
Package for ExtraTrees method for classification

and regression

Jaak Simm and Ildefons Magrans de Abril

2013-10-05

Contents

1 Introduction 1

2 Training and predicting 1

3 Large scale usage 2
3.1 Increasing allocated memory 2
3.2 Using multiple cores . 3

1 Introduction

This document provides detailed guidance on using the package extraTrees.

2 Training and predicting

Usage of extraTrees was made similar to randomForest package as Extra-
Trees (extremely randomized trees) method is similar RandomForest. The
main difference is that when at each node RandomForest chooses the best
cutting threshold for the feature, ExtraTrees instead chooses the cut (uni-
formly) randomly. Similarly to RandomForest the feature with the biggest
gain (or best score) is chosen after the cutting threshold has been fixed.

This package includes an extension to ExtraTrees that we found useful
in some experiments: instead of a single random cut we choose several
random cuts for each feature. This reduces the probability of making very
poor cuts but still maintains the stochastic cutting approach of ExtraTrees.
Using more than one cut (e.g., 3-5 cuts) can improve the accuracy, usually
when the standard ExtraTrees performs worse than RandomTrees.

A simple usage example is given in Figure 1. Try changing the value of
numRandomCuts to 5 and see how the performance changes. For some data
also the value of mtry (the number of chosen features at each node) should
be increased.

1

library(extraTrees)

train and test data:

n <- 1000

p <- 10

f <- function(x) {

(x[,1]>0.5) + 0.8*(x[,2]>0.6) + 0.5*(x[,3]>0.4) + 0.2*x[,5] +

0.1*runif(nrow(x))

}

x <- matrix(runif(n*p), n, p)

y <- as.numeric(f(x))

xtest <- matrix(runif(n*p), n, p)

ytest <- f(xtest)

extraTrees:

et <- extraTrees(x, y, numRandomCuts=1)

yhat <- predict(et, xtest)

yerr <- mean((ytest-yhat)^2)

print(sprintf("Squared error: %f", yerr))

Figure 1: Example of using extraTrees with 1 cut (the default).

METHODS There two main methods:

� extraTrees that does the training,

� predict that does the prediction after the trees have been trained.

For classification ExtraTrees at each node chooses the cut based on min-
imizing the Gini impurity index and for regression the variance.

3 Large scale usage

Although ExtraTrees is quite fast (about 10 faster than randomForest on
the same data and number of trees), there are cases when the data set is
still too big for the default setup.

3.1 Increasing allocated memory

If your data has high number of data points and/or high number of dimen-
sions, then you can run out of Java memory. This causes following error:

java.lang.OutOfMemoryError: Java heap space

To solve that you need to increase the memory by supplying ”-Xmx1g” for
1GB or ”-Xmx4g” for 4GB in R’s Java options before loading extraTrees:

2

To solve the problem give more memory to Java.

Using 1GB Java memory for extraTrees (specified by 1g):

options(java.parameters = "-Xmx1g")

library(extraTrees)

train and test data:

n <- 1000

p <- 10

f <- function(x) {

(x[,1]>0.5) + 0.8*(x[,2]>0.6) + 0.5*(x[,3]>0.4) + 0.2*x[,5] +

0.1*runif(nrow(x))

}

x <- matrix(runif(n*p), n, p)

y <- as.numeric(f(x))

xtest <- matrix(runif(n*p), n, p)

ytest <- f(xtest)

extraTrees with 1 CPU thread (the default):

system.time({et <- extraTrees(x, y, numThreads=1)})

extraTrees with 2 CPU thread:

system.time({et <- extraTrees(x, y, numThreads=2)})

Figure 2: Example of how to use extraTrees in large scale settings.

options(java.parameters = "-Xmx1g")

library(extraTrees)

This is shown in the first lines of Figure 2. Make sure your machine has
enough free memory available before you do that.

3.2 Using multiple cores

Secondly, if the running time is too long you can use multi-core computation
by increasing the numThreads option (default is 1) in extraTrees. This is
shown the last lines in Figure 2.

3

