in place of specifying arbitrary locations.

iseed Random seed (using set.seed(iseed)) used to generate iid normals for Monte
Carlo estimate of the trace.

just.fixed If TRUE only the predictions for the fixed part of the model will be evaluted.

lambda Smoothing parameter or equivalently the ratio between the nugget and process
varainces.

llambda If not NULL then lambda = exp(llambda)

m The degree of the polynomial used in teh fixed part is (m-1)

na.rm If TRUE NAs in y are omitted along with corresonding rows of x.

NtrA Number of Monte Carlo samples for the trace. But if NtrA is greater than or
equal to the number of observations the trace is computed exactly.

object Object returned by mKrig. (Same as "x" in the print function.)

weights Precision (1/variance) of each observation

x Matrix of unique spatial locations (or in print or surface the returned mKrig
object.)

xnew Locations for predictions.

y Vector or matrix of observations at spatial locations, missing values are not al-
lowed! Or in mKrig.coef a new vector of observations. If y is a matrix the
columns are assumed to be independent replicates of the spatial field. I.e. obser-
vation vectors generated from the same covariance and measurment error model
but independent from each other.

94 mKrig

ynew New observation vector. mKrig will reuse matrix decompositions and find the
new fit to these data.

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x. (NOTE the order of the polynomial de-
termined by m)

... In mKrig and predict additional arguments that will be passed to the covariance
function.

Details

This function is an abridged version of Krig. The m stand for micro and this function focuses on the
computations in Krig.engine.fixed done for a fixed lambda parameter, for unique spatial locations
and for data without missing values.

These restrictions simplify the code for reading. Note that also little checking is done and the
spatial locations are not transformed before the estimation. Because most of the operations are
linear algebra this code has been written to handle multiple data sets. Specifically if the spatial
model is the same except for different observed values (the y’s), one can pass y as a matrix and the
computations are done efficiently for each set. Note that this is not a multivariate spatial model just
an efficient computation over several data vectors without explicit looping.A big difference in the
computations is that an exact expression for thetrace of the smoothing matrix is (trace A(lambda))
is computationally expensive and a Monte Carlo approximation is supplied instead.

See predictSE.mKrig for prediction standard errors and sim.mKrig.approx to quantify the un-
certainty in the estimated function using conditional simulation.

predict.mKrig will evaluate the derivatives of the estimated function if derivatives are supported
in the covariance function. For example the wendland.cov function supports derivatives.

summary.mKrig creates a list of class mKrigSummary along with a table of standard errors for the
fixed linear parameters.

print.mKrigSummary prints the mKrigSummary object and adds some more explanation about the
model and results

print.mKrig prints a summary for the mKrig object that the combines the summary and print
methods.

mKrig.coef finds the "d" and "c" coefficients represent the solution using the previous cholesky
decomposition for a new data vector. This is used in computing the prediction standard error in pre-
dictSE.mKrig and can also be used to evalute the estimate efficiently at new vectors of observations
provided the locations and covariance remain fixed.

Sparse matrix methods are handled through overloading the usual linear algebra functions with
sparse versions. But to take advantage of some additional options in the sparse methods the list
argument chol.args is a device for changing some default values. The most important of these
is nnzR, the number of nonzero elements anticipated in the Cholesky factorization of the postive
definite linear system used to solve for the basis coefficients. The sparse of this system is essentially
the same as the covariance matrix evalauted at the observed locations. As an example of resetting
nzR to 450000 one would use the following argument for chol.args in mKrig:

chol.args=list(pivot=TRUE,memory=list(nnzR= 450000))

mKrig.trace This is an internal function called by mKrig to estimate the effective degrees of free-
dom. The Kriging surface estimate at the data locations is a linear function of the data and can be

mKrig 95

represented as A(lambda)y. The trace of A is one useful measure of the effective degrees of freedom
used in the surface representation. In particular this figures into the GCV estimate of the smoothing
parameter. It is computationally intensive to find the trace explicitly but there is a simple Monte
Carlo estimate that is often very useful. If E is a vector of iid N(0,1) random variables then the
trace of A is the expected value of t(E)AE. Note that AE is simply predicting a surface at the data
location using the synthetic observation vector E. This is done for NtrA independent N(0,1) vectors
and the mean and standard deviation are reported in the mKrig summary. Typically as the number
of observations is increased this estimate becomse more accurate. If NtrA is as large as the number
of observations (np) then the algorithm switches to finding the trace exactly based on applying A to
np unit vectors.

Value

d Coefficients of the polynomial fixed part and if present the covariates (Z).To
determine which is which the logical vector ind.drift also part of this object is
TRUE for the polynomial part.

c Coefficients of the nonparametric part.

nt Dimension of fixed part.

np Dimension of c.

nZ Number of columns of Z covariate matrix (can be zero).

ind.drift Logical vector that indicates polynomial coefficients in the d coefficients vector.
This is helpful to distguish between polynomial part and the extra covariates
coefficients associated with Z.

lambda.fixed The fixed lambda value

x Spatial locations used for fitting.

knots The same as x
cov.function.name

Name of covariance function used.

args A list with all the covariance arguments that were specified in the call.

m Order of fixed part polynomial.

chol.args A list with all the cholesky arguments that were specified in the call.

call A copy of the call to mKrig.
non.zero.entries

Number of nonzero entries in the covariance matrix for the process at the obser-
vation locations.

shat.MLE MLE of sigma.

rho.MLE MLE or rho.

rhohat Estimate for rho adjusted for fixed model degrees of freedom (ala REML).

lnProfileLike log Profile likelihood for lambda

lnDetCov Log determinant of the covariance matrix for the observations having factored
out rho.

Omega GLS covariance for the estimated parameters in the fixed part of the model (d
coefficients0.

96 mKrig

qr.VT, Mc QR and cholesky matrix decompositions needed to recompute the estimate for
new observation vectors.

fitted.values, residuals

Usual predictions from fit.

eff.df Estimate of effective degrees of freedom. Either the mean of the Monte Carlo
sample or the exact value.

trA.info If NtrA ids less than np then the individual members of the Monte Carlo sample
and sd(trA.info)/ sqrt(NtrA) is an estimate of the standard error. If NtrA is
greater than or equal to np then these are the diagonal elements of A(lamdba).

GCV Estimated value of the GCV function.

GCV.info Monte Carlo sample of GCV functions

Author(s)

Doug Nychka, Reinhard Furrer, John Paige

References

https://github.com/NCAR/Fields

See Also

Krig, surface.mKrig, Tps, fastTps, predictSurface, predictSE.mKrig, sim.mKrig.approx, mKrig.grid

Examples

#
Midwest ozone data 'day 16' stripped of missings

data(ozone2)
y<- ozone2$y[16,]
good<- !is.na(y)
y<-y[good]
x<- ozone2$lon.lat[good,]

nearly interpolate using defaults (Exponential covariance range = 2.0)
see also mKrigMLEGrid to choose lambda by maxmimum likelihood

out<- mKrig(x,y, theta = 2.0, lambda=.01)
out.p<- predictSurface(out)
surface(out.p)

#
NOTE this should be identical to
Krig(x,y, theta=2.0, lambda=.01)

##
an example using a "Z" covariate and the Matern family
again see mKrigMLEGrid to choose parameters by MLE.
data(COmonthlyMet)
yCO<- CO.tmin.MAM.climate
good<- !is.na(yCO)
yCO<-yCO[good]
xCO<- CO.loc[good,]

https://github.com/NCAR/Fields

mKrig 97

Z<- CO.elev[good]
out<- mKrig(xCO,yCO, Z=Z, cov.function="stationary.cov", Covariance="Matern",

theta=4.0, smoothness=1.0, lambda=.1)
set.panel(2,1)
quilt.plot with elevations
quilt.plot(xCO, predict(out))
Smooth surface without elevation linear term included
surface(out)
set.panel()

###
Interpolate using tapered version of the exponential,
the taper scale is set to 1.5 default taper covariance is the Wendland.
Tapering will done at a scale of 1.5 relative to the scaling
done through the theta passed to the covariance function.
data(ozone2)

y<- ozone2$y[16,]
good<- !is.na(y)
y<-y[good]
x<- ozone2$lon.lat[good,]
mKrig(x,y,cov.function="stationary.taper.cov",

theta = 2.0, lambda=.01,
Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2)

) -> out2

Try out GCV on a grid of lambda's.
For this small data set
one should really just use Krig or Tps but this is an example of
approximate GCV that will work for much larger data sets using sparse
covariances and the Monte Carlo trace estimate
#
a grid of lambdas:

lgrid<- 10**seq(-1,1,,15)
GCV<- matrix(NA, 15,20)
trA<- matrix(NA, 15,20)
GCV.est<- rep(NA, 15)
eff.df<- rep(NA, 15)
logPL<- rep(NA, 15)

loop over lambda's
for(k in 1:15){

out<- mKrig(x,y,cov.function="stationary.taper.cov",
theta = 2.0, lambda=lgrid[k],

Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2))
GCV[k,]<- out$GCV.info
trA[k,]<- out$trA.info
eff.df[k]<- out$eff.df
GCV.est[k]<- out$GCV
logPL[k]<- out$lnProfileLike

}
#
plot the results different curves are for individual estimates
the two lines are whether one averages first the traces or the GCV criterion.
#

98 mKrig

par(mar=c(5,4,4,6))
matplot(trA, GCV, type="l", col=1, lty=2,

xlab="effective degrees of freedom", ylab="GCV")
lines(eff.df, GCV.est, lwd=2, col=2)
lines(eff.df, rowMeans(GCV), lwd=2)

add exact GCV computed by Krig
out0<- Krig(x,y,cov.function="stationary.taper.cov",

theta = 2.0,
Taper="Wendland", Taper.args=list(theta = 1.5, k=2, dimension=2),
spam.format=FALSE)

lines(out0$gcv.grid[,2:3], lwd=4, col="darkgreen")

add profile likelihood
utemp<- par()$usr
utemp[3:4] <- range(-logPL)
par(usr=utemp)
lines(eff.df, -logPL, lwd=2, col="blue", lty=2)
axis(4)
mtext(side=4,line=3, "-ln profile likelihood", col="blue")
title("GCV (green = exact) and -ln profile likelihood", cex=2)

###
here is a series of examples with bigger datasets
using a compactly supported covariance directly

set.seed(334)
N<- 1000
x<- matrix(2*(runif(2*N)-.5),ncol=2)
y<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(1000)*.1

look2<-mKrig(x,y, cov.function="wendland.cov",k=2, theta=.2,
lambda=.1)

take a look at fitted surface
predictSurface(look2)-> out.p
surface(out.p)

this works because the number of nonzero elements within distance theta
are less than the default maximum allocated size of the
sparse covariance matrix.
see options() for the default values. The names follow the convention
spam.arg where arg is the name of the spam component
e.g. spam.nearestdistnnz

The following will give a warning for theta=.9 because
allocation for the covariance matirx storage is too small.
Here theta controls the support of the covariance and so
indirectly the number of nonzero elements in the sparse matrix

Not run:
look2<- mKrig(x,y, cov.function="wendland.cov",k=2, theta=.9, lambda=.1)

End(Not run)

mKrig 99

The warning resets the memory allocation for the covariance matrix
according the to values options(spam.nearestdistnnz=c(416052,400))'
this is inefficient becuase the preliminary pass failed.

the following call completes the computation in "one pass"
without a warning and without having to reallocate more memory.

options(spam.nearestdistnnz=c(416052,400))
look2<- mKrig(x,y, cov.function="wendland.cov",k=2,

theta=.9, lambda=1e-2)
as a check notice that
print(look2)
reports the number of nonzero elements consistent with the specifc allocation
increase in spam.options

new data set of 1500 locations
set.seed(234)
N<- 1500
x<- matrix(2*(runif(2*N)-.5),ncol=2)
y<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01

Not run:
the following is an example of where the allocation (for nnzR)
for the cholesky factor is too small. A warning is issued and
the allocation is increased by 25
#
look2<- mKrig(x,y,

cov.function="wendland.cov",k=2, theta=.1, lambda=1e2)

End(Not run)
to avoid the warning
look2<-mKrig(x,y,

cov.function="wendland.cov", k=2, theta=.1,
lambda=1e2, chol.args=list(pivot=TRUE, memory=list(nnzR= 450000)))

###
fiting multiple data sets
#
#\dontrun{

y1<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
y2<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
Y<- cbind(y1,y2)
look3<- mKrig(x,Y,cov.function="wendland.cov",k=2, theta=.1,

lambda=1e2)
note slight difference in summary because two data sets have been fit.

print(look3)
#}

##
finding a good choice for theta as a taper

100 mKrig.MLE

Suppose the target is a spatial prediction using roughly 50 nearest neighbors
(tapering covariances is effective for roughly 20 or more in the situation of
interpolation) see Furrer, Genton and Nychka (2006).
take a look at a random set of 100 points to get idea of scale
and saving computation time by not looking at the complete set
of points
NOTE: This could also be done directly using the FNN package for finding nearest
neighbors

set.seed(223)
ind<- sample(1:N,100)
hold<- rdist(x[ind,], x)
dd<- apply(hold, 1, quantile, p= 50/N)
dguess<- max(dd)

dguess is now a reasonable guess at finding cutoff distance for
50 or so neighbors
full distance matrix excluding distances greater than dguess

hold2<- nearest.dist(x, x, delta= dguess)
here is trick to find the number of nonsero rows for a matrix in spam format.

hold3<- diff(hold2@rowpointers)
min(hold3) = 43 which we declare close enough. This also counts the diagonal
So there are a minimum of 42 nearest neighbors (median is 136)
see table(hold3) for the distribution
now the following will use no less than 43 - 1 nearest neighbors
due to the tapering.
Not run:

mKrig(x,y, cov.function="wendland.cov",k=2, theta=dguess,
lambda=1e2) -> look2

End(Not run)

###
use precomputed distance matrix
#
Not run:

y1<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
y2<- sin(1.8*pi*x[,1])*sin(2.5*pi*x[,2]) + rnorm(N)*.01
Y<- cbind(y1,y2)
#precompute distance matrix in compact form
distMat = rdist(x, compact=TRUE)
look3<- mKrig(x,Y,cov.function="stationary.cov", theta=.1,

lambda=1e2, distMat=distMat)
#precompute distance matrix in standard form
distMat = rdist(x)
look3<- mKrig(x,Y,cov.function="stationary.cov", theta=.1,

lambda=1e2, distMat=distMat)

End(Not run)

mKrig.MLE 101

mKrig.MLE Maximizes likelihood for the process marginal variance (rho) and
nugget standard deviation (sigma) parameters (e.g. lambda) over a
many covariance models or covariance parameter values.

Description

These functions are designed to explore the likelihood surface for different covariance parameters
with the option of maximizing over sigma and rho. They are depreciated and my be omitted in later
versions of fields with their roles being replaced by other functions. See details below.

Usage

mKrig.MLE(x, y, weights = rep(1, nrow(x)), cov.fun="stationary.cov",
cov.args = NULL,

Z = NULL, par.grid = NULL, lambda = NULL, lambda.profile = TRUE,
verbose = FALSE, relative.tolerance = 1e-04, ...)

mKrig.MLE.joint(x, y, weights = rep(1, nrow(x)),
lambda.guess = 1, cov.params.guess=NULL,
cov.fun="stationary.cov", cov.args=NULL,
Z = NULL, optim.args=NULL, find.trA.MLE = FALSE,
..., verbose = FALSE)

fastTps.MLE(x, y, weights = rep(1, nrow(x)), Z = NULL, ...,
par.grid=NULL, theta, lambda = NULL, lambda.profile = TRUE,
verbose = FALSE, relative.tolerance = 1e-04)

Arguments

cov.args Additional arguments that would also be included in calls to the covariance func-
tion to specify the fixed part of the covariance model.

cov.fun The name, a text string, of the covariance function.
cov.params.guess

A list of initial guesses for covariance parameters over which the user wishes to
perform likelihood maximization. The list contains the names of the parameters
as well as the values.

find.trA.MLE If TRUE will estimate the effective degrees of freedom using a simple Monte
Carlo method throughout joint likelihood maximization. Either way, the trace
of the mKrig object with the best log-likelihood is calculated depending on
find.trA. Computing the trace will add to the computational burden by ap-
proximately NtrA solutions of the linear system but the cholesky decomposition
is reused.

lambda If lambda.profile=FALSE the values of lambda to evaluate the likelihood if
"TRUE" the starting values for the optimization. If lambda is NA then the opti-
mum value from previous search is used as the starting value. If lambda is NA
and it is the first value the starting value defaults to 1.0.

102 mKrig.MLE

lambda.guess The initial guess for lambda in the joint log-likelihood maximization process.
lambda.profile If TRUE maximize likelihood over lambda.
optim.args Additional arguments that would also be included in calls to the optim function

in joint likelihood maximization. If NULL, this will be set to use the "BFGS-
" optimization method. See optim for more details. The default value is:
optim.args = list(method = "BFGS",control=list(fnscale = -1,ndeps = rep(log(1.1),length(cov.params.guess)+1),reltol=1e-04,maxit=10))
Note that the first parameter is lambda and the others are the covariance param-
eters in the order they are given in cov.params.guess. Also note that the opti-
mization is performed on a log-scale, and this should be taken into consideration
when passing arguments to optim.

par.grid A list or data frame with components being parameters for different covariance
models. A typical component is "theta" comprising a vector of scale parameters
to try. If par.grid is "NULL" then the covariance model is fixed at values that are
given in

relative.tolerance

Relative tolerance used to declare convergence when maximizing likelihood
over lambda.

theta Range parameter for compact Wendland covariance. (seefastTps)
verbose If TRUE print out interesting intermediate results.
weights Precision (1/variance) of each observation
x Matrix of unique spatial locations (or in print or surface the returned mKrig

object.)
y Vector or matrix of observations at spatial locations, missing values are not al-

lowed! Or in mKrig.coef a new vector of observations. If y is a matrix the
columns are assumed to be independent observations vectors generated from
the same covariance and measurment error model.

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x

... Additional arguments that would also be included in a call to mKrig to specify
the covariance model and fixed model covariables.

Details

The "mKrig" prefixed functions are depreciated and are replaced in functionality by mKrigMLEJoint
and mKrigMLEGrid.

The observational model follows the same as that described in the Krig function and thus the two
primary covariance parameters for a stationary model are the nugget standard deviation (sigma)
and the marginal variance of the process (rho). It is useful to reparametrize as rho and\ lambda=
sigma^2/rho. The likelihood can be maximized analytically over rho and the parameters in the fixed
part of the model the estimate of rho can be substituted back into the likelihood to give a expression
that is just a function of lambda and the remaining covariance parameters. It is this expression that
is then maximized numerically over lambda when lambda.profile = TRUE.

Note that fastTps.MLE is a convenient variant of this more general version to use directly with
fastTps, and mKrig.MLE.joint is similar to mKrig.MLE, except it uses the optim function to opti-
mize over the specified covariance parameters and lambda jointly rather than optimizing on a grid.
Unlike mKrig.MLE, it returns an mKrig object.

mKrig.MLE 103

Value

mKrig.MLE returns a list with the components:

summary A matrix giving the results for evaluating the likelihood for each covariance
model.

par.grid The par.grid argument used.

cov.args.MLE The list of covariance arguments (except for lambda) that have the largest likeli-
hood over the list covariance models. To fit the surface at the largest likelihood
among those tried
do.call("mKrig",c(obj$mKrig.args,obj$cov.args.MLE,list(lambda=obj$lambda.opt))
) where obj is the list returned by this function.

call The calling arguments to this function.

mKrig.MLE.joint returns an mKrig object with the best computed log-likelihood computed in the
maximization process with the addition of the summary table for the mKrig object log-likelihood
and:

lnLike.eval A table containing information on all likelihood evaluations performed in the
maximization process.

Author(s)

Douglas W. Nychka, John Paige

References

https://github.com/NCAR/Fields

See Also

mKrig Krig stationary.cov optim

Examples

some synthetic data
N<- 100
set.seed(123)
x<- matrix(runif(2*N), N,2)
theta<- .2
Sigma<- Matern(rdist(x,x)/theta , smoothness=1.0)
Sigma.5<- chol(Sigma)
sigma<- .1
M<-5 # Five (5) independent spatial data sets
F.true<- t(Sigma.5)%*% matrix(rnorm(N*M), N,M)
Y<- F.true + sigma* matrix(rnorm(N*M), N,M)

find MLE for lambda with range and smoothness fixed in Matern for first
data set

obj<- mKrig.MLE(x,Y[,1], Covariance="Matern", theta=.2, smoothness=1.0)
obj$summary # take a look
fit<- mKrig(x,Y[,1], Covariance="Matern", theta=.2,

https://github.com/NCAR/Fields

104 mKrigMLE

smoothness=1.0, lambda= obj$lambda.best)
#
search over the range parameter and use all 5 replications for combined
likelihood
Not run:

par.grid<- list(theta= seq(.1,.25,,6))
default starting value for lambda is .02 subsequent ones use previous optimum.

obj<- mKrig.MLE(x,Y, Covariance="Matern",lambda=c(.02,rep(NA,4)),
smoothness=1.0, par.grid=par.grid)

End(Not run)

#perform joint likelihood maximization over lambda and theta.
#optim can get a bad answer with poor initial guesses.
set.seed(123)
obj<- mKrig.MLE.joint(x,Y[,1],

cov.args=list(Covariance="Matern", smoothness=1.0),
cov.params.guess=list(theta=.2), lambda.guess=.1)

#look at lnLik evaluations
obj$lnLik.eval

Not run:
#perform joint likelihood maximization over lambda, theta, and smoothness.
#optim can get a bad answer with poor initial guesses.
set.seed(123)
obj<- mKrig.MLE.joint(x,Y[,1],

cov.args=list(Covariance="Matern"),
cov.params.guess=list(theta=.2, smoothness=1), lambda.guess=.1)

#look at lnLik evaluations
obj$lnLik.eval

#generate surface plot of results of joint likelihood maximization
#NOTE: mKrig.MLE.joint returns mKrig object while mKrig.MLE doesn't,
#so this won't work for mKrig.MLE.
surface(obj)

End(Not run)

mKrigMLE Maximizes likelihood for the process marginal variance (rho) and
nugget standard deviation (sigma) parameters (e.g. lambda) over a
many covariance models or covariance parameter values.

Description

These function are designed to explore the likelihood surface for different covariance parameters
with the option of maximizing over sigma and rho. They used the mKrig base are designed for
computational efficiency.

mKrigMLE 105

Usage

mKrigMLEGrid(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args = NULL,
cov.fun = "stationary.cov", cov.args = NULL, na.rm = TRUE,
par.grid = NULL, lambda = NULL, lambda.profile = TRUE,
relative.tolerance = 1e-04,
REML = FALSE, verbose = FALSE)

mKrigMLEJoint(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args
= NULL, na.rm = TRUE, cov.fun = "stationary.cov",
cov.args = NULL, lambda.start = 0.5, cov.params.start
= NULL, optim.args = NULL, abstol = 1e-04,
parTransform = NULL, REML = FALSE, verbose = FALSE)

fastTpsMLE(x, y, weights = rep(1, nrow(x)), Z = NULL, ...,
par.grid=NULL, theta, lambda = NULL, lambda.profile = TRUE,
verbose = FALSE, relative.tolerance = 1e-04)

mKrigJointTemp.fn(parameters, mKrig.args, cov.args, parTransform,
parNames, REML = FALSE, capture.env)

Arguments

abstol Absolute convergence tolerance used in optim.

capture.env For the ML obective function the frame to save the results of the evaluation.
This should be the environment of the function calling optim.

cov.fun The name, a text string, of the covariance function.

cov.args Additional arguments that would also be included in calls to the covariance func-
tion to specify the fixed part of the covariance model.

cov.params.start

A list of initial starts for covariance parameters over which the user wishes to
perform likelihood maximization. The list contains the names of the parameters
as well as the values.

lambda If lambda.profile=FALSE the values of lambda to evaluate the likelihood if
"TRUE" the starting values for the optimization. If lambda is NA then the opti-
mum value from previous search is used as the starting value. If lambda is NA
and it is the first value the starting value defaults to 1.0.

lambda.start The initial guess for lambda in the joint log-likelihood maximization process

lambda.profile If TRUE maximize likelihood over lambda.

mKrig.args A list of additional parameters to supply to the base mKrig function that are
distinct from the covariance model. For example mKrig.args= list(m=1)
will set the polynomial to be just a constant term (degree = m -1 = 0).

na.rm Remove NAs from data.

106 mKrigMLE

optim.args Additional arguments that would also be included in calls to the optim function
in joint likelihood maximization. If NULL, this will be set to use the "BFGS-
" optimization method. See optim for more details. The default value is:
optim.args = list(method = "BFGS",control=list(fnscale = -1,ndeps = rep(log(1.1),length(cov.params.start)+1),abstol=1e-04,maxit=20))
Note that the first parameter is lambda and the others are the covariance pa-
rameters in the order they are given in cov.params.start. Also note that
the optimization is performed on a transformed scale (based on the function
parTransform), and this should be taken into consideration when passing ar-
guments to optim.

parameters The parameter values for evaluate the likelihood.

par.grid A list or data frame with components being parameters for different covariance
models. A typical component is "theta" comprising a vector of scale parameters
to try. If par.grid is "NULL" then the covariance model is fixed at values that are
given in

parNames Names of the parameters to optimize over.

parTransform A function that maps the parameters to a scale for optimization or effects the
inverse map from the transformed scale into the original values. See below for
more details.

relative.tolerance

Tolerance used to declare convergence when maximizing likelihood over lambda.

REML Currently using REML is not implemented.

theta Range parameter for compact Wendland covariance. (see fastTps)

verbose If TRUE print out interesting intermediate results.

weights Precision (1/variance) of each observation

x Matrix of unique spatial locations (or in print or surface the returned mKrig
object.)

y Vector or matrix of observations at spatial locations, missing values are not al-
lowed! Or in mKrig.coef a new vector of observations. If y is a matrix the
columns are assumed to be independent observations vectors generated from
the same covariance and measurment error model.

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x

... Other arguments to pass to the mKrig function.

Details

The observational model follows the same as that described in the Krig function and thus the two
primary covariance parameters for a stationary model are the nugget standard deviation (sigma)
and the marginal variance of the process (rho). It is useful to reparametrize as rho and\ lambda=
sigma^2/rho. The likelihood can be maximized analytically over rho and the parameters in the fixed
part of the model the estimate of rho can be substituted back into the likelihood to give a expression
that is just a function of lambda and the remaining covariance parameters. It is this expression that
is then maximized numerically over lambda when lambda.profile = TRUE.

Note that fastTpsMLE is a convenient variant of this more general version to use directly with
fastTps, and mKrigMLEJoint is similar to mKrigMLEGrid, except it uses the optim function to

mKrigMLE 107

optimize over the specified covariance parameters and lambda jointly rather than optimizing on a
grid. Unlike mKrigMLEJoint, it returns an mKrig object.

For mKrigMLEJoint the default transformation of the parameters is set up for a log/exp transforma-
tion:

parTransform <- function(ptemp, inv = FALSE) {
if (!inv) {

log(ptemp)
}
else {

exp(ptemp)
}

}

Value

mKrigMLEGrid returns a list with the components:

summary A matrix giving the results for evaluating the likelihood for each covariance
model.

par.grid The par.grid argument used.

cov.args.MLE The list of covariance arguments (except for lambda) that have the largest likeli-
hood over the list covariance models. NOTE: To fit the surface at the largest like-
lihood among those tried do.call("mKrig",c(obj$mKrig.args,obj$cov.args.MLE,list(lambda=obj$lambda.opt))
) where obj is the list returned by this function.

call The calling arguments to this function.

mKrigMLEJoint returns a list with components:

summary A vector giving the MLEs and the log likelihood at the maximum

lnLike.eval A table containing information on all likelihood evaluations performed in the
maximization process.

optimResults The list returned from the optim function.

par.MLE The maximum likelihood estimates.

parTransform The transformation of the parameters used in the optimziation.

Author(s)

Douglas W. Nychka, John Paige

References

https://github.com/NCAR/Fields

See Also

mKrig Krig stationary.cov optim

https://github.com/NCAR/Fields

108 mKrigMLE

Examples

#perform joint likelihood maximization over lambda and theta.
#optim can get a bad answer with poor initial starts.
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
obj<- mKrigMLEJoint(x,y,

cov.args=list(Covariance="Matern", smoothness=1.0),
cov.params.start=list(theta=.2), lambda.start=.1)

#
check lnLikeihood evaluations that were culled from optim
these are in obj$lnLike.eval
funny ranges are set to avoid very low likelihood values

quilt.plot(log10(cbind(obj$lnLike.eval[,1:2])), obj$lnLike.eval[,5],
xlim=c(-1.2,-.40), ylim=c(-1,1), zlim=c(-625, -610))
points(log10(obj$pars.MLE[1]), log10(obj$pars.MLE[2]),

pch=16, col="grey")

some synthetic data with replicates
N<- 50
set.seed(123)
x<- matrix(runif(2*N), N,2)
theta<- .2
Sigma<- Matern(rdist(x,x)/theta , smoothness=1.0)
Sigma.5<- chol(Sigma)
sigma<- .1
250 independent spatial data sets but a common covariance function
-- there is little overhead in
MLE across independent realizations and a good test of code validity.
M<-250
#F.true<- t(Sigma.5)%*% matrix(rnorm(N*M), N,M)
F.true<- t(Sigma.5)%*% matrix(rnorm(N*M), N,M)
Y<- F.true + sigma* matrix(rnorm(N*M), N,M)

find MLE for lambda with grid of ranges
and smoothness fixed in Matern
par.grid<- list(theta= seq(.1,.35,,8))
obj1b<- mKrigMLEGrid(x,Y,

cov.args = list(Covariance="Matern", smoothness=1.0),
par.grid = par.grid

)
obj$summary # take a look

profile over theta
plot(par.grid$theta, obj1b$summary[,"lnProfileLike.FULL"],
type="b", log="x")

Not run:
m=0 is a simple switch to indicate _no_ fixed spatial drift
(the default and highly recommended is linear drift, m=2).
this results in MLEs that are less biased -- in fact it nails it !

obj1a<- mKrigMLEJoint(x,Y,

MLESpatialProcess 109

cov.args=list(Covariance="Matern", smoothness=1.0),
cov.params.start=list(theta=.5), lambda.start=.5,
mKrig.args= list(m=0))

test.for.zero(obj1a$summary["sigmaMLE"], sigma, tol=.0075)
test.for.zero(obj1a$summary["theta"], theta, tol=.05)

End(Not run)

Not run:
#perform joint likelihood maximization over lambda, theta, and smoothness.
#note: finding smoothness is not robust optim
can get a bad answer with poor initial guesses.
obj2<- mKrigMLEJoint(x,Y,

cov.args=list(Covariance="Matern"),
cov.params.start=list(theta=.18, smoothness=1.1),
lambda.start=.08)

#look at lnLikelihood evaluations
obj2$summary
#compare to REML
obj3<- mKrigMLEJoint(x,Y,

cov.args=list(Covariance="Matern"),
cov.params.start=list(theta=.18, smoothness=1.1),

lambda.start=.08
, REML=TRUE)

End(Not run)
Not run:
#look at lnLikelihood evaluations
obj3$summary
check convergence of MLE to true fit with no fixed part
#
obj4<- mKrigMLEJoint(x,Y,

mKrig.args= list(m=0),
cov.args=list(Covariance="Matern", smoothness=1),
cov.params.start=list(theta=.2),
lambda.start=.1, REML=TRUE)

#look at lnLikelihood evaluations
obj4$summary
nails it!

End(Not run)

MLESpatialProcess Estimates key covariance parameters for a spatial process.

Description

Maximizes the likelihood to determine the nugget variance (sigma^2), the sill (rho) and the range
(theta) for a spatial process.

110 MLESpatialProcess

Usage

MLESpatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL, mKrig.args
= NULL, cov.function = "stationary.cov", cov.args =
list(Covariance = "Matern", smoothness = 1),
lambda.start = 0.5, theta.start = NULL, theta.range =
NULL, gridN = 20, optim.args = NULL, na.rm = TRUE,
verbose = FALSE, abstol = 1e-04, REML = FALSE, ...)

Arguments

x A matrix of spatial locations with rows indexing location and columns the di-
mension (e.g. longitude/latitude)

y Spatial observations

weights Precision (1/variance) of each observation

Z Linear covariates to be included in fixed part of the model that are distinct from
the default low order polynomial in x

mKrig.args A list containing other objects to pass to mKrig.

lambda.start The initial guess for lambda, the nugget to sill ratio.

theta.start The initial guess for theta, the correlation range parameter.

theta.range Range of range parameters (aka theta) to search over. Default is the range from
the 2 and 97 percent quantiles of the pairwise distances among locations.

gridN Number of points to use in grid search over theta.

cov.function The name of the covariance function (See help on Krig for details.)

cov.args A list with arguments for the covariance functions. These are usually parameters
and other options such as the type of distance function.

optim.args Additional arguments passed to the optim function for likelihood maximiza-
tion. The default value is: optim.args = list(method = "BFGS",control =
list(fnscale = -1,parscale = c(0.5,0.5),ndeps = c(0.05,0.05)))

na.rm If TRUE remove missing values in y and corresponding locations in x.

verbose If TRUE print out intermediate information for debugging.

abstol Absolute tolerance used to judeg convergence in optim.

REML If TRUE use maximize the restricted Likelihood instead of the concentrated like-
lihood.(Preliminary experience suggests this does not make much difference.)

... Additional arguments to pass to the mKrig function.

Details

MLESpatialProcess is designed to be a simple and easy to use function for maximizing the like-
lihood for a Gaussian spatial process. For other fixed, covariance parameters, the likelihood is
maximized over the nugget and sill parameters using the mKrig function. lambda and theta are
optimized using the mKrigMLEJoint function on a log scale.

MLESpatialProcess 111

MLESpatialProcess.fast is an older fields function also using the optim function to maximize the
likelihood computed from the mKrig function. It will eventually be removed from later versions of
fields but is still useful as a cross check on newer functions

Note the likelihood can be maximized analytically over the parameters of the fixed part of the
spatial model and with the nugget (sigma) and sill (rho) reduced to the single parameter lambda=
sigma^2/rho. The likelihood is maximized numerically over lambda and theta if there are additional
covariance parameters (such as smoothness for the Matern) these need to be fixed and so the MLE
is found for the covariance conditional on these additional parameter values. From a practical point
of view it is often difficult to estimate just these three from a moderate spatial data set and the user is
encourage to try different combinations of fixing covariance parameters with ML for the remaining
ones.

Value

MLESpatialProcess: A list that includes components: theta.MLE,rho.MLE,sigma.MLE,lambda.MLE
being the maximum likelihood estimates of these parameters. The component REML.grid is a two
column matrix with the first column being the theta grid and the second column being the profiled
and restricted likelihood for that value of theta. Here profile means that the likelihood has already
been evaluated at the maximum over sigma and rho for this value of theta. eval.grid is a more
complete "capture" of the evaluations being a 6 column matrix with the parameters theta, lambda,
sigma, rho, profile likelihood and the effective degrees of freedom.

MLESpatialProcess.fast has been depreciated and is included for backward compatibility.

Author(s)

Doug Nychka, John Paige

See Also

Krig, mKrigMLEGrid, mKrigMLEJoint, optim, fastTps.MLE, spatialProcess

Examples

#
#
#generate observation locations (100 is small just to make this run quickly)
n=100
set.seed(124)
x = matrix(runif(2*n), nrow=n)
#generate observations at the locations
trueTheta = .1
trueSigma = .01
Sigma = exp(-rdist(x,x) /trueTheta)
y = t(chol(Sigma))%*% (rnorm(n)) + trueSigma * rnorm(n)
y = t(chol(Sigma))%*% (rnorm(n)) + trueSigma * rnorm(n)
Use exponential covariance estimate constant function for mean
out = MLESpatialProcess(x, y,

smoothness=.5,
mKrig.args = list(m = 1)
)

112 MLESpatialProcess

Use exponential covariance, use a range to determine MLE of range parameter
Not run:
#Use Matern covariance, compute joint MLE of range, smoothness, and lambda.
#This may take a few seconds
testSmoothness = c(.5, 1, 2)
for(nu in testSmoothness){

out = MLESpatialProcess(x, y, cov.args=list(Covariance="Matern"), smoothness=nu)
print(out$MLEJoint$summary)

}

End(Not run)

example with a covariate
Not run:
data(COmonthlyMet)
ind<- !is.na(CO.tmean.MAM.climate)
x<- CO.loc[ind,]
y<- CO.tmean.MAM.climate[ind]
elev<- CO.elev[ind]
obj2<- MLESpatialProcess(x,y)
obj3<- MLESpatialProcess(x,y, Z=elev)

elevation makes a difference
obj2$MLEJoint$summary
obj3$MLEJoint$summary

End(Not run)
Not run:

fits for first 10 days from ozone data
data(ozone2)
NDays<- 10
O3MLE<- matrix(NA, nrow= NDays, ncol=7)
for(day in 1: NDays){
cat(day, " ")
ind<- !is.na(ozone2$y[day,])
x<- ozone2$lon.lat[ind,]
y<- ozone2$y[day,ind]
print(length(y))
O3MLE[day,]<- MLESpatialProcess(x,y,

Distance="rdist.earth")$MLEJoint$summary
}
NOTE: names of summary:
#[1] "lnProfileLike.FULL" "lambda"
#[3] "theta" "sigmaMLE"
#[5] "rhoMLE" "funEval"
#[7] "gradEval"
plot(log(O3MLE[,2]), log(O3MLE[,3]))

End(Not run)

NorthAmericanRainfall 113

NorthAmericanRainfall Observed North American summer precipitation from the historical
climate network.

Description

Average rainfall in tenths of millimeters for the months of June, July and August for the period
1950-2010. Data is based on 1720 stations located in North America.

Format

The format is a list with components: "longitude" "latitude" "precip" "elevation" "precipSE" "trend"
"trendSE" "type" "x.s" "sProjection" with elevation in meters, longitude as (-180,180), latitude as
(-90, 90) and precipitaion in 1/10 mm (precip/254 converts to inches of rainfall)

precip is the intercept for 1980.5 when a straight line least squares regression is fit to each station’s
record. SE is the companion standard error from the least squares fit. If the station is complete, then
precip and precipSE will just be the mean and standard deviation adjusted for a linear trend.
The estimated trend trend and and its standard error trendSE are also included. Also due to the
centering, for complete data the intercept and trend estimate will be uncorrelated. The component
type indicates whether the station has been "adjusted" (see below) or is still in "unadjusted" form.

x.s is a useful transformation of locations into stereographic coordinates that reduces the inflation
of North Canada due to the usual lon/lat coordinates. Specifically it is found by:

library(mapproj)
xStereo<- mapproject(NorthAmericanRainfall$lon,NorthAmericanRainfall$lat, projection="stereographic")
NorthAmericanRainfall$x.s<- cbind(xStereo$x, xStereo$y)
NorthAmericanRainfall$projection<- .Last.projection

Use NorthAmericanRainfall$orientation to access the stereographic projection orientation.

Source

The monthly data used to construct this summary was generously provided by Xuebin Zhang, how-
ever, the orignal source is freely available as the Global Historical Climate Network Version 2 Pre-
cipitation quality controlled, curated and served by the US National Climatic Data Center (NCDC).
The adjusted data from this archive has been modified from its raw form to make the record more
homogenous. Heterogenities can come from a variety of sources such as a moving the station
a short distance or changes in instruments. See https://www.ncdc.noaa.gov/data-accessand
goto GHCN.

Examples

data(NorthAmericanRainfall)
x<- cbind(NorthAmericanRainfall$longitude, NorthAmericanRainfall$latitude)
y<- NorthAmericanRainfall$precip
quilt.plot(x,y)
world(add=TRUE)

https://www.ncdc.noaa.gov/data-access

114 ozone2

Zstat<- NorthAmericanRainfall$trend / NorthAmericanRainfall$trendSE
quilt.plot(x, Zstat)

ozone2 Daily 8-hour ozone averages for sites in the Midwest

Description

The response is 8-hour average (surface) ozone (from 9AM-4PM) measured in parts per billion
(PPB) for 153 sites in the midwestern US over the period June 3,1987 through August 31, 1987,
89 days. This season of high ozone corresponds with a large modeling experiment using the EPA
Regional Oxidant Model.

Usage

data(ozone2)

Format

The data list has components: <s-args> <s-arg name="y"> a 89X153 matrix of ozone values. Rows
are days and columns are the sites. </s-arg> </s-arg name="lon.lat"> Site locations in longitude
and latitude as a 153X2 table </s-arg> <s-arg name="chicago.subset"> Logical vector indicating
stations that form teh smaller Chicagoland subset. (see FIELDS ozone data set) </s-arg> </s-args>
<s-section name="Reference"> Nychka, D., Cox, L., Piegorsch, W. (1998) Case Studies in Envi-
ronmental Statistics Lecture Notes in Statistics, Springer Verlag, New York

Examples

data(ozone2)

pairwise correlation among all stations
(See cover.design to continue this example)
cor.mat<- cor(ozone2$y, use="pairwise")

#raw data image for day number 16
good<- !is.na(ozone2$y[16,])
out<- as.image(ozone2$y[16,good], x=ozone2$lon.lat[good,])
image.plot(out)

plot.Krig 115

plot.Krig Diagnostic and summary plots of a Kriging, spatialProcess or spline
object.

Description

Plots a series of four diagnostic plots that summarize the fit.

Usage

S3 method for class 'Krig'
plot(x, digits=4, which= 1:4,...)
S3 method for class 'sreg'
plot(x, digits = 4, which = 1:4, ...)

Arguments

x A Krig or an sreg object

digits Number of significant digits for the RMSE label.

which A vector specifying by number which of the four plots to draw. 1:4 plots all
four.

... Optional graphics arguments to pass to each plot.

Details

This function creates four summary plots of the Krig or sreg object. The default is to put these on
separate pages. However if the screen is already divided in some other fashion the plots will just
be added according to that scheme. This option is useful to compare to compare several different
model fits.

The first is a scatterplot of predicted value against observed.

The second plot is "standardized" residuals against predicted value. Here we mean that the residuals
are divided by the GCV estimate for sigma and multiplied by the square root of any weights that
have been specified. In the case of a "correlation model" the residuals are also divided by the
marginal standard deviation from this model.

The third plot are the values of the GCV function against the effective degrees of freedom. When
there are replicate points several versions of the GCV function may be plotted. GCV function is
with respect to the standardized data if a correlation model is specified. A vertical line indicates the
minimium found.

For Krig and sreg objects the fourth plot is a histogram of the standardized residuals. For sreg if
multiple lambdas are given plotted are boxplots of the residuals for each fit.

For spatialProcess object the fourth plot is the profile likelihood for the theta parameter. Points
are the actual evaluated log likelihoods and the dashed line is just a spline interpolation to help with
visualization.

116 plot.surface

See Also

Krig, spatialProcess, summary.Krig, Tps, set.panel

Examples

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
fit1<-Krig(x,y, theta=200)
fitting a surface to ozone
measurements
set.panel(2,2)
plot(fit1)

fit2<-spatialProcess(x,y)
fitting a spatial process model to ozone
measurements
Although an example does not make too much sense for only 20 observations!
set.panel(2,2)
plot(fit2)

fit rat data
fit3<-sreg(rat.diet$t,rat.diet$con)
set.panel(2,2)
plot(fit3)

set.panel(1,1) # reset graphics window.

plot.surface Plots a surface

Description

Plots a surface object in several different ways to give 3-d information e.g. a contour plots, perspec-
tive plots.

Usage

S3 method for class 'surface'
plot(x, main = NULL, type = "C", zlab = NULL, xlab = NULL,

ylab = NULL, levels = NULL, zlim = NULL, graphics.reset = NULL,
labcex = 0.6, add.legend=TRUE, ...)

plot.surface 117

Arguments

x A surface object. At the minimum a list with components x,y and z in the same
form as the input list for the standard contour, persp or image functions. This
can also be an object from predictSurface.

main Title for plot.

type type="p" for a perspective/drape plot (see drape.plot), type="I" for an image plot
with a legend strip (see image.plot), type="c" draws a contour plot, type="C" is
the "I" option but with contours lines added. type="b" gives both "p" and "C" as
a 2X1 panel

zlab z-axes label

xlab x-axes label

ylab y-axes labels

levels Vector of levels to be passed to contour function.

graphics.reset Reset to original graphics parameters after function plotting. Default is to reset
if type ="b" but not for the single plot options.

zlim Sets z limits on perspective plot.

labcex Label sizes for axis labeling etc.

add.legend If TRUE adds a legend to the draped perspective plot

... Other graphical parameters that are passed along to either drape.persp or im-
age.plot

See Also

surface, predictSurface, as.surface, drape.plot, image.plot

Examples

x<- seq(-2,2,,80)
y<- seq(-2,2,,80)
a lazy way to create some test image
z<- outer(x,y, "+")

create basic image/surface object
obj<- list(x=x, y=y,z=z)

basic contour plot
note how graphical parameters appropriate to contour are passed
plot.surface(obj, type="c", col="red")

using a fields function to fit a surface and evaluate as surface object.
fit<- Tps(BD[,1:4], BD$lnya) # fit surface to data
surface of variables 2 and 3 holding 1 and 4 fixed at their median levels
out.p<-predictSurface(fit, xy=c(2,3))

plot.surface(out.p) # surface plot

118 poly.image

poly.image Image plot for cells that are irregular quadrilaterals.

Description

Creates an image using polygon filling based on a grid of irregular quadrilaterals. This function is
useful for a regular grid that has been transformed to another nonlinear or rotated coordinate system.
This situation comes up in lon-lat grids created under different map projections. Unlike the usual
image format this function requires the grid to be specified as two matrices x and y that given the
grid x and y coordinates explicitly for every grid point.

Usage

poly.image(x, y, z, col = tim.colors(64), breaks, transparent.color = "white",
midpoint = FALSE, zlim = range(z, na.rm = TRUE),
xlim = range(x), ylim = range(y), add = FALSE, border=NA,lwd.poly=1,...)

poly.image.regrid(x)

Arguments

x A matrix of the x locations of the grid.

y A matrix of the y locations of the grid.

z Values for each grid cell. Can either be the value at the grid points or interpreted
as the midpoint of the grid cell.

col Color scale for plotting.

breaks Numerical breaks to match to the colors. If missing breaks are equally spaced
on the range zlim.

transparent.color

Color to plot cells that are outside the range specified in the function call.

midpoint Only relevant if the dimensions of x,y, and z are the same. If TRUE the z values
will be averaged and then used as the cell midpoints. If FALSE the x/y grid will
be expanded and shifted to represent grid cells corners. (See poly.image.regrid.)

zlim Plotting limits for z.

xlim Plotting limits for x.

ylim Plotting limits for y.

add If TRUE will add image onto current plot.

border Color of the edges of the quadrilaterals, the default is no color.

lwd.poly Line width for the mesh surface. i.e. the outlines of the quadrilateral facets.
This might have to be set smaller than one if rounded corners on the facets are
visible.

... If add is FALSE, additional graphical arguments that will be supplied to the plot
function.

poly.image 119

Details

This function is straightforward except in the case when the dimensions of x,y, and z are equal. In
this case the relationship of the values to the grid cells is ambigious and the switch midpoint gives
two possible solutions. The z values at 4 neighboring grid cells can be averaged to estimate a new
value interpreted to be at the center of the grid. This is done when midpoint is TRUE. Alternatively
the full set of z values can be retained by redefining the grid. This is accomplisehd by finding the
midpoints of x and y grid points and adding two outside rows and cols to complete the grid. The
new result is a new grid that is is (M+1)X (N+1) if z is MXN. These new grid points define cells
that contain each of the original grid points as their midpoints. Of course the advantage of this
alternative is that the values of z are preserved in the image plot; a feature that may be important for
some uses.

The function image.plot uses this function internally when image information is passed in this
format and can add a legend. In most cases just use image.plot.

The function poly.image.regrid does a simple averaging and extrapolation of the grid locations to
shift from midpoints to corners. In the interior grid corners are found by the average of the 4 closest
midpoints. For the edges the corners are just extrapolated based on the separation of nieghboring
grid cells.

Author(s)

Doug Nychka

See Also

image.plot

Examples

data(RCMexample)
set.panel(1,2)
par(pty="s")
plot with grid modified
poly.image(RCMexample$x, RCMexample$y, RCMexample$z[,,1])

use midpoints of z
poly.image(RCMexample$x, RCMexample$y, RCMexample$z[,,1],midpoint=TRUE)

set.panel()
an example with quantile breaks

brk<- quantile(RCMexample$z[,,1], c(0, .9,.95,.99,1.0))
poly.image(RCMexample$x, RCMexample$y, RCMexample$z[,,1], breaks=brk, col=

rainbow(4))

images are very similar.
set.panel()

Regridding of x and y
l1<- poly.image.regrid(RCMexample$x)
l2<- poly.image.regrid(RCMexample$y)

120 predict.Krig

test that this works
i<- 1:10
plot(l1[i,i], l2[i,i])
points(RCMexample$x[i,i], RCMexample$y[i,i],col="red")

predict.Krig Evaluation of Krig spatial process estimate.

Description

Provides predictions from the Krig spatial process estimate at arbitrary points, new data (Y) or other
values of the smoothing parameter (lambda) including a GCV estimate.

Usage

S3 method for class 'Krig'
predict(
object, x = NULL, Z = NULL, drop.Z = FALSE, just.fixed

= FALSE, lambda = NA, df = NA, model = NA,
eval.correlation.model = TRUE, y = NULL, yM = NULL,
verbose = FALSE, ...)

predictDerivative.Krig(object, x = NULL, verbose = FALSE,...)

S3 method for class 'Tps'
predict(object, ...)

S3 method for class 'fastTps'
predict(object, xnew = NULL, grid.list = NULL, ynew = NULL,

derivative = 0, Z = NULL, drop.Z = FALSE, just.fixed =
FALSE, xy = c(1, 2), ...)

Arguments

derivative The degree of the derivative to be evauated. Default is 0 (evaluate the function
itself), 1 is supported by some covariance functions, Higher derivatives are not
supported in this version and for mKrig.

df Effective degrees of freedom for the predicted surface. This can be used in place
of lambda (see the function Krig.df.to.lambda)

eval.correlation.model

If true (the default) will multiply the predicted function by marginal sd’s and add
the mean function. This usually what one wants. If false will return predicted
surface in the standardized scale. The main use of this option is a call from Krig
to find MLE’s of rho and sigma2

predict.Krig 121

grid.list A grid.list specfiying a grid of locations to evaluate the fitted surface.

just.fixed Only fixed part of model is evaluated

lambda Smoothing parameter. If omitted, out\$lambda will be used. (See also df and
gcv arguments)

model Generic argument that may be used to pass a different lambda.

object Fit object from the Krig, Tps, mKrig, or fastTps functions.

verbose Print out all kinds of intermediate stuff for debugging

xy The column positions that locate the x and y variables for evaluating on a grid.
This is mainly useful if the surface has more than 2 dimensions.

y Evaluate the estimate using the new data vector y (in the same order as the old
data). This is equivalent to recomputing the Krig object with this new data but
is more efficient because many pieces can be reused. Note that the x values are
assumed to be the same.

x Matrix of x values on which to evaluate the kriging surface. If omitted, the data
x values, i.e. out\$x will be used.

xnew Same as x above.

ynew Same as y above.

yM If not NULL evaluate the estimate using this vector as the replicate mean data.
That is, assume the full data has been collapsed into replicate means in the same
order as xM. The replicate weights are assumed to be the same as the original
data. (weightsM)

Z Vector/Matrix of additional covariates to be included in fixed part of spatial
model

drop.Z If TRUE only spatial fixed part of model is evaluated. i.e. Z covariates are not
used.

... Other arguments passed to covariance function. In the case of fastTps these are
the same arguments as predict.mKrig. This argument is usually not needed.

Details

The main goal in this function is to reuse the Krig object to rapidly evaluate different estimates.
Thus there is flexibility in changing the value of lambda and also the independent data without
having to recompute the matrices associated with the Krig object. The reason this is possible is that
most on the calculations depend on the observed locations not on lambda or the observed data. Note
the version for evaluating partial derivatives does not provide the same flexibility as predict.Krig
and makes some assumptions about the null model (as a low order polynomial) and can not handle
the correlation model form.

Value

Vector of predicted responses or a matrix of the partial derivatives.

See Also

Krig, predictSurface gcv.Krig

122 predict.Krig

Examples

Krig(ChicagoO3$x,ChicagoO3$y, theta=50) ->fit
predict(fit) # gives predicted values at data points should agree with fitted.values

in fit object

predict at the coordinate (-5,10)
x0<- cbind(-5,10) # has to be a 1X2 matrix
predict(fit,x= x0)

redoing predictions at data locations:
predict(fit, x=ChicagoO3$x)

only the fixed part of the model
predict(fit, just.fixed=TRUE)

evaluating estimate at a grid of points
grid<- make.surface.grid(list(seq(-40,40,,15), seq(-40,40,,15)))
look<- predict(fit,grid) # evaluate on a grid of points

some useful graphing functions for these gridded predicted values
out.p<- as.surface(grid, look) # reformat into $x $y $z image-type object
contour(out.p)

see also the functions predictSurface and surface
for functions that combine these steps

refit with 10 degrees of freedom in surface
look<- predict(fit,grid, df=15)

refit with random data
look<- predict(fit, grid, y= rnorm(20))

finding partial derivatives of the estimate
#
find the partial derivatives at observation locations
returned object is a two column matrix.
this does not make sense for the exponential covariance
but can illustrate this with a thin plate spline with
a high enough order (i.e. need m=3 or greater)
#

data(ozone2)
the 16th day of this ozone spatial dataset

fit0<- Tps(ozone2$lon.lat, ozone2$y[16,], m=3)
look1<- predictDerivative.Krig(fit0)

for extra credit compare this to
look2<- predictDerivative.Krig(fit0, x=ozone2$lon.lat)

(why are there more values in look2)

predictSE 123

predictSE Standard errors of predictions for Krig spatial process estimate

Description

Finds the standard error (or covariance) of prediction based on a linear combination of the observed
data. The linear combination is usually the "Best Linear Unbiased Estimate" (BLUE) found from
the Kriging equations. This statistical computation is done under the assumption that the covariance
function is known.

Usage

predictSE(object, ...)
S3 method for class 'Krig'
predictSE(object, x = NULL, cov = FALSE, verbose = FALSE,...)
S3 method for class 'mKrig'
predictSE(object, xnew = NULL, Z = NULL, verbose = FALSE, drop.Z

= FALSE, ...)

Arguments

drop.Z If FALSE find standard error without including the additional spatial covariates
described by Z. If TRUE find full standard error with spatial covariates if they
are part of the model.

object A fitted object that can be used to find prediction standard errors. This is usually
from fitting a spatial model to data. e.g. a Krig or mKrig object.

xnew Points to compute the predict standard error or the prediction cross covariance
matrix.

x Same as xnew – points to compute the predict standard error or the prediction
cross covariance matrix.

cov If TRUE the full covariance matrix for the predicted values is returned. Make
sure this will not be big if this option is used. (e.g. 50X50 grid will return a
matrix that is 2500X2500!) If FALSE just the marginal standard deviations of
the predicted values are returned. Default is FALSE – of course.

verbose If TRUE will print out various information for debugging.

... These additional arguments passed to the predictSE function.

Z Additional matrix of spatial covariates used for prediction. These are used to
determine the additional covariance contributed in teh fixed part of the model.

Details

The predictions are represented as a linear combination of the dependent variable, Y. Call this LY.
Based on this representation the conditional variance is the same as the expected value of (P(x) +
Z(X) - LY)**2. where P(x)+Z(x) is the value of the surface at x and LY is the linear combination

124 predictSE

that estimates this point. Finding this expected value is straight forward given the unbiasedness of
LY for P(x) and the covariance for Z and Y.

In these calculations it is assumed that the covariance parameters are fixed. This is an approximation
since in most cases they have been estimated from the data. It should also be noted that if one
assumes a Gaussian field and known parameters in the covariance, the usual Kriging estimate is the
conditional mean of the field given the data. This function finds the conditional standard deviations
(or full covariance matrix) of the fields given the data.

There are two useful extensions supported by this function. Adding the variance to the estimate of
the spatial mean if this is a correlation model. (See help file for Krig) and calculating the variances
under covariance misspecification. The function predictSE.KrigA uses the smoother matrix (
A(lambda)) to find the standard errors or covariances directly from the linear combination of the
spatial predictor. Currently this is also the calculation in predictSE.Krig although a shortcut is
used predictSE.mKrig for mKrig objects.

Value

A vector of standard errors for the predicted values of the Kriging fit.

See Also

Krig, predict.Krig, predictSurfaceSE

Examples

#
Note: in these examples predictSE will default to predictSE.Krig using
a Krig object

fit<- Krig(ChicagoO3$x,ChicagoO3$y,cov.function="Exp.cov", theta=10) # Krig fit
predictSE.Krig(fit) # std errors of predictions at obs.

make a grid of X's
xg<-make.surface.grid(
list(East.West=seq(-27,34,,20),North.South=seq(-20,35,,20)))
out<- predictSE(fit,xg) # std errors of predictions

#at the grid points out is a vector of length 400
#reshape the grid points into a 20X20 matrix etc.

out.p<-as.surface(xg, out)
surface(out.p, type="C")

this is equivalent to the single step function
(but default is not to extrapolation beyond data
out<- predictSurfaceSE(fit)
image.plot(out)

predictSurface 125

predictSurface Evaluates a fitted function or the prediction error as a surface that is
suitable for plotting with the image, persp, or contour functions.

Description

Evaluates a a fitted model or the prediction error on a 2-D grid keeping any other variables constant.
The resulting object is suitable for use with functions for viewing 3-d surfaces.

Usage

Default S3 method:
predictSurface(object, grid.list = NULL,

extrap = FALSE, chull.mask = NA, nx = 80, ny = 80,
xy = c(1,2), verbose = FALSE, ...)

S3 method for class 'fastTps'
predictSurface(object, grid.list = NULL,

extrap = FALSE, chull.mask = NA, nx = 80, ny = 80,
xy = c(1,2), verbose = FALSE, ...)

S3 method for class 'Krig'
predictSurface(object, grid.list = NULL, extrap = FALSE, chull.mask = NA,
nx = 80, ny = 80, xy = c(1, 2), verbose = FALSE, ZGrid = NULL,

drop.Z = FALSE, just.fixed=FALSE, ...)

S3 method for class 'mKrig'
predictSurface(object, ...)

Default S3 method:
predictSurfaceSE(object, grid.list = NULL, extrap =
FALSE, chull.mask = NA, nx = 80, ny = 80, xy = c(1,2), verbose =
FALSE, ...)

S3 method for class 'surface'
predict(object,...)

Arguments

object An object from fitting a function to data. In fields this is usually a Krig, mKrig,
or fastTps object.

grid.list A list with as many components as variables describing the surface. All com-
ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. See the grid.list help file for more details. If this is omitted and the
fit just depends on two variables the grid will be made from the ranges of the
observed variables. (See the function fields.x.to.grid.)

126 predictSurface

extrap Extrapolation beyond the range of the data. If FALSE (the default) the predictions
will be restricted to the convex hull of the observed data or the convex hull
defined from the points from the argument chull.mask. This function may be
slightly faster if this logical is set to TRUE to avoid checking the grid points
for membership in the convex hull. For more complicated masking a low level
creation of a bounding polygon and testing for membership with in.poly may
be useful.

chull.mask Whether to restrict the fitted surface to be on a convex hull, NA’s are assigned
to values outside the convex hull. chull.mask should be a sequence of points
defining a convex hull. Default is to form the convex hull from the observations
if this argument is missing (and extrap is false).

nx Number of grid points in X axis.

ny Number of grid points in Y axis.

xy A two element vector giving the positions for the "X" and "Y" variables for the
surface. The positions refer to the columns of the x matrix used to define the
multidimensional surface. This argument is provided in lieu of generating the
grid list. If a 4 dimensional surface is fit to data then xy= c(2,4) will evaluate
a surface using the second and fourth variables with variables 1 and 3 fixed at
their median values. NOTE: this argument is ignored if a grid.list argument is
passed.

drop.Z If TRUE the fixed part of model depending on covariates is omitted.

just.fixed If TRUE the nonparametric surface is omitted.

... Any other arguments to pass to the predict function associated with the fit object.
Some of the usual arguments for several of the fields fitted objects include:

ynew New values of y used to reestimate the surface.
Z A matrix of covariates for the fixed part of model.

ZGrid An array or list form of covariates to use for prediction. This must match the
grid.list argument. e.g. ZGrid and grid.list describe the same grid. If ZGrid
is an array then the first two indices are the x and y locations in the grid. The
third index, if present, indexes the covariates. e.g. For evaluation on a 10X15
grid and with 2 covariates. dim(ZGrid) == c(10,15,2). If ZGrid is a list
then the components x and y shold match those of grid.list and the z component
follows the shape described above for the no list case.

verbose If TRUE prints out some imtermediate results for debugging.

Details

This function creates the right grid using the grid.list information or the attribute in xg, calls the
predict function for the object with these points and also adding any extra arguments passed in the
... section, and then reforms the results as a surface object (as.surface). To determine the what
parts of the prediction grid are in the convex hull of the data the function in.poly is used. The
argument inflation in this function is used to include a small margin around the outside of the
polygon so that point on convex hull are included. This potentially confusing modification is to
prevent excluding grid points that fall exactly on the ranges of the data. Also note that as written
there is no computational savings for evaluting only the convex subset compared to the full grid.

print.Krig 127

predictSurface.fastTps is a specific version (m=2, and k=2) that can be much more efficient
because it takes advantage of a low level FORTRAN call to evaluate the Wendland covariance
function. Use predictSurface or predict for other choices of m and k.

predictSurface.Krig is designed to also include covariates for the fixed in terms of grids. Due to
similarity in output and the model. predictSurface.mKrig just uses the Krig method.

NOTE: predict.surface has been depreciated and just prints out a warning when called.

Value

The usual list components for making contour and perspective plots (x,y,z) along with labels for the
x and y variables. For predictSurface.derivative the component z is a three dimensional array
with nx, ny, 2.

See Also

Tps, Krig, predict, grid.list, make.surface.grid, as.surface, surface, in.poly

Examples

fit<- Tps(BD[,1:4], BD$lnya) # fit surface to data

evaluate fitted surface for first two
variables holding other two fixed at median values

out.p<- predictSurface(fit)
surface(out.p, type="C")

#
plot surface for second and fourth variables
on specific grid.

glist<- list(KCL=29.77, MgCl2= seq(3,7,,25), KPO4=32.13,
dNTP=seq(250,1500,,25))

out.p<- predictSurface(fit, glist)
surface(out.p, type="C")

out.p<- predictSurfaceSE(fit, glist)
surface(out.p, type="C")

print.Krig Print kriging fit results.

Description

Prints the results from a fitting a spatial process estimate (Krig)

128 pushpin

Usage

S3 method for class 'Krig'
print(x,digits=4,...)

Arguments

x Object from Krig function.
digits Number of significant digits in printed output. Default is 4.
... Other arguments to print.

Value

Selected summary results from Krig.

See Also

print, summary.Krig, Krig

Examples

fit<- Krig(ChicagoO3$x,ChicagoO3$y, theta=100)
print(fit) # print the summary
fit # this will work too

pushpin Adds a "push pin" to an existing 3-d plot

Description

Adds to an existing 3-d perspective plot a push pin to locate a specific point.

Usage

pushpin(x,y,z,p.out, height=.05,col="black",text=NULL,adj=-.1,cex=1.0,...)

Arguments

x x location
y y location
z z location
p.out Projection information returned by persp
height Height of pin in device coordinates (default is about 5% of the vertical distance

).
col Color of pin head.
text Optional text to go next to pin head.
adj Position of text relative to pin head.
cex Character size for pin head and/or text
... Additional graphics arguments that are passed to the text function.

qsreg 129

Details

See the help(text) for the conventions on the adj argument and other options for placing text.

Author(s)

Doug Nychka

See Also

drape.plot,persp

Examples

Dr. R's favorite New Zealand Volcano!
data(volcano)
M<- nrow(volcano)
N<- ncol(volcano)
x<- seq(0,1,,M)
y<- seq(0,1,,N)

drape.plot(x,y,volcano, col=terrain.colors(128))-> pm

max(volcano)-> zsummit
xsummit<- x[row(volcano)[volcano==zsummit]]
ysummit<- y[col(volcano)[volcano==zsummit]]

pushpin(xsummit,ysummit,zsummit,pm, text="Summit")

qsreg Quantile or Robust spline regression

Description

Uses a penalized likelihood approach to estimate the conditional quantile function for regression
data. This method is only implemented for univariate data. For the pairs (X,Y) the conditional
quantile, f(x), is P(Y<f(x)| X=x) = alpha. This estimate is useful for determining the envelope
of a scatterplot or assessing departures from a constant variance with respect to the independent
variable.

Usage

qsreg(x, y, lam = NA, maxit = 50, maxit.cv = 10, tol =
1e-07, offset = 0, sc = sqrt(var(y)) * 1e-05, alpha =
0.5, wt = rep(1, length(x)), cost = 1, nstep.cv = 80,
hmin = NA, hmax = NA, trmin = 2 * 1.05, trmax = 0.95
* length(unique(x)))

130 qsreg

Arguments

x Vector of the independent variable in y = f(x) + e
y Vector of the dependent variable
lam Values of the smoothing parameter. If omitted is found by GCV based on the

the quantile criterion
maxit Maximum number of iterations used to estimate each quantile spline.
maxit.cv Maximum number of iterations to find GCV minimum.
tol Tolerance for convergence when computing quantile spline.
cost Cost value used in the GCV criterion. Cost=1 is the usual GCV denominator.
offset Constant added to the effective degrees of freedom in the GCV function.
sc Scale factor for rounding out the absolute value function at zero to a quadratic.

Default is a small scale to produce something more like quantiles. Scales on the
order of the residuals will result is a robust regression fit using the Huber weight
function. The default is 1e-5 of the variance of the Y’s. The larger this value
the better behaved the problem is numerically and requires fewer iterations for
convergence at each new value of lambda.

alpha Quantile to be estimated. Default is find the median.
wt Weight vector default is constant values. Passing nonconstant weights is a pretty

strange thing to do.
nstep.cv Number of points used in CV grid search
hmin Minimum value of log(lambda) used for GCV grid search.
hmax Maximum value of log(lambda) used for GCV grid search.
trmin Minimum value of effective degrees of freedom in model used for specifying

the range of lambda in the GCV grid search.
trmax Maximum value of effective degrees of freedom in model used for specifying

the range of lambda in the GCV grid search.

Details

This is an experimental function to find the smoothing parameter for a quantile or robust spline using
a more appropriate criterion than mean squared error prediction. The quantile spline is found by
an iterative algorithm using weighted least squares cubic splines. At convergence the estimate will
also be a weighted natural cubic spline but the weights will depend on the estimate. Alternatively
at convergence the estimate will be a least squares spline applied to the empirical psuedo data.
The user is referred to the paper by Oh and Nychka (2002) for the details and properties of the
robust cross-validation using empirical psuedo data. Of course these weights are crafted so that the
resulting spline is an estimate of the alpha quantile instead of the mean. CV as function of lambda
can be strange so it should be plotted.

Value

trmin trmax Define the minimum and maximum values for the CV grid search in terms of
the effective number of parameters. (see hmin, hmax) Object of class qsreg with
many arguments similar to a sreg object. One difference is that cv.grid has five
columns the last being the number of iterations for convergence at each value of
lambda.

qsreg 131

See Also

sreg

Examples

fit a CV quantile spline
fit50<- qsreg(rat.diet$t,rat.diet$con)
(default is .5 so this is an estimate of the conditional median)
control group of rats.
plot(fit50)
predict(fit50)
predicted values at data points
xg<- seq(0,110,,50)
plot(fit50$x, fit50$y)
lines(xg, predict(fit50, xg))

A robust fit to rat diet data
#
SC<- .5* median(abs((rat.diet$con- median(rat.diet$con))))
fit.robust<- qsreg(rat.diet$t,rat.diet$con, sc= SC)
plot(fit.robust)

The global GCV function suggests little smoothing so
try the local
minima with largest lambda instead of this default value.
one should should consider redoing the three quantile fits in this
example after looking at the cv functions and choosing a good value for
#lambda
for example
lam<- fit50$cv.grid[,1]
tr<- fit50$cv.grid[,2]
lambda close to df=6
lambda.good<- max(lam[tr>=6])
fit50.subjective<-qsreg(rat.diet$t,rat.diet$con, lam= lambda.good)
fit10<-qsreg(rat.diet$t,rat.diet$con, alpha=.1, nstep.cv=200)
fit90<-qsreg(rat.diet$t,rat.diet$con, alpha=.9, nstep.cv=200)
spline fits at 50 equally spaced points
sm<- cbind(

predict(fit10, xg),
predict(fit50.subjective, xg),predict(fit50, xg),
predict(fit90, xg))

and now zee data ...
plot(fit50$x, fit50$y)
and now zee quantile splines at 10% 50% and 90%.
#
matlines(xg, sm, col=c(3,3,2,3), lty=1) # the spline

132 QTps

QTps Robust and Quantile smoothing using a thin-plate spline

Description

This function uses the standard thin plate spline function Tps and a algorithm based on psuedo data
to compute robust smoothers based on the Huber weight function. By modifying the symmetry
of the Huber function and changing the scale one can also approximate a quantile smoother. This
function is experimental in that is not clear how efficient the psuedo-data algorithm is acheiving
convergence to a solution.

Usage

QTps(x, Y, ..., f.start = NULL, psi.scale = NULL, C = 1, alpha = 0.5, Niterations = 100,
tolerance = 0.001, verbose = FALSE)

QSreg(x, Y, lambda = NA, f.start = NULL, psi.scale = NULL,
C = 1, alpha = 0.5, Niterations = 100, tolerance = 0.001,
verbose = FALSE)

Arguments

x Locations of observations.
Y Observations
lambda Value of the smoothing parameter. If NA found by an approximate corss-validation

criterion.
... Any other arguments to pass to the Tps function.
C Scaling for huber robust weighting function. (See below.) Usually it is better to

leave this at 1 and just modify the scale psi.scale according to the size of the
residuals.

f.start The initial value for the estimated function. If NULL then the constant function
at the median of Y will be used. NOTE: This may not be a very good starting
vector and a more robust method would be to use a local robust smoother.

psi.scale The scale value for the Huber function. When C=1, this is the point where the
Huber weight function will change from quadratic to linear. Default is to use the
scale .05*mad(Y) and C=1 . Very small scales relative to the size of the residuals
will cause the estimate to approximate a quantile spline. Very large scales will
yield the ordinary least squares spline.

alpha The quantile that is estimated by the spline. Default is .5 giving a median. Equiv-
alently this parameter controls the slope of the linear wings in the Huber function
2*alpha for the positive wing and 2*(1-alpha) for the negative wing.

Niterations Maximum number of interations of the psuedo data algorithm
tolerance Convergence criterion based on the relative change in the predicted values of the

function estimate. Specifically if the criterion mean(abs(f.hat.new -f.hat))/mean(abs(f.hat))
is less than tolerance the iterations re stopped.

verbose If TRUE intermediate results are printed out.

QTps 133

Details

These are experimental functions that use the psuedo-value algorithm to compute a class of robust
and quantile problems. QTps use the Tps function as its least squares base smoother while QSreg
uses the efficient sreg for 1-D cubic smoothing spline models. Currently for the 1-d spline problem
we recommend using the (or at least comparing to) the old qsreg function. QSreg was created to
produce a more readable version of the 1-d method that follows the thin plate spline format.

The Thin Plate Spline/ Kriging model through fields is: Y.k= f(x.k) = P(x.k) + Z(x.k) + e.k

with the goal of estimating the smooth function: f(x)= P(x) + Z(x)

The extension in this function is that e.k can be heavy tailed or have outliers and one would still
like a robust estimate of f(x). In the quantile approximation (very small scale parameter) f(x) is an
estimate of the alpha quantile of the conditional distribution of Y given x.

The algorithm is iterative and involves at each step tapering the residuals in a nonlinear way. Let
psi.wght be this tapering function then given an initial estimate of f, f.hat the new data for smoothing
is

Y.psuedo<-f.hat + psi.scale* psi.wght(Y -f.hat,psi.scale=psi.scale,alpha=alpha) A
thin plate spline is now estimated for these data and a new prediction for f is found. This new vector
is used to define new psuedo values. Convergence is achieved when the the subsequent estimates of
f.hat do not change between interations. The advantage of this algorithm is at every step a standard
"least squares" thin plate spline is fit to the psuedo data. Because only the observation vector is
changing at each iteration Some matrix decompositions need only be found once and the compu-
tations at each subsequent iteration are efficient. At convergence there is some asymptotic theory
to suggest that the psuedo data can be fit using the least squares spline and the standard smoothing
techinques are valid. For example one can consider looking at the cross-validation function for the
psuedo-data as a robust version to select a smoothing parameter. This approach is different from
the weighted least squared algorithm used in the qsreg function. Also qsreg is only designed to
work with 1-d cubic smoothing splines.

The "rho" function indicating the departure from a pure quadratic loss function has the definition

qsreg.rho<-function(r, alpha = 0.5, C = 1)
temp<- ifelse(r< 0, ((1 - alpha) * r^2)/C , (alpha * r^2)/C)
temp<- ifelse(r >C, 2 * alpha * r - alpha * C, temp)
temp<- ifelse(r < -C, -2 * (1 - alpha) * r - (1 - alpha) * C, temp)
temp

The derivative of this function "psi" is

qsreg.psi<- function(r, alpha = 0.5, C = 1)
temp <- ifelse(r < 0, 2*(1-alpha)* r/C, 2*alpha * r/C)
temp <- ifelse(temp > 2*alpha, 2*alpha, temp)
temp <- ifelse(temp < -2*(1-alpha), -2*(1-alpha), temp)
temp

Note that if C is very small and if alpha = .5 then psi will essentially be 1 for r > 0 and -1 for r <
0. The key feature here is that outside a ceratin range the residual is truncated to a constant value.
This is similar to the Windsorizing operation in classical robust statistics.

134 QTps

Another advantage of the psuedo data algotrithm is that at convergence one can just apply all the
usual generic functions from Tps to the psuedo data fit. For example, predict, surface, print, etc.
Some additional components are added to the Krig/Tps object, however, for information about the
iterations and original data. Note that currently these are not reported in the summaries and printing
of the output object.

Value

A Krig object with additional components:

yraw Original Y values

conv.info A vector giving the convergence criterion at each iteration.

conv.flag If TRUE then convergence criterion was less than the tolerance value.

psi.scale Scaling factor used for the psi.wght function.

value Value of alpha.

Author(s)

Doug Nychka

References

Oh, Hee-Seok, Thomas CM Lee, and Douglas W. Nychka. "Fast nonparametric quantile regression
with arbitrary smoothing methods." Journal of Computational and Graphical Statistics 20.2 (2011):
510-526.

See Also

qsreg

Examples

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]

Smoothing fixed at 50 df
look1<- QTps(x,y, psi.scale= 15, df= 50)

Not run:
Least squares spline (because scale is so large)

look2<- QTps(x,y, psi.scale= 100, df= 50)
#

y.outlier<- y
add in a huge outlier.

y.outlier[58]<- 1e5
look.outlier1<- QTps(x,y.outlier, psi.scale= 15, df= 50)

QTps 135

least squares spline.
look.outlier2<- QTps(x,y.outlier, psi.scale=100 , df= 50)

#
set.panel(2,2)
surface(look1)
title("robust spline")
surface(look2)
title("least squares spline")
surface(look.outlier1, zlim=c(0,250))
title("robust spline w/outlier")
points(rbind(x[58,]), pch="+")
surface(look.outlier2, zlim=c(0,250))
title("least squares spline w/outlier")
points(rbind(x[58,]), pch="+")
set.panel()

End(Not run)
some quantiles
look50 <- QTps(x,y, psi.scale=.5)
look75 <- QTps(x,y,f.start= look50$fitted.values, alpha=.75)

a simulated example that finds some different quantiles.
Not run:
set.seed(123)
N<- 400
x<- matrix(runif(N), ncol=1)
true.g<- x *(1-x)*2
true.g<- true.g/ mean(abs(true.g))
y<- true.g + .2*rnorm(N)

look0 <- QTps(x,y, psi.scale=10, df= 15)
look50 <- QTps(x,y, df=15)
look75 <- QTps(x,y,f.start= look50$fitted.values, df=15, alpha=.75)

End(Not run)

Not run:
this example tests the quantile estimate by Monte Carlo
by creating many replicate point to increase the sample size.
Replicate points are used because the computations for the
spline are dominated by the number of unique locations not the
total number of points.
set.seed(123)
N<- 80
M<- 200
x<- matrix(sort(runif(N)), ncol=1)
x<- matrix(rep(x[,1],M), ncol=1)

true.g<- x *(1-x)*2
true.g<- true.g/ mean(abs(true.g))
errors<- .2*(rexp(N*M) -1)
y<- c(matrix(true.g, ncol=M, nrow=N) + .2 * matrix(errors, ncol=M, nrow=N))

136 quilt.plot

look0 <- QTps(x,y, psi.scale=10, df= 15)
look50 <- QTps(x,y, df=15)
look75 <- QTps(x,y, df=15, alpha=.75)

bplot.xy(x,y, N=25)
xg<- seq(0,1,,200)
lines(xg, predict(look0, x=xg), col="red")
lines(xg, predict(look50, x=xg), col="blue")
lines(xg, predict(look75, x=xg), col="green")

End(Not run)
Not run:
A comparison with qsreg

qsreg.fit50<- qsreg(rat.diet$t,rat.diet$con, sc=.5)
lam<- qsreg.fit50$cv.grid[,1]
df<- qsreg.fit50$cv.grid[,2]
M<- length(lam)
CV<-rep(NA, M)
M<- length(df)
fhat.old<- NULL
for (k in M:1){
temp.obj<- QTps(rat.diet$t,rat.diet$con, f.start=fhat.old, psi.scale=.5, tolerance=1e-6,
verbose=FALSE, df= df[k])
cat(k, " ")
CV[k] <- temp.obj$Qinfo$CV.psuedo
fhat.old<- temp.obj$fitted.values

}
plot(df, CV, type="l", lwd=2)

psuedo data estimate
points(qsreg.fit50$cv.grid[,c(5,6)], col="blue")

alternative CV estimate via reweighted LS
points(qsreg.fit50$cv.grid[,c(2,3)], col="red")

End(Not run)

quilt.plot Image plot for irregular spatial data.

Description

Given a vector of z values associated with 2-d locations this function produces an image-like plot
where the locations are discretized to a grid and the z values are coded as a color level from a color
scale.

quilt.plot 137

Usage

quilt.plot(x, y, z, nx = 64, ny = 64, grid = NULL,
add.legend=TRUE,add=FALSE, nlevel=64,
col = tim.colors(nlevel),
nrow=NULL, ncol=NULL,FUN =

NULL, plot=TRUE, na.rm=FALSE, ...)

Arguments

x A vector of the x coordinates of the locations -or- a a 2 column matrix of the x-y
coordinates.

y A vector of the y coordinates -or- if the locations are passed in x the z vector

z Values of the variable to be plotted.

nlevel Number of color levels.

nx Number of grid boxes in x if a grid is not specified.

ny Number of grid boxes in y.

nrow Depreciated, same as nx.

ncol Depreciated same as ny.

grid A grid in the form of a grid list.

add.legend If TRUE a legend color strip is added

add If FALSE add to existing plot.

col Color scale for the image, the default is tim.colors – a pleasing spectrum.

plot If FALSE just returns the image object instead of plotting it.

FUN The function to apply to values that are common to a grid box. The default is to
find the mean. (see as.image).

na.rm If FALSE NAs are not removed from zand so a grid box even one of these values
may be an NA. (See details below.)

... arguments to be passed to the image.plot function

Details

This function combines the discretization to an image by the function as.image and is then graphed
by image.plot. By default, locations that fall into the same grid box will have their z values
averaged. This also means that observations that are NA will result in the grid box average also
being NA and can produce unexpected results because the NA patterns can dominate the figure. If
you are unsure of the effect try na.rm = TRUE for a comparison.

A similar function exists in the lattice package and produces good looking plots. The advantage of
this fields version is that it uses the standard R graphics functions and is written in R code. Also,
the aggregation to average values for z values in the same grid box allows for different choices of
grids. If two locations are very close, separating them could result in very small boxes.

As always, legend placement is never completely automatic. Place the legend independently for
more control, perhaps using image.plot in tandem with split.screen or enlarging the plot mar-
gin See help(image.plot) for examples of this function and these strategies.

138 rat.diet

Author(s)

D.Nychka

See Also

as.image, image.plot, lattice, persp, drape.plot

Examples

data(ozone2)
plot 16 day of ozone data set

quilt.plot(ozone2$lon.lat, ozone2$y[16,])
US(add=TRUE, col="grey", lwd=2)

#
and ... if you are fussy
do it again
quilt.plot(ozone2$lon.lat, ozone2$y[16,],add=TRUE)
to draw over the state boundaries.
#

adding a common legend strip "by hand"
and a custom color table

coltab<- two.colors(256, middle="grey50")

par(oma=c(0,0,0,5)) # save some room for the legend
set.panel(2,2)
zr<- range(ozone2$y, na.rm=TRUE)

for(k in 1:4){
quilt.plot(ozone2$lon.lat, ozone2$y[15+k,], add.legend=FALSE,
zlim=zr, col=coltab, nx=40, ny=40)

US(add=TRUE)
}
par(oma=c(0,0,0,1))
image.plot(zlim=zr,legend.only=TRUE, col=coltab)
may have to adjust number of spaces in oma to make this work.

rat.diet Experiment studying an appetite supressant in rats.

Description

The ‘rat.diet’ data frame has 39 rows and 3 columns. These are data from a study of an appetite
supressant given to young rats. The suppressant was removed from the treatment group at around
60 days. The responses are the median food intake and each group had approximately 10 animals.

RCMexample 139

Usage

data(rat.diet)

Format

This data frame contains the following columns:

t Time in days

con Median food intake of the control group

trt Median food intake of the treatment group

RCMexample 3-hour precipitation fields from a regional climate model

Description

These are few model output fields from the North American Regional Climate Change and Assess-
ment Program (NARCCAP). The images are transformed surface precipitation fields simulated by
the WRFP regional climate model (RCM) over North Amreica forced by observation data. The
fields are 3 hour precipitation for 8 time periods in January 1, 1979. The grid is unequally spaced
in longitude and latitude appropriate projection centered on the model domain.The grid points are
nearly equally spaced in great circle distance due to this projection. Precipitation is in a log 10 scale
where values smaller than 4.39e-5 (the .87 quantile) have been been set to this value. Longitudes
have been shifted from the original coordinates (0-360) to the range (-180-180) that is assumed by
the R map function.

Usage

data(RCMexample)

Format

The format is a list of three arrays:

• x: 123X101 matrix of the longitude locations

• y: 123X101 matrix of the latitude locations

• z: 123X101X8 transformed matrix of precipitation

Spatial units are degrees with longitude being -180,180 with the prime meridian at 0. Precipitation
is log 10 of cm / 3 hour period.

140 rdist

Details

This is primarily an example of a regular grid that is not equally spaced and is due to transforming an
equally spaced grid from one map projection into longitude latitude coordinates. This model is one
small part of an extension series of numerical experiments the North American Regional Climate
Change and Assessment Program (NARCCAP). NARCCAP has used 4 global climate models and
observational data to supply the atmospheric boundery conditions for 6 different regional climate
models. In the current data the forcing is the observations derived from the NCEP reanalysis data
and is for Janurary 1, 1979. The full simulation runs for 20 years from this starting date. See the
NARCCAP web page for more information about these data.

To facilatate a better representation of these fields the raw precipitation values have been trans-
formed to the log scale with all values below 4.39E-5 cm/3 hours set to this lower bound.

Examples

data(RCMexample)
second time period

image.plot(RCMexample$x, RCMexample$y, RCMexample$z[,,2])
world(add=TRUE, lwd=2, col="grey")

rdist Euclidean distance matrix or vector

Description

Given two sets of locations rdist and fields.rdist.near computes the full Euclidean distance
matrix among all pairings or a sparse version for points within a fixed threshhold distance. rdist.vec
computes a vector of pairwise distances between corresponding elements of the input locations and
is used in empirical variogram calculations.

Usage

rdist(x1, x2 = NULL, compact = FALSE)

fields.rdist.near(x1,x2, delta, max.points= NULL, mean.neighbor = 50)

rdist.vec(x1, x2)

Arguments

x1 Matrix of first set of locations where each row gives the coordinates of a partic-
ular point.

x2 Matrix of second set of locations where each row gives the coordinates of a
particular point. If this is not passed or given as NULL x1 is used.

rdist 141

compact Whether or not to return a distance matrix in compact form inheriting class
“dist” (as returned by the dist function in base R). Only values for one triangle
of the symmetric distance matrix are returned. This saves time evaluating the
returned matrix and the covariance. Note that this option is ignored when x2 is
not NULL.

delta Threshhold distance. All pairs of points that separated by more than delta in
distance are ignored.

max.points Size of the expected number of pairs less than or equal to delta. The default is
set to the nrow(x1)*mean.neighbor.

mean.neighbor Sets the temp space for max.points

Details

More about fields.rdist.near:

The sparse version is designed to work with the sparse covariance functions in fields and anticipates
that the full matrix, D is too large to store. The argument max.points is set as a default to nrow(
x1)*100 and allocates the space to hold the sparse elements. In case that there are more points that
are within delta the function stops with an error but lists the offending rows. Just rerun the function
with a larger choice for max.points

It possible that for certain x1 points there are no x2 points within a distance delta. This situation
will cause an error if the list is converted to spam format.

Returned values

Let D be the mXn distance matrix, with m= nrow(x1) and n=nrow(x2). The elements are the
Euclidean distances between the all locations x1[i,] and x2[j,]. That is,

D.ij = sqrt(sum.k ((x1[i,k] - x2[j,k]) **2).

rdist The distance matrix D is returned.

fields.rdist.near The elements of D that are less than or equal to delta are returned in the form
of a list.

List components:

ind Row and column indices of elements

ra (Distances (D.ij)

da Dimensions of full distance matrix.

This is a simple sparse format that can be manipulated by several fields functions. E.g. ind2spam
will convert this list to the format used by the spam sparse matrix package. ind2full will convert
this to an ordinary matrix with zeroes.

Author(s)

Doug Nychka, John Paige

See Also

stationary.cov, Exp.cov, rdist.earth, dist, ind2spam, ind2full

142 rdist.earth

Examples

out<- rdist(ChicagoO3$x)
out is a 20X20 matrix.

out2<- rdist(ChicagoO3$x[1:5,], ChicagoO3$x[11:20,])
#out2 is a 5X10 matrix

set.seed(123)
x1<- matrix(runif(20*2), 20,2)
x2<- matrix(runif(15*2), 15,2)

out3<- fields.rdist.near(x1,x2, delta=.5)
out3 is a sparse structure in list format

or to "save" work space decrease size of temp array

out3<- fields.rdist.near(x1,x2, delta=.5,max.points=20*15)

explicitly reforming as a full matrix
temp<- matrix(NA, nrow=out3$da[1], ncol= out3$da[2])
temp[out3$ind] <- out3$ra

or justuse

temp<- spind2full(out3)
image(temp)

this is identical to
temp2<- rdist(x1,x2)
temp2[temp2<= .5] <- NA

#compute pairwise distance vector
x1 = 1:10
x2 = seq(from=10, to=1)
rdist.vec(x1, x2)

#calculate output matrix in compact form:
distOut = rdist(1:10, compact=TRUE)
distOut
as.vector(distOut)

rdist.earth Great circle distance matrix or vector

Description

Given two sets of longitude/latitude locations, rdist.earth computes the Great circle (geographic)
distance matrix among all pairings and rdist.earth.vec computes a vector of pairwise great circle
distances between corresponding elements of the input locations using the Haversine method and is
used in empirical variogram calculations.

rdist.earth 143

Usage

rdist.earth(x1, x2, miles = TRUE, R = NULL)
RdistEarth(x1, x2=NULL, miles=TRUE, R=NULL)
rdist.earth.vec(x1, x2, miles = TRUE, R = NULL)

Arguments

x1 Matrix of first set of lon/lat coordinates first column is the longitudes and second
is the latitudes.

x2 Matrix of second set of lon/lat coordinates first column is the longitudes and
second is the latitudes. If missing or NULL x1 is used.

miles If true distances are in statute miles if false distances in kilometers.

R Radius to use for sphere to find spherical distances. If NULL the radius is either
in miles or kilometers depending on the values of the miles argument. If R=1
then distances are of course in radians.

Details

Surprisingly the distance matrix is computed efficiently in R by dot products of the direction cosines.
This is the calculation in rdist.earth. Thanks to Qing Yang for pointing this out a long time ago.
A more efficient version has been implemented in C with the R function RdistEarth by Florian
Gerber who has also experimented with parallel versions of fields functions. The main advantage
of RdistEarth is the largely reduce memory usage. The speed seems simillar to rdist.earth. As
Florian writes:

"The current fields::rdist.earth() is surprisingly fast. In the case where only the argument ’x1’ is
specified, the new C implementation is faster. In the case where ’x1’ and ’x2’ are given, fields::rdist.earth()
is a bit faster. This might be because fields::rdist.earth() does not check its input arguments and uses
a less complicated (probably numerically less stable) formula."

Value

The great circle distance matrix if nrow(x1)=m and nrow(x2)=n then the returned matrix will be
mXn.

Author(s)

Doug Nychka, John Paige, Florian Gerber

See Also

rdist, stationary.cov, fields.rdist.near

Examples

data(ozone2)
out<- rdist.earth (ozone2$lon.lat)
#out is a 153X153 distance matrix

144 registeringCode

out2<- RdistEarth (ozone2$lon.lat)
all.equal(out, out2)

upper<- col(out)> row(out)
histogram of all pairwise distances.
hist(out[upper])

#get pairwise distances between first 10 and second 10 lon/lat points
x1 = ozone2$lon.lat[1:10,]
x2 = ozone2$lon.lat[11:20,]
dists = rdist.earth.vec(x1, x2)
print(dists)

registeringCode Information objects that register C and FORTRAN functions.

Description

These are objects of class CallRoutine or FortranRoutine and also NativeSymbolInfo They
provide information for compiledfunctions called with .Call, or .Fortran. Ordinarily one would
not need to consult these and they are used to make the search among dynamically loaded libraries
(in particular the fields library) have less ambiguity and also be faster. These are created when the
package/library is loaded are have their definitions from the compliation of init.c in the package
source (src) directory.

Format

The format is a list with components:

name The (registration ?) name of the C function.

address See NativeSymbolInfo.

dll Dynamically linked library information.

numParameters Number of calling arguments in function.

Details

addToDiagC adds diagonal elements to a matrix. See codemKrig.

ExponentialUpperC Fills in upper triangle of a matrix with the exponential covariance function.
See ExponentialUpper

compactToMatC Converts compact format to full matrix format. See compactToMat.

multebC Mulitplies a vector/matrix with an exponential covariance function. See exp.cov

multwendlandg This has been mysteriously included but it is not a function!

mltdrb Evaluates the derivatives of thin plate sline radial basis functions. See rad.cov.

RdistC Euclidean distance function between sets of coordinates. See rdist.

distMatHaversin Used in RdistEarth.

REML.test 145

distMatHaversin2 Used in RdistEarth.

See package_native_routine_registration_skeleton for the utility used to create these data
objects.

It is not clear why these routines have been flagged as needing documentation while other routines
have not.

References

For background on registering C, C++ and Fortran functions see 5.4 of Writing R Extensions. See
http://r.789695.n4.nabble.com/Registration-of-native-routines-td4728874.html for
additional dicsussion of code registration.

Examples

print(addToDiagC)

REML.test Maximum Likelihood estimates for some Matern covariance parame-
ters.

Description

For a fixed smoothness (shape) parameter these functions provide different ways of estimating and
testing restricted and profile likehiloods for the Martern covariance parameters. MLE.Matern is a
simple function that finds the restricted maximum likelihood (REML) estimates of the sill, nugget
and range parameters (rho,sigma2 and theta) of the Matern covariance functions. The remaining
functions are primarily for testing.

Usage

MLE.Matern(x, y, smoothness, theta.grid = NULL, ngrid = 20,
verbose = FALSE, niter = 25, tol = 1e-05,
Distance = "rdist", m = 2, Dmax = NULL, ...)

MLE.Matern.fast(x, y, smoothness, theta.grid = NULL, ngrid=20, verbose=FALSE,
m=2, ...)

MLE.objective.fn(ltheta,info, value=TRUE)

MaternGLSProfile.test(x, y, smoothness = 1.5, init = log(c(0.05,1)))
MaternGLS.test(x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1)))
MaternQR.test (x, y, smoothness = 1.5, init = log(c(1, 0.2, 0.1)))
MaternQRProfile.test (x, y, smoothness = 1.5, init = log(c(1)))

REML.test(x, y, rho, sigma2, theta, nu = 1.5)

http://r.789695.n4.nabble.com/Registration-of-native-routines-td4728874.html

146 REML.test

Arguments

Dmax Maximum distance for grid used to evaluate the fitted covariance function.

Distance Distance function used in finding covariance.

x A matrix of spatial locations with rows indexing location and columns the di-
mension (e.g. longitude/latitude)

y Spatial observations

smoothness Value of the Matern shape parameter.

theta.grid Grid of theta parameter values to use for grid search in maximizing the Like-
lilood. The defualt is do an initial grid search on ngrid points with the range at
the 3 an d 97 quantiles of the pairwise distances.If only two points are passed
then this is used as the range for a sequence of ngrid points.

ngrid Number of points in grid search.

init Initial values of the parameters for optimization. For the first three functions
these are in the order rho, theta sigma2 and in a log scale. For MaternQRPro-
file.test initial value is just log(theta).

verbose If TRUE prints more information.

rho Marginal variance of Matern process (the "sill")

sigma2 Variance of measurement error (the "nugget")

theta Scale parameter (the "range")

nu Smoothness parameter

ltheta log of range parameter

info A list with components x,y,smoothness,ngrid that pass the information to the
optimizer. See details below.

value If TRUE only reports minus log Profile likelihood with profile on the range
parameter. If FALSE returns a list of information.

m Polynomial of degree (m-1) will be included in model as a fixed part.

niter Maximum number of interations in golden section search.

tol Tolerance for convergence in golden section search.

... Additional arguments that are passed to the Krig function in evaluating the pro-
file likelihood.

Details

MLE.Matern is a simple function to find the maximum likelihood estimates of using the restricted
and profiled likeilihood that is intrinsic to the ccomputations in Krig. The idea is that the like-
lihood is concentrated to the parameters lambda and theta. (where lambda = sigma2/rho). For
fixed theta then this is maximized over lambda using Krig and thus concetrates the likelihood on
theta. The final maximization over theta is implemented as a golden section search and assumes
a convex function. All that is needed is for three theta grid points where the middle point has a
larger likelihood than the endpoints. In practice the theta grid defualts to a 20 points equally spaced
between the .03 and .97 quantiles of the distribution of the pairwise distances. The likelihood is
evaluated at these points and a possible triple is identified. If no exists from the grid search the

REML.test 147

function returns with NAs for the parameter estimates. Note that due to the setup of the golden
section search the computation actually minimizes minus the log likelihood. MLE.Matern.fast is
a similar function but replaces the optimaiztion step computed by Krig to a tighter set of code in the
function MLE.objective.fn. See also mKrigMLEGrid for an alternative and streamlined function
using mKrig rather than Krig.

Value

For MLE.Matern (and MLE.Matern.fast)

smoothness Value of the smoothness function

pars MLE for rho, theta and sigma

REML Value of minus the log restricted Profile likelihood at the maxmimum

trA Effective degrees of freedom in the predicted surface based on the MLE param-
eters.

REML.grid Matrix with values of theta and the log likelihood from the initial grid search.

Note

See the script REMLest.test.R and Likelihood.test.R in the tests directory to see how these functions
are used to check the likelihood expressions.

Author(s)

Doug Nychka

Examples

Just look at one day from the ozone2
data(ozone2)

out<- MLE.Matern(ozone2$lon.lat,ozone2$y[16,],1.5, ngrid=8)
plot(out$REML.grid)
points(out$pars[2], out$REML, cex=2)
xline(out$pars[2], col="blue", lwd=2)
Not run:
to get a finer grid on initial search:
out<- MLE.Matern(ozone2$lon.lat,ozone2$y[16,],1.5,

theta.grid=c(.3,2), ngrid=40)

simulated data 200 points uniformly distributed
set.seed(123)
x<- matrix(runif(2*200), ncol=2)
n<- nrow(x)
rho= 2.0
sigma= .05
theta=.5

Cov.mat<- rho* Matern(rdist(x,x), smoothness=1.0, range=theta)
A<- chol(Cov.mat)

148 REML.test

gtrue<- t(A) %*% rnorm(n)
gtrue<- c(gtrue)
err<- rnorm(n)*sigma
y<- gtrue + err
out0<- MLE.Matern(x,y,smoothness=1.0) # the bullet proof version
the MLEs and -log likelihood at maximum
print(out0$pars)
print(out0$REML)

out<- MLE.Matern.fast(x,y, smoothness=1.0) # for the impatient
the MLEs:
print(out$pars)
print(out$REML)

MLE for fixed theta (actually the MLE from out0)
that uses MLE.objective.fn directly
info<- list(x=x,y=y,smoothness=1.0, ngrid=80)
the MLEs:
out2<- MLE.objective.fn(log(out0$pars[2]), info, value=FALSE)
print(out2$pars)

End(Not run)

Not run:
Now back to Midwest ozone pollution ...
Find the MLEs for ozone data and evaluate the Kriging surface.

data(ozone2)
out<- MLE.Matern.fast(ozone2$lon.lat,ozone2$y[16,],1.5)

#use these parameters to fit surface
lambda.MLE<- out$pars[3]/out$pars[1]
out2<- Krig(ozone2$lon.lat,ozone2$y[16,] , Covariance="Matern",

theta=out$pars[2], smoothness=1.5, lambda= lambda.MLE)
surface(out2) # uses default lambda -- which is the right one.

here is another way to do this where the new lambda is given in
the predict step

out2<- Krig(ozone2$lon.lat,ozone2$y[16,] , Covariance="Matern",
theta=out$pars[2], smoothness=1.5)

The default lambda is that found by GCV
predict on a grid but use the MLE value for lambda:

out.p<- predictSurface(out2, lambda= lambda.MLE)
surface(out.p) # same surface!

End(Not run)

One could also use mKrig with a fixed lambda to compute the surface.

Not run:
looping through all the days of the ozone data set.

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y

ribbon.plot 149

out.pars<- matrix(NA, ncol=3, nrow=89)

for (k in 1:89){
hold<- MLE.Matern.fast(x,c(y[k,]), 1.5)$pars
cat("day", k," :", hold, fill=TRUE)
out.pars[k,]<- hold }

End(Not run)

ribbon.plot Adds to an existing plot, a ribbon of color, based on values from a
color scale, along a sequence of line segments.

Description

Given a series of 2-d points and values at these segments, the function colors the segments according
to a color scale and the segment values. This is essentially an image plot restricted to line segments.

Usage

ribbon.plot(x,y,z,zlim=NULL, col=tim.colors(256),
transparent.color="white",...)

Arguments

x x locations of line segments

y y locations of line segments

z Values associated with each segment.

zlim Range for z values to determine color scale.

col Color table used for strip. Default is our favorite tim.colors being a scale from a
dark blue to dark red.

transparent.color

Color used for missing values. Default is that missing values make the ribbon
transparent.

... Optional graphical arguments that are passed to the segment plotting function.
A favorite is lwd to make a broad ribbon.

Details

Besides possible 2-d applications, this function is useful to annotate a curve on a surface using
colors. The values mapped to acolor scheme could indicate a feature other than the height of the
surface. For example, this function could indicate the slope of the surface.

150 RMprecip

Author(s)

Doug Nychka

See Also

image.plot, arrow.plot, add.image, colorbar.plot

Examples

plot(c(-1.5,1.5),c(-1.5,1.5), type="n")
temp<- list(x= seq(-1,1,,40), y= seq(-1,1,,40))
temp$z <- outer(temp$x, temp$y, "+")
contour(temp, add=TRUE)

t<- seq(0,.5,,50)
y<- sin(2*pi*t)
x<- cos(pi*t)
z<- x + y

ribbon.plot(x,y,z, lwd=10)

persp(temp, phi=15, shade=.8, col="grey")-> pm
trans3d(x,y,z,pm)-> uv
ribbon.plot(uvx, uvy, z**2,lwd=5)

RMprecip Monthly total precipitation (mm) for August 1997 in the Rocky Moun-
tain Region and some gridded 4km elevation data sets (m).

Description

RMprecip is a useful spatial data set of moderate size consisting of 806 locations. PRISMelevation
and RMelevation are gridded elevations for the continental US and Rocky Mountain region at 4km
resolution. Note that the gridded elevations from the PRISM data product are different than the
exact station elevations. (See example below.)

Format

The data set RMprecip is a list containing the following components:

x Longitude-latitude position of monitoring stations. Rows names are station id codes consistent
with the US Cooperative observer network. The ranges for these coordinates are [-111, -99]
for longitude and [35,45] for latitude.

elev Station elevation in meters.

y Monthly total precipitation in millimeters. for August, 1997

RMprecip 151

The data sets PRISMelevation and RMelevation are lists in the usual R grid format for images and
contouring

They have the following components:

x Longitude grid at approximately 4km resolution

y Latitude grid at approximately 4km resolution

z Average elevation for grid cell in meters

These elevations and the companion grid formed the basis for the 103-Year High-Resolution Precip-
itation Climate Data Set for the Conterminous United States (see http://www.prism.oregonstate.
edu/documents/PRISM_downloads_FTP.pdf and also archived at the National Climate Data Cen-
ter. This work is authored by Chris Daly http://www.prism.oregonstate.edu and his PRISM
group but had some contribution from the Geophysical Statistics Project at NCAR and is an inter-
polation of the observational data to a 4km grid that takes into account topography such as elevation
and aspect.

Details

Contact Doug Nychka for the binary file RData.USmonthlyMet.bin and information on its source.

explicit source code to create the RMprecip data
dir <- "" # include path to data file
load(paste(dir, "RData.USmonthlyMet.bin", sep="/")
#year.id<- 1963- 1895
year.id<- 103
#pptAUG63<- USppt[year.id,8,]
loc<- cbind(USpinfo$lon, USpinfo$lat)
xr<- c(-111, -99)
yr<- c(35, 45)
station.subset<- (loc[,1]>= xr[1]) & (loc[,1] <= xr[2]) & (loc[,2]>= yr[1]) & (loc[,2]<= yr[2])
ydata<- USppt[year.id,8,station.subset]
ydata <- ydata*10 # cm -> mm conversion
xdata<- loc[station.subset,]
dimnames(xdata)<- list(USpinfo$station.id[station.subset], c("lon", "lat"))
xdata<- data.frame(xdata)
good<- !is.na(ydata)
ydata<- ydata[good]
xdata<- xdata[good,]

test.for.zero.flag<- 1
test.for.zero(unlist(RMprecip$x), unlist(xdata), tag="locations")
test.for.zero(ydata, RMprecip$y, "values")

Examples

this data set was created the
historical data taken from
Observed monthly precipitation, min and max temperatures for the coterminous US
1895-1997

http://www.prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf
http://www.prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf
http://www.prism.oregonstate.edu

152 set.panel

NCAR_pinfill
see the Geophysical Statistics Project datasets page for the supporting functions
and details.

plot
quilt.plot(RMprecip$x, RMprecip$y)
US(add=TRUE, col=2, lty=2)

comparison of station elevations with PRISM gridded values

data(RMelevation)

interp.surface(RMelevation, RMprecip$x)-> test.elev

plot(RMprecip$elev, test.elev, xlab="Station elevation",
ylab="Interpolation from PRISM grid")
abline(0,1,col="blue")

some differences with high elevations probably due to complex
topography!

#
view of Rockies looking from theSoutheast

save.par<- par(no.readonly=TRUE)

par(mar=c(0,0,0,0))

fancy use of persp with shading and lighting.
persp(RMelevation, theta=75, phi= 15,

box=FALSE, axes=FALSE, xlab="", ylab="",
border=NA,
shade=.95, lphi= 10, ltheta=80,
col= "wheat4",
scale=FALSE, expand=.00025)

reset graphics parameters and a more conventional image plot.
par(save.par)
image.plot(RMelevation, col=topo.colors(256))
US(add=TRUE, col="grey", lwd=2)
title("PRISM elevations (m)")

set.panel Specify a panel of plots

Description

Divides up the graphics window into a matrix of plots.

sim.rf 153

Usage

set.panel(m=1, n=1, relax=FALSE)

Arguments

m Number of rows in the panel of plots

n Number of columns in the panel.

relax If true and the par command is already set for multiple plots, then the set.panel
command is ignored. The default is relax set to false.

Details

After set.panel is called, the graphics screen is reset to put plots according to a m x n table. Plotting
starts in the upper left hand corner and proceeds row by row. After m x n plots have been drawn,
the next plot will erase the window and start in the 1,1 position again. This function is just a
repackaging for specifying the mfrow argument to par. Setting up a panel of plots is a quick way to
change the aspect ratio of the graph (ratio of height to width) or the size. For example, plotting 2
plots to a page produces a useful size graph for including in a report. You can print out the graphs
at any stage without having to fill up the entire window with plots. This function, except for the
"relax" option is equivalent to the S sequence: par(mfrow=c(m,n)).

Side Effects

The function will echo your choice of m and n to the terminal.

See Also

par

Examples

set.panel(5,2) #divide screen to hold 10 plots where there are 5 rows
#and 2 columns

plot(1:10)
plot(2:8)

set.panel() #reset screen to one plot per screen

sim.rf Simulates a Stationary Gaussian random field

Description

Simulates a stationary Gaussian random field on a regular grid with unit marginal variance.

Usage

sim.rf(obj)

154 sim.rf

Arguments

obj A covariance object that includes information about the covariance function and
the grid for evaluation. Usually this is created by a setup call to Exp.image.cov,
stationary.image.cov, matern.image.cov or other related covariance functions.
(See details below.)

Details

The simulated field has the marginal variance that is determined by the covariance function for
zero distance. Within fields the exponential and matern set this equal to one (e.g. Matern(0)
==1) so that one simulates a random field with a marginal variance of one. For stationary.cov the
marginal variance is cov.function(0) and we recommend that alternative covariance functions
also be normalized so that this is one.

Of course if one requires a Gaussian field with different marginal variance one can simply scale the
result of this function. See the third example below.

This function takes an object that includes some preliminary calculations and so is more efficient
for simulating more than one field from the same covariance. However, the algorithm using a 2-d
FFT (known as circulant embedding) may not always work if the correlation range is large. The
simple fix is to increase the size of the domain so that the correlation scale becomes smaller relative
to the extent of the domain. Increasing the size can be computationally expensive however and so
this method has some limitations. But when it works it is and exact simulation of the random field.

For a stationary model the covariance object should have the components:

names(obj) "m" "n" "grid" "N" "M" "wght",

where m and n are the number of grid points in x and y, grid is a list with components x and y giving
the grid points in each coordinate. N and M is the size of the larger grid that is used for simulation.
Usually M = 2*m and N =2*n and results in an exact simulation of the stationary Gaussian field.
wght is a matrix from the FFT of the covariance function. The easiest way to create this object is to
use for example Exp.image.cov with setup=T (see below).

The classic reference for this algorithm is Wood, A.T.A. and Chan, G. (1994). Simulation of Station-
ary Gaussian Processes in [0,1]^d . Journal of Computational and Graphical Statistics, 3, 409-432.
Micheal Stein and Tilman Gneiting have also made some additional contributions to the algortihms
and theory.

Value

A matrix with the random field values

See Also

Exp.image.cov, matern.image.cov, stationary.image.cov

Examples

#Simulate a Gaussian random field with an exponential covariance function,
#range parameter = 2.0 and the domain is [0,5]X [0,5] evaluating the
#field at a 100X100 grid.
grid<- list(x= seq(0,5,,100), y= seq(0,5,,100))

sim.spatialProcess 155

obj<-Exp.image.cov(grid=grid, theta=.5, setup=TRUE)
look<- sim.rf(obj)
Now simulate another ...
look2<- sim.rf(obj)

Suppose one requires an exponential, range = 2
but marginal variance = 10 (rho in fields notation)
look3<- sqrt(10)* sim.rf(obj)

take a look at first two
set.panel(2,1)
image.plot(grid$x, grid$y, look)
title("simulated gaussian fields")
image.plot(grid$x, grid$y, look2)
title("another realization ...")

sim.spatialProcess Conditional simulation of a spatial process

Description

Generates exact (or approximate) random draws from the conditional distribution of a spatial pro-
cess given specific observations. This is a useful way to characterize the uncertainty in the predicted
process from data. This is known as conditional simulation in geostatistics or generating an ensem-
ble prediction in the geosciences. sim.Krig.grid can generate a conditional sample for a large regular
grid but is restricted to stationary correlation functions.

Usage

sim.spatialProcess(object, xp, M = 1, verbose = FALSE, ...)

sim.Krig(object, xp, M = 1, verbose = FALSE, ...)

sim.Krig.approx(object, grid.list = NULL, M = 1, nx = 40, ny = 40,
verbose = FALSE, extrap = FALSE,...)

sim.mKrig.approx(mKrigObject, predictionPoints = NULL,
predictionPointsList = NULL, simulationGridList =
NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M
= 1, nx = 40, ny = 40, nxSimulation = NULL,
nySimulation = NULL, delta = NULL, verbose = FALSE,...)

sim.fastTps.approx(fastTpsObject,
predictionPointsList, simulationGridList =
NULL, gridRefinement = 5, gridExpansion = 1 + 1e-07, M
= 1, delta = NULL, verbose=FALSE,...)

156 sim.spatialProcess

Arguments

delta If the covariance has compact support the simulation method can take advan-
tage of this. This is the amount of buffer added for the simulation domain in the
circulant embedding method. A minimum size would be theta for the Wend-
land but a multiple of this maybe needed to obtain a positive definite circulant
covariance function.

extrap If FALSE conditional process is not evaluated outside the convex hull of obser-
vations.

fastTpsObject The output object returned by fastTps

grid.list Grid information for evaluating the conditional surface as a grid.list.

gridRefinement Amount to increase the number of grid points for the simulation grid.

gridExpansion Amount to increase the size of teh simulation grid. This is used to increase the
simulation domain so that the circulant embedding algorithm works.

mKrigObject An mKrig Object

M Number of draws from conditional distribution.

nx Number of grid points in prediction locations for x coordinate.

ny Number of grid points in prediction locations for x coordinate.

nxSimulation Number of grid points in the circulant embedding simulation x coordinate.

nySimulation Number of grid points in the circulant embedding simulation x coordinate.

object A Krig object.
predictionPoints

A matrix of locations defining the points for evaluating the predictions.
predictionPointsList

A grid.list defining the rectangular grid for evaluating the predictions.
simulationGridList

A gridlist describing grid for simulation. If missing this is created from the
range of the locations, nx, ny, gridRefinement, and gridExpansion or from
the range and and nxSimulation, nySimulation.

xp Same as predictionPoints above.

... Any other arguments to be passed to the predict function. Usually this is the Z
or drop.Z argument when there are additional covariates in the fixed part of the
model. (See example below.)

verbose If true prints out intermediate information.

Details

These functions generate samples from a conditional multivariate distribution, or an approximate
one, that describes the uncertainty in the estimated spatial process under Gaussian assumptions. An
important assumption throughout these functions is that all covariance parameters are fixed at their
estimated or prescribed values from the passed object.

Given a spatial process h(x)= P(x) + g(x) observed at

Y.k = Z(x.k)d + P(x.k) + g(x.k) + e.k

sim.spatialProcess 157

where P(x) is a low order, fixed polynomial and g(x) a Gaussian spatial process and Z(x.k) is a vector
of covariates that are also indexed by space (such as elevation). Z(x.k)d is a linear combination of
the the covariates with the parameter vector d being a component of the fixed part of the model and
estimated in the usual way by generalized least squares.

With Y= Y.1, ..., Y.N, the goal is to sample the conditional distribution of the process.

[h(x) | Y] or the full prediction Z(x)d + h(x)

For fixed a covariance this is just a multivariate normal sampling problem. sim.Krig.standard
samples this conditional process at the points xp and is exact for fixed covariance parameters.
sim.Krig.grid also assumes fixed covariance parameters and does approximate sampling on a
grid.

The outline of the algorithm is

0) Find the spatial prediction at the unobserved locations based on the actual data. Call this h.hat(x)
and this is the conditional mean.

1) Generate an unconditional spatial process and from this process simluate synthetic observations.
At this point the approximation is introduced where the field at the observation locations is approx-
imated using interpolation from the nearest grid points.

2) Use the spatial prediction model (using the true covariance) to estimate the spatial process at
unobserved locations.

3) Find the difference between the simulated process and its prediction based on synthetic observa-
tions. Call this e(x).

4) h.hat(x) + e(x) is a draw from [h(x) | Y].

sim.spatialProcess Follows this algorithm exactly. For the case of an addtional covariate this
of course needs to be included. For a model with covariates use drop.Z=TRUE for the function to
ignore prediction using the covariate and generate conditional samples for just the spatial process
and any low order polynomial. Finally, it should be noted that this function will also work with an
mKrig object because the essential prediction information in the mKrig and spatialProcess objects
are the same. The naming is through convenience.

sim.Krig Also follows this algorithm exactly but for the older Krig object. Note the inclusion of
drop.Z=TRUE or FALSE will determine whether the conditional simulation includes the covariates
Z or not. (See example below.)

sim.Krig.approx and sim.mKrig.approx evaluate the conditional surface on grid and simulates
the values of h(x) off the grid using bilinear interpolation of the four nearest grid points. Because
of this approximation it is important to choose the grid to be fine relative to the spacing of the
observations. The advantage of this approximation is that one can consider conditional simulation
for large grids – beyond the size possible with exact methods. Here the method for simulation is
circulant embedding and so is restricted to stationary fields. The circulant embedding method is
known to fail if the domain is small relative to the correlation range. The argument gridExpansion
can be used to increase the size of the domain to make the algorithm work.

sim.fastTps.approx Is optimized for the approximate thin plate spline estimator in two dimen-
sions and k=2. For efficiency the ensemble prediction locations must be on a grid.

Value

sim.Krig and sim.spatialProcess a matrix with rows indexed by the locations in xp and columns
being the M independent draws.

158 sim.spatialProcess

sim.Krig.approx a list with components x, y and z. x and y define the grid for the simulated field
and z is a three dimensional array with dimensions c(nx,ny,M) where the first two dimensions
index the field and the last dimension indexes the draws.

sim.mKrig.approx a list with predictionPoints being the locations where the field has been
simulated.If these have been created from a grid list that information is stored in the attributes of
predictionPoints. Ensemble is a matrix where rows index the simulated values of the field and
columns are the different draws, call is the calling sequence. Not that if predictionPoints has
been omitted in the call or is created beforehand using make.surface.grid it is easy to reformat
the results into an image format for ploting using as.surface. e.g. if simOut is the output object
then to plot the 3rd draw:

imageObject<- as.surface(simOut$PredictionGrid, simOut$Ensemble[,3])
image.plot(imageObject)

sim.fastTps.approx is a wrapper function that calls sim.mKrig.approx.

Author(s)

Doug Nychka

See Also

sim.rf, Krig, spatialProcess

Examples

Not run:
conditional simulation with covariates
colorado climate example

data(COmonthlyMet)
fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev)

conditional simulation at missing data
good<- !is.na(CO.tmin.MAM.climate)
infill<- sim.spatialProcess(fit1E, xp=CO.loc[!good,],

Z= CO.elev[!good], M= 10)
get an elevation grid ... NGRID<- 50 gives a nicer image but takes longer
NGRID <- 25
get elevations on a grid

COGrid<- list(x=seq(-109.5, -101, ,NGRID), y= seq(39, 41.5,,NGRID))
COGridPoints<- make.surface.grid(COGrid)

elevations are a bilinear interpolation from the 4km
Rocky Mountain elevation fields data set.

data(RMelevation)
COElevGrid<- interp.surface(RMelevation, COGridPoints)

NOTE call to sim.Krig treats the grid points as just a matrix
of locations the plot has to "reshape" these into a grid
to use with image.plot

SEout<- sim.spatialProcess(fit1E, xp=COGridPoints, Z= COElevGrid, M= 30)
for just the smooth surface in lon/lat
SEout<- sim.spatialProcess(fit1E, xp=COGridPoints, drop.Z=TRUE, M= 30)

sim.spatialProcess 159

in practice M should be larger to reduce Monte Carlo error.
surSE<- apply(SEout, 2, sd)
image.plot(as.surface(COGridPoints, surSE))
points(fit1E$x, col="magenta", pch=16)

End(Not run)

data(ozone2)
set.seed(399)
fit to day 16 from Midwest ozone data set.

out<- Krig(ozone2$lon.lat, ozone2$y[16,], Covariance="Matern",
theta=1.0,smoothness=1.0, na.rm=TRUE)

NOTE theta =1.0 is not the best choice but
allows the sim.rf circulant embedding algorithm to
work without increasing the domain.

#six missing data locations
xp<- ozone2$lon.lat[is.na(ozone2$y[16,]),]

5 draws from process at xp given the data
this is an exact calculation
sim.Krig(out,xp, M=5)-> sim.out

Compare: stats(sim.out)[3,] to Exact: predictSE(out, xp)
simulations on a grid
NOTE this is approximate due to the bilinear interpolation
for simulating the unconditional random field.
also more grids points (nx and ny) should be used

sim.Krig.approx(out,M=5, nx=20,ny=20)-> sim.out

take a look at the ensemble members.

predictSurface(out, grid= list(x=sim.out$x, y=sim.out$y))-> look

zr<- c(40, 200)

set.panel(3,2)
image.plot(look, zlim=zr)
title("mean surface")
for (k in 1:5){
image(sim.out$x, sim.out$y, sim.out$z[,,k], col=tim.colors(), zlim =zr)
}

Not run:
data(ozone2)
y<- ozone2$y[16,]
good<- !is.na(y)
y<-y[good]

160 smooth.2d

x<- ozone2$lon.lat[good,]
O3.fit<- mKrig(x,y, Covariance="Matern", theta=.5,smoothness=1.0, lambda= .01)
set.seed(122)
O3.sim<- sim.mKrig.approx(O3.fit, nx=100, ny=100, gridRefinement=3, M=5)
set.panel(3,2)
surface(O3.fit)
for (k in 1:5){
image.plot(as.surface(O3.sim$predictionPoints, O3.sim$Ensemble[,k]))
}
conditional simulation at missing data
xMissing<- ozone2$lon.lat[!good,]
O3.sim2<- sim.mKrig.approx(O3.fit, xMissing, nx=80, ny=80,

gridRefinement=3, M=4)

End(Not run)
Not run:
#An example for fastTps:

data(ozone2)
y<- ozone2$y[16,]
good<- !is.na(y)
y<-y[good]
x<- ozone2$lon.lat[good,]
O3FitMLE<- fastTpsMLE(x,y, theta=1.5)
O3Obj<- fastTps(x,y, theta=1.5, lambda=O3FitMLE$lambda.MLE)

creating a quick grid list based on ranges of locations
grid.list<- fields.x.to.grid(O3Obj$x, nx=100, ny=100)
O3Sim<- sim.fastTps.approx(O3Obj,predictionPointsList=grid.list,M=5)

controlling the grids
xR<- range(x[,1], na.rm=TRUE)
yR<- range(x[,2], na.rm=TRUE)
simulationGridList<- list(x= seq(xR[1],xR[2],,400), y= seq(yR[1],yR[2], ,400))

very fine localized prediction grid
O3GridList<- list(x= seq(-90.5,-88.5,,200), y= seq(38,40,,200))
O3Sim<- sim.fastTps.approx(O3Obj, M=5, predictionPointsList=O3GridList,

simulationGridList = simulationGridList)
check
plot(O3Obj$x)
US(add=TRUE)
image.plot(as.surface(O3GridList,O3Sim$Ensemble[,1]), add=TRUE)
points(O3Obj$x, pch=16, col="magenta")

End(Not run)

smooth.2d Kernel smoother for irregular 2-d data

Description

An approximate Nadaraya Watson kernel smoother is obtained by first discretizing the locations to
a grid and then using convolutions to find and to apply the kernel weights. The main advantage of
this function is a smoother that avoids explicit looping.

smooth.2d 161

Usage

smooth.2d(Y, ind = NULL, weight.obj = NULL, setup = FALSE, grid = NULL,
x = NULL, nrow = 64, ncol = 64, surface = TRUE, cov.function =

gauss.cov, Mwidth = NULL, Nwidth = NULL, ...)

Arguments

Y A vector of data to be smoothed

ind Row and column indices that correspond to the locations of the data on regular
grid. This is most useful when smoothing the same locations many times. (See
also the x argument.)

weight.obj An object that has the FFT of the convolution kernel and other information (i.e.
the result from calling this with setup=TRUE).

setup If true creates a list that includes the FFT of the convolution kernel. In this case
the function will return this list. Default is false.

grid A list with components x and y being equally spaced values that define the grid.
Default are integers 1:nrow, 1:ncol. If x is given the ranges will be used to define
the grid.

x Actual locations of the Y values. Not needed if ind is specified.

nrow Number of points in the horizontal (x) axis of the grid. Not needed if grid is
specified the default is 64

ncol Number of points in the vertical (y) axis of the grid. Not needed if grid list is
specified the default is 64

surface If true (the default) a surface object is returned suitable for use by image, persp
or contour functions. If false then just the nrowXncol matrix of smoothed values
is returned.

cov.function S function describing the kernel function. To be consistent with the other spatial
function this is in the form of a covariance function. The only assumption is that
this be stationary. Default is the (isotropic) Gaussian.

Nwidth The size of the padding regions of zeroes when computing the (exact) convolu-
tion of the kernel with the data. The most conservative values are 2*nrow and
2*ncol, the default. If the kernel has support of say 2L+1 grid points then the
padding region need only be of size L+1.

Mwidth See Nwidth.

... Parameters that are passed to the smoothing kernel. (e.g. the scale parameter
theta for the exponential or gaussian)

Details

The irregular locations are first discretized to a regular grid (using as.image) then a 2d- FFT is
used to compute a Nadaraya-Watson type kernel estimator. Here we take advantage of two features.
The kernel estimator is a convolution and by padding the regular by zeroes where data is not ob-
sevred one can sum the kernel over irregular sets of locations. A second convolutions to find the
normalization of the kernel weights.

162 spam2lz

The kernel function is specified by an function that should evaluate with the kernel for two matrices
of locations. Assume that the kernel has the form: K(u-v) for two locations u and v. The function
given as the argument to cov.function should have the call myfun(x1,x2) where x1 and x2 are
matrices of 2-d locations if nrow(x1)=m and nrow(x2)=n then this function should return a mXn
matrix where the (i,j) element is K(x1[i,]- x2[j,]). Optional arguments that are included in the ...
arguments are passed to this function when it is used. The default kernel is the Gaussian and the
argument theta is the bandwidth. It is easy to write other other kernels, just use Exp.cov.simple as a
template.

Value

Either a matrix of smoothed values or a surface object. The surface object also has a component
’ind’ that gives the subscripts of the image matrix where the data is present.

Examples

Normal kernel smooth of the precip data with bandwidth of .5 (degree)
#
look<- smooth.2d(RMprecip$y, x=RMprecip$x, theta=.25)

finer resolution used in computing the smooth
look3<-smooth.2d(RMprecip$y, x=RMprecip$x, theta=.25, nrow=256,
ncol=256,Nwidth=32,
Mwidth=32)
if the width arguments were omitted the padding would create a
512X 512 matrix with the data filled in the upper 256X256 part.
with a bandwidth of .25 degrees the normal kernel is essentially zero
beyond 32 grid points from its center (about 6 standard deviations)
#
take a look:

#set.panel(2,1)
#image(look3, zlim=c(-8,12))
#points(RMprecip$x, pch=".")
#image(look, zlim =c(-8,12))
#points(RMprecip$x, pch=".")

bandwidth changed to .25, exponential kernel
look2<- smooth.2d(RMprecip$y, x=RMprecip$x, cov.function=Exp.cov,theta=.25)
#

spam2lz Conversion of formats for sparse matrices

spam2lz 163

Description

Some supporting functions that are internal to fields top level methods. These are used to convert
between the efficient but opaque format used by spam and more easily checked format based directly
on the row and column indices of non zero elements.

Usage

spind2full(obj)

spam2full(obj)

spind2spam(obj, add.zero.rows=TRUE)

spam2spind(obj)

Arguments

obj Either a list with the sparse index components (spind) or an obj of class spam.

add.zero.rows If TRUE an entire row is zero add a hard zero value to the element in the first
column for each zero row. The spam format requires at least one element in
each row to have an explicit value. It is OK if this value is zero but one must be
specified.

Details

The differencee in formats is best illustarted by an example:

A 4X5 sparse matrix:

[,1] [,2] [,3] [,4] [,5]
[1,] 1 9 0 0 33
[2,] 0 0 0 26 34
[3,] 3 11 0 27 35
[4,] 0 12 20 0 36

spind format is a list with components "ind", "ra" and "da" here is how the matrix above would be
encoded:

ind
I

[1,] 1 1
[2,] 1 2
[3,] 1 5
[4,] 2 4
[5,] 2 5
[6,] 3 1
[7,] 3 2

164 spatialProcess

[8,] 3 4
[9,] 3 5

[10,] 4 2
[11,] 4 3
[12,] 4 5

da
[1] 4 5

ra
[1] 1 9 33 26 34 3 11 27 35 12 20 36

spam format is an S4 class with slot names "entries", "colindices", "rowpointers" and "dimension".

entries

[1] 1 9 33 26 34 3 11 27 35 12 20 36

colindices

[1] 1 2 5 4 5 1 2 4 5 2 3 5

rowpointers

[1] 1 4 6 10 13

dimension

[1] 4 5

The row pointers are the position in the array of entries where the next row starts.

NOTE: It is possible for the spind format to have a missing row of all zeroes but this not allowed in
spam format and produces an error message.

Author(s)

Doug Nychka

See Also

as.spam

spatialProcess Estimates a spatial process model.

Description

For a given covariance function estimates the nugget (sigma^2) and process variance (rho) and the
range parameter (theta) by restricted maximum likelihood and then computes the spatial model
with these estimated parameters. Other parameters of the covariance are kept fixed and need to be
specified.

spatialProcess 165

Usage

spatialProcess(x, y, weights = rep(1, nrow(x)), Z = NULL,
mKrig.args = list(m = 2),
cov.function = "stationary.cov", cov.args = list(Covariance = "Matern",

smoothness = 1), theta = NULL, theta.start = NULL, lambda.start = 0.5,
theta.range = NULL,

abstol = 1e-04, na.rm = TRUE, verbose = FALSE, REML = FALSE, ...)

S3 method for class 'spatialProcess'
summary(object, ...)
S3 method for class 'spatialProcess'
print(x, digits = 4, ...)
S3 method for class 'spatialProcessSummary'
print(x, digits = 4, ...)
S3 method for class 'spatialProcess'
plot(x, digits = 4, which = 1:4, ...)

Arguments

x Observation locations

y Observation values

weights Weights for the error term (nugget) in units of reciprocal variance.

Z A matrix of extra covariates for the fixed part of spatial model. E.g. elevation
for fitting climate data over space.

mKrig.args Arguments passed to the mKrig function.

cov.function A character string giving the name of the covariance function for the spatial
component.

cov.args A list specifying parameters and other components of the covariance function.

theta If not NULL the range parameter for the covariance is fixed at this value.

theta.start Starting value for MLE fitting of the scale (aka range) parameter. If omitted the
starting value is taken from a grid search ove theta.

lambda.start Starting value for MLE fitting of the lambda parameter. Note lambda is the ratio
of the nugget variance to the process variance. In code variables this is sigma^2
divided by rho.

theta.range A range for the ML search to estimate theta. Default is based on quantiles of the
location pairwise distances.

na.rm If TRUE NAs are removed from the data.

object A spatialProcess object returned from the spatialProcess function.

REML If TRUE the parameters are found by restricted maximum likelihood.

verbose If TRUE print out intermediate information for debugging.

... Any other arguments that will be passed to the mKrig function and interpreted
as additional arguments to the covariance function. E.g. smoothness for the
Matern covariance.

166 spatialProcess

abstol The absolute tolerance bound used to judge convergence. This is applied to the
difference in log likelihood values.

digits Number of significant digits in printed summary

which The vector 1:4 or any subset of 1:4, giving the plots to draw. See the description
ofthese plots below.

Details

This function makes many choices for the user in terms of defaults and it is important to be aware
of these. The spatial model is

Y.k= P(x.k) + Z(x.k)%*%d2 + g(x.k) + e.k

where ".k" means subscripted by k, Y.k is the dependent variable observed at location x.k. P is
a low degree polynomial (default is a linear function in the spatial coordinates) and Z is a matrix
of covariates (optional) that enter as a linear model the fixed part. g is a mean zero, Gaussian
stochastic process with a marginal variance of rho and a scale (or range) parameter, theta. The
measurement errors, e.k, are assumed to be uncorrelated, normally distributed with mean zero and
standard deviation sigma. If weights are supplied then the variance of e is assumed to be sigma^2/
weights.

Perhaps the most important aspect of this function is that the range (theta), nugget (sigma**2) and
process variance (rho) parameters for the covariance are estimated by restricted maximum likeli-
hood and this is the model that is then used for spatial prediction. Geostatistics usaually refers to
sigma**2 + rho as the "sill" and often these parameters are estimated by variogram fitting rather
than maximum likelihood. To be consistent with spline models and to focus on the key part of
model we reparametrize as lambda= sigma**2/ rho and rho. Thinking about h as the spatial signal
and e as the noise lambda can be interpreted as the noise to signal variance ratio in this spatial
context.(See the comparision with fitting the geoR model in the examples section.)

The likelihood and the cross valdiation function can be concentrated to only depend on lambda
and theta and so in reported the optimiztation of these two criterion we focus on this form of the
parameters. Once lambda and theta are found, the MLE for rho has a closed form and of course
then sigma is then determined from lambda and rho.

Often the lambda parameter is difficult to interpret when covariates and a linear function of the
coordinates is included and also when the range becomes large relative to the size of the spatial
domain. For this reason it is convenient to report the effective degrees of freedom (also referred
to trA in R code and the output summaries) associated with the predicted surface or curve. This
measure has a one to one relationship with lamdba and is easier to interpret. For example an eff
degrees of freedom that is very small suggests that the surface is rwell represented by a low ordoer
polynomial. Degrees of freedom close to the number of locations indicates a surface that is close to
interpolating the observations and suggests a small or zero value for the nugget variance.

The default covariance model is assumed to follow a Matern with smoothness set to 1.0. This is
implementd using the stationary.cov covariance that can take a argument for the form of the
covariance, a sill and range parameters and possibily additional parameter might comtrol the shape.

See the example below how to switch to another model. (Note that the exponential is also part of
the Matern family with smoothness set to .5.)

The parameter estimation is done by MLESpatialProcess and the returned list from this function
is added to the Krig output object that is returned by this function. The estimate is a version of

spatialProcess 167

maximum likelihood where the observations are transfromed to remove the fixed linear part of the
model. If the user just wants to fix the range parameter theta then Krig can be used.

NOTE: The defaults for the optim function used in MLESpatialProcess are:

list(method = "BFGS",
control=list(fnscale = -1,

ndeps = rep(log(1.1),length(cov.params.start)+1),
abstol = abstol,
maxit = 20))

There is always a hazard in providing a simple to use method that makes many default choices
for the spatial model. As in any analysis be aware of these choices and try alternative models and
parameter values to assess the robustness of your conclusions. Also examine the residuals to check
the adequacy of the fit. See the examples below for some help in how to do this easily in fields.
Also see quilt.plot to get an quick plot of a spatial field to discern obvious spatial paterns.

summary method forms a list with class spatialProcessSummary that hasa subset of information
from the output object and also creates a table of the estimates of the linear parameters in the fixed
part of the model. With replacated fields there is an option to estimate different linear parameters
for each field (collapseFixedEffect = FALSE) and in this case a table is not created because
there is more than one estimate. See (Omega and fixedEffectsCov) in the mKrig object to build
the standard errors.

plot method provides a panel of 4 diagnositic plots of the fit. Use set.panel(2,2) to see all 4
at once. The third plot gives the likelihood and GCV functions as a function of lambda evalu-
ated at the global MLE for theta. This is based on the gird evaluations in the component MLE-
Info$MLEProfileLambda. The fourth plot is a profile likelihood trace for theta having maximized
over lambda and is based on the component MLEInfo$MLEGrid.

print method prints the spatialProcessSummary object of the fit, adding some details and expla-
nations.

Value

An object of classes mKrig and SpatialProcess. The main difference from mKrig is an extra
component, MLEInfo that has the results of the profile likelihood grid evaluation over theta (having
maximizing lamdba), joint maximization over theta and lambda, and a grid evaluation over lambda
with theta fixed at its MLE.

Author(s)

Doug Nychka

See Also

Tps, MLESpatialProcess, mKrigMLEGrid, mKrigMLEJoint, plot.Krig, predict.mKrig, predictSE.mKrig

168 spatialProcess

Examples

data(ozone2)
x is a two column matrix where each row is a location in lon/lat
coordinates

x<- ozone2$lon.lat
y is a vector of ozone measurements at day 16 a the locations.

y<- ozone2$y[16,]
obj<- spatialProcess(x, y)

summary of model
summary(obj)

diagnostic plots
set.panel(2,2)
plot(obj)

plot 1 data vs. predicted values
plot 2 residuals vs. predicted
plot 3 criteria to select the smoothing
parameter lambda = sigma^2 / rho
the x axis has transformed lambda
in terms of effective degrees of freedom
to make it easier to interpret
Note that here the GCV function is minimized
while the REML is maximzed.
plot 4 the log profile likelihood used to
determine theta.
#
predictions on a grid

surface(obj)
#(see also predictSurface for more control on evaluation grid
and plotting)
#

Not run:
working with covariates and filling in missing station data
using an ensemble method
see the example under help(sim.spatialProcess) to see how to
handle a conditional simulation on a grid of predictions with
covariates.
data(COmonthlyMet)

fit1E<- spatialProcess(CO.loc,CO.tmin.MAM.climate, Z=CO.elev,
theta.range= c(.25, 2.0))

set.panel(2,2)
plot(fit1E)

conditional simulation at missing data
notThere<- is.na(CO.tmin.MAM.climate)
xp <- CO.loc[notThere,]
Zp <- CO.elev[notThere]
infill<- sim.spatialProcess(fit1E, xp=xp,

Z= Zp, M= 10)
#
interpretation is that these infilled values are all equally plausible
given the observations and also given the estimated covariance model

spatialProcess 169

#
for extra credit one could now standardized the infilled values to have
conditional mean and variance from the exact computations
e.g. predict(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good])
and predictSE(fit1E, xp=CO.loc[!good,], Z= CO.elev[!good])
with these standardization one would still preserve the correlations
among the infilled values that is also important for considering them as a
multivariate prediction.
conditional simulation on a grid but not using the covariate of elevation
fit2<- spatialProcess(CO.loc,CO.tmin.MAM.climate,

theta.range= c(.25, 2.0))
note larger range parameter
create 2500 grids using handy function
gridList <- fields.x.to.grid(fit2$x, nx=50,ny=50)
xGrid<- make.surface.grid(gridList)
ensemble<- sim.spatialProcess(fit2, xp=xGrid, M= 5)
this is an "n^3" computation so increasing the grid size
can slow things down for computation
image.plot(as.surface(xGrid, ensemble[1,]))
set.panel()

End(Not run)

Not run:
data(ozone2)
x is a two column matrix where each row is a location in lon/lat
coordinates

x<- ozone2$lon.lat
y is a vector of ozone measurements at day 16 a the locations.

y<- ozone2$y[16,]
a comparison to using an exponential and Wendland covariance function
and great circle distance -- just to make range easier to interpret.

obj <- spatialProcess(x, y,
Distance = "rdist.earth")

obj2<- spatialProcess(x, y,
cov.args = list(Covariance = "Exponential"),

Distance = "rdist.earth")
obj3<- spatialProcess(x, y,

cov.args = list(Covariance = "Wendland",
dimension = 2,

k = 2),
Distance = "rdist.earth")

obj2 could be also be fit using the argument:
cov.args = list(Covariance = "Matern", smoothness=.5)
#
Note very different range parameters - BTW these are in miles
but similar nugget variances.
obj$pars
obj2$pars
obj3$pars
since the exponential is Matern with smoothness == .5 the first two
fits can be compared in terms of their likelihoods
the REML value is slightly higher for obj verses obj2 (598.4 > 596.7)

170 spatialProcess

these are the _negative_ log likelihoods so suggests a preference for the
exponential model
#
does it really matter in terms of spatial prediction?
set.panel(3,1)
surface(obj)
US(add=TRUE)
title("Matern sm= 1.0")
surface(obj2)
US(add=TRUE)
title("Matern sm= .5")
surface(obj3)
US(add=TRUE)
title("Wendland k =2")
prediction standard errors
these take a while because prediction errors are based
directly on the Kriging weight matrix
see mKrig for an alternative.
set.panel(2,1)
out.p<- predictSurfaceSE(obj, nx=40,ny=40)
surface(out.p)
US(add=TRUE)
title("Matern sm= 1.0")
points(x, col="magenta")
#
out.p<- predictSurfaceSE(obj, nx=40,ny=40)
surface(out.p)
US(add=TRUE)
points(x, col="magenta")
title("Matern sm= .5")

End(Not run)
set.panel(1,1)

Not run:
comparison with GeoR

data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
good<-!is.na(y)
x1<- x[good,]
y1<- y[good]

obj<- spatialProcess(x, y, mKrig.args= list(m=1), smoothness = .5)

library(geoR)
ml.n <- likfit(coords= x1, data=y1, ini = c(570, 3), nug = 50)
compare to
stuffFields<- obj$MLEInfo$MLEJoint$summary[c(1,3,4,5)]
stuffGeoR<- c(ml.n$loglik, ml.n$phi, sqrt(ml.n$nugget),ml.n$sigmasq)
test.for.zero(max(stuffFields/stuffGeoR), 1, tol=.004)

End(Not run)

splint 171

splint Cubic spline interpolation

Description

A fast, FORTRAN based function for cubic spline interpolation.

Usage

splint(x, y, xgrid, wt=NULL, derivative=0,lam=0, df=NA, lambda=NULL, nx=NULL)

Arguments

x The x values that define the curve or a two column matrix of x and y values.

y The y values that are paired with the x’s.

xgrid The grid to evaluate the fitted cubic interpolating curve.

derivative Indicates whether the function or a a first or second derivative should be evalu-
ated.

wt Weights for different obsrevations in the scale of reciprocal variance.

lam Value for smoothing parameter. Default value is zero giving interpolation.

lambda Same as lam just to make this easier to remember.

df Effective degrees of freedom. Default is to use lambda =0 or a df equal to the
number of observations.

nx If not NULL this should be the number of points to evaluate on an equally spaced
grid in the range of x

Details

Fits a piecewise interpolating or smoothing cubic polynomial to the x and y values. This code is
designed to be fast but does not many options in sreg or other more statistical implementations. To
make the solution well posed the the second and third derivatives are set to zero at the limits of the
x values. Extrapolation outside the range of the x values will be a linear function.

It is assumed that there are no repeated x values; use sreg followed by predict if you do have
replicated data.

Value

A vector consisting of the spline evaluated at the grid values in xgrid.

References

See Additive Models by Hastie and Tibshriani.

See Also

sreg, Tps

172 sreg

Examples

x<- seq(0, 120,,200)

an interpolation
splint(rat.diet$t, rat.diet$trt,x)-> y

plot(rat.diet$t, rat.diet$trt)
lines(x,y)
#(this is weird and not appropriate!)

the following two smooths should be the same

splint(rat.diet$t, rat.diet$con,x, df= 7)-> y1

sreg function has more flexibility than splint but will
be slower for larger data sets.

sreg(rat.diet$t, rat.diet$con, df= 7)-> obj
predict(obj, x)-> y2

in fact predict.sreg interpolates the predicted values using splint!

the two predicted lines (should) coincide
lines(x,y1, col="red",lwd=2)
lines(x,y2, col="blue", lty=2,lwd=2)

sreg Cubic smoothing spline regression

Description

Fits a cubic smoothing spline to univariate data. The amount of smoothness can be specified or
estimated from the data by GCV. <!–brief description–>

Usage

sreg(x, y, lambda = NA, df = NA, offset = 0,
weights = rep(1, length(x)), cost = 1,
nstep.cv = 80, tol=1e-5,find.diagA = TRUE, trmin = 2.01,
trmax = NA, lammin = NA,
lammax = NA, verbose = FALSE,
do.cv = TRUE, method = "GCV", rmse = NA,
na.rm = TRUE)

S3 method for class 'sreg'
predict(object, x, derivative = 0, model = 1,...)

sreg 173

Arguments

x Vector of x value

y Vector of y values

lambda Single smoothing parameter or a vector of values . If omitted smoothing param-
eter estimated by GCV. NOTE: lam here is equivalent to the value lambda*N in
Tps/Krig where N is the number of unique observations. See example below.

object An sreg object.

derivative Order of deriviatve to evaluate. Must be 0,1, or 2.

df Amount of smoothing in term of effective degrees of freedom for the spline

offset an offset added to the term cost*degrees of freedom in the denominator of the
GCV function. (This would be used for adjusting the df from fitting other mod-
els such as in back-fitting additive models.)

model Specifies which model parameters to use.

weights A vector that is proportional to the reciprocal variances of the errors.

cost Cost value to be used in the GCV criterion.

nstep.cv Number of grid points of smoothing parameter for GCV grid search.

tol Tolerance for convergence in minimizing the GCV or other criteria to estimate
the smoothing parameter.

find.diagA If TRUE calculates the diagonal elements of the smoothing matrix. The effective
number of degrees of freedom is the sum of these diagonal elements. Default
is true. This requires more stores if a grid of smoothing parameters is passed. (
See returned values below.)

trmin Sets the minimum of the smoothing parameter range for the GCV grid search in
terms of effective degrees of freedom.

trmax Sets the maximum of the smoothing parameter range for the GCV grid search
in terms of effective degrees of freedom. If NA the range is set to .99 of number
of unique locations.

lammin Same function as trmin but in the lambda scale.

lammax Same function as trmax but in the lambda scale.

verbose Print out all sorts of debugging info. Default is falseof course!

do.cv Evaluate the spline at the GCV minimum. Default is true.

method A character string giving the method for determining the smoothing parameter.
Choices are "GCV", "GCV.one", "GCV.model", "pure error", "RMSE". Default
is "GCV".

rmse Value of the root mean square error to match by varying lambda.

na.rm If TRUE NA’s are removed from y before analysis.

... Other optional arguments to pass to the predict function.

174 sreg

Details

MODEL: The assumed model is Y.k=f(x.k) +e.k where e.k should be approximately normal and
independent errors with variances sigma**2/w.k

ESTIMATE: A smoothing spline is a locally weighted average of the y’s based on the relative
locations of the x values. Formally the estimate is the curve that minimizes the criterion:

(1/n) sum(k=1,n) w.k(Y.k - f(X.k))**2 + lambda R(f)

where R(f) is the integral of the squared second derivative of f over the range of the X values.
Because of the inclusion of the (1/n) in the sum of squares the lambda parameter in sreg corresponds
to the a value of lambda*n in the Tps function and in the Krig function.

The solution to this minimization is a piecewise cubic polynomial with the join points at the unique
set of X values. The polynomial segments are constructed so that the entire curve has continuous
first and second derivatives and the second and third derivatives are zero at the boundaries. The
smoothing has the range [0,infinity]. Lambda equal to zero gives a cubic spline interpolation of the
data. As lambda diverges to infinity (e.g lambda =1e20) the estimate will converge to the straight
line estimated by least squares.

The values of the estimated function at the data points can be expressed in the matrix form:

predicted values= A(lambda)Y

where A is an nXn symmetric matrix that does NOT depend on Y. The diagonal elements are the
leverage values for the estimate and the sum of these (trace(A(lambda)) can be interpreted as the
effective number of parameters that are used to define the spline function. IF there are replicate
points the A matrix is the result of finding group averages and applying a weighted spline to the
means. The A matrix is also used to find "Bayesian" confidence intervals for the estimate, see the
example below.

CROSS-VALIDATION:The GCV criterion with no replicate points for a fixed value of lambda is

(1/n)(Residual sum of squares)/((1-(tr(A)-offset)*cost + offset)/n)**2,

Usually offset =0 and cost =1. Variations on GCV with replicate points are described in the docu-
mentation help file for Krig. With an appropriate choice for the smoothing parameter, the estimate
of sigma**2 is found by (Residual sum of squares)/tr(A).

COMPUTATIONS: The computations for 1-d splines exploit the banded structure of the matrices
needed to solve for the spline coefficients. Banded structure also makes it possible to get the diago-
nal elements of A quickly. This approach is different from the algorithms in Tps and tremendously
more efficient for larger numbers of unique x values (say > 200). The advantage of Tps is getting
"Bayesian" standard errors at predictions different from the observed x values. This function is
similar to the S-Plus smooth.spline. The main advantages are more information and control over
the choice of lambda and also the FORTRAN source code is available (css.f).

See also the function splint which is designed to be a bare bones but fast smoothing spline.

Value

Returns a list of class sreg. Some of the returned components are

call Call to the function

yM Vector of dependent variables. If replicated data is given these are the replicate
group means.

sreg 175

xM Unique x values matching the y’s.

weights Proportional to reciprocal variance of each data point.

weightsM Proportional to reciprocal pooled variance of each replicated mean data value
(xM).

x Original x data.

y Original y data.

method Method used to find the smoothing parameter.

pure.ss Pure error sum of squares from replicate groups.
shat.pure.error

Estimate of sigma from replicate groups.

shat.GCV Estimate of sigma using estimated lambda from GCV minimization

trace Effective degrees of freedom for the spline estimate(s)

gcv.grid Values of trace, GCV, shat. etc. for a grid of smoothing parameters. If lambda (
or df) is specified those values are used.

lambda.est Summary of various estimates of the smoothing parameter

lambda If lambda is specified the passed vector, if missing the estimated value.

residuals Residuals from spline(s). If lambda or df is specified the residuals from these
values. If lambda and df are omitted then the spline having estimated lambda.
This will be a matrix with as many columns as the values of lambda.

fitted.values Matrix of fitted values. See notes on residuals.

predicted A list with components x and y. x is the unique values of xraw in sorted order.
y is a matrix of the spline estimates at these values.

eff.df Same as trace.

diagA Matrix containing diagonal elements of the smoothing matrix. Number of columns
is the number of lambda values. WARNING: If there is replicated data the di-
agonal elements are those for the smoothing the group means at the unique x
locations.

See Also

Krig, Tps, splint

Examples

fit a GCV spline to
control group of rats.
fit<- sreg(rat.diet$t,rat.diet$con)
summary(fit)

set.panel(2,2)
plot(fit) # four diagnostic plots of fit
set.panel()

predict(fit) # predicted values at data points

176 sreg

xg<- seq(0,110,,50)
sm<-predict(fit, xg) # spline fit at 50 equally spaced points
der.sm<- predict(fit, xg, deriv=1) # derivative of spline fit
set.panel(2,1)
plot(fitx, fity) # the data
lines(xg, sm) # the spline
plot(xg,der.sm, type="l") # plot of estimated derivative
set.panel() # reset panel to 1 plot

the same fit using the thin plate spline numerical algorithms
sreg does not scale the obs so instruct Tps not to sacel either
this will make lambda comparable within factor of n.

fit.tps<-Tps(rat.diet$t,rat.diet$con, scale="unscaled")
summary(fit.tps)

compare sreg and Tps results to show the adjustment to lambda.

predict(fit)-> look
predict(fit.tps, lambda=fit$lambda*fit$N)-> look2
test.for.zero(look, look2) # silence means it checks to 1e-8

finding approximate standard errors at observations

SE<- fit$shat.GCV*sqrt(fit$diagA)

compare to predictSE(fit.tps) differences are due to
slightly different lambda values and using shat.MLE instad of shat.GCV
#

95% pointwise prediction intervals
Zvalue<- qnorm(.0975)
upper<- fit$fitted.values + Zvalue* SE
lower<- fit$fitted.values - Zvalue* SE
#
conservative, simultaneous Bonferroni bounds
#
ZBvalue<- qnorm(1- .025/fit$N)
upperB<- fit$fitted.values + ZBvalue* SE
lowerB<- fit$fitted.values - ZBvalue* SE
#
take a look

plot(fitx, fity)
lines(fit$predicted, lwd=2)
matlines(fit$x,
cbind(lower, upper, lowerB, upperB), type="l", col=c(2,2,4,4), lty=1)
title("95 pct pointwise and simultaneous intervals")
or try the more visually honest:
plot(fitx, fity)
lines(fit$predicted, lwd=2)
segments(fit$x, lowerB, fit$x, upperB, col=4)

stats 177

segments(fit$x, lower, fit$x, upper, col=2, lwd=2)
title("95 pct pointwise and simultaneous intervals")

set.panel(1,1)

stats Calculate summary statistics

Description

Various summary statistics are calculated for different types of data.

Usage

stats(x, by)

Arguments

x The data structure to compute the statistics. This can either be a vector, matrix
(data sets are the columns), or a list (data sets are the components).

by If x is a vector, an optional vector (either character or numerical) specifying the
categories to divide x into separate data sets.

Details

Stats breaks x up into separate data sets and then calls describe to calculate the statistics. Statis-
tics are found by columns for matrices, by components for a list and by the relevent groups when
a numeric vector and a by vector are given. The default set of statistics are the number of (non-
missing) observations, mean, standard deviation, minimum, lower quartile, median, upper quartile,
maximum, and number of missing observations. If any data set is nonnumeric, missing values are
returned for the statistics. The by argument is a useful way to calculate statistics on parts of a data
set according to different cases.

Value

A matrix where rows index the summary statistics and the columns index the separate data sets.

See Also

stats.bin, stats.bplot, describe

Examples

#Statistics for 8 normal random samples:
zork<- matrix(rnorm(200), ncol=8)
stats(zork)

zork<- rnorm(200)
id<- sample(1:8, 200, replace=TRUE)
stats(zork, by=id)

178 stats.bin

stats.bin Bins data and finds some summary statistics.

Description

Cuts up a numeric vector based on binning by a covariate and applies the fields stats function to
each group

Usage

stats.bin(x, y, N = 10, breaks = NULL)

Arguments

x Values to use to decide bin membership

y A vector of data

N Number of bins. If the breaks is missing there are N bins equally spaced on the
range of x.

breaks The bin boundaries. If there are N+1 of these there will be N bins. The bin
widths can be unequal.

Value

A list with several components. stats is a matrix with columns indexing the bins and rows being
summary statistics found by the stats function. These are: number of obs, mean, sd, min, quartiles,
max and number of NA’s. (If there is no data for a given bin, NA’s are filled in.) breaks are the
breaks passed to the function and centers are the bin centers.

See Also

bplot, stats

Examples

u<- rnorm(2000)
v<- rnorm(2000)
x<- u
y<- .7*u + sqrt(1-.7**2)*v

look<- stats.bin(x,y)
look$stats["Std.Dev.",]

data(ozone2)
make up a variogram day 16 of Midwest daily ozone ...
look<- vgram(ozone2$lon.lat, c(ozone2$y[16,]), lon.lat=TRUE)

break points
brk<- seq(0, 250,,40)

summary.Krig 179

out<-stats.bin(look$d, look$vgram, breaks=brk)
plot bin means, and some quantiles Q1, median, Q3
matplot(out$centers, t(out$stats[c("mean", "median","Q1", "Q3"),]),
type="l",lty=c(1,2,2,2), col=c(3,4,3,4), ylab="ozone PPB")

summary.Krig Summary for Krig or spatialProcess estimated models.

Description

Creates a list of summary results including estimates for the nugget variance (sigma) and the
smoothing parameter (lambda). This list is usually printed using a "print.summary" function for
nice formatting.

Usage

S3 method for class 'Krig'
summary(object, digits=4,...)

Arguments

object A Krig or spatialProcess object.

digits Number of significant digits in summary.

... Other arguments to summary

Details

This function is a method for the generic function summary for class Krig. The results are formatted
and printed using print.summary.Krig.

Value

Gives a summary of the Krig object. The components include the function call, number of observa-
tions, effective degrees of freedom, residual degrees of freedom, root mean squared error, R-squared
and adjusted R-squared, log10(lambda), cost, GCV minimum and a summary of the residuals.

See Also

Krig, summary, print.summary.Krig, summary.spatialProcess

Examples

fit<- Krig(ChicagoO3$x, ChicagoO3$y, theta=100)
summary(fit) # summary of fit

180 supportsArg

summary.ncdf Summarizes a netCDF file handle

Description

Provides a summary of the variable names and sizes from the handle returned from netCDF file.

Usage

S3 method for class 'ncdf'
summary(object,...)

Arguments

object The "handle" returned by the read.ncdf function from the ncdf package.

... Other arguments to pass to this function. Currently, no other arguments are used.

Details

This function is out of place in fields but was included because often large geophysical data sets
are in netCDF format and the ncdf R package is also needed. To date the summary capability in
the ncdf package is limited and this function is used to supplement it use. The function is also a a
useful device to see how the ncdf object is structured.

Author(s)

D. Nychka

See Also

ncdf

supportsArg Tests if function supports a given argument

Description

Tests if the given function supports the given argument. Commonly used in fields code for deter-
mining if a covariance function supports precomputation of the distance matrix and evaluation of
the covariance matrix over only the upper triangle.

Usage

supportsArg(fun=stationary.cov, arg)

surface.Krig 181

Arguments

fun The function tested for support for whether it supports the argument arg as input

arg The argument to check if fun supports using as input

Details

Currently only stationary.cov and Exp.cov support evaluation of the covariance matrix over the
upper triangle (and diagonal) only via the onlyUpper argument and distance matrix precomputation
via the distMat argument.

Value

A logical indicating whether the given function supports use of the given argument

Author(s)

John Paige

See Also

stationary.cov, Exp.cov These covariance functions have the onlyUpper option allowing the
user to evaluate the covariance matrix over the upper triangle and diagonal only and to pass a
precomputed distance matrix

Examples

################
#Test covariance function to see if it supports evaluation of
#covariance matrix over upper triangle only
################

supportsArg(Rad.cov, "distMat")
supportsArg(Rad.cov, "onlyUpper")
supportsArg(stationary.cov, "distMat")
supportsArg(stationary.cov, "onlyUpper")
supportsArg(Exp.cov, "distMat")
supportsArg(Exp.cov, "onlyUpper")

surface.Krig Plots a surface and contours

Description

Creates different plots of the fitted surface of a Krig object. This is a quick way to look at the fitted
function over reasonable default ranges.

182 surface.Krig

Usage

S3 method for class 'Krig'
surface(
object, grid.list = NULL, extrap = FALSE,

graphics.reset = NULL, xlab = NULL, ylab = NULL, main
= NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, ...)

S3 method for class 'mKrig'
surface(
object, grid.list = NULL, extrap = FALSE,

graphics.reset = NULL, xlab = NULL, ylab = NULL, main
= NULL, zlab = NULL, zlim = NULL, levels = NULL, type
= "C", nx = 80, ny = 80, ...)

Arguments

object A Krig object or an mKrig object.
grid.list A list with as many components as variables describing the surface. All com-

ponents should have a single value except the two that give the grid points for
evaluation. If the matrix or data frame has column names, these must appear in
the grid list. If grid.list is missing an the surface has just two dimensions the
grid is based on the ranges of the observed data.

extrap Extrapolation beyond the range of the data. If false only the convex hull of the
observations is plotted. Default is false.

graphics.reset Reset to original graphics parameters after function plotting.
type Type of plot as a character. "p" perspective plot (persp). "c" contour plot (con-

tour). "b" a two panel figure with perspective and contour plots. "I" image plot
with legend strip (image.plot). "C" image plot with contours overlaid. Image
with contour is the default.

main Title of plot
xlab x axis label
ylab y axis label
zlab z axis label if "p" or "b" type is used.
zlim Z limits passed to persp
levels Contour levels passed to contour.
nx Number of grid points to evaluate surface on the horizontal axis (the x-axis).
ny Number of grid points to evaluate surface on the vertical axis (the y-axis).
... Any other plotting options.

Details

This function is essentially a combination of predictSurface and plot.surface. It may not always
give a great rendition but is easy to use for checking the fitted surface. The default of extrap=F is
designed to discourage looking at the estimated surface outside the range of the observations.

NOTE: that any Z covariates will b edropped and only the spatial part of the model will be evaluated.

The Engines: 183

See Also

Krig predictSurface, plot.surface, image.plot

Examples

fit<- Krig(ChicagoO3$x,ChicagoO3$y, theta=30) # krig fit

#Image plot of surface with nice, smooth contours and shading

surface(fit, type="C", nx=128, ny=128)

The Engines: Basic linear algebra utilities and other computations supporting the
Krig function.

Description

These are internal functions to Krig that compute the basic matrix decompositions or solve the linear
systems needed to evaluate the Krig/Tps estimate. Others listed below do some simple housekeep-
ing and formatting. Typically they are called from within Krig but can also be used directly if passed
a Krig object list.

Usage

Krig.engine.default(out, verbose = FALSE)
Krig.engine.knots(out, verbose = FALSE)
Krig.engine.fixed(out, verbose=FALSE, lambda=NA)

Krig.coef(out, lambda = out$lambda, y = NULL, yM = NULL, verbose = FALSE)
Krig.make.u(out, y = NULL, yM = NULL, verbose = FALSE)
Krig.check.xY(x, Y,Z, weights, na.rm, verbose = FALSE)
Krig.cor.Y(obj, verbose = FALSE)
Krig.transform.xY(obj, knots, verbose = FALSE)

Krig.make.W(out, verbose=FALSE)
Krig.make.Wi (out, verbose=FALSE)

Arguments

out A complete or partial Krig object. If partial it must have all the information
accumulated to this calling point within the Krig function.

obj Same as out.

verbose If TRUE prints out intermediate results for debugging.

lambda Value of smoothing parameter "hard wired" into decompositions. Default is NA,
i.e. use the value in out$lambda.

184 The Engines:

y New y vector for recomputing coefficients. OR for %d*% a vector or matrix.

yM New y vector for recomputing coefficients but the values have already been col-
lapsed into replicate group means.

Y raw data Y vector

x raw x matrix of spatial locations OR In the case of %d*%, y is either a matrix or
a vector. As a vector, y, is interpreted to be the elements of a digaonal matrix.

weights Raw weights vector passed to Krig

Z Raw vector or matrix of additional covariates.

na.rm NA action logical values passed to Krig

knots Raw knots matrix passed to Krig

Details

ENGINES:

The engines are the code modules that handle the basic linear algebra needed to computed the esti-
mated curve or surface coefficients. All the engine work on the data that has been reduced to unique
locations and possibly replicate group means with the weights adjusted accordingly. All information
needed for the decomposition are components in the Krig object passed to these functions.

Krig.engine.default finds the decompositions for a Universal Kriging estimator. by simulta-
neously diagonalizing the linear system system for the coefficients of the estimator. The main
advantage of this form is that it is fairly stable numerically, even with ill-conditioned covariance
matrices with lambda > 0. (i.e. provided there is a "nugget" or measure measurement error. Also
the eigendecomposition allows for rapid evaluation of the likelihood, GCV and coefficients for new
data vectors under different values of the smoothing parameter, lambda.

Krig.engine.knots finds the decompositions in the case that the covariance is evaluated at arbi-
trary locations possibly different than the data locations (called knots). The intent of these decom-
positions is to facilitate the evaluation at different values for lambda. There will be computational
savings when the number of knots is less than the number of unique locations. (But the knots
are as densely distributed as the structure in the underlying spatial process.) This function call
fields.diagonalize, a function that computes the matrix and eigenvalues that simultaneous diago-
nalize a nonnegative definite and a positive definite matrix. These decompositions also facilitate
multiple evaluations of the likelihood and GCV functions in estimating a smoothing parameter and
also multiple solutions for different y vectors.

Krig.engine.fixed are specific decomposition based on the Cholesky factorization assuming that
the smoothing parameter is fixed. This is the only case that works in the sparse matrix. Both knots
and the full set of locations can be handled by this case. The difference between the "knots" engine
above is that only a single value of lambda is considered in the fixed engine.

OTHER FUNCTIONS:

Krig.coef Computes the "c" and "d" coefficients to represent the estimated curve. These coeffi-
cients are used by the predict functions for evaluations. Krig.coef can be used outside of the call to
Krig to recompute the fit with different Y values and possibly with different lambda values. If new
y values are not passed to this function then the yM vector in the Krig object is used. The internal
function Krig.ynew sorts out the logic of what to do and use based on the passed arguments.

The Engines: 185

Krig.make.u Computes the "u" vector, a transformation of the collapsed observations that allows
for rapid evaluation of the GCV function and prediction. This only makes sense when the decom-
position is WBW or DR, i.e. an eigen decomposition. If the decompostion is the Cholesky based
then this function returns NA for the u component in the list.

Krig.check.xY Checks for removes missing values (NAs).

Krig.cor.Y Standardizes the data vector Y based on a correlation model.

Krig.transform.xY Finds all replicates and collapse to unique locations and mean response and
pooled variances and weights. These are the xM, yM and weightsM used in the engines. Also scales
the x locations and the knots according to the transformation.

Krig.make.W and Krig.make.Wi These functions create an off-diagonal weight matrix and its sym-
metric square root or the inverse of the weight matrix based on the information passed to Krig. If
out$nondiag is TRUE W is constructed based on a call to the passed function wght.function along
with additional arguments. If this flag is FALSE then W is just diag(out$weightsM) and the
square root and inverse are computed directly.

%d*% Is a simple way to implement efficient diagonal multiplications. x%d*%y is interpreted to
mean diag(x)%*% y if x is a vector. If x is a matrix then this becomes the same as the usual matrix
multiplication.

Returned Values

ENGINES:

The returned value is a list with the matrix decompositions and other information. These are incor-
porated into the complete Krig object.

Common to all engines:

decomp Type of decomposition

nt dimension of T matrix

np number of knots

Krig.engine.default:

u Transformed data using eigenvectors.

D Eigenvalues

G Reduced and weighted matrix of the eigenvectors

qr.T QR decomposition of fixed regression matrix

V The eigenvectors

Krig.engine.knots:

u A transformed vector that is based on the data vector.

D Eigenvalues of decomposition

G Matrix from diagonalization

qr.T QR decomposition of the matrix for the fixed component. i.e. sqrt(Wm)%*%T

pure.ss pure error sums of squares including both the variance from replicates and also the sums
of squared residuals from fitting the full knot model with lambda=0 to the replicate means.

186 The Engines:

Krig.engine.fixed:

d estimated coefficients for the fixed part of model

c estimated coefficients for the basis functions derived from the covariance function.

Using all data locations

qr.VT QR decomposition of the inverse Cholesky factor times the T matrix.

MC Cholesky factor

Using knot locations

qr.Treg QR decomposition of regression matrix modified by the estimate of the nonparametric (or
spatial) component.

lambda.fixed Value of lambda used in the decompositions

OTHER FUNCTIONS:

Krig.coef

yM Y values as replicate group means

shat.rep Sample standard deviation of replicates

shat.pure.error Same as shat.rep

pure.ss Pure error sums of squares based on replicates

c The "c" basis coefficients associated with the covariance or radial basis functions.

d The "d" regression type coefficients that are from the fixed part of the model or the linear null
space.

u When the default decomposition is used the data vector transformed by the orthogonal matrices.
This facilitates evaluating the GCV function at different values of the smoothing parameter.

Krig.make.W

W The weight matrix

W2 Symmetric square root of weight matrix

Krig.make.Wi

Wi The inverse weight matrix

W2i Symmetric square root of inverse weight matrix

Author(s)

Doug Nychka

See Also

Krig, Tps

tim.colors 187

Examples

Krig(ChicagoO3$x, ChicagoO3$y, theta=100)-> out

Krig.engine.default(out)-> stuff

compare "stuff" to components in out$matrices

look1<- Krig.coef(out)
look1$c
compare to out$c

look2<- Krig.coef(out, yM = ChicagoO3$y)
look2$c
better be the same even though we pass as new data!

tim.colors Some useful color tables for images and tools to handle them.

Description

Several color scales useful for image plots: a pleasing rainbow style color table patterned after that
used in Matlab by Tim Hoar and also some simple color interpolation schemes between two or more
colors. There is also a function that converts between colors and a real valued vector.

Usage

tim.colors(n = 64, alpha=1.0)

larry.colors()

snow.colors(n=256, alpha=1)

two.colors(n=256, start="darkgreen", end="red", middle="white",
alpha=1.0)

designer.colors(n=256, col= c("darkgreen", "white", "darkred"), x=
seq(0,1,, length(col)) ,alpha=1.0)

color.scale(z, col=tim.colors(256), zlim =NULL,
transparent.color="white", eps= 1e-8)

fieldsPlotColors(col,...)

188 tim.colors

Arguments

alpha The transparency of the color – 1.0 is opaque and 0 is transparent. This is useful
for overlays of color and still being able to view the graphics that is covered.

n Number of color levels. The setting n=64 is the orignal definition.

start Starting color for lowest values in color scale

end Ending color.

middle Color scale passes through this color at halfway

col A list of colors (names or hex values) to interpolate

x Positions of colors on a [0,1] scale. Default is to assume that the x values are
equally spacesd from 0 to 1.

z Real vector to encode in a color table.

zlim Range to use for color scale. Default is the range(z) inflated by 1- eps and
1+eps.

transparent.color

Color value to use for NA’s or values outside zlim

eps A small inflation of the range to avoid boundary values of z being coded as NAs

... Additional plotting arguments to codeimage.plot

Details

The color in R can be represented as three vectors in RGB coordinates and these coordinates are
interpolated separately using a cubic spline to give color values that intermediate to the specified
colors.

Ask Tim Hoar about tim.colors! He is a Mattlab black belt and this is his favorite scale in that sys-
tem. two.colors is really about three different colors. For other colors try fields.color.picker
to view possible choices. start="darkgreen",end="azure4" are the options used to get a nice
color scale for rendering aerial photos of ski trails. (See https://github.com/dnychka/MJProject.)
larry.colors is a 13 color palette used by Larry McDaniel (retired software engineer from NCAR)
and is particularly useful for visualizing fields of climate variables.

snow.colors is the scale used by Will Klieber’s team for visualizing snow cover from remotely
sensed data products. See the commented code for the script as to how how this was formed from
an orignal raw 256 level scale. Note the that first color in this table is grey and is desigend to
represent the minimum value of the range (e.g. 0). If the image in in percent snow cover then
zlim=c(0,100) would make sense as a range to fit grey pixels to zero and white to 100 percent.

designer.color is the master function for the otther scales. It can be useful if one wants to
customize the color table to match quantiles of a distribution. e.g. if the median of the data is at .3
with respect to the range then set x equal to c(0,.3,1) and specify three colors to provide a transtion
that matches the median value. In fields language this function interpolates between a set of colors
at locations x. While you can be creative about these colors just using another color scale as the
basis is easy. For example

designer.color(256,rainbow(4),x= c(0,.2,.8,1.0))

leaves the choice of the colors to Dr. R after a thunderstorm. See also colorBrewer to choose
sequences of colors that form a good palette.

https://github.com/dnychka/MJProject

tim.colors 189

color.scale assigns colors to a numerical vector in the same way as the image function. This is
useful to kept the assigment of colors consistent across several vectors by specifiying a common
zlim range.

plotColorScale A simple function to plot a vector of colors to examine their values.

Value

A vector giving the colors in a hexadecimal format, two extra hex digits are added for the alpha
channel.

See Also

topo.colors, terrain.colors, image.plot, quilt.plot, grey.scale, fields.color.picker

Examples

tim.colors(10)
returns an array of 10 character strings encoding colors in hex format

e.g. (red, green, blue) values of (16,255, 239)
translates to "#10FFEF"
rgb(16/255, 255/255, 239/255, alpha=.5)
gives "#10FFEF80" note extra "alpha channel"

view some color table choices
set.panel(4,1)
fieldsPlotColors(tim.colors())
title("tim.colors")
fieldsPlotColors(larry.colors())
title("larry.colors")
fieldsPlotColors(two.colors())
title("two.colors")
fieldsPlotColors(snow.colors())
title("snow.colors")

a bubble plot with some transparency for overlapping dots
set.seed(123)
loc<- matrix(rnorm(200), 100,2)
Z<- loc[,1] + loc[,2]
colorMap<- color.scale(Z, col=tim.colors(10, alpha=.8))
par(mar=c(5,5,5,5)) # extra room on right for color bar
plot(loc, col=colorMap, pch=16, cex=2)
add a color scale
image.plot(legend.only=TRUE, zlim=range(Z), col=tim.colors(10))

using tranparency without alpha the image plot would cover points

obj<- list(x= 1:8, y=1:10, z= outer(1:8, 1:10, "+"))
plot(1:10,1:10)

image(obj, col=two.colors(alpha=.5), add=TRUE)

190 Tps

coltab<- designer.colors(col=c("blue", "grey", "green"),
x= c(0,.3,1))

image(obj, col= coltab)

peg colors at some desired quantiles of data.
NOTE need 0 and 1 for the color scale to make sense
x<- quantile(c(obj$z), c(0,.25,.5,.75,1.0))
scale these to [0,1]
zr<- range(c(obj$z))
x<- (x-zr[1])/ (zr[2] - zr[1])

coltab<- designer.colors(256,rainbow(5), x)
image(obj$z, col= coltab)
see image.plot for adding all kinds of legends

set.panel()

Tps Thin plate spline regression

Description

Fits a thin plate spline surface to irregularly spaced data. The smoothing parameter is chosen by
generalized cross-validation. The assumed model is additive Y = f(X) +e where f(X) is a d dimen-
sional surface. This function also works for just a single dimension and is a special case of a spatial
process estimate (Kriging). A "fast" version of this function uses a compactly supported Wendland
covariance and computes the estimate for a fixed smoothing parameter.

Usage

Tps(x, Y, m = NULL, p = NULL, scale.type = "range", lon.lat = FALSE,
miles = TRUE, method = "GCV", GCV = TRUE, ...)

fastTps(x, Y, m = NULL, p = NULL, theta, lon.lat=FALSE,
find.trA = TRUE, lambda=0, ...)

Arguments

x Matrix of independent variables. Each row is a location or a set of independent
covariates.

Y Vector of dependent variables.

Tps 191

m A polynomial function of degree (m-1) will be included in the model as the drift
(or spatial trend) component. Default is the value such that 2m-d is greater than
zero where d is the dimension of x.

p Polynomial power for Wendland radial basis functions. Default is 2m-d where
d is the dimension of x.

scale.type The independent variables and knots are scaled to the specified scale.type. By
default the scale type is "range", whereby the locations are transformed to the
interval (0,1) by forming (x-min(x))/range(x) for each x. Scale type of "user"
allows specification of an x.center and x.scale by the user. The default for "user"
is mean 0 and standard deviation 1. Scale type of "unscaled" does not scale the
data.

theta The tapering range that is passed to the Wendland compactly supported covari-
ance. The covariance (i.e. the radial basis function) is zero beyond range theta.
The larger theta the closer this model will approximate the standard thin plate
spline.

lon.lat If TRUE locations are interpreted as lognitude and latitude and great circle dis-
tance is used to find distances among locations. The theta scale parameter for
fast.Tps (setting the compact support of the Wendland function) in this case is
in units of miles (see example and caution below).

method Determines what "smoothing" parameter should be used. The default is to es-
timate standard GCV Other choices are: GCV.model, GCV.one, RMSE, pure
error and REML. The differences are explained in the Krig help file.

GCV If TRUE the decompositions are done to efficiently evaluate the estimate, GCV
function and likelihood at multiple values of lambda.

miles If TRUE great circle distances are in miles if FALSE distances are in kilometers

lambda Smoothing parameter the ratio of error variance to process variance, default
is zero which corresponds to interpolation. See fastTpsMLE to estimate this
paramter from the data.

find.trA If TRUE will estimate the effective degrees of freedom using a simple Monte
Carlo method. This will add to the computational burden by approximately
NtrA solutions of the linear system but the cholesky decomposition is reused.

... For Tps any argument that is valid for the Krig function. Some of the main ones
are listed below.
For fastTps any argument that is suitable for the mKrig function see help on
mKrig for these choices.
Arguments for Tps:

lambda Smoothing parameter that is the ratio of the error variance (sigma**2)
to the scale parameter of the covariance function. If omitted this is esti-
mated by GCV.

Z Linear covariates to be included in fixed part of the model that are distinct
from the default low order polynomial in x

df The effective number of parameters for the fitted surface. Conversely, N-
df, where N is the total number of observations is the degrees of freedom
associated with the residuals. This is an alternative to specifying lambda
and much more interpretable.

192 Tps

cost Cost value used in GCV criterion. Corresponds to a penalty for increased
number of parameters. The default is 1.0 and corresponds to the usual GCV.

weights Weights are proportional to the reciprocal variance of the measurement
error. The default is no weighting i.e. vector of unit weights.

nstep.cv Number of grid points for minimum GCV search.
x.center Centering values are subtracted from each column of the x matrix.

Must have scale.type="user".
x.scale Scale values that divided into each column after centering. Must have

scale.type="user".
rho Scale factor for covariance.
sigma2 Variance of errors or if weights are not equal to 1 the variance is sigma**2/weight.
verbose If true will print out all kinds of intermediate stuff.
mean.obj Object to predict the mean of the spatial process.
sd.obj Object to predict the marginal standard deviation of the spatial process.
null.function An R function that creates the matrices for the null space model.

The default is fields.mkpoly, an R function that creates a polynomial regres-
sion matrix with all terms up to degree m-1. (See Details)

offset The offset to be used in the GCV criterion. Default is 0. This would be
used when Krig/Tps is part of a backfitting algorithm and the offset has to
be included to reflect other model degrees of freedom.

Details

Both of these functions are special cases of using the Krig and mKrig functions. See the help on
each of these for more information on the calling arguments and what is returned. Tps makes use
of the stable computations via eigen decompositions in Krig. fastTps follows the more standard
computations for spatial statistics centered around the Cholesky decomposition in mKrig.

A thin plate spline is the result of minimizing the residual sum of squares subject to a constraint that
the function have a certain level of smoothness (or roughness penalty). Roughness is quantified by
the integral of squared m-th order derivatives. For one dimension and m=2 the roughness penalty
is the integrated square of the second derivative of the function. For two dimensions the roughness
penalty is the integral of

(Dxx(f))**22 + 2(Dxy(f))**2 + (Dyy(f))**22

(where Duv denotes the second partial derivative with respect to u and v.) Besides controlling the
order of the derivatives, the value of m also determines the base polynomial that is fit to the data.
The degree of this polynomial is (m-1).

The smoothing parameter controls the amount that the data is smoothed. In the usual form this
is denoted by lambda, the Lagrange multiplier of the minimization problem. Although this is an
awkward scale, lambda =0 corresponds to no smoothness constraints and the data is interpolated.
lambda=infinity corresponds to just fitting the polynomial base model by ordinary least squares.

This estimator is implemented by passing the right generalized covariance function based on radial
basis functions to the more general function Krig. One advantage of this implementation is that
once a Tps/Krig object is created the estimator can be found rapidly for other data and smoothing
parameters provided the locations remain unchanged. This makes simulation within R efficient (see
example below). Tps does not currently support the knots argument where one can use a reduced

Tps 193

set of basis functions. This is mainly to simplify the code and a good alternative using knots would
be to use a valid covariance from the Matern family and a large range parameter.

CAUTION about lon.lat=TRUE: The option to use great circle distance to define the radial basis
functions (lon.lat=TRUE) is very useful for small geographic domains where the spherical geom-
etry is well approximated by a plane. However, for large domains the spherical distortion be large
enough that the basis function no longer define a positive definite system and Tps will report a nu-
merical error. An alternative is to switch to a three dimensional thin plate spline the locations being
the direction cosines. This will give approximate great circle distances for locations that are close
and also the numerical methods will always have a positive definite matrices.

Here is an example using this idea for RMprecip and also some examples of building grids and
evaluating the Tps results on them:

a useful function:
dircos<- function(x1){

coslat1 <- cos((x1[, 2] * pi)/180)
sinlat1 <- sin((x1[, 2] * pi)/180)
coslon1 <- cos((x1[, 1] * pi)/180)
sinlon1 <- sin((x1[, 1] * pi)/180)
cbind(coslon1*coslat1, sinlon1*coslat1, sinlat1)}

fit in 3-d to direction cosines
out<- Tps(dircos(RMprecip$x),RMprecip$y)
xg<-make.surface.grid(fields.x.to.grid(RMprecip$x))
fhat<- predict(out, dircos(xg))

coerce to image format from prediction vector and grid points.
out.p<- as.surface(xg, fhat)
surface(out.p)

compare to the automatic
out0<- Tps(RMprecip$x,RMprecip$y, lon.lat=TRUE)
surface(out0)

The function fastTps is really a convenient wrapper function that calls mKrig with the Wendland
covariance function. This is experimental and some care needs to exercised in specifying the taper
range and power (p) which describes the polynomial behavior of the Wendland at the origin. Note
that unlike Tps the locations are not scaled to unit range and this can cause havoc in smoothing
problems with variables in very different units. So rescaling the locations x<-scale(x) is a good
idea for putting the variables on a common scale for smoothing. This function does have the po-
tential to approximate estimates of Tps for very large spatial data sets. See wendland.cov and help
on the SPAM package for more background. Also, the function predictSurface.fastTps has
been made more efficient for the case of k=2 and m=2. Also see the handy function fastTpsMLE to
estimate lambda by maximum likelihood.

See also the mKrig function for handling larger data sets and also for an example of combining Tps
and mKrig for evaluation on a huge grid.

Value

A list of class Krig. This includes the fitted values, the predicted surface evaluated at the observa-
tion locations, and the residuals. The results of the grid search minimizing the generalized cross
validation function are returned in gcv.grid. Note that the GCV/REML optimization is done even if
lambda or df is given. Please see the documentation on Krig for details of the returned arguments.

194 Tps

References

See "Nonparametric Regression and Generalized Linear Models" by Green and Silverman. See
"Additive Models" by Hastie and Tibshirani.

See Also

Krig, mKrig, spatialProcess, summary.Krig, predict.Krig, predictSE.Krig, predictSurface,
predictSurface.fastTps, plot.Krig, surface.Krig, sreg, fastTpsMLE

Examples

#2-d example

fit<- Tps(ChicagoO3$x, ChicagoO3$y) # fits a surface to ozone measurements.

set.panel(2,2)
plot(fit) # four diagnostic plots of fit and residuals.
set.panel()

summary of fit and estiamtes of lambda the smoothing parameter
summary(fit)

surface(fit) # Quick image/contour plot of GCV surface.

NOTE: the predict function is quite flexible:

look<- predict(fit, lambda=2.0)
evaluates the estimate at lambda =2.0 _not_ the GCV estimate
it does so very efficiently from the Krig fit object.

look<- predict(fit, df=7.5)
evaluates the estimate at the lambda values such that
the effective degrees of freedom is 7.5

compare this to fitting a thin plate spline with
lambda chosen so that there are 7.5 effective
degrees of freedom in estimate
Note that the GCV function is still computed and minimized
but the lambda values used correpsonds to 7.5 df.

fit1<- Tps(ChicagoO3$x, ChicagoO3$y,df=7.5)

set.panel(2,2)
plot(fit1) # four diagnostic plots of fit and residuals.

GCV function (lower left) has vertical line at 7.5 df.
set.panel()

The basic matrix decompositions are the same for
both fit and fit1 objects.

predict(fit1) is the same as predict(fit, df=7.5)

Tps 195

predict(fit1, lambda= fit$lambda) is the same as predict(fit)

predict onto a grid that matches the ranges of the data.

out.p<-predictSurface(fit)
image(out.p)

the surface function (e.g. surface(fit)) essentially combines
the two steps above

predict at different effective
number of parameters
out.p<-predictSurface(fit,df=10)

Not run:
predicting on a grid along with a covariate

data(COmonthlyMet)
predicting average daily minimum temps for spring in Colorado
NOTE to create an 4km elevation grid:
data(PRISMelevation); CO.elev1 <- crop.image(PRISMelevation, CO.loc)
then use same grid for the predictions: CO.Grid1<- CO.elev1[c("x","y")]

obj<- Tps(CO.loc, CO.tmin.MAM.climate, Z= CO.elev)
out.p<-predictSurface(obj,

grid.list=CO.Grid, ZGrid= CO.elevGrid)
image.plot(out.p)
US(add=TRUE, col="grey")
contour(CO.elevGrid, add=TRUE, levels=c(2000), col="black")

End(Not run)
Not run:
#A 1-d example with confidence intervals

out<-Tps(rat.diet$t, rat.diet$trt) # lambda found by GCV
out
plot(outx, outy)
xgrid<- seq(min(out$x), max(out$x),,100)
fhat<- predict(out,xgrid)
lines(xgrid, fhat,)
SE<- predictSE(out, xgrid)
lines(xgrid,fhat + 1.96* SE, col="red", lty=2)
lines(xgrid, fhat - 1.96*SE, col="red", lty=2)

#
compare to the (much faster) B spline algorithm
sreg(rat.diet$t, rat.diet$trt)

Here is a 1-d example with 95 percent CIs where sreg would not
work:
sreg would give the right estimate here but not the right CI's

x<- seq(0,1,,8)
y<- sin(3*x)
out<-Tps(x, y) # lambda found by GCV
plot(outx, outy)

196 Tps

xgrid<- seq(min(out$x), max(out$x),,100)
fhat<- predict(out,xgrid)
lines(xgrid, fhat, lwd=2)
SE<- predictSE(out, xgrid)
lines(xgrid,fhat + 1.96* SE, col="red", lty=2)
lines(xgrid, fhat - 1.96*SE, col="red", lty=2)

End(Not run)

More involved example adding a covariate to the fixed part of model
Not run:
set.panel(1,3)
without elevation covariate

out0<-Tps(RMprecip$x,RMprecip$y)
surface(out0)
US(add=TRUE, col="grey")

with elevation covariate
out<- Tps(RMprecip$x,RMprecip$y, Z=RMprecip$elev)

NOTE: out$d[4] is the estimated elevation coefficient
it is easy to get the smooth surface separate from the elevation.

out.p<-predictSurface(out, drop.Z=TRUE)
surface(out.p)
US(add=TRUE, col="grey")

and if the estimate is of high resolution and you get by with
a simple discretizing -- does not work in this case!

quilt.plot(outx, outfitted.values)
#
the exact way to do this is evaluate the estimate
on a grid where you also have elevations
An elevation DEM from the PRISM climate data product (4km resolution)

data(RMelevation)
grid.list<- list(x=RMelevation$x, y= RMelevation$y)
fit.full<- predictSurface(out, grid.list, ZGrid= RMelevation)

this is the linear fixed part of the second spatial model:
lon,lat and elevation

fit.fixed<- predictSurface(out, grid.list, just.fixed=TRUE, ZGrid= RMelevation)
This is the smooth part but also with the linear lon lat terms.

fit.smooth<-predictSurface(out, grid.list, drop.Z=TRUE)
#

set.panel(3,1)

fit0<- predictSurface(out0, grid.list)
image.plot(fit0)
title(" first spatial model (w/o elevation)")
image.plot(fit.fixed)
title(" fixed part of second model (lon,lat,elev linear model)")
US(add=TRUE)
image.plot(fit.full)
title("full prediction second model")
set.panel()

End(Not run)

Tps 197

###
fast Tps
m=2 p= 2m-d= 2
#
Note: theta =3 degrees is a very generous taper range.
Use some trial theta value with rdist.nearest to determine a
a useful taper. Some empirical studies suggest that in the
interpolation case in 2 d the taper should be large enough to
about 20 non zero nearest neighbors for every location.

fastTps(RMprecip$x,RMprecip$y,m=2,lambda= 1e-2, theta=3.0) -> out2

note that fastTps produces an mKrig object so one can use all the
the overloaded functions that are defined for the mKrig class.
summary of what happened note estimate of effective degrees of
freedom

print(out2)

Not run:
set.panel(1,2)
surface(out2)

#
now use great circle distance for this smooth
Here "theta" for the taper support is the great circle distance in degrees latitude.
Typically for data analysis it more convenient to think in degrees. A degree of
latitude is about 68 miles (111 km).
#
fastTps(RMprecip$x,RMprecip$y,m=2,lambda= 1e-2,lon.lat=TRUE, theta= 3.0) -> out3
print(out3) # note the effective degrees of freedom is different.
surface(out3)

set.panel()

End(Not run)

Not run:
#
simulation reusing Tps/Krig object
#
fit<- Tps(rat.diet$t, rat.diet$trt)
true<- fit$fitted.values
N<- length(fit$y)
temp<- matrix(NA, ncol=50, nrow=N)
sigma<- fit$shat.GCV
for (k in 1:50){
ysim<- true + sigma* rnorm(N)
temp[,k]<- predict(fit, y= ysim)
}
matplot(fit$x, temp, type="l")

End(Not run)

198 transformx

#
#4-d example
fit<- Tps(BD[,1:4],BD$lnya,scale.type="range")

plots fitted surface and contours
default is to hold 3rd and 4th fixed at median values

surface(fit)

transformx Linear transformation

Description

Linear transformation of each column of a matrix. There are several choices of the type of centering
and scaling.

Usage

transformx (x, scale.type = "unit.sd", x.center, x.scale)

Arguments

x Matrix with columns to be transformed.

scale.type Type of transformation the default is "unit.sd": subtract the mean and divide
by the standard deviation. Other choices are "unscaled" (do nothing), "range"
(transform to [0,1]),"user" (subtract a supplied location and divide by a scale).

x.center A vector of centering values to subtract from each column.

x.scale A vector of scaling values to subtract from each column.

Details

After deciding what the centering and scaling values should be for each column of x, this function
just calls the standard utility scale. This function was created partly to attach the transformation
information as attributes to the transformed matrix. It is used in Krig, cover.design, krig.image etc.
to transform the independent variables.

Value

A matrix whose columns have between transformed. This matrix also has the attributes: scale.type,
x.center and y.center with the transformation information.

See Also

scale

US 199

Examples

#
newx<-transformx(ChicagoO3$x, scale.type="range")

US Plot of the US with state boundaries

Description

Plots quickly, medium resolution outlines of the US with the states and bodies of water. A simple
wrapper for the map function from the maps package.

Usage

US(...)

Arguments

... These are the arguments that are passed to the map function from the maps
package.

Details

The older version of this function (fields < 6.7.2) used the FIELDS dataset US.dat for the coordi-
nates. Currenty this has been switched to use the maps package.

See Also

world

Examples

Draw map in device color # 3
US(col=3)

US.dat Outline of coterminous US and states.

Description

This data set is used by the fields function US to draw a map. It is the medium resolution outline
that is produced by drawing the US from the maps package.

200 vgram

vgram Traditional or robust variogram methods for spatial data

Description

vgram computes pairwise squared differences as a function of distance. Returns an S3 object of
class "vgram" with either raw values or statistics from binning. crossCoVGram is the same as
vgram but differences are taken across different variables rather than the same variable.

plot.vgram and boxplotVGram create lineplots and boxplots of vgram objects output by the vgram
function. boxplotVGram plots the base R boxplot function, and plots estimates of the mean over
the boxplot.

The getVGMean function returns the bin centers and means of the vgram object based on the bin
breaks provided by the user.

Usage

vgram(loc, y, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL,
type=c("variogram", "covariogram", "correlogram"))

crossCoVGram(loc1, loc2, y1, y2, id = NULL, d = NULL, lon.lat = FALSE,
dmax = NULL, N = NULL, breaks = NULL,
type=c("cross-covariogram", "cross-correlogram"))

boxplotVGram(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), plot=TRUE, plot.args, ...)

S3 method for class 'vgram'
plot(x, N=10, breaks = pretty(x$d, N, eps.correct = 1), add=FALSE, ...)

getVGMean(x, N = 10, breaks = pretty(x$d, N, eps.correct = 1))

Arguments

loc Matrix where each row is the coordinates of an observed point of the field

y Value of the field at locations

loc1 Matrix where each row is the coordinates of an observed point of field 1

loc2 Matrix where each row is the coordinates of an observed point of field 2

y1 Value of field 1 at locations

y2 Value of field 2 at locations

id A 2 column matrix that specifies which variogram differnces to find. If omit-
ted all possible pairing are found. This can used if the data has an additional
covariate that determines proximity, for example a time window.

d Distances among pairs indexed by id. If not included distances from from di-
rectly from loc.

vgram 201

lon.lat If true, locations are assumed to be longitudes and latitudes and distances found
are great circle distances (in miles see rdist.earth). Default is FALSE.

dmax Maximum distance to compute variogram.

N Number of bins to use. The break points are found by the pretty function and
so ther may not be exactly N bins. Specify the breaks explicity if you want
excalty N bins.

breaks Bin boundaries for binning variogram values. Need not be equally spaced but
must be ordered.

x An object of class "vgram" (an object returned by vgram)

add If TRUE, adds empirical variogram lineplot to current plot. Otherwise creates
new plot with empirical variogram lineplot.

plot If TRUE, creates a plot, otherwise returns variogram statistics output by bplot.xy.

plot.args Additional arguments to be passed to plot.vgram.

type One of "variogram", "covariogram", "correlogram", "cross-covariogram", and
"cross-correlogram". vgram supports the first three of these and crossCoVGram
supports the last two.

... Additional argument passed to plot for plot.vgram or to bplot.xy for boxplotVGram.

Value

vgram and crossCoVGram return a "vgram" object containing the following values:

vgram Variogram or covariogram values

d Pairwise distances

call Calling string

stats Matrix of statistics for values in each bin. Rows are the summaries returned
by the stats function or describe. If not either breaks or N arguments are not
supplied then this component is not computed.

centers Bin centers.

If boxplotVGram is called with plot=FALSE, it returns a list with the same components as returned
by bplot.xy

References

See any standard reference on spatial statistics. For example Cressie, Spatial Statistics

Author(s)

John Paige, Doug Nychka

See Also

vgram.matrix, bplot.xy, bplot

202 vgram.matrix

Examples

#
compute variogram for the midwest ozone field day 16
(BTW this looks a bit strange!)
#
data(ozone2)
good<- !is.na(ozone2$y[16,])
x<- ozone2$lon.lat[good,]
y<- ozone2$y[16,good]

look<-vgram(x,y, N=15, lon.lat=TRUE) # locations are in lon/lat so use right
#distance
take a look:
plot(look, pch=19)
#lines(look$centers, look$stats["mean",], col=4)

brk<- seq(0, 250,, (25 + 1)) # will give 25 bins.

or some boxplot bin summaries

boxplotVGram(look, breaks=brk, plot.args=list(type="o"))
plot(look, add=TRUE, breaks=brk, col=4)

#
compute equivalent covariogram, but leave out the boxplots
#
look<-vgram(x,y, N=15, lon.lat=TRUE, type="covariogram")
plot(look, breaks=brk, col=4)

#
compute equivalent cross-covariogram of the data with itself
#(it should look almost exactly the same as the covariogram of
#the original data, except with a few more points in the
#smallest distance boxplot and points are double counted)
#
look = crossCoVGram(x, x, y, y, N=15, lon.lat=TRUE, type="cross-covariogram")
plot(look, breaks=brk, col=4)

vgram.matrix Computes a variogram from an image

Description

Computes a variogram for an image taking into account different directions and returning summary
information about the differences in each of these directions.

vgram.matrix 203

Usage

vgram.matrix(dat, R=5, dx = 1,dy = 1)

S3 method for class 'vgram.matrix'
plot(x,...)

Arguments

dat A matrix spacing of rows and columns are assumed to have the same distance.

R Maximum radius for finding variogram differences assuming that the grid points
are spaced one unit a part. Default is go out to a radius of 5.

dx The spacing of grid points on the X axis. This is used to calculate the correct
distance between grid points. If dx is not equal to dy then the collapse argument
must be FALSE.

dy The spacing of grid points on the Y axis. See additional notes for dx.

x Returned list from vgram.matrix

... Arguments for image.plot

Details

For the "full" case the statistics can summarize departures from isotropy by separating the variogram
differences according to orientation. For small R this runs efficiently because the differences are
found by sub-setting the image matrix.

For example, suppose that a row of the ind matrix is (2,3). The variogram value associated with
this row is the mean of the differences (1/2)*(X(i,j)- X(i+2,j+3))**2 for all i and j. (Here X(.,.) are
the values for the spatial field.) In this example d= sqrt(13) and there will be another entry with the
same distance but corresponding to the direction (3,2). plot.vgram.matrix attempts to organize all
the different directions into a coherent image plot.

Value

An object of class vgram.matrix with the following components: d, a vector of distances for the
differences, and vgram, the variogram values. This is the traditional variogram ignoring direction.

d.full, a vector of distances for all possible shifts up distance R, ind, a two column matrix giving
the x and y increment used to compute the shifts, and vgram.full, the variogram at each of these
separations. Also computed is vgram.robust, Cressie’s version of a robust variogram statistic.

Also returned is the component N the number of differences found for each separation csae.

See Also

vgram

204 Wendland

Examples

variogram for Lennon image.
data(lennon)
out<-vgram.matrix(lennon)

plot(outd, outvgram, xlab="separation distance", ylab="variogram")
image plot of vgram values by direction.

look at different directions
out<-vgram.matrix(lennon, R=8)

plot(outd, outvgram)
add in different orientations
points(out$d.full, out$vgram.full, col="red")

#image plot of variogram values for different directions.
set.panel(1,1)
plot.vgram.matrix(out)
John Lennon appears remarkably isotropic!

Wendland Wendland family of covariance functions and supporting numerical
functions

Description

Computes the compactly supported, stationatry Wendland covariance function as a function ofdis-
tance. This family is useful for creating sparse covariance matrices.

Usage

Wendland(d, theta = 1, dimension, k,derivative=0, phi=NA)

Wendland2.2(d, theta=1)
Wendland.beta(n,k)
wendland.eval(r, n, k, derivative = 0)
fields.pochup(q, k)
fields.pochdown(q, k)
fields.D(f,name,order = 1)

Wendland 205

Arguments

d Distances between locations. Or for wendland.coef the dimension of the loca-
tions.

theta Scale for distances. This is the same as the range parameter.

dimension Dimension of the locations

n Dimension for computing Wendland polynomial coefficients

k Order of covariance function.

derivative Indicates derivative of covariance function

phi Depreciated argument will give stop if not an NA. (Formerly the scale factor to
multiply the function. Equivalent to the marginal variance or sill if viewed as a
covariance function.)

r Real value in [0,1] to evaluate Wendland function.

q Order of Pochhammer symbol

f Numerical expression to differentiate.

name Variable with which to take derivative.

order Order of derivative.

Details

This is the basic function applied to distances and called by the wendland.cov function. It can
also be used as the Covariance or Taper specifications in the more general stationary.cov and sta-
tion.taper.cov functions. The proofs and construction of the Wendland family of positive definite
functions can be found in the work of Wendland(1995). (H. Wendland. Piecewise polynomial ,
positive definite and compactly supported radial functions of minimal degree. AICM 4(1995), pp
389-396.)

The Wendland covariance function is a positive polynomial on [0,theta] and zero beyond theta. It is
further normalized in these fields functions to be 1 at 0. The parameter k detemines the smoothness
of the covariance at zero. The additional parameter n or dimension is needed because the property
of positive definitness for radial functions depends on the dimension being considered.

The polynomial terms of the Wenland function. are computed recursively based on the values of k
and dimension in the function wendland.eval. The matrix of coefficients found by Wendland.beta
is used to weight each polynomial term and follows Wendland’s original construction of these func-
tions. The recursive definition of the Wendland coefficients depends on Pochhammer symbols akin
to binomial coefficients:

fields.pochup(q,k) calculates the Pochhammer symbol for rising factorial q(q+1)(q+2)...(q+k-1)

and

fields.pochdown(q,k) calculates the Pochhammer symbol for falling factorial q(q-1)(q-2)...(q-
k+1).

Derivatives are found symbolically using a recursive modification of the base function D (fields.D)
and then evaluated numerically based on the polynomial form.

A specific example of the Wendland family is Wendland2.2 (k=2, dimension=2). This is included
mainly for testing but the explicit formula may also be enlightening.

206 world

Value

A vector of the covariances or its derivative.

Author(s)

Doug Nychka, Ling Shen

See Also

wendland.cov, stationary.taper.cov

Examples

dt<- seq(0,1.5,, 200)

y<- Wendland(dt, k=2, dimension=2)

plot(dt, y, type="l")

should agree with

y.test<- Wendland2.2(dt)
points(dt, y.test)

second derivative
plot(dt, Wendland(dt, k=4, dimension=2, derivative=2), type="l")

a radial basis function using the Wendland the "knot" is at (.25,.25)
gl<- list(x= seq(-1,1,,60), y = seq(-1,1,,60))

bigD<- rdist(make.surface.grid(gl), matrix(c(.25,.25), nrow=1))
RBF<- matrix(Wendland(bigD, k=2, dimension=2), 60,60)

perspective with some useful settings for shading.
persp(glx, gly, RBF, theta=30, phi=20, shade=.3, border=NA, col="grey90")

world Plot of the world

Description

Plots quickly, medium resolution outlines of large land masses. This is a simple wrapper for the
map function from the maps package.

WorldBankCO2 207

Usage

world(...)
world.land(...)
world.color(...)
in.land.grid(...)

Arguments

... Same arguments used by the map function from the maps package.

Details

See the longstanding maps package for documentation on this function. The functions world.land,
world.color and in.land.grid have been depreciated but can be recovered from versions of fields
6.7.1 or older.

See Also

US, in.poly, in.poly.grid

Examples

Not run:
world()
add the US
US(add=TRUE,col="blue")

world(fill=TRUE) # land filled in black

Western Europe
world(xlim=c(-10,18),ylim=c(36,60),fill=TRUE, col="darkgreen",
border="green1")

End(Not run)

WorldBankCO2 Carbon emissions and demographic covariables by country for 1999.

Description

These data are a small subset of the demographic data compiled by the World Bank. The data has
been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries
reporting all the covariables are included.

Usage

data(WorldBankCO2)

208 WorldBankCO2

Format

This a 75X5 matrix with the row names identifying countries and columns the covariables: "GDP.cap"
"Pop.mid" "Pop.urb" "CO2.cap" "Pop"

• GDP.cap: Gross domestic product (in US dollars) per capita.

• Pop.mid: percentage of the population within the ages of 15 through 65.

• Pop.urb: Precentage of the population living in an urban environment

• CO2.cap: Equivalent CO2 emmissions per capita

• Pop: Population

Reference

Romero-Lankao, P., J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions
deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29.

Creating dataset

Listed below are scripts to create this data set from spread sheet on the World Bank CDs:

read in comma delimited spread sheet
read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold

convert numbers to matrix of data
Ddata<- as.matrix(hold[,5:51])
Ddata[Ddata==".."] <- NA

still in character form parse as numeric
Ddata<- matrix(as.numeric(Ddata), nrow=1248, ncol=ncol(Ddata),
dimnames=list(NULL, format(1960:2006)))

these are the factors indicating the different variables
unique(Fac) gives the names of factors
Fac<- as.character(hold[,1])
years<- 1960:2006

create separate tables of data for each factor
temp<- unique(Fac)

also subset Country id and name
Country.id<- as.character(hold[Fac== temp[1],3])
Country<- as.character(hold[Fac== temp[1],4])
Pop<- Ddata[Fac== temp[2],]
CO2<- Ddata[Fac== temp[1],]
Pop.mid<- Ddata[Fac== temp[3],]
GDP.cap<- Ddata[Fac== temp[4],]
Pop.urb<- Ddata[Fac== temp[5],]
CO2.cap<- CO2/Pop
dimnames(Pop)<- list(Country.id,format(years))
dimnames(CO2)<- list(Country.id,format(years))
dimnames(Pop.mid)<- list(Country.id,format(years))
dimnames(Pop.urb)<- list(Country.id,format(years))
dimnames(CO2.cap)<- list(Country.id,format(years))

delete temp data sets

xline 209

rm(temp)
rm(hold)
rm(Fac)

define year to do clustering.
yr<- "1999"

variables for clustering combined as columns in a matrix
temp<-cbind(GDP.cap[,yr], Pop.mid[,yr], Pop.urb[,yr],CO2[,yr],Pop[,yr])

add column names and figure how many good data rows there are.
dimnames(temp)<-list(Country, c("GDP.cap","Pop.mid","Pop.urb",

"CO2.cap", "Pop"))
good<-complete.cases(temp)
good<- good & Pop[,yr] > 10e6

subset with only the complete data rows
WorldBankCO2<- temp[good,]

save(WorldBankCO2, file="WorldBankCO2.rda")

Examples

data(WorldBankCO2)
plot(WorldBankCO2[,"GDP.cap"], WorldBankCO2[,"CO2.cap"], log="xy")

xline Draw a vertical line

Description

Adds vertical lines in the plot region.

Usage

xline(x, ...)

Arguments

x Values on x axis specifying location of vertical lines.

... Any ploting options for abline.

See Also

yline, abline

Examples

plot(1:10)
xline(6.5, col=2)

world(col=3)

210 yline

yline(seq(-80,80,10),col=4, lty=2)
xline(seq(-180,180,10),col=4,lty=2)
yline(0, lwd=2, col=4)

yline Draw horizontal lines

Description

Adds horizontal lines in the plot region.

Usage

yline(y, ...)

Arguments

y Values on y axis specifying location of vertical lines.

... Any ploting options for abline.

See Also

xline, abline

Examples

world(col=3)
yline(seq(-80,80,10),col=4, lty=2)
xline(seq(-180,180,10),col=4,lty=2)
yline(0, lwd=2, col=4)

Index

∗Topic IO
summary.ncdf, 180

∗Topic Kriging
mKrig.MLE, 101

∗Topic MLE
mKrig.MLE, 101

∗Topic aplot
arrow.plot, 5
tim.colors, 187
xline, 209
yline, 210

∗Topic compact
compactToMat, 22

∗Topic covariance
CovarianceUpper, 29

∗Topic datasets
BD, 10
Chicago ozone test data, 13
CO2, 14
Colorado Monthly Meteorological

Data, 16
fields, 42
flame, 53
lennon, 91
minitri, 91
NorthAmericanRainfall, 113
ozone2, 114
rat.diet, 138
RCMexample, 139
registeringCode, 144
RMprecip, 150
US.dat, 199
WorldBankCO2, 207

∗Topic hplot
add.image, 4
bplot, 11
bplot.xy, 12
colorbar.plot, 20
drape.plot, 36

fields.grid, 48
fields.hints, 49
image.plot, 63
image2lz, 73
plot.surface, 116
pushpin, 128
quilt.plot, 136
ribbon.plot, 149
set.panel, 152
US, 199
world, 206

∗Topic manip
as.image, 6
as.surface, 8
transformx, 198

∗Topic matrix
compactToMat, 22

∗Topic misc
fields testing scripts, 45
grid list, 56

∗Topic smooth
image.smooth, 71
qsreg, 129
smooth.2d, 160
splint, 171
sreg, 172
Tps, 190

∗Topic spatial
Covariance functions, 23
cover.design, 30
Exponential, Matern, Radial Basis,

40
fields-stuff, 46
gcv.Krig, 53
image.cov, 59
interp.surface, 76
Krig, 78
Krig.Amatrix, 87
Krig.null.function, 89

211

212 INDEX

Krig.replicates, 90
mKrig, 92
mKrig.MLE, 101
mKrigMLE, 104
MLESpatialProcess, 109
plot.Krig, 115
poly.image, 118
predict.Krig, 120
predictSE, 123
predictSurface, 125
print.Krig, 127
QTps, 132
rdist, 140
rdist.earth, 142
REML.test, 145
sim.rf, 153
sim.spatialProcess, 155
spam2lz, 162
spatialProcess, 164
summary.Krig, 179
surface.Krig, 181
The Engines:, 183
vgram, 200
vgram.matrix, 202
Wendland, 204

∗Topic univar
stats, 177
stats.bin, 178

%d*% (The Engines:), 183

add.image, 4
addToDiagC (registeringCode), 144
arrow.plot, 5
as.image, 6
as.surface, 8
average.image (image2lz), 73

BD, 10
boxplotVGram (vgram), 200
bplot, 11, 201
bplot.xy, 12, 201

Chicago ozone test data, 13
ChicagoO3 (Chicago ozone test data), 13
CO.elev (Colorado Monthly

Meteorological Data), 16
CO.elevGrid (Colorado Monthly

Meteorological Data), 16

CO.Grid (Colorado Monthly
Meteorological Data), 16

CO.id (Colorado Monthly Meteorological
Data), 16

CO.loc (Colorado Monthly
Meteorological Data), 16

CO.names (Colorado Monthly
Meteorological Data), 16

CO.ppt (Colorado Monthly
Meteorological Data), 16

CO.tmax (Colorado Monthly
Meteorological Data), 16

CO.tmean.MAM.climate (Colorado Monthly
Meteorological Data), 16

CO.tmin (Colorado Monthly
Meteorological Data), 16

CO.years (Colorado Monthly
Meteorological Data), 16

CO2, 14, 43
coef.Krig (Krig), 78
color.scale, 43
color.scale (tim.colors), 187
Colorado Monthly Meteorological Data,

16
colorbar.plot, 20
COmonthlyMet, 44
COmonthlyMet (Colorado Monthly

Meteorological Data), 16
compactToMat, 22
compactToMatC (registeringCode), 144
Covariance functions, 23
CovarianceUpper, 29
cover.design, 30, 43
crop.image (image2lz), 73
crossCoVGram (vgram), 200
cubic.cov (Covariance functions), 23

designer.colors, 43
designer.colors (tim.colors), 187
discretize.image (grid list), 56
dist, 141
distMatHaversin (registeringCode), 144
distMatHaversin2 (registeringCode), 144
drape.color (drape.plot), 36
drape.plot, 36

envelopePlot, 39
Exp.cov, 141, 181
Exp.cov (Covariance functions), 23

INDEX 213

Exp.image.cov (image.cov), 59
Exp.simple.cov (Covariance functions),

23
Exponential, 30
Exponential (Exponential, Matern,

Radial Basis), 40
Exponential, Matern, Radial Basis, 40
ExponentialUpper (CovarianceUpper), 29
ExponentialUpperC (registeringCode), 144

fastTps, 43
fastTps (Tps), 190
fastTps.MLE, 111
fastTps.MLE (mKrig.MLE), 101
fastTpsMLE, 193, 194
fastTpsMLE (mKrigMLE), 104
fields, 42
fields testing scripts, 45
fields-package (fields), 42
fields-stuff, 46
fields.color.picker (fields.hints), 49
fields.convert.grid (grid list), 56
fields.D (Wendland), 204
fields.derivative.poly (fields-stuff),

46
fields.diagonalize (fields-stuff), 46
fields.diagonalize2 (fields-stuff), 46
fields.duplicated.matrix

(fields-stuff), 46
fields.evlpoly (fields-stuff), 46
fields.evlpoly2 (fields-stuff), 46
fields.grid, 48
fields.hints, 49
fields.mkpoly (fields-stuff), 46
fields.pochdown (Wendland), 204
fields.pochup (Wendland), 204
fields.rdist.near, 143
fields.rdist.near (rdist), 140
fields.style (fields.hints), 49
fields.tests (fields testing scripts),

45
fields.x.to.grid (grid list), 56
fieldsPlotColors (tim.colors), 187
fitted.Krig (Krig), 78
flame, 53

gcv.Krig, 53
gcv.sreg (gcv.Krig), 53
get.rectangle (image2lz), 73

getVGMean (vgram), 200
grid list, 56
grid.list, 43
grid.list (grid list), 56

half.image (image2lz), 73

image.cov, 59
image.plot, 63
image.smooth, 71
image2lz, 73
in.land.grid (world), 206
in.poly, 43
in.poly (image2lz), 73
interp.surface, 76

Krig, 43, 55, 78, 103, 107, 111, 183, 186, 194
Krig.Amatrix, 87
Krig.check.xY (The Engines:), 183
Krig.coef (The Engines:), 183
Krig.cor.Y (The Engines:), 183
Krig.engine.default (The Engines:), 183
Krig.engine.fixed (The Engines:), 183
Krig.engine.knots (The Engines:), 183
Krig.make.u (The Engines:), 183
Krig.make.W (The Engines:), 183
Krig.make.Wi (The Engines:), 183
Krig.null.function, 89
Krig.replicates, 90
Krig.transform.xY (The Engines:), 183

larry.colors (tim.colors), 187
lennon, 44, 91

make.surface.grid (grid list), 56
Matern (Exponential, Matern, Radial

Basis), 40
matern.image.cov (image.cov), 59
MaternGLS.test (REML.test), 145
MaternGLSProfile.test (REML.test), 145
MaternQR.test (REML.test), 145
MaternQRProfile.test (REML.test), 145
minitri, 91
mKrig, 43, 92, 103, 107, 194
mKrig.grid, 96
mKrig.grid (fields.grid), 48
mKrig.MLE, 100
mKrigCheckXY (mKrig), 92
mKrigJointTemp.fn (mKrigMLE), 104

214 INDEX

mKrigMLE, 104
mKrigMLEGrid, 43, 102, 111
mKrigMLEGrid (mKrigMLE), 104
mKrigMLEJoint, 102, 111
mKrigMLEJoint (mKrigMLE), 104
MLE.Matern (REML.test), 145
MLE.objective.fn (REML.test), 145
MLESpatialProcess, 109
mltdrb (registeringCode), 144
multebC (registeringCode), 144
multwendlandg (registeringCode), 144

NativeSymbolInfo, 144
NorthAmericanRainfall, 44, 113

optim, 102, 103, 106, 107, 111
ozone (Chicago ozone test data), 13
ozone2, 44, 114

parse.grid.list (grid list), 56
plot.Krig, 115, 194
plot.spatialProcess (spatialProcess),

164
plot.sreg (plot.Krig), 115
plot.surface, 116
plot.vgram (vgram), 200
plot.vgram.matrix (vgram.matrix), 202
poly.image, 118
predict.fastTps (predict.Krig), 120
predict.Krig, 55, 120, 194
predict.mKrig (mKrig), 92
predict.sreg (sreg), 172
predict.surface (predictSurface), 125
predict.Tps (predict.Krig), 120
predictDerivative.Krig (predict.Krig),

120
predictSE, 43, 123
predictSE.Krig, 194
predictSEUsingKrigA (predictSE), 123
predictSurface, 125, 194
predictSurface.fastTps, 194
predictSurfaceSE (predictSurface), 125
print.Krig, 127
print.mKrig (mKrig), 92
print.mKrigSummary (mKrig), 92
print.spatialProcess (spatialProcess),

164
print.spatialProcessSummary

(spatialProcess), 164

PRISMelevation, 44
PRISMelevation (RMprecip), 150
pushpin, 128

QSreg (QTps), 132
qsreg, 129
QTps, 43, 132
quilt.plot, 136

Rad.cov (Covariance functions), 23
Rad.image.cov (image.cov), 59
Rad.simple.cov (Covariance functions),

23
RadialBasis (Exponential, Matern,

Radial Basis), 40
rat.diet, 44, 138
RCMexample, 44, 139
rdist, 22, 140, 143
rdist.earth, 141, 142, 201
RdistC (registeringCode), 144
RdistEarth (rdist.earth), 142
registeringCode, 144
REML.test, 145
resid.Krig (Krig), 78
ribbon.plot, 149
RMelevation, 44
RMelevation (RMprecip), 150
RMprecip, 150

set.panel, 152
setup.image.smooth (image.smooth), 71
sim.fastTps.approx

(sim.spatialProcess), 155
sim.Krig (sim.spatialProcess), 155
sim.mKrig.approx (sim.spatialProcess),

155
sim.rf, 40, 43, 153
sim.spatialProcess, 155
smooth.2d, 160
snow.colors (tim.colors), 187
spam2full (spam2lz), 162
spam2lz, 162
spam2spind (spam2lz), 162
spatialProcess, 43, 111, 164, 194
spind2full (spam2lz), 162
spind2spam (spam2lz), 162
splint, 43, 171
sreg, 43, 131, 172, 194
stationary.cov, 43, 103, 107, 141, 143, 181

INDEX 215

stationary.cov (Covariance functions),
23

stationary.image.cov (image.cov), 59
stationary.taper.cov (Covariance

functions), 23
stats, 177
stats.bin, 178
summary.Krig, 179, 194
summary.mKrig (mKrig), 92
summary.ncdf, 180
summary.spatialProcess

(spatialProcess), 164
supportsArg, 180
surface, 43
surface.Krig, 181, 194
surface.mKrig (surface.Krig), 181

test.for.zero (fields testing scripts),
45

The Engines:, 183
tim.colors, 187
Tps, 43, 55, 186, 190
transformx, 198
two.colors (tim.colors), 187

unrollZGrid (grid list), 56
US, 43, 199
US.dat, 199

vgram, 43, 200, 203
vgram.matrix, 43, 201, 202

Wendland, 204
wendland.cov (Covariance functions), 23
wendland.eval (Wendland), 204
wendland.image.cov (image.cov), 59
Wendland2.2 (Wendland), 204
which.max.image (image2lz), 73
which.max.matrix (image2lz), 73
world, 43, 206
WorldBankCO2, 44, 207

xline, 209

yline, 210

	add.image
	arrow.plot
	as.image
	as.surface
	BD
	bplot
	bplot.xy
	Chicago ozone test data
	CO2
	Colorado Monthly Meteorological Data
	colorbar.plot
	compactToMat
	Covariance functions
	CovarianceUpper
	cover.design
	drape.plot
	envelopePlot
	Exponential, Matern, Radial Basis
	fields
	fields testing scripts
	fields-stuff
	fields.grid
	fields.hints
	flame
	gcv.Krig
	grid list
	image.cov
	image.plot
	image.smooth
	image2lz
	interp.surface
	Krig
	Krig.Amatrix
	Krig.null.function
	Krig.replicates
	lennon
	minitri
	mKrig
	mKrig.MLE
	mKrigMLE
	MLESpatialProcess
	NorthAmericanRainfall
	ozone2
	plot.Krig
	plot.surface
	poly.image
	predict.Krig
	predictSE
	predictSurface
	print.Krig
	pushpin
	qsreg
	QTps
	quilt.plot
	rat.diet
	RCMexample
	rdist
	rdist.earth
	registeringCode
	REML.test
	ribbon.plot
	RMprecip
	set.panel
	sim.rf
	sim.spatialProcess
	smooth.2d
	spam2lz
	spatialProcess
	splint
	sreg
	stats
	stats.bin
	summary.Krig
	summary.ncdf
	supportsArg
	surface.Krig
	The Engines:
	tim.colors
	Tps
	transformx
	US
	US.dat
	vgram
	vgram.matrix
	Wendland
	world
	WorldBankCO2
	xline
	yline
	Index

