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as_SparseSet Convert Named Vector to SparseSet

Description

Convert Named Vector to SparseSet

Usage

as_SparseSet(A)

Arguments

A A named vector or matrix to build a new SparseSet.

Value

A SparseSet object.

Examples

A <- c(a = 0.1, b = 0.2, p = 0.3, q = 0)
as_SparseSet(A)
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as_vector Convert SparseSet to vector

Description

Convert SparseSet to vector

Usage

as_vector(v)

Arguments

v A SparseSet to convert to vector.

Value

A vector.

Examples

A <- c(a = 0.1, b = 0.2, p = 0.3, q = 0)
v <- as_SparseSet(A)
A2 <- as_vector(v)
all(A == A2)

cobre32 Data for Differential Diagnosis for Schizophrenia

Description

A subset of the COBRE dataset has been retrieved, by querying SchizConnect for 105 patients with
neurological and clinical symptoms, collecting also their corresponding diagnosis.

Usage

cobre32



4 cobre61

Format

A matrix with 105 rows and 32 columns. Column names are related to different scales for depression
and Schizophrenia:

COSAS_n The Simpson-Angus Scale, 7 items to evaluate Parkinsonism-like alterations, related to
schizophrenia, in an individual.

FICAL_n The Calgary Depression Scale for Schizophrenia, 9 items (attributes) assessing the level
of depression in schizophrenia, differentiating between positive and negative aspects of the
disease.

SCIDII_n The Structured Clinical Interview for DSM-III-R Personality Disorders, with 14 vari-
ables related to the presence of signs affecting personality.

dx_ss if TRUE, the diagnosis is strict schizophrenia.

dx_other it TRUE, the diagnosis is other than schizophrenia, including schizoaffective, bipolar dis-
order and major depression.

In summary, the dataset consists in the previous 30 attributes related to signs or symptoms, and
2 attributes related to diagnosis (these diagnoses are mutually exclusive, thus only one of them is
assigned to each patient). This makes a dataset with 105 objects (patients) and 32 attributes to
explore. The symptom attributes are multi-valued.

Thus, according to the specific scales used, all attributes are fuzzy and graded. For a given attribute
(symptom), the available grades range from absent to extreme, with minimal, mild, moderate, mod-
erate severe and severe in between.

These fuzzy attributes are mapped to values in the interval [0, 1].

Source

Aine, C. J., Bockholt, H. J., Bustillo, J. R., Cañive, J. M., Caprihan, A., Gasparovic, C., ... & Liu,
J. (2017). Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinfor-
matics, 15(4), 343-364. http://schizconnect.org/

cobre61 Data for Differential Diagnosis for Schizophrenia

Description

A subset of the COBRE dataset has been retrieved, by querying SchizConnect for 105 patients with
neurological and clinical symptoms, collecting also their corresponding diagnosis.

Usage

cobre61

http://schizconnect.org/
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Format

A matrix with 105 rows and 61 columns. Column names are related to different scales for depression
and Schizophrenia:

COSAS_n The Simpson-Angus Scale, 7 items to evaluate Parkinsonism-like alterations, related to
schizophrenia, in an individual.

FIPAN_n The Positive and Negative Syndrome Scale, a set of 29 attributes measuring different
aspects and symptoms in schizophrenia.

FICAL_n The Calgary Depression Scale for Schizophrenia, 9 items (attributes) assessing the level
of depression in schizophrenia, differentiating between positive and negative aspects of the
disease.

SCIDII_n The Structured Clinical Interview for DSM-III-R Personality Disorders, with 14 vari-
ables related to the presence of signs affecting personality.

dx_ss if TRUE, the diagnosis is strict schizophrenia.

dx_other it TRUE, the diagnosis is other than schizophrenia, including schizoaffective, bipolar dis-
order and major depression.

In summary, the dataset consists in the previous 59 attributes related to signs or symptoms, and
2 attributes related to diagnosis (these diagnoses are mutually exclusive, thus only one of them is
assigned to each patient). This makes a dataset with 105 objects (patients) and 61 attributes to
explore. The symptom attributes are multi-valued.

Thus, according to the specific scales used, all attributes are fuzzy and graded. For a given attribute
(symptom), the available grades range from absent to extreme, with minimal, mild, moderate, mod-
erate severe and severe in between.

These fuzzy attributes are mapped to values in the interval [0, 1].

Source

Aine, C. J., Bockholt, H. J., Bustillo, J. R., Cañive, J. M., Caprihan, A., Gasparovic, C., ... & Liu,
J. (2017). Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinfor-
matics, 15(4), 343-364. http://schizconnect.org/

ConceptLattice R6 class for a context lattice

Description

This class implements the data structure and methods for concept lattices.

Methods

Public methods:
• ConceptLattice$new()

• ConceptLattice$size()

http://schizconnect.org/
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• ConceptLattice$is_empty()

• ConceptLattice$extents()

• ConceptLattice$intents()

• ConceptLattice$plot()

• ConceptLattice$print()

• ConceptLattice$to_latex()

• ConceptLattice$[()

• ConceptLattice$sublattice()

• ConceptLattice$join_irreducibles()

• ConceptLattice$meet_irreducibles()

• ConceptLattice$decompose()

• ConceptLattice$supremum()

• ConceptLattice$infimum()

• ConceptLattice$subconcepts()

• ConceptLattice$superconcepts()

• ConceptLattice$lower_neighbours()

• ConceptLattice$upper_neighbours()

• ConceptLattice$support()

• ConceptLattice$clone()

Method new(): Create a new ConceptLattice object.

Usage:
ConceptLattice$new(extents, intents, objects, attributes, I = NULL)

Arguments:

extents (dgCMatrix) The extents of all concepts
intents (dgCMatrix) The intents of all concepts
objects (character vector) Names of the objects in the formal context
attributes (character vector) Names of the attributes in the formal context
I (dgCMatrix) The matrix of the formal context

Returns: A new ConceptLattice object.

Method size(): Size of the Lattice

Usage:
ConceptLattice$size()

Returns: The number of concepts in the lattice.

Method is_empty(): Is the lattice empty?

Usage:
ConceptLattice$is_empty()

Returns: TRUE if the lattice has no concepts.

Method extents(): Concept Extents
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Usage:
ConceptLattice$extents()

Returns: The extents of all concepts, as a dgCMatrix.

Method intents(): Concept Intents

Usage:
ConceptLattice$intents()

Returns: The intents of all concepts, as a dgCMatrix.

Method plot(): Plot the concept lattice

Usage:
ConceptLattice$plot(object_names = TRUE, to_latex = FALSE, ...)

Arguments:
object_names (logical) If TRUE, plot object names, otherwise omit them from the diagram.
to_latex (logical) If TRUE, export the plot as a tikzpicture environment that can be included

in a LaTeX file.
... Other parameters to be passed to the tikzDevice that renders the lattice in LaTeX, or for

the figure caption. See Details.

Details: Particular parameters that control the size of the tikz output are: width, height
(both in inches), and pointsize (in points), that should be set to the font size used in the
documentclass header in the LaTeX file where the code is to be inserted.
If a caption is provided, the whole tikz picture will be wrapped by a figure environment and
the caption set.

Returns: If to_latex is FALSE, it returns nothing, just plots the graph of the concept lattice.
Otherwise, this function returns the LaTeX code to reproduce the concept lattice.

Method print(): Print the Concept Lattice

Usage:
ConceptLattice$print()

Returns: Nothing, just prints the lattice.

Method to_latex(): Write in LaTeX

Usage:
ConceptLattice$to_latex(print = TRUE, ncols = 1, numbered = TRUE, align = TRUE)

Arguments:
print (logical) Print to output?
ncols (integer) Number of columns of the output.
numbered (logical) Number the concepts?
align (logical) Align objects and attributes independently?

Returns: The LaTeX code to list all concepts.

Method [(): Get Concepts by Index

Usage:
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ConceptLattice$[(indices)

Arguments:

indices (numeric or logical vector) The indices of the concepts to return as a list of SparseC-
oncepts. It can be a vector of logicals where TRUE elements are to be retained.

Returns: A list of SparseConcepts.

Method sublattice(): Sublattice

Usage:
ConceptLattice$sublattice(...)

Arguments:

... See Details.

Details: As argument, one can provide both integer indices or SparseConcepts, separated by
commas. The corresponding concepts are used to generate a sublattice.

Returns: The generated sublattice as a new ConceptLattice object.

Method join_irreducibles(): Join-irreducible Elements

Usage:
ConceptLattice$join_irreducibles()

Returns: The join-irreducible elements in the concept lattice.

Method meet_irreducibles(): Meet-irreducible Elements

Usage:
ConceptLattice$meet_irreducibles()

Returns: The meet-irreducible elements in the concept lattice.

Method decompose(): Decompose a concept as the supremum of meet-irreducible concepts

Usage:
ConceptLattice$decompose(C)

Arguments:

C A list of SparseConcepts

Returns: A list, each field is the set of meet-irreducible elements whose supremum is the
corresponding element in C.

Method supremum(): Supremum of Concepts

Usage:
ConceptLattice$supremum(...)

Arguments:

... See Details.

Details: As argument, one can provide both integer indices or SparseConcepts, separated by
commas. The corresponding concepts are used to compute their supremum in the lattice.

Returns: The supremum of the list of concepts.



ConceptLattice 9

Method infimum(): Infimum of Concepts

Usage:
ConceptLattice$infimum(...)

Arguments:
... See Details.

Details: As argument, one can provide both integer indices or SparseConcepts, separated by
commas. The corresponding concepts are used to compute their infimum in the lattice.

Returns: The infimum of the list of concepts.

Method subconcepts(): Subconcepts of a Concept

Usage:
ConceptLattice$subconcepts(C)

Arguments:
C (numeric or SparseConcept) The concept to which determine all its subconcepts.

Returns: A list with the subconcepts.

Method superconcepts(): Superconcepts of a Concept

Usage:
ConceptLattice$superconcepts(C)

Arguments:
C (numeric or SparseConcept) The concept to which determine all its superconcepts.

Returns: A list with the superconcepts.

Method lower_neighbours(): Lower Neighbours of a Concept

Usage:
ConceptLattice$lower_neighbours(C)

Arguments:
C (SparseConcept) The concept to which find its lower neighbours

Returns: A list with the lower neighbours of C.

Method upper_neighbours(): Upper Neighbours of a Concept

Usage:
ConceptLattice$upper_neighbours(C)

Arguments:
C (SparseConcept) The concept to which find its upper neighbours

Returns: A list with the upper neighbours of C.

Method support(): Get support of each concept

Usage:
ConceptLattice$support()

Returns: A vector with the support of each concept.
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Method clone(): The objects of this class are cloneable with this method.

Usage:
ConceptLattice$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

# Build a formal context
fc_planets <- FormalContext$new(planets)

# Find the concepts
fc_planets$find_concepts()

# Plot the concept lattice
fc_planets$concepts$plot()

# Find join- and meet- irreducible elements
fc_planets$concepts$join_irreducibles()
fc_planets$concepts$meet_irreducibles()

# Get concept support
fc_planets$concepts$support()

fcaR fcaR: Tools for Formal Concept Analysis

Description

The aim of this package is to provide tools to perform fuzzy formal concept analysis (FCA) from
within R. It provides functions to load and save a Formal Context, extract its concept lattice and
implications. In addition, one can use the implications to compute semantic closures of fuzzy sets
and, thus, build recommendation systems.

Details

The fcaR package provides data structures which allow the user to work seamlessly with formal
contexts and sets of implications. More explicitly, three main classes are implemented, using the R6
object-oriented-programming paradigm in R:

• FormalContext encapsulates the definition of a formal context (G,M, I), being G the set of
objects, M the set of attributes and I the (fuzzy) relationship matrix, and provides methods to
operate on the context using FCA tools.

• ImplicationSet represents a set of implications over a specific formal context.

• ConceptLattice represents the set of concepts and their relationships, including methods to
operate on the lattice.
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Two additional helper classes are implemented:

• SparseSet is a class solely used for visualization purposes, since it encapsulates in sparse
format a (fuzzy) set.

• SparseConcept encapsulates internally both extent and intent of a formal concept as SparseSet.
Since fcaR is an extension of the data model in the arules package, most of the methods
and classes implemented interoperates with the main S4 classes in arules (transactions and
rules).

References

Guigues J, Duquenne V (1986). “Familles minimales d’implications informatives résultant d’un
tableau de données binaires.” Mathématiques et Sciences humaines, 95, 5-18.

Ganter B, Wille R (1999). Formal concept analysis : mathematical foundations. Springer. ISBN
3540627715.

Cordero P, Enciso M, Mora Á, Pérez de Guzman I (2002). “SLFD Logic: Elimination of Data
Redundancy in Knowledge Representation.” Advances in Artificial Intelligence - IBERAMIA 2002,
2527, 141-150. doi: 10.1007/3-540-36131-6_15 (URL: http://doi.org/10.1007/3-540-36131-6_15).

Belohlavek R (2002). “Algorithms for fuzzy concept lattices.” In Proc. Fourth Int. Conf. on Recent
Advances in Soft Computing. Nottingham, United Kingdom, 200-205.

Hahsler M, Grun B, Hornik K (2005). “arules - a computational environment for mining association
rules and frequent item sets.” J Stat Softw, 14, 1-25.

Mora A, Cordero P, Enciso M, Fortes I, Aguilera G (2012). “Closure via functional dependence
simplification.” International Journal of Computer Mathematics, 89(4), 510-526. Belohlavek R,
Cordero P, Enciso M, Mora Á, Vychodil V (2016). “Automated prover for attribute dependencies
in data with grades.” International Journal of Approximate Reasoning, 70, 51-67.

Examples

# Build a formal context
fc_planets <- FormalContext$new(planets)

# Find its concepts and implications
fc_planets$find_implications()

# Plot the concept lattice
fc_planets$concepts$plot()

# Print the extracted implications
fc_planets$implications
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FormalContext R6 class for a formal context

Description

This class implements the data structure and methods for formal contexts.

Public fields

• I: the table for the formal context.

• attributes: name of the attributes in the formal context.

• objects: name of the objects in the context.

• grades_set: set of grades (in [0, 1]) of the attributes.

• concepts: list of concepts (extent, intent).

• implications: extracted implications as an ImplicationSet.

Methods

Public methods:
• FormalContext$new()

• FormalContext$is_empty()

• FormalContext$intent()

• FormalContext$extent()

• FormalContext$closure()

• FormalContext$obj_concept()

• FormalContext$att_concept()

• FormalContext$is_concept()

• FormalContext$is_closed()

• FormalContext$clarify()

• FormalContext$reduce()

• FormalContext$standardize()

• FormalContext$find_concepts()

• FormalContext$find_implications()

• FormalContext$to_transactions()

• FormalContext$save()

• FormalContext$load()

• FormalContext$dim()

• FormalContext$print()

• FormalContext$to_latex()

• FormalContext$plot()

• FormalContext$clone()
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Method new(): Creator for the Formal Context class

Usage:
FormalContext$new(I, remove_const = FALSE)

Arguments:
I (numeric matrix) The table of the formal context.
remove_const (logical) If TRUE, remove constant columns. The default is FALSE.

Details: Columns of I should be named, since they are the names of the attributes of the formal
context.
If no I is used, the resulting FormalContext will be empty and not usable unless for loading a
previously saved one.

Returns: An object of the FormalContext class.

Method is_empty(): Check if the FormalContext is empty

Usage:
FormalContext$is_empty()

Returns: TRUE if the FormalContext is empty, that is, has not been provided with a matrix, and
FALSE otherwise.

Method intent(): Get the intent of a fuzzy set of objects

Usage:
FormalContext$intent(S)

Arguments:
S (SparseSet) The set of objects to compute the intent for.

Returns: A SparseSet with the intent.

Method extent(): Get the extent of a fuzzy set of attributes

Usage:
FormalContext$extent(S)

Arguments:
S (SparseSet) The set of attributes to compute the extent for.

Returns: A SparseSet with the intent.

Method closure(): Get the closure of a fuzzy set of attributes

Usage:
FormalContext$closure(S)

Arguments:
S (SparseSet) The set of attributes to compute the closure for.

Returns: A SparseSet with the closure.

Method obj_concept(): Object Concept

Usage:
FormalContext$obj_concept(object)
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Arguments:
object (character) Name of the object to compute its associated concept

Returns: The object concept associated to the object given.

Method att_concept(): Attribute Concept

Usage:
FormalContext$att_concept(attribute)

Arguments:
attribute (character) Name of the attribute to compute its associated concept

Returns: The attribute concept associated to the attribute given.

Method is_concept(): Is a Concept?

Usage:
FormalContext$is_concept(C)

Arguments:
C A SparseConcept object

Returns: TRUE if C is a concept.

Method is_closed(): Testing closure of attribute sets

Usage:
FormalContext$is_closed(S)

Arguments:
S A SparseSet of attributes

Returns: TRUE if the set S is closed in this formal context.

Method clarify(): Clarify a formal context

Usage:
FormalContext$clarify(copy = FALSE)

Arguments:
copy (logical) If TRUE, a new FormalContext object is created with the clarified context, oth-

erwise the current one is overwritten.

Returns: The clarified FormalContext.

Method reduce(): Reduce a formal context

Usage:
FormalContext$reduce(copy = FALSE)

Arguments:
copy (logical) If TRUE, a new FormalContext object is created with the clarified and reduced

context, otherwise the current one is overwritten.

Returns: The clarified and reduced FormalContext.

Method standardize(): Build the Standard Context
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Usage:
FormalContext$standardize()

Details: All concepts must be previously computed.

Returns: The standard context using the join- and meet- irreducible elements.

Method find_concepts(): Use Ganter Algorithm to compute concepts

Usage:
FormalContext$find_concepts(verbose = FALSE)

Arguments:

verbose (logical) TRUE will provide a verbose output.

Returns: A list with all the concepts in the formal context.

Method find_implications(): Use modified Ganter algorithm to compute both concepts and
implications

Usage:
FormalContext$find_implications(save_concepts = TRUE, verbose = FALSE)

Arguments:

save_concepts (logical) TRUE will also compute and save the concept lattice. FALSE is usually
faster, since it only computes implications.

verbose (logical) TRUE will provide a verbose output.

Returns: Nothing, just updates the internal fields concepts and implications.

Method to_transactions(): Convert the formal context to object of class transactions from
the arules package

Usage:
FormalContext$to_transactions()

Returns: A transactions object.

Method save(): Save a FormalContext to RDS format

Usage:
FormalContext$save(filename = tempfile(fileext = ".rds"))

Arguments:

filename (character) Path of the RDS file where to store the FormalContext.

Returns: Invisibly the current FormalContext.

Method load(): Load a FormalContext from a RDS file

Usage:
FormalContext$load(filename)

Arguments:

filename (character) Path of the RDS file to load the FormalContext from.

Returns: The loaded FormalContext.
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Method dim(): Dimensions of the formal context
Usage:
FormalContext$dim()

Returns: A vector with (number of objects, number of attributes).

Method print(): Prints the formal context
Usage:
FormalContext$print()

Returns: Prints information regarding the formal context.

Method to_latex(): Write the context in LaTeX format
Usage:
FormalContext$to_latex(
label = "",
caption = "",
fraction = c("none", "frac", "dfrac", "sfrac")

)

Arguments:
label (character) The label for the table environment.
caption (character) The caption of the table.
fraction (character) If none, no fractions are produced. Otherwise, if it is frac, dfrac or

sfrac, decimal numbers are represented as fractions with the corresponding LaTeX type-
setting.

Returns: A table environment in LaTeX.

Method plot(): Plot the formal context table
Usage:
FormalContext$plot(to_latex = FALSE, ...)

Arguments:
to_latex (logical) If TRUE, export the plot as a tikzpicture environment that can be included

in a LaTeX file.
... Other parameters to be passed to the tikzDevice that renders the lattice in LaTeX, or for

the figure caption. See Details.
Details: Particular parameters that control the size of the tikz output are: width, height
(both in inches), and pointsize (in points), that should be set to the font size used in the
documentclass header in the LaTeX file where the code is to be inserted.
If a caption is provided, the whole tikz picture will be wrapped by a figure environment and
the caption set.
Returns: If to_latex is FALSE, it returns nothing, just plots the graph of the formal context.
Otherwise, this function returns the LaTeX code to reproduce the formal context plot.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FormalContext$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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References

Guigues J, Duquenne V (1986). “Familles minimales d’implications informatives résultant d’un
tableau de données binaires.” Mathématiques et Sciences humaines, 95, 5-18.

Ganter B, Wille R (1999). Formal concept analysis : mathematical foundations. Springer. ISBN
3540627715.

Belohlavek R (2002). “Algorithms for fuzzy concept lattices.” In Proc. Fourth Int. Conf. on Recent
Advances in Soft Computing. Nottingham, United Kingdom, 200-205.

Hahsler M, Grun B, Hornik K (2005). “arules - a computational environment for mining association
rules and frequent item sets.” J Stat Softw, 14, 1-25.

Examples

# Build and print the formal context
fc_planets <- FormalContext$new(planets)
print(fc_planets)

# Plot the formal context
fc_planets$plot()

# Define a set of attributes
S <- SparseSet$new(attributes = fc_planets$attributes)
S$assign(moon = 1, large = 1)

# Compute the closure of S
Sc <- fc_planets$closure(S)
# Is Sc a closed set?
fc_planets$is_closed(Sc)

# Clarify and reduce the formal context
fc2 <- fc_planets$reduce(TRUE)

# Find implications
fc_planets$find_implications()

ImplicationSet R6 Class for Set of implications

Description

This class implements the structure needed to store implications and the methods associated.

Methods

Public methods:
• ImplicationSet$new()

• ImplicationSet$get_attributes()
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• ImplicationSet$[()

• ImplicationSet$to_arules()

• ImplicationSet$add()

• ImplicationSet$cardinality()

• ImplicationSet$is_empty()

• ImplicationSet$size()

• ImplicationSet$closure()

• ImplicationSet$recommend()

• ImplicationSet$apply_rules()

• ImplicationSet$to_basis()

• ImplicationSet$print()

• ImplicationSet$to_latex()

• ImplicationSet$get_LHS_matrix()

• ImplicationSet$get_RHS_matrix()

• ImplicationSet$filter()

• ImplicationSet$support()

• ImplicationSet$clone()

Method new(): Initialize with an optional name

Usage:
ImplicationSet$new(...)

Arguments:

... See Details.

Details: Creates and initialize a new FormalContext object. It can be done in two ways:
initialize(name,attributes,lhs,rhs) or initialize(rules)
In the first way, the only mandatory argument is attributes, (character vector) which is a
vector of names of the attributes on which we define the implications. Optional arguments are:
name (character string), name of the implication set, lhs (a dgCMatrix), initial LHS of the
implications stored and the analogous rhs.
The other way is used to initialize the FormalContext object from a rules object from package
arules.

Returns: A new ImplicationSet object.

Method get_attributes(): Get the names of the attributes

Usage:
ImplicationSet$get_attributes()

Returns: A character vector with the names of the attributes used in the implications.

Method [(): Get a subset of the implication set

Usage:
ImplicationSet$[(idx)

Arguments:
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idx (integer or logical vector) Indices of the implications to extract or remove. If logical vector,
only TRUE elements are retained and the rest discarded.

Returns: A new ImplicationSet with only the rules given by the idx indices (if all idx > 0
and all but idx if all idx < 0.

Method to_arules(): Convert to arules format

Usage:
ImplicationSet$to_arules(quality = TRUE)

Arguments:
quality (logical) Compute the interest measures for each rule?

Returns: A rules object as used by package arules.

Method add(): Add a precomputed implication set

Usage:
ImplicationSet$add(...)

Arguments:
... An ImplicationSet object, a rules object, or a pair lhs, rhs of SparseSet objects or

dgCMatrix. The implications to add to this formal context.

Returns: Nothing, just updates the internal implications field.

Method cardinality(): Cardinality: Number of implications in the set

Usage:
ImplicationSet$cardinality()

Returns: The cardinality of the implication set.

Method is_empty(): Empty set

Usage:
ImplicationSet$is_empty()

Returns: TRUE if the set of implications is empty, FALSE otherwise.

Method size(): Size: number of attributes in each of LHS and RHS

Usage:
ImplicationSet$size()

Returns: A vector with two components: the number of attributes present in each of the LHS
and RHS of each implication in the set.

Method closure(): Compute the semantic closure of a fuzzy set with respect to the implication
set

Usage:
ImplicationSet$closure(S, reduce = FALSE, verbose = FALSE)

Arguments:
S (a SparseSet object) Fuzzy set to compute its closure. Use class SparseSet to build it.
reduce (logical) Reduce the implications using simplification logic?
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verbose (logical) Show verbose output?

Returns: If reduce == FALSE, the output is a fuzzy set corresponding to the closure of S. If
reduce == TRUE, a list with two components: closure, with the closure as above, and implications,
the reduced set of implications.

Method recommend(): Generate a recommendation for a subset of the attributes

Usage:
ImplicationSet$recommend(S, attribute_filter)

Arguments:

S (a vector) Vector with the grades of each attribute (a fuzzy set).
attribute_filter (character vector) Names of the attributes to get recommendation for.

Returns: A fuzzy set describing the values of the attributes in attribute_filter within the
closure of S.

Method apply_rules(): Apply rules to remove redundancies

Usage:
ImplicationSet$apply_rules(
rules = c("composition", "generalization"),
batch_size = 25000L,
parallelize = FALSE,
reorder = FALSE

)

Arguments:

rules (character vector) Names of the rules to use. See details.
batch_size (integer) If the number of rules is large, apply the rules by batches of this size.
parallelize (logical) If possible, should we parallelize the computation among different batches?
reorder (logical) Should the rules be randomly reordered previous to the computation?

Details: Currently, the implemented rules are "generalization", "simplification", "reduction"
and "composition".

Returns: Nothing, just updates the internal matrices for LHS and RHS.

Method to_basis(): Convert Implications to Canonical Basis

Usage:
ImplicationSet$to_basis()

Returns: The canonical basis of implications obtained from the current ImplicationSet

Method print(): Print all implications to text

Usage:
ImplicationSet$print()

Returns: A string with all the implications in the set.

Method to_latex(): Export to LaTeX

Usage:
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ImplicationSet$to_latex(
print = TRUE,
ncols = 1,
numbered = TRUE,
numbers = seq(self$cardinality())

)

Arguments:
print (logical) Print to output?
ncols (integer) Number of columns for the output.
numbered (logical) If TRUE (default), implications will be numbered in the output.
numbers (vector) If numbered, use these elements to enumerate the implications. The default

is to enumerate 1, 2, ..., but can be changed.
Returns: A string in LaTeX format that prints nicely all the implications.

Method get_LHS_matrix(): Get internal LHS matrix
Usage:
ImplicationSet$get_LHS_matrix()

Returns: A sparse matrix representing the LHS of the implications in the set.

Method get_RHS_matrix(): Get internal RHS matrix
Usage:
ImplicationSet$get_RHS_matrix()

Returns: A sparse matrix representing the RHS of the implications in the set.

Method filter(): Filter implications by attributes in LHS and RHS
Usage:
ImplicationSet$filter(lhs = NULL, rhs = NULL, drop = FALSE)

Arguments:
lhs (character vector) Names of the attributes to filter the LHS by. If NULL, no filtering is done

on the LHS.
rhs (character vector) Names of the attributes to filter the RHS by. If NULL, no filtering is done

on the RHS.
drop (logical) Remove the rest of attributes in RHS?
Returns: An ImplicationSet that is a subset of the current set, only with those rules which
has the attributes in lhs and rhs in their LHS and RHS, respectively.

Method support(): Compute support of each implication
Usage:
ImplicationSet$support()

Returns: A vector with the support of each implication

Method clone(): The objects of this class are cloneable with this method.
Usage:
ImplicationSet$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
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Examples

# Build a formal context
fc_planets <- FormalContext$new(planets)

# Find its implication basis
fc_planets$find_implications()

# Print implications
fc_planets$implications

# Cardinality and mean size in the ruleset
fc_planets$implications$cardinality()
sizes <- fc_planets$implications$size()
colMeans(sizes)

# Simplify the implication set
fc_planets$implications$apply_rules("simplification")

planets Planets data

Description

This dataset records some properties of the planets in our solar system.

Usage

planets

Format

A matrix with 9 rows (the planets) and 7 columns, representing additional features of the planets:

small 1 if the planet is small, 0 otherwise.

medium 1 if the planet is medium-sized, 0 otherwise.

large 1 if the planet is large, 0 otherwise.

near 1 if the planet belongs in the inner solar system, 0 otherwise.
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far 1 if the planet belongs in the outer solar system, 0 otherwise.

moon 1 if the planet has a natural moon, 0 otherwise.

no_moon 1 if the planet has no moon, 0 otherwise.

Source

Wille R (1982). “Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts.”
In Ordered Sets, pp. 445–470. Springer.

print.conceptlist Print a list of concepts

Description

Print a list of concepts

Usage

## S3 method for class 'conceptlist'
print(x, ...)

Arguments

x A list of concepts as a result of subsetting a ConceptLattice

... Another (unused) arguments.

Value

Nothing, just prints a list of concepts nicely.

Examples

# Build a formal context
fc_planets <- FormalContext$new(planets)

# Find its concepts
fc_planets$find_concepts()

# Print the first 3 concepts
fc_planets$concepts[1:3]
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SparseConcept R6 class for a fuzzy concept with sparse internal representation

Description

This class implements the data structure and methods for fuzzy concepts.

Methods

Public methods:
• SparseConcept$new()

• SparseConcept$get_extent()

• SparseConcept$get_intent()

• SparseConcept$print()

• SparseConcept$to_latex()

• SparseConcept$clone()

Method new(): Creator for objects of class SparseConcept

Usage:
SparseConcept$new(extent, intent)

Arguments:
extent (SparseSet) The extent of the concept.
intent (SparseSet) The intent of the concept.

Returns: An object of class SparseConcept.

Method get_extent(): Internal SparseSet for the extent

Usage:
SparseConcept$get_extent()

Returns: The SparseSet representation of the extent.

Method get_intent(): Internal SparseSet for the intent

Usage:
SparseConcept$get_intent()

Returns: The SparseSet representation of the intent.

Method print(): Prints the concept to console

Usage:
SparseConcept$print()

Returns: A string with the elements of the set and their grades between brackets .

Method to_latex(): Write the concept in LaTeX format

Usage:
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SparseConcept$to_latex(print = TRUE)

Arguments:

print (logical) Print to output?

Returns: The fuzzy concept in LaTeX.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SparseConcept$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

# Build a formal context and find its concepts
fc_planets <- FormalContext$new(planets)
fc_planets$find_concepts()

# Print the first three concepts
fc_planets$concepts[1:3]

# Select the first concept:
C <- fc_planets$concepts[1][[1]]

# Get its extent and intent
C$get_extent()
C$get_intent()

SparseSet R6 class for a fuzzy set with sparse internal representation

Description

This class implements the data structure and methods for fuzzy sets.

Methods

Public methods:
• SparseSet$new()

• SparseSet$assign()

• SparseSet$[()

• SparseSet$cardinal()

• SparseSet$get_vector()

• SparseSet$get_attributes()

• SparseSet$length()
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• SparseSet$print()

• SparseSet$to_latex()

• SparseSet$clone()

Method new(): Creator for objects of class SparseSet

Usage:
SparseSet$new(attributes, M = NULL)

Arguments:
attributes (character vector) Names of the attributes that will be available in the fuzzy set.
M (numeric vector or column Matrix) Values (grades) to be assigned to the attributes.

Details: If M is omitted, the fuzzy set is the empty set. Later, one can use the assign method to
assign grades to any of its attributes.

Returns: An object of class SparseSet.

Method assign(): Assign grades to attributes in the set

Usage:
SparseSet$assign(attributes = c(), values = c(), ...)

Arguments:
attributes (character vector) Names of the attributes to assign a grade to.
values (numeric vector) Grades to be assigned to the previous attributes.
... key = value pairs, where the value value is assigned to the key attribute name.

Details: One can use both of: S$assign(A = 1,B = 0.3) S$assign(attributes = c(A,B),values
= c(1,0.3)).

Method [(): Get elements by index

Usage:
SparseSet$[(indices)

Arguments:
indices (numeric, logical or character vector) The indices of the elements to return. It can be

a vector of logicals where TRUE elements are to be retained.

Returns: A SparseSet but with only the required elements.

Method cardinal(): Cardinal of the SparseSet

Usage:
SparseSet$cardinal()

Returns: the cardinal of the SparseSet, counted as the sum of the degrees of each element.

Method get_vector(): Internal Matrix

Usage:
SparseSet$get_vector()

Returns: The internal sparse Matrix representation of the set.

Method get_attributes(): Attributes defined for the set
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Usage:

SparseSet$get_attributes()

Returns: A character vector with the names of the attributes.

Method length(): Number of attributes

Usage:

SparseSet$length()

Returns: The number of attributes that are defined for this fuzzy set.

Method print(): Prints the set to console

Usage:

SparseSet$print()

Returns: A string with the elements of the set and their grades between brackets .

Method to_latex(): Write the set in LaTeX format

Usage:

SparseSet$to_latex(print = TRUE)

Arguments:

print (logical) Print to output?

Returns: The fuzzy set in LaTeX.

Method clone(): The objects of this class are cloneable with this method.

Usage:

SparseSet$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

S <- SparseSet$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
print(S)
S$to_latex()
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to_latex Print a list of concepts to LaTeX

Description

Print a list of concepts to LaTeX

Usage

to_latex(x)

## S3 method for class 'conceptlist'
to_latex(x)

Arguments

x A conceptlist as result of subsetting a ConceptLattice

Value

Nothing, just prints a list of concepts in LaTeX nicely.

Examples

# Build a formal context
fc_planets <- FormalContext$new(planets)

# Find its concepts
fc_planets$find_concepts()

# Print the first 3 concepts to latex
to_latex(fc_planets$concepts[1:3])

vegas Data for Tourist Destination in Las Vegas

Description

The dataset vegas is the binary translation of the Las Vegas Strip dataset (@moro2017stripping),
which records more than 500 TripAdvisor reviews of hotels in Las Vegas Strip. The uninformative
attributes (such as the user continent or the weekday of the review) are removed.

Usage

vegas
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Format

A matrix with 504 rows and 25 binary columns. Column names are related to different features of
the hotels:

Period of Stay 4 categories are present in the original data, which produces as many binary vari-
ables: Period of stay=Dec-Feb, Period of stay=Mar-May, Period of stay=Jun-Aug and
Period of stay=Sep-Nov.

Traveler type Five binary categories are created from the original data: Traveler type=Business,
Traveler type=Couples, Traveler type=Families, Traveler type=Friends and Traveler
type=Solo.

Pool, Gym, Tennis court, Spa, Casino, Free internet Binary variables for the services offered by
each destination hotel

Stars Five binary variables are created, according to the number of stars of the hotel, Stars=3,
Stars=3.5, Stars=4, Stars=4.5 and Stars=5.

Score The score assigned in the review, from Score=1 to Score=5.

Source

Moro, S., Rita, P., & Coelho, J. (2017). Stripping customers’ feedback on hotels through data
mining: The case of Las Vegas Strip. Tourism Management Perspectives, 23, 41-52.

%==% Equality in Sets and Concepts

Description

Equality in Sets and Concepts

Usage

C1 %==% C2

Arguments

C1 A SparseSet or SparseConcept

C2 A SparseSet or SparseConcept

Details

Both C1 and C2 must be of the same class.

Value

Returns TRUE if C1 is equal to C2.
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Examples

# Build two sparse sets
S <- SparseSet$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
T <- SparseSet$new(attributes = c("A", "B", "C"))
T$assign(A = 1)

# Test whether S and T are equal
S %==% T

%<=% Partial Order in Sets and Concepts

Description

Partial Order in Sets and Concepts

Usage

C1 %<=% C2

Arguments

C1 A SparseSet or SparseConcept

C2 A SparseSet or SparseConcept

Details

Both C1 and C2 must be of the same class.

Value

Returns TRUE if concept C1 is subconcept of C2 or if set C1 is subset of C2.

Examples

# Build two sparse sets
S <- SparseSet$new(attributes = c("A", "B", "C"))
S$assign(A = 1)
T <- SparseSet$new(attributes = c("A", "B", "C"))
T$assign(A = 1, B = 1)

# Test whether S is subset of T
S %<=% T
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