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Abstract

Stochastic volatility (SV) models are nonlinear state-space models that enjoy increas-
ing popularity for fitting and predicting heteroskedastic time series. However, due to the
large number of latent quantities, their efficient estimation is non-trivial and software that
allows to easily fit SV models to data is rare. We aim to alleviate this issue by presenting
novel implementations of four SV models delivered in two R packages. Several unique
features are included and documented. As opposed to previous versions, stochvol is now
capable of handling linear mean models, heavy-tailed SV, and SV with leverage. More-
over, we newly introduce factorstochvol which caters for multivariate SV. Both packages
offer a user-friendly interface through the conventional R generics and a range of tailor-
made methods. Computational efficiency is achieved via interfacing R to C++ and doing
the heavy work in the latter. In the paper at hand, we provide a detailed discussion
on Bayesian SV estimation and showcase the use of the new software through various
examples.

Keywords: Bayesian inference, state-space model, heteroskedasticity, dynamic correlation, dy-
namic covariance, factor stochastic volatility, Markov chain Monte Carlo (MCMC), leverage
effect, asymmetric return distribution, heavy tails, financial time series.

1. Introduction
Time dependent variance is an indispensable ingredient of financial and economic time series
modeling. Already Markowitz (1952) concerns himself with methods that take into account
heteroskedasticity in a better way than a rolling window estimation. By 1982, two fundamen-
tally different approaches had been developed to cater to these needs. On the one hand, Engle
(1982) lays the groundwork for a family of time varying volatility models, most notably the
generalized autoregressive conditional heteroskedasticity model (GARCH, Bollerslev 1986).
These models feature conditionally deterministic changes in the variance. Taylor (1982), on
the other hand, addresses heteroskedasticity in his seminal work with a non-linear latent state
space model, later coined the stochastic volatility (SV) model. There, the volatility process
evolves in a stochastic manner. Despite some empirical evidence in favor of SV models over
their corresponding GARCH counterparts (Jacquier, Polson, and Rossi 1994; Gysels, Harvey,
and Renault 1996; Kim, Shephard, and Chib 1998; Nakajima 2012), SV and its variants enjoy
little publicity among practitioners. As Bos (2012) underlines, one reason for this might be
the lack of standard software. In response, Kastner (2016) provides a first version of the
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R (R Core Team 2019) package stochvol but fails to feature conditional non-Gaussianity,
asymmetry (the so-called leverage effect), and multivariate generalizations.
We address these shortcomings in the manuscript at hand. First, we extend stochvol (Kast-
ner and Hosszejni 2019) with several practically relevant univariate methods. Second, we
introduce the new companion package factorstochvol (Kastner 2019a) which focuses on the
multivariate case. The extended stochvol now provides the means for the Bayesian estima-
tion of vanilla SV, heavy-tailed SV and SV with leverage (Harvey and Shephard 1996; Omori,
Chib, Shephard, and Nakajima 2007; Nakajima and Omori 2012). Moreover, the package
also handles these models naturally when embedded into a linear model or an autoregressive
(AR) context. The factorstochvol package implements an efficient method for the Bayesian
estimation of the factor SV model (Kastner, Frühwirth-Schnatter, and Lopes 2017). Among
other features, the package provides several automatic factor identification schemes, hierar-
chical shrinkage priors (variations of the normal gamma prior, Griffin and Brown 2010), and
an array of intuitive visualization methods for the high-dimensional posteriors.
The remainder of this paper is structured as follows. We formally introduce the univariate
and the multivariate models in Sections 2 and 3, respectively, including a discussion about
prior distributions and a brief overview of the estimation methods. In Section 4, we unveil
the new samplers of the stochvol package through three example models. We describe the
factorstochvol package in Section 5, and then we conclude.

2. Univariate SV models
We begin by introducing the vanilla SV model with linear regressors, henceforth simply called
the SV model. This is a minor but important extension of the SV model without regressors.
We also settle the notation and establish a baseline model that we generalize and reuse
throughout the manuscript. Consequently, we proceed with two relaxed models: the SV
model with Student’s t errors (SVt) and the SV model with leverage (SVl). Finally, we close
the section after discussing prior distributions and MCMC sampling.

2.1. Model specifications

The key feature of the SV model is its stochastic and time-varying specification of the variance
evolution. In particular, the log-variance is assumed to follow an AR(1) process. This feature
unites the following models.

Vanilla SV with linear regressors

Let y = (y1, . . . , yn)> denote a vector of observations. The SV model assumes the following
structure for y,

yt | xt,β, ht ∼ N (xtβ, exp(ht)),
ht+1 | ϑ, ht ∼ N (µ+ ϕ(ht − µ), σ2),

(1)

whereN (a, b) denotes the normal distribution with mean a and variance b. X = (x>1 , . . . ,x>n )>
is an n × K matrix containing in its tth row the vector of K regressors at time t. The K
regression coefficients are collected in β = (β1, . . . , βK)>, and h = (h1, . . . , hn)> denotes the



Darjus Hosszejni, Gregor Kastner 3

log-variance process. We refer to ϑ = (µ, ϕ, σ) as the SV parameters: µ is the level, ϕ is the
persistence, and σ (also called volvol) is the standard deviation of the log-variance.

SV with Student’s t errors

Several authors have suggested to use non-normal conditional residual distributions for stochas-
tic volatility modeling. Examples include the Student’s t distribution (Harvey, Ruiz, and
Shephard 1994), the extended generalized inverse Gaussian (Silva, Lopes, and Migon 2006),
(semi-)parametric residuals (Jensen and Maheu 2010; Delatola and Griffin 2011), or the gener-
alized hyperbolic skew Student’s t distribution (Nakajima and Omori 2012). In the following,
we describe the SV model with Student’s t errors implemented in stochvol.

yt | xt,β, ht, ν ∼ tν(xtβ, exp(ht/2)),
ht+1 | ϑ, ht ∼ N (µ+ ϕ(ht − µ), σ2),

(2)

where tν(a, b) is the Student’s t distribution with ν degrees of freedom, mean a, and scale
b. The single difference between Equation 1 and Equation 2 is that the observations are
conditionally t distributed. Hence, Equation 2 relaxes Equation 1 through the new parameter
ν as the Student’s t distribution converges in law to the standard normal distribution when
ν goes to infinity.

SV with leverage

Propositions for asymmetric innovations include non-parametric distributions (Jensen and
Maheu 2014), skewed distributions (Nakajima and Omori 2012), and distributions featuring
correlation with the variance process, also called the leverage effect (Harvey and Shephard
1996; Jacquier, Polson, and Rossi 2004). We implement the leverage effect in the stochvol
package. Formally,(

yt
ht+1

) ∣∣∣∣∣ ht, ζ,xt,β ∼ N2

((
xtβ

µ+ ϕ(ht − µ)

)
,Σρ

)
,

Σρ =
(

exp(ht) ρσ exp(ht/2)
ρσ exp(ht/2) σ2

)
,

(3)

where N2(b,B) is the two-dimensional normal distribution with mean vector b ∈ R2 and
covariance matrix B ∈ R2×2. The vector ζ = (µ, ϕ, σ, ρ)> collects the SV parameters. The
new parameter compared to Equation 1 is a correlation term ρ which relates the residuals of
the observations to the innovations of the variance process. Equation 1 is therefore a special
case of Equation 3 with a pre-fixed ρ = 0.

2.2. Prior distributions

We a priori assume βk ∼ N (bβ, Bβ) independently for k = 1, . . . ,K. By setting bβ = 0,
the prior distribution becomes the Bayesian analogue to ridge regression (see, e.g., Park and
Casella 2008, for a discussion of this and other shrinkage priors). It allows strong prior
information and thus shrinkage toward bβ for small values of Bβ, but it can also serve as a
rather uninformative prior for large values of Bβ.
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The level µ ∈ R is unrestricted, hence we can apply the common µ ∼ N (bµ, Bµ) prior.
Depending on the application, a fairly uninformative distribution is the usual choice, e.g.,
setting bµ = 0 and Bµ ≥ 100 for daily asset log returns. In our experience, the exact values
of the prior mean and prior variance of µ do not strongly affect the estimation results unless
Bµ is small.
To achieve stationarity in the variance process, a restricted persistence ϕ ∈ (−1, 1) is needed.
To this end, we assume (ϕ + 1)/2 ∼ B(aϕ, bϕ), where B(aϕ, bϕ) is the beta distribution
with shape parameters aϕ and bϕ. The selection of the shape parameters may be relatively
influential with many data sets. In financial applications with daily asset log returns, the
variance tends to be highly persistent, i.e., ϕ ≈ 1. Such domain knowledge can be used as
prior information by allocating more probability to positive high values of ϕ, e.g., by setting
aϕ ≈ 1.5 and bϕ & 5.
The volvol is positive but we would like allow σ to approach 0 as closely as needed – that
allows us to be less informative and to improve the estimates. The commonly applied and
convenient conjugate prior σ−2 ∼ G(aσ, bσ), where G(aσ, bσ) is the gamma distribution with
shape parameter aσ and rate parameter bσ, bounds σ away from 0 and it is therefore in
our view an unsatisfactory choice. Following Frühwirth-Schnatter and Wagner (2010) and
Kastner and Frühwirth-Schnatter (2014), we advocate and employ ±σ ∼ N (0, Bσ) instead,
which corresponds to σ2 ∼ G(1/2, 1/(2Bσ)).
As a last step in fully specifying the vanilla SV model in Equation 1, the variance process
is initialized a priori with its stationary distribution, i.e., h0 ∼ N (µ, σ2/(1− ϕ2)). This
consistently extends our prior assumptions about h following a stationary AR(1) process.
Equation 2 – the SV model with Student’s t errors – additionally requires the prior speci-
fication of the degrees of freedom parameter ν. To ascertain interpretability of the scaling
exp(ht/2), we ensure finite second moments of y by enforcing ν > 2. Moreover, when ν is
large and consequently the likelihood is insensitive to variations in ν, bounding ν from above
can alleviate mixing problems. Consequently, we equip ν with a uniform prior ν ∼ U(aν , bν),
where we require aν ≥ 2.
Finally, in the case of the SV model with leverage, we employ the translated and scaled beta
distribution for ρ ∈ (−1, 1) as in Omori et al. (2007), i.e., (ρ + 1)/2 ∼ B(aρ, bρ). We find
that the posterior estimates of ρ can be sensitive to its prior distribution, thus, some care is
needed when setting the hyperparameters in practice. In our experience, slightly informative
choices such as aρ = bρ ≈ 4 work well in financial applications.

2.3. Estimation
Bayesian analysis aims to estimate model parameters through Bayesian updating. By using
probability distributions to represent information, Bayes’ theorem can be employed to update
the prior information to the posterior information by incorporating the observations. For an
introductory textbook on Bayesian statistics, see, for instance, McElreath (2015).
When the posterior distribution is not available analytically, one customarily resorts to
approximations such as perfect simulation (Huber 2015), approximate Bayesian computa-
tion (Sisson, Fan, and Beaumont 2018), adaptive Monte Carlo methods (Roberts and Rosen-
thal 2007), or Markov chain Monte Carlo (MCMC) methods. When computationally feasible,
MCMC is a valuable tool that provides draws from the posterior distribution in question. That
way, MCMC approximates the posterior distribution similarly to a histogram approximating
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m free elements of Σt free elements of Σt per data point
1 1 1
10 55 5.5
100 5050 50.5
1000 500500 500.5

Table 1: Absolute and relative numbers of free elements of the time-varying covariance matrix
Σt for different numbers of component series m.

a density. For a more in-depth introduction on MCMC methods, see, for instance, Brooks,
Gelman, Jones, and Meng (2011).
The estimation algorithm of SV, SVt, and SVl all resemble the original methodology devel-
oped in Kastner and Frühwirth-Schnatter (2014) for the vanilla SV model. Namely, to draw
from the posterior distribution of h efficiently, the MCMC sampler resorts to approximate
mixture representations of Equations 1, 2, and 3 similar to the ones in Kim et al. (1998) and
Omori et al. (2007). Doing so yields a conditionally Gaussian state space model for which
efficient sampling methods are available (Frühwirth-Schnatter 1994; Carter and Kohn 1994).
Following Rue (2001) and McCausland, Miller, and Pelletier (2011), we draw the full vector
h “all without a loop” (AWOL).
When Student’s t errors with unknown degrees of freedom are used, we handle the added
complication through the well-known representation of the t distribution as a scale mixture
of Gaussians. This requires additional Gibbs and independence Metropolis-Hastings steps
documented in Kastner (2015). Furthermore, we deal with the increased complexity in the
posterior space of the leverage case by repeated ancillarity-sufficiency interweaving strate-
gies (ASIS, Yu and Meng 2011) steps in the sampling scheme, see Hosszejni and Kastner
(2019) for details.
For maximal computational effectiveness, all sampling algorithms are implemented in the
compiled language C++ (ISO/IEC 2017) with the help of the R package Rcpp (Eddelbuettel
and François 2011). Matrix computations make use of the efficient C++ template library
Armadillo (Sanderson and Curtin 2016) through the R package RcppArmadillo (Eddelbuettel
and Sanderson 2014). After sampling, the resulting R objects make use of plotting and
summary functions of the R package coda (Plummer, Best, Cowles, and Vines 2006).

3. Multivariate SV models
A key difficulty accompanying dynamic covariance estimation is the relatively high number
of unknowns compared to the number of observations. More precisely, letting m denote
the cross-sectional dimension, the corresponding covariance matrix Σt contains m(m + 1)/2
degrees of freedom, a quadratic term in m. Table 1 illustrates the “curse of dimensionality”
for various values of m. One way to break this curse is to use latent factors and thereby
achieve a sparse representation of Σt.

3.1. The factor SV model

Latent factor models embody the idea that even high dimensional systems are driven by only
a few sources of randomness. These few sources of randomness control a few factors, which
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m free elements of Σt free elements of Σt per data point
10 44 4.4
100 494 4.94
1000 4994 4.994

Table 2: Absolute and relative numbers of free elements of the time-varying covariance matrix
Σt in a factor model for different numbers of component seriesm and number of factors r = 4.

in turn account for the interactions between the observations. Moreover, latent factor models
provide an efficient tool for dynamic covariance matrix estimation. They allow for a reduction
in the number of unknowns. A conventional latent factor model with r factors implies the
decomposition

Σt = Σ̌t + Σ̄t, (4)

where rank(Σ̌t) = r < m, and Σ̄t is the diagonal matrix containing the variances of the
idiosyncratic errors. The rank assumption on the symmetric Σ̌t gives rise to the factorization
Σ̌t = ΨΨ>, where Ψ ∈ Rm×r contains mr − r(r − 1)/2 free elements (see, e.g., the pivoted
Cholesky algorithm in Higham 1990). Hence, m(r + 1)− r(r − 1)/2 free elements remain in
Σt, now only linear in m. Table 2 illustrates the “broken curse of dimensionality” for various
values of m and r = 4.
In the following, we describe the factor SV model employed in the factorstochvol package.
We model the observations yt = (yt1, . . . , ytm)> as follows.

yt | Λ,ft, Σ̄t ∼ Nm(Λft, Σ̄t),
ft | Σ̃t ∼ Nr(0, Σ̃t),

(5)

where ft = (ft1, . . . , ftr)> is the vector of factors and Λ ∈ Rm×r is a tall matrix holding the
factor loadings. The covariance matrices Σ̄t and Σ̃t are both diagonal representing indepen-
dent vanilla SV processes.

Σ̄t = diag(exp(h̄t1), . . . , exp(h̄tm)),
Σ̃t = diag(exp(h̃t1, . . . , exp(h̃tr))),
h̄ti ∼ N (µ̄i + ϕ̄i(h̄t−1,i − µ̄i), σ̄2

i ), i = 1, . . . ,m,
h̃tj ∼ N (µ̃j + ϕ̃j(h̃t−1,j − µ̃j), σ̃2

j ), j = 1, . . . , r.

(6)

For a more theoretical treatment of factor SV from a Bayesian point of view, the reader is
referred to, e.g., Pitt and Shephard (1999), Aguilar and West (2000), Chib, Nardari, and
Shephard (2006), and Han (2006).
Based on Equation 5, we can reformulate Equation 4 as

Σt = ΛΣ̃tΛ> + Σ̄t, (7)

from which several identification issues are apparent: the order, the sign, and the scale of
the factors is unidentified. More specifically, for any generalized permutation matrix1 P of

1A generalized permutation matrix has the zero–non-zero pattern of a permutation matrix, but it is allowed
to have any non-zero values instead of just ones. Hence, a generalized permutation matrix not only permutes
but also scales and switches the sign of its multiplier.
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size r × r, we find another valid decomposition Σt = Λ′Σ̃′t(Λ′)> + Σ̄t, where Λ′ = ΛP−1

and Σ̃′t = P Σ̃tP
>. We resolve the ambiguity in the scale of the factors by fixing the level of

their log-variance to zero, i.e., µ̃j = 0 for j = 1, . . . , r. Sign and order identification can be
enforced through restrictions on the factor loadings matrix Λ. Several options are available
in factorstochvol for restricting Λ, for details see Section 5.2.

3.2. Prior distributions

Priors need to be specified for the latent log-variance processes as well as for the factor
loadings matrix Λ. The former have the same prior specification as in the univariate case in
Section 2.2. For Λ, three types of priors are currently implemented in factorstochvol. All three
can be written in the form Λij ∼ N (0, τ2

ij) independently for each applicable i ∈ {1, . . .m}
and j ∈ {1, . . . , r}. First, one can fix all the τ2

ijs – not necessarily to the same value – a priori.
This results in a normal prior for each element of the loadings matrix.
The second type is a hierarchical prior which has been developed to induce more flexible and
potentially stronger shrinkage,

Λij | τ2
ij ∼ N (0, τ2

ij), τ2
ij | λ2

i ∼ G(a, aλ2
i /2). (8)

This distribution is termed normal gamma prior by Griffin and Brown (2010) and implies a
conditional variance V(Λij | λ2

i ) of 2/λ2
i and an unconditional excess kurtosis of 3/a. The

value of a is treated as a structural parameter to be fixed by the user, where choosing a
small (. 1) enforces strong shrinkage towards zero, while choosing a large (& 1) imposes
little shrinkage. The case a = 1 is a special case termed the Bayesian Lasso prior (Park and
Casella 2008). The parameter λ2

i is estimated from the data with λ2
i ∼ G(c, d).

The third type is a slight modification of the second. Because variances in each row of
the factor loadings matrix Λ can be seen as “random effects” from the same underlying
distribution, the prior in Equation 8 induces row-wise shrinkage with element-wise adaption.
Analogously, one could also consider column-wise shrinkage with element-wise adaption, i.e.,

Λij | τ2
ij ∼ N (0, τ2

ij), τ2
ij | λ2

j ∼ G(a, aλ2
j/2), (9)

with the corresponding prior λ2
j ∼ G(c, d).

3.3. Estimation

Bayesian estimation in the factor SV model builds on the univariate vanilla SV implementa-
tions in stochvol and features several levels of efficiency boosting. To alleviate the problem of
potentially bad MCMC mixing in high dimensions, it is carried out via a sampler that utilizes
several variants of ASIS. The sampling details implemented in factorstochvol are described in
Kastner et al. (2017, using Gaussian priors for the factor loadings) as well as Kastner (2019b,
using hierarchical shrinkage priors for the factor loadings).
Similarly to stochvol and in an attempt to make computation time bearable even in higher
dimensions, factorstochvol’s main sampler is written in C++. It uses the R package Rcpp
to ease communication between R and C++. The univariate SV parts are borrowed from
stochvol and interfaced through its C/C++-level updating function update_sv(). In doing
so, moving between interpreted R code and compiled C++ code at each MCMC iteration is
avoided.
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4. The stochvol package
The stochvol package provides means for fitting univariate SV, SVt, and SVl models via
its sampling routines svsample(), svtsample(), and svlsample(), respectively. In the fol-
lowing, we describe a recommended workflow with stochvol. First, we discuss estimation,
visualization, and prediction using default settings. Then, we show how to adapt the values
of the prior hyperparameters and how to configure the sampling mechanism.

4.1. Preparing the data and running the MCMC sampler
We estimate three models that exemplify the features and the user interface of stochvol. Using
the exrates data found in the package, we model the EURCHF exchange rate (the price of
1 euro in Swiss franc) in the period between March 1, 2008 and March 1, 2012 (1028 data
points) in three different ways.

AR(1) model with SV residuals
The first example is an AR(1) model with SV residuals, i.e., Equation 1 turns into

yt | yt−1, β0, β1, ht ∼ N (β0 + β1yt−1, exp(ht)),
ht+1 | ϑ, ht ∼ N (µ+ ϕ(ht − µ), σ2).

Using this model, we test whether the exchange rate follows a random walk with SV. In this
case, we expect the posteriors of β0 and β1 to concentrate around 0 and 1, respectively.
In order to estimate this AR(1)-SV model, we need to prepare the input y as a numeric
sequence of length n and pass it as the first input argument to svsample() as follows:

R> library("stochvol")
R> data("exrates")
R> ind <- which(exrates$date >= as.Date("2008-03-01") &
+ exrates$date <= as.Date("2012-03-01"))
R> CHF_price <- exrates$CHF[ind]
R> res_sv <- svsample(CHF_price, designmatrix = "ar1")

We set designmatrix = "ar1" to use the AR(1) specification. More generally, designmatrix
can take character values of the form "ar0" for a constant mean model, or "ar1", "ar2",
etc., for AR(1), AR(2), and so on.

Constant mean model with SVt residuals
The second example is a constant mean model with SVt residuals, i.e., Equation 2 becomes

yt | β0, ht, ν ∼ tν(β0, exp(ht/2)),
ht+1 | ϑ, ht ∼ N (µ+ ϕ(ht − µ), σ2).

If the returns are heavy-tailed, most of the posterior mass of ν concentrates on low values,
e.g., smaller than 20. Otherwise, there is little evidence for high kurtosis.
We compute the log returns by applying logret() on the previously calculated CHF_price.
Then, to estimate the constant mean model with heavy tailed SV residuals, we pass the vector
of log returns to svtsample() with designmatrix set to "ar0".
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R> CHF_logret <- 100 * logret(CHF_price)
R> res_svt <- svtsample(CHF_logret, designmatrix = "ar0")

Multiple regression with SVl residuals
The third example is a multiple regression model with an intercept, two regressors, and SVl
residuals; that is, Equation 3 turns into(

yt
ht+1

) ∣∣∣∣∣ ht, ζ,
(
xt1
xt2

)
, β0,

(
β1
β2

)
∼ N2

((
β0 + β1xt1 + β2xt2
µ+ ϕ(ht − µ)

)
,Σρ

)
,

Σρ =
(

exp(ht) ρσ exp(ht/2)
ρσ exp(ht/2) σ2

)
.

For illustration, we regress EURCHF log returns onto the contemporaneous log returns on
EURUSD and EURJPY, the value of 1 euro per US dollar and Japanese yen, respectively.
To estimate a multiple regression model using stochvol, we need to prepare a numeric matrix
X of dimension n×K, where rows correspond to time points and columns to covariates. We
create an intercept as the first column of X, and we set the second and the third columns
to the EURUSD log returns and the EURJPY log returns, respectively; finally, we use the
columns of X as covariates in the multiple regression.

R> X <- cbind(constant = 1,
+ 100 * logret(exrates$USD[ind]),
+ 100 * logret(exrates$JPY[ind]))
R> res_svl <- svlsample(CHF_logret, designmatrix = X)

4.2. Visualizing the results
Often, the joint posterior distribution of model parameters and latent quantities mark the goal
of a Bayesian analysis. To inspect it, one can look at summary statistics and various types
of visualizations of marginal posterior distributions. Also, it is recommended to examine the
Markov chain for possible convergence issues – this happens usually by investigating trace
plots of posterior quantities. For this reason, inspired by the coda package, stochvol provides
its own instances of the R generic functions plot() and summary(). In order to introduce the
tools that stochvol provides for analyzing MCMC output, we briefly examine the results of
the third example (multiple regression with SVl errors) in the remaining part of the section.
First, we plot the output of the estimation.

R> plot(res_svl, showobs = FALSE)

The result is shown in Figure 1. We see in the first row a summary of the posterior density
of the volatility. Apart from its median, we also receive a quantification of the uncertainty
through the 5% and the 95% quantiles at each time point. In the second row, we can follow
the development of the Markov chain of the SV parameters. In this example, they are µ, ϕ,
σ, and ρ. Lastly, we see prior and posterior density plots of the parameters in the third row
in gray and black, respectively. They show high persistence and significant leverage.
Next, we observe the AR coefficients.
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Estimated volatilities in percent (5% / 50% / 95% posterior quantiles)
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Figure 1: The default plot of an estimated model. The top row shows a summary of the
posterior of the volatility (in percent) 100 exp(h/2) through its median (black) and 5% and
95% quantiles (gray). The remaining panels summarize the Markov chains of the parameters
µ, ϕ, σ, and ρ. In particular, the middle row presents trace plots and the bottom row shows
prior (gray, dashed) and posterior (black, solid) densities.

R> for (i in seq_len(3)) {
+ traceplot(res_svl$beta[, i])
+ densplot(res_svl$beta[, i], show.obs = FALSE)
+ }

The result is shown in Figure 2. On the left hand side, we do not spot any signs of convergence
or mixing problems in the trace plots. On the right hand side, we see that none of the posterior
densities of β0, β1, and β2 concentrate around 0, hence the covariates seem to have an impact
on the dependent variable.
As the final step, we print a numeric summary of the estimation results.

R> summary(res_svl, showlatent = FALSE)

Summary of 10000 MCMC draws after a burn-in of 1000.
Prior distributions:
mu ~ Normal(mean = 0, sd = 100)
(phi+1)/2 ~ Beta(a0 = 5, b0 = 1.5)
sigma^2 ~ 1 * Chisq(df = 1)
(rho+1)/2 ~ Beta(a0 = 4, b0 = 4)
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Figure 2: Trace plots and estimated kernel densities of posterior draws from p(β | y).

Posterior draws of parameters (thinning = 1):
mean sd 5% 50% 95% ESS

mu -2.033 0.410 -2.687 -2.023 -1.384 509
phi 0.976 0.010 0.958 0.977 0.991 207
sigma 0.277 0.043 0.211 0.274 0.350 85
rho -0.266 0.098 -0.420 -0.271 -0.096 241
exp(mu/2) 0.369 0.076 0.261 0.364 0.501 509
sigma^2 0.079 0.024 0.044 0.075 0.122 85

For brevity, we set showlatent = FALSE in order not to print all the 1027 latent states.
The output shows the length of the burn-in and the number of draws, the prior specification
of the parameters, and a concise summary of the marginal posterior distributions of the
parameters µ, ϕ, σ, and ρ, and additionally of the level of the volatility exp(µ/2) and of σ2.
This posterior summary is a table consisting of columns for the posterior mean and standard
deviation, the 5%, 50%, and 95% quantiles. The user can influence the shown quantiles by
passing a sequence of values between 0 and 1 to svsample()/svtsample()/svlsample() via
the argument quantiles.
The last column in the table depicts the so-called effective sample size (ESS), a measure of
the quality of a converged MCMC chain. In principle, ESS is the sample size of a serially
uncorrelated chain bearing the same Monte Carlo error as our (marginal) chain. Intuitively
speaking, this means that ESS is the number of independent and identically distributed draws
that were acquired and gives a sense of how well our chain has explored the posterior space.
Higher values of ESS indicate better mixing.

4.3. Prediction with stochvol
We employ our estimated model to predict log returns for the remaining days in the data set.
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Figure 3: Multi-step ahead predictive distributions (solid, gray and black) and observations
(dashed, red).

To do so, we first prepare the covariates for the next 24 days and pass them via the argument
newdata of the generic predict() function along with the estimation output. Note that we
need 25 days of price data to obtain 24 returns.

R> pred_ind <- seq(tail(ind, 1), length.out = 25)
R> pred_X <- cbind(constant = 1,
+ 100 * logret(exrates$USD[pred_ind]),
+ 100 * logret(exrates$JPY[pred_ind]))
R> pred_svl <- predict(res_svl, 24, newdata = pred_X)

As we have access to the entire distribution of future log returns, we can quantify the uncer-
tainty around our predictions through quantiles. In the following code snippet, we visualize
the k-step-ahead predictive distributions for k = 1, . . . , 24, along with the truly observed
values. The result is in Figure 3.

R> obs_CHF <- 100 * logret(exrates$CHF[pred_ind])
R> ts.plot(cbind(t(apply(pred_svl$y, 2, quantile, c(0.05, 0.5, 0.95))),
+ obs_CHF), xlab = "Periods ahead", lty = c(rep(1, 3), 2),
+ col = c("gray80", "black", "gray80", "red"))

4.4. Specifying the prior hyperparameters

As discussed in Section 2.2, the prior distributions need to be specified before the estimation
process can start. Concerning the common model parameters µ, ϕ, and σ, all of svsample(),
svtsample(), and svlsample() expect through their input arguments priormu, priorphi,
and priorsigma values for (bµ,

√
Bµ), (aϕ, bϕ), and Bσ, respectively. Furthermore, all sam-

pling functions accept the argument priorbeta to set the prior of regression coefficients by
providing (bβ,

√
Bβ). The prior of ν can be influenced in svtsample() by passing (aν , bν) as

the argument priornu. Finally, svlsample() takes the numeric sequence (aρ, bρ) through
the input argument priorrho.
The code snippet below shows all the default values of the prior hyperparameters.

R> svsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),
+ priorsigma = 1, priorbeta = c(0, 10000))
R> svtsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),
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+ priorsigma = 1, priornu = c(2, 50), priorbeta = c(0, 10000))
R> svlsample(CHF_logret, priormu = c(0, 100), priorphi = c(5, 1.5),
+ priorsigma = 1, priorrho = c(4, 4), priorbeta = c(0, 10000))

4.5. Setting up the Markov chain

When conducting Bayesian inference using an MCMC sampling scheme, the number of draws
from the posterior distribution, the length of the so-called burn-in phase, the initial values of
the Markov chain, and the various strategies of storing the results are all of general interest.
The input arguments draws and burnin settle the first two points. A sample size of burnin
+ draws is acquired from the posterior distribution out of which the first burnin number
of draws are thrown away. The default is to draw 10000 elements after a burnin of 1000,
which in our experience is enough for most applications. As for the initial values, we find
them to be of minor importance as the samplers tend to mix well enough in real world data
sets. Nevertheless, startpara and startlatent provide a way to set them. The argument
startpara is expected to be a named list mapping parameter names to starting values, and
startlatent must be a sequence of length m that contains starting values for h. Lastly,
stochvol provides three ways to economize storage during and after the execution of the
sampler. Setting the integer argument thinpara to ι tells the sampler to store only every
ιth draw of the vector of parameters, and supplying a value for thinlatent does the same
for h. Finally, one has the opportunity not to store the full vector h but only its last value
by setting keeptime = "last". The default behavior is to store every draw after the burn-in
phase.

5. The factorstochvol package
The most common workflow of using factorstochvol for fitting multivariate factor SV models
consists of the following steps: (1) Prepare the data, (2) decide on an identification structure,
(3) specify the prior hyperparameters, (4) run the sampler, (5) investigate the output and
visualize the results, and (6) predict (if required). These steps are described in detail in the
following sections.

5.1. Preparing the data

The workhorse in factorstochvol is the sampling function fsvsample(). It expects the data
to come in form of a matrix Y = (y1, . . . ,yn)> with n rows and m columns. For illustration,
we use the exchange rate data set in stochvol which contains 3140 observations of 23 EUR
exchange rates, ranging from March 3, 2000 to April 4, 2012. To keep the analysis simple
and computation times moderate, we however only model the last 1001 days of the first six
series (Australian dollar, Canadian dollar, Swiss franc, Czech koruna, Danish krone, Great
British pound) for further analysis. Instead of using the nominal exchange rates we compute
log returns which we demean component-wise. This leaves us with a data set of size n = 1000
and m = 6. The data is prepared using the code snippet below and visualized in Figure 4.

R> library("factorstochvol")
R> data("exrates", package = "stochvol")
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Figure 4: Percentage log returns of six EUR exchange rates.

R> m <- 6
R> n <- 1000
R> y <- 100 * logret(tail(exrates[, seq_len(m)], n + 1), demean = TRUE)
R> plot.ts(y)

5.2. Deciding on an identification structure

The likelihood in factor models is invariant to certain factor transformations such as reordering
of factors and their loadings or sign switches thereof. In addition to this, it is often multimodal.
Consequently, identifying the factor loadings is far from trivial. The most common way to
address this issue in factor SV models is to impose a lower-diagonal factor loadings matrix
where all elements above the diagonal are set to zero (e.g., Aguilar and West 2000; Chib et al.
2006; Han 2006; Zhou, Nakajima, andWest 2014). To use this constraint in factorstochvol, the
argument restrict = "upper" can be passed to the main sampling function fsvsample().
Evidently, this practice imposes an order dependence, as, e.g., the first variable is not allowed
to load on anything else but the first factor.
A rather ad hoc method for automatically ordering the data is implemented in the helper func-
tion preorder(). After a maximum likelihood factor model fit to the data (using factanal()
from the stats package with the default varimax rotation), the series are ordered as follows:
The variable with the highest loading on factor 1 is placed first, the variable with the high-
est loading on factor 2 second (unless this variable is already placed first, in which case the
variable with the second highest loading is taken), et cetera. For the data set at hand, this
would imply the following ordering for a two-factor model.

R> preorder(y, factors = 2)

[1] 2 3 1 4 5 6

According to this algorithm, the second series should be placed first and the third series
should be placed second. Thereafter, the alphabetical ordering remains. To achieve this effect
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without reordering the data, a logical matrix of size m× r can be passed to fsvsample()
via restrict, where the entry TRUE means that this element is restricted to zero; FALSE
means that it is to be estimated from the data. Similarly to preorder(), the function
findrestrict() tries to automate this procedure. Below is the result for the data set at
hand.

R> findrestrict(y, factors = 2)

[,1] [,2]
[1,] FALSE FALSE
[2,] FALSE TRUE
[3,] FALSE FALSE
[4,] FALSE FALSE
[5,] FALSE FALSE
[6,] FALSE FALSE

If fsvsample() is called with the default argument restrict = "auto", it automatically
invokes findrestrict() with the appropriate number of factors. Using restrict = "none"
(the default) causes the sampler not to place any constraints on the loadings matrix; thus, the
resulting posterior draws may be unstable or suffer from multiple local modes. If, however,
inference on the factor loadings themselves is not the primary concern of the analysis, leaving
the factor loadings unidentified may be the preferred option. This is in particular the case
when inference for the covariance matrix is sought, as this only depends on Λ through the
rotation-invariant transformation of Equation 7. For a more elaborate discussion of these is-
sues, we refer the reader to Sentana and Fiorentini (2001) who discuss automatic identification
through heteroskedasticity. A comparison of log predictive scores under different identification
schemes for factor SV models is given in Kastner et al. (2017); see also Frühwirth-Schnatter
and Lopes (2018) for related issues in static factor models. To continue with the current
example, we chose not to place any a priori restrictions on the factor loadings matrix while
using a row-wise normal-gamma shrinkage prior on the factor loadings matrix (cf. Kastner
2019b).

5.3. Specifying prior hyperparameters

Apart from the obvious prior choice about the number of factors and the identification scheme
discussed above, a number of hyperparameter choices are available in factorstochvol. Re-
garding the log-variance processes, the interface is analogous to that of svsample() and
svlsample(). In the following, i = 1, . . . ,m and j = 1, . . . , r index the idiosyncratic and the
factor log-variance processes, respectively. The common prior of µ̄i can be set by passing a
sequence of length two – the mean and the standard deviation of the normal distribution – to
priormu; the common priors of ϕ̄i and ϕ̃j can also be set by passing sequences of length two –
the parameters of the corresponding beta distribution – to priorphiidi and to priorphifac,
respectively; similarly, the common priors of σ̄i and σ̃j can be specified via the arguments
priorsigmaidi and priorsigmafac, respectively, that accept as positive numbers the scale
Bσ of the corresponding gamma distribution.
As discussed in Section 3.2, factorstochvol offers three specifications as priors for Λ, controlled
through the argument priorfacloadtype. To use the first option (priorfacloadtype =
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"normal"), one needs to fix the values of τij a priori. The user can pass these fixed values
to fsvsample() via the argument priorfacload, either as an m × r matrix with positive
entries or as a single positive number which will be recycled accordingly. For the second op-
tion, the normal gamma prior with row-wise or column-wise shrinkage (priorfacloadtype =
"rowwiseng" and priorfacloadtype = "colwiseng", respectively), the value of priorfacload
is then interpreted as the shrinkage parameter a. Both specifications of the normal gamma
prior need the values c and d. They can be set as a two-element vector passed to the argument
priorng.

5.4. Running the MCMC sampler

Running the sampler corresponds to invoking fsvsample(). Apart from the prior settings
discussed above, its most important arguments are listed below. For a complete list of all
arguments and more details, see ?fsvsample.

• y: the data;

• factors: the number of factors;

• draws: the number of MCMC samples to be drawn after burnin;

• thin: the amount of thinning (every thinth draw is kept);

• burnin: the length of the burn-in period, i.e. the number of MCMC draws to be dis-
carded before the samples are considered to emerge from the stationary distribution,

• keeptime: either "all", meaning that all latent log volatilities are being monitored
at all points in time, or "last", meaning that the latent log volatility draws are only
stored at t = n, the last point in time; the latter setting is the default to avoid excessive
memory usage in higher dimensions;

• heteroskedastic: indicator(s) to turn off stochastic volatility for the idiosyncratic
variances, the factor variances, or both;

• samplefac: indicator to turn off sampling of the factors; useful to work with observed
instead of latent factors (see Kastner 2019b, for a use case of this);

• runningstore: to avoid having to store all MCMC draws, fsvsample’s default is to
compute and store the first runningstoremoments (two by default) ergodic moments
of some interesting quantities (such as log variances, factors, volatilities, covariance
matrices, correlation matrices, communalities) only; the default (runningstore = 6) is
to compute and store everything; however, one can set runningstore to a lower number
to save computation time;

• runningstorethin: indicates how often ergodic moments should be calculated, where
1 means that this should be done at every iteration and higher numbers lessen both
runtime as well as accuracy;

• quiet: a logical indicator determining the verbosity of fsvsample.
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For our illustrative example, most settings are left at their default values. Only the number
of factors is increased from one to two, instead of 1000 we sample 10000 draws, a thinning of
10 is used, and quiet is set to TRUE.

R> library(factorstochvol)
R> res <- fsvsample(y, factors = 2, draws = 10000, thin = 10, quiet = TRUE)

5.5. Investigating the output and visualizing the results

The resulting object

R> res

Fitted factor stochastic volatility object with
- 6 series
- 2 factor(s)
- 1000 timepoints
- 10000 MCMC draws
- 10 thinning
- 1000 burn-in

holds a rich amount of information. In particular, it contains

• draws of certain posterior quantities such as the factors f , the factor loadings Λ, the
various factor and idiosyncratic SV parameters, the latent factor and idiosyncratic log
variances h̃ and h̄,

• configuration settings such as the number of draws, potential restrictions on the loadings
matrix, prior hyperparameters, etc.,

• running moments (such as means and standard deviations) of quantitites of interest,
depending on the values of runningstore and runningstoremoments specified when
calling fsvsample(),

• the data input y.

For more details, please investigate str(res) and/or ?fsvsample.
Using covmat(), one can extract the MCMC draws of the implied covariance matrices for all
points in time which have been stored during sampling. By default, this is the last point in
time (keeptime = "last"), and thus

R> dim(cov_n <- covmat(res))

[1] 6 6 1000 1

shows that we have stored 1000 posterior draws of a 6 × 6 covariance matrix at one point
in time, t = n = 1000. To check convergence, one can take a look at the trace plot and the
autocorrelation function of the log determinant, i.e.:
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Figure 5: Trace plot and empirical autocorrelation function of the log determinant of the
model-implied covariance matrix at t = n.

R> det_n <- apply(cov_n[,,,1], 3, det)
R> ts.plot(log(det_n))
R> acf(log(det_n), main = "")

The result are visualized in Figure 5; decent mixing for this quantity is apparent. To assess the
mixing speed of each individual covariance matrix element, one can check, e.g., the estimated
effective sample size (out of 1000 draws kept) which is implemented in coda. Again, no major
convergence problems are apparent.

R> round(apply(cov_n, 1:2, coda::effectiveSize))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 365 866 632 79 1030 1058
[2,] 866 860 271 72 1026 1070
[3,] 632 271 592 1000 1000 836
[4,] 79 72 1000 1000 911 258
[5,] 1030 1026 1000 911 1000 1089
[6,] 1058 1070 836 258 1089 890

Assuming that runningstore was set sufficiently high when sampling, several convenience
functions can be used for quick visualizations without having to a posteriori collect the MCMC
draws. For example, to visualize the time-varying correlation matrices, consider

R> corimageplot(res, these = seq(1, n, length.out = 3), plotCI = "circle",
+ plotdatedist = 2, date.cex = 1.1)

which produces the three estimated posterior correlation matrices depicted in Figure 6. Set-
ting plotCI = "circle" visualizes posterior uncertainty – inner and outer radii correspond
to the posterior mean plus/minus two standard deviations, respectively.
To get an idea about how the marginal volatilities evolve over time, voltimeplot() can be
used. To exemplify,
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Figure 6: Three estimated correlation matrices.
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Figure 7: Posterior means of marginal volatilities.

R> palette(RColorBrewer::brewer.pal(7, "Dark2")[-5])
R> voltimeplot(res, legend = "top")

yields the estimated volatilities in Figure 7. The financial cirisis of 2008 and the capping of
CHF’s appreciation in September 2011 are clearly visible, while DKK’s volatility (relative to
EUR) is practically zero. Note that voltimeplot() respects palette changes. In the above
example, RcolorBrewer (Neuwirth 2014) is used. Moreover,

R> palette(RColorBrewer::brewer.pal(6, "Dark2"))
R> cortimeplot(res, 1)
R> cortimeplot(res, 2)

yields the estimated pairwise correlations in Figure 8. While, from a EUR point of view,
the estimated correlation between AUD and CAD appears to be relatively stable over time,
correlations with CHF can become negative at times. To visualize the communalities, i.e. the
proportions of variances explained through the latent factors, invoke

R> comtimeplot(res, maxrows = 6)

which yields the estimated communalities in Figure 9.
To gain an even deeper understanding of the estimated model, we now turn towards examin-
ing the latent factors and their variances themselves. To visualize the loadings, the functions,
facloadpairplot(), facloadcredplot(), facloadpointplot(), facloadtraceplot(), and
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Figure 8: Posterior means of correlations with AUD (top panel) and CAD (bottom panel).

facloaddensplot() are available; the former two are exemplified in Figure 10. Moreover, we
can see the factor log variances produced through logvartimeplot(res, show = "fac").
Similarily, logvartimeplot(res, show = "idi") produces plots of the idiosyncratic log
variances which are displayed in Figure 11.
Finally, there is the plotting function paratraceplot() which produces trace plots of all
parameters associated with the log variances processes: mean, persistence, and volatility of
log variances.

5.6. Predicting covariances, correlations, and future observations

One of the main use cases of factorstochvol might be to predict covariance and correlation
matrices of time series. To this end, predcov() and predcor() yield draws from the posterior
predictive distribution of these. For instance, the code below can be used to obtain one-step-
ahead posterior predictive means and standard deviations for the correlation matrix on April
5, 2012 (using data up to April 4 only).

R> predcor1 <- predcor(res)
R> round(apply(predcor1[,,,1], 1:2, mean), 2)

AUD CAD CHF CZK DKK GBP
AUD 1.00 0.62 0.00 0.04 0.10 0.47
CAD 0.62 1.00 0.08 0.02 0.11 0.51
CHF 0.00 0.08 1.00 -0.04 0.03 0.10
CZK 0.04 0.02 -0.04 1.00 0.00 0.01
DKK 0.10 0.11 0.03 0.00 1.00 0.09
GBP 0.47 0.51 0.10 0.01 0.09 1.00

R> round(apply(predcor1[,,,1], 1:2, sd), 2)
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Figure 9: Communalities: Posterior means plus/minus two posterior standard deviations.

AUD CAD CHF CZK DKK GBP
AUD 0.00 0.16 0.18 0.04 0.08 0.17
CAD 0.16 0.00 0.14 0.03 0.08 0.17
CHF 0.18 0.14 0.00 0.05 0.04 0.12
CZK 0.04 0.03 0.05 0.00 0.01 0.03
DKK 0.08 0.08 0.04 0.01 0.00 0.07
GBP 0.17 0.17 0.12 0.03 0.07 0.00

To obtain draws from the posterior predictive distribution of new data points, one can simply
draw from the corresponding scale mixture of multivariate normals. In Figure 12, these draws
are visualized via heatpairs() from LSD (Schwalb, Tresch, Torkler, Duemcke, Demel, Ripley,
and Venables 2018).

R> predcov_1 <- predcov(res)
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Figure 10: Posterior distribution of the factor loadings (top) and posterior means plus/minus
two standard deviations of factor log variances (bottom).

R> effectivedraws <- res$config$draws/res$config$thin
R> preddraws <- matrix(NA_real_, effectivedraws, m)
R> for (i in seq_len(effectivedraws))
+ preddraws[i,] <- chol(predcov_1[,,i,1]) %*% rnorm(m)
R> plotlims <- quantile(preddraws, c(0.01, 0.99))
R> LSD::heatpairs(preddraws, labels = colnames(y),
+ cor.cex = 1.5, gap = 0.3, xlim = plotlims, ylim = plotlims)

To conclude, we note that convenience functions such as predloglik() or predloglikWB()
may aid in approximating predictive likelihoods (cf., e.g., Geweke and Amisano 2010). For
instance, assuming that the actually observed value of yn+1 = yn+2 = (0, 0, 0, 0, 0, 0)>, we
can approximate the one and two step ahead log predictive scores through code along the
following lines.
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Figure 11: Idiosyncratic log variances: Posterior means plus/minus two standard deviations.

R> predloglik(res, matrix(0, nrow = 2, ncol = m), ahead = 1:2, each = 10)

1 2
5.168859 5.148709

6. Summary and discussion
We extended the work of Kastner (2016) to other SV models, including the univariate heavy-
tailed SV, the SV model with leverage, and the multivariate factor SV model. We showcased
the features that are the most important to end users in R: estimation through the sampler
functions, visualization, summary, and prediction methods. Due to its more involved nature,
however, we did not include the description of the C++ interface. Two functions called
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Figure 12: Predictive draws from the one-step-ahead posterior predictive distribution (above
the diagonal) and empirical correlation coefficients (below the diagonal).

update_sv() and update_svl() are exported and programmers have the possibility to access
the samplers in stochvol directly from C++ after linking to the compiled package. For usage
examples, see the implementations of factorstochvol or shrinkTVP (Knaus, Bitto-Nemling,
Cadonna, and Frühwirth-Schnatter 2019).
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