Package 'ezglm'

February 19, 2015

Title selects significant non-additive interaction between two variables using fast GLM implementation.

Version 1.0 **Date** 2012-6-20

Author Yi Yang <yiyang@umn.edu>
Maintainer Yi Yang <yiyang@umn.edu>

Description This package implements a simplified version of least squares, and logistic regression for efficiently selecting the significant non-additive interactions between two variables.

License GPL-2

URL http://code.google.com/p/ezglm/

Repository CRAN

Date/Publication 2012-06-21 05:45:54

NeedsCompilation yes

R topics documented:

	ezglm	 	 	 	 	 	 										1
Index																	4
ezglm			sele ing j				inte	erac	tion	ı bei	wee	en tv	vo v	aria	bles	s us-	_

Description

selects significant non-additive interaction between two variables using fast GLM implementation.

Usage

```
ezglm(y, x1, x2, thr = 1, family=c("gaussian","binomial"))
```

2 ezglm

Arguments

У	response variable, of length n. This argument should be quantitative for least squares, and a two-level factor for logistic regression.
x1	the first predictor, of length n.
x2	the second predictor, of length n.
thr	p-value tolerance. Truncate any p-value to 1 if it is larger than thr. Defaults value is 1.
family	 a character string specifying the model to use, valid options are: "gaussian" least squares regression (regression), "binomial" logistic regression (classification). Default is "gaussian".

Details

Motivated by pairwise gene interaction selection in genome-wide association study (GWAS), this package implements fast and simplified least squares, and logistic regression for efficiently selecting the significant non-additive interactions between two variables. Once a user specifies a reponse variable y and predictors x1 and x2, for "gaussian" a least squares model $y \sim x1 + x2 + x1*x2$ is fitted; for "binomial" a logistic regression logit $\sim x1 + x2 + x1*x2$ is fitted. Users can then select significant x1*x2 term using returned p-value of Wald test.

Value

A matrix of coefficients.

Author(s)

```
Yi Yang
```

Maintainer: Yi Yang <yiyang@umn.edu>

Examples

```
n = 10000
x1 = rnorm(n)
x2 = rnorm(n)
y1 = sample(c(0,1),n,rep=TRUE)
y2 = rnorm(n)

system.time(m1 <- ezglm(y1, x1, x2, 1, family = "binomial"))
m1

system.time(m2 <- glm(y1~x1+x2+x1*x2, family = binomial))
summary(m2)$coef

system.time(m3 <- ezglm(y2, x1, x2, 1, family = "gaussian"))
m3

system.time(m4 <- glm(y2~x1+x2+x1*x2, family = gaussian))</pre>
```

ezglm 3

summary(m4)\$coef

Index

```
*Topic models
ezglm, 1
*Topic regression
ezglm, 1
ezglm, 1
```