Package ‘fastmap’

October 8, 2019
Title Fast Implementation of a Key-Value Store
Version 1.0.1

Description Fast implementation of a key-value store. Environments are commonly
used as key-value stores, but every time a new key is used, it is added to
R's global symbol table, causing a small amount of memory leakage. This can
be problematic in cases where many different keys are used. Fastmap avoids
this memory leak issue by implementing the map using data structures in C++.

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 6.1.1
Suggests testthat (>=2.1.1)

URL https://r-1lib.github.io/fastmap/, https://github.com/r-1ib/fastmap

BugReports https://github.com/r-1ib/fastmap/issues
NeedsCompilation yes

Author Winston Chang [aut, cre],
RStudio [cph, fnd],
Tessil [cph] (hopscotch_map library)

Maintainer Winston Chang <winston@rstudio.com>
Repository CRAN
Date/Publication 2019-10-08 05:20:02 UTC

R topics documented:

fastmap L e
key_missing e e

Index

https://r-lib.github.io/fastmap/
https://github.com/r-lib/fastmap
https://github.com/r-lib/fastmap/issues

2 fastmap

fastmap Create a fastmap object

Description

A fastmap object provides a key-value store where the keys are strings and the values are any R
objects.

Usage
fastmap(missing_default = NULL)

Arguments

missing_default
The value to return when get () is called with a key that is not in the map. The
default is NULL, but in some cases it can be useful to return a sentinel value, such
as a key_missing object.

Details

In R, it is common to use environments as key-value stores, but they can leak memory: every time
a new key is used, R registers it in its global symbol table, which only grows and is never garbage
collected. If many different keys are used, this can cause a non-trivial amount of memory leakage.

Fastmap objects do not use the symbol table and do not leak memory.

Unlike with environments, the keys in a fastmap are always encoded as UTF-8, so if you call
$set () with two different strings that have the same Unicode values but have different encodings,
the second call will overwrite the first value. If you call $keys(), it will return UTF-8 encoded
strings, and similarly, $as_list () will return a list with names that have UTF-8 encoding.

Note that if you call $mset () with a named argument, where the name is non-ASCII, R will convert
the name to the native encoding before fastmap has the chance to convert them to UTF-8, and the
keys may get mangled in the process. However, if you use $mset(.list =x), then R will not
convert the keys to the native encoding, and the keys will be correctly converted to UTF-8. With
$mget (), the keys will be converted to UTF-8 before they are fetched.

Fastmap objects have the following methods:

set(key, value) Set a key-value pair. key must be a string. Returns value.

mset(..., .list =NULL) Setmultiple key-value pairs. The key-value pairs are named arguments,
and/or a list passed in as .1ist. Returns a named list where the names are the keys, and the
values are the values.

get(key, missing =missing_default) Get a value corresponding to key. If the key is not in the
map, return missing.

mget (keys, missing =missing_default) Get values corresponding to keys, which is a charac-
ter vector. The values will be returned in a named list where the names are the same as the
keys passed in, in the same order. For keys not in the map, they will have missing for their
value.

fastmap 3

has(keys) Given a vector of keys, returns a logical vector reporting whether each key is contained
in the map.

remove (keys) Given a vector of keys, remove the key-value pairs from the map. Returns a logical
vector reporting whether each item existed in (and was removed from) the map.

keys(sort = FALSE) Returns a character vector of all the keys. By default, the keys will be in
arbitrary order. Note that the order can vary across platforms and is not guaranteed to be
consistent. With sort=TRUE, the keys will be sorted according to their Unicode code point
values.

size() Returns the number of items in the map.

as_list(sort = FALSE) Return a named list where the names are the keys from the map, and the
values are the values. By default, the keys will be in arbitrary order. Note that the order can
vary across platforms and is not guaranteed to be consistent. With sort=TRUE, the keys will
be sorted according to their Unicode code point values.

reset() Reset the fastmap object, clearing all items.

Examples

Create the fastmap object
m <- fastmap()

Set some key-value pairs

m$set("x", 100)

m$set("letters”, c("a”, "b", "c"))
m$mset(numbers = c(10, 20, 30), nothing = NULL)

Get values using keys

m$get ("x")

m$get ("numbers™)
m$mget(c("letters”, "numbers”))

Missing keys return NULL by default, but this can be customized
m$get ("xyz")

Check for existence of keys
m$has("x")

m$has("nothing™)

m$has ("xyz")

Remove one or more items
m$remove(c("letters”, "x"))

Return number of items
m$size()

Get all keys
m$keys()

Return named list that represents all key-value pairs
str(m$as_list())

4 key_missing

Clear the map
m$reset()

Specify missing value when get() is called
m <- fastmap()

m$get("x", missing = key_missing())

#> <Key Missing>

Specify the default missing value

m <- fastmap(missing_default = key_missing())
m$get ("x")

#> <Key Missing>

key_missing A missing key object

Description

A key_missing object represents a missing key.

Usage

key_missing()
is.key_missing(x)

Arguments

X An object to test.

Index

fastmap, 2
is.key_missing (key_missing), 4

key_missing, 2, 4

	fastmap
	key_missing
	Index

