The explore package simplifies Exploratory Data Analysis (EDA). Get faster insights with less code!
There are three ways to use the package:
Interactive data exploration (univariat, bivariat, multivariat)
Generate an Automated Report with one line of code. The target can be binary, categorical or numeric.
Manual exploration using a easy to remember set of tidy functions. Introduces four main verbs. explore() to grafically explore a variable or table, describe() to describe a variable or table, explain_tree() to create a simple decision tree that explains a target. report() to generate an automated report of all variables.
explore package on Github: https://github.com/rolkra/explore
As the explore-functions fits well into the tidyverse, we load the dplyr-package as well.
library(dplyr)
library(explore)
library(tibble)
iris <- as_tibble(iris)
Explore your dataset (in this case the iris dataset) in one line of code:
explore(iris)
A shiny app is launched, you can inspect individual variable, explore their relation to a target (binary / categorical / numerical), grow a decision tree or create a fully automated report of all variables with a few “mouseclicks”.
You can choose each variable containng as a target, that is binary (0/1, FALSE/TRUE or “no”/“yes”), categorical or numeric.
Create a rich HTML report of all variables with one line of code:
# report of all variables
iris %>% report(output_file = "report.html", output_dir = tempdir())
Or you can simply add a target and create the report. In this case we use a binary tharget, but a categorical or numerical target would work as well.
# report of all variables and their relationship with a binary target
iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
iris %>%
report(output_file = "report.html",
output_dir = tempdir(),
target = is_versicolor)
If you use a binary tharget, the parameter split = FALSE will give you a different view on the data.
Grow a decision tree with one line of code:
iris %>% explain_tree(target = Species)
You can grow a decision tree with a binary target too.
iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
iris %>% select(-Species) %>% explain_tree(target = is_versicolor)
Or using a numerical target. The syntax stays the same.
iris %>% explain_tree(target = Sepal.Length)
You can control the growth of the tree using the parameters maxdepth
, minsplit
and cp
.
Explore your table with one line of code to see which type of variables it contains.
iris %>% explore_tbl()
You can also use describe_tbl() if you just need the main facts without visualisation.
iris %>% describe_tbl()
#> 150 observations with 6 variables
#> 0 variables containing missings (NA)
#> 0 variables with no variance
Explore a variable with one line of code. You don’t have to care if a variable is numerical or categorical.
iris %>% explore(Species)
iris %>% explore(Sepal.Length)
Explore a variable and its relationship with a binary target with one line of code. You don’t have to care if a variable is numerical or categorical.
iris %>% explore(Sepal.Length, target = is_versicolor)
Using split = FALSE will change the plot to %target:
iris %>% explore(Sepal.Length, target = is_versicolor, split = FALSE)
The target can have more than two levels:
iris %>% explore(Sepal.Length, target = Species)
Or the target can even be numeric:
iris %>% explore(Sepal.Length, target = Petal.Length)
iris %>%
select(Sepal.Length, Sepal.Width) %>%
explore_all()
iris %>%
select(Sepal.Length, Sepal.Width, is_versicolor) %>%
explore_all(target = is_versicolor)
iris %>%
select(Sepal.Length, Sepal.Width, is_versicolor) %>%
explore_all(target = is_versicolor, split = FALSE)
iris %>%
select(Sepal.Length, Sepal.Width, Species) %>%
explore_all(target = Species)
iris %>%
select(Sepal.Length, Sepal.Width, Petal.Length) %>%
explore_all(target = Petal.Length)
data(iris)
To use a high number of variables with explore_all() in a RMarkdown-File, it is necessary to set a meaningful fig.width and fig.height in the junk. The function total_fig_height() helps to automatically set fig.height: fig.height=total_fig_height(iris)
iris %>%
explore_all()
If you use a target:
fig.height=total_fig_height(iris, target = Species)
iris %>% explore_all(target = Species)
You can control total_fig_height() by parameters ncols (number of columns of the plots) and size (height of 1 plot)
Explore correlation between two variables with one line of code:
iris %>% explore(Sepal.Length, Petal.Length)
You can add a target too:
iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
iris %>% explore(Sepal.Length, Petal.Length, target = is_versicolor)
If you use explore to explore a variable and want to set lower and upper limits for values, you can use the min_val
and max_val
parameters. All values below min_val will be set to min_val. All values above max_val will be set to max_val.
iris %>% explore(Sepal.Length, min_val = 4.5, max_val = 7)
explore
uses auto-scale by default. To deactivate it use the parameter auto_scale = FALSE
iris %>% explore(Sepal.Length, auto_scale = FALSE)
Describe your data in one line of code:
iris %>% describe()
#> # A tibble: 6 x 8
#> variable type na na_pct unique min mean max
#> <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 Sepal.Length dbl 0 0 35 4.3 5.84 7.9
#> 2 Sepal.Width dbl 0 0 23 2 3.06 4.4
#> 3 Petal.Length dbl 0 0 43 1 3.76 6.9
#> 4 Petal.Width dbl 0 0 22 0.1 1.2 2.5
#> 5 Species fct 0 0 3 NA NA NA
#> 6 is_versicolor dbl 0 0 2 0 0.33 1
The result is a data-frame, where each row is a variable of your data. You can use filter
from dplyr for quick checks:
# show all variables that contain less than 5 unique values
iris %>% describe() %>% filter(unique < 5)
#> # A tibble: 2 x 8
#> variable type na na_pct unique min mean max
#> <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 Species fct 0 0 3 NA NA NA
#> 2 is_versicolor dbl 0 0 2 0 0.33 1
# show all variables contain NA values
iris %>% describe() %>% filter(na > 0)
#> # A tibble: 0 x 8
#> # ... with 8 variables: variable <chr>, type <chr>, na <int>,
#> # na_pct <dbl>, unique <int>, min <dbl>, mean <dbl>, max <dbl>
You can use describe
for describing variables too. You don’t need to care if a variale is numerical or categorical. The output is a text.
# describe a numerical variable
iris %>% describe(Species)
#> variable = Species
#> type = factor
#> na = 0 of 150 (0%)
#> unique = 3
#> setosa = 50 (33.3%)
#> versicolor = 50 (33.3%)
#> virginica = 50 (33.3%)
# describe a categorical variable
iris %>% describe(Sepal.Length)
#> variable = Sepal.Length
#> type = double
#> na = 0 of 150 (0%)
#> unique = 35
#> min|max = 4.3 | 7.9
#> q05|q95 = 4.6 | 7.255
#> q25|q75 = 5.1 | 6.4
#> median = 5.8
#> mean = 5.843333
Create a Data Dictionary of a dataset (Markdown File data_dict.md)
iris %>% data_dict_md(output_dir = tempdir())
Add title, detailed descriptions and change default filename
description <- data.frame(
variable = c("Species"),
description = c("Species of Iris flower"))
data_dict_md(iris,
title = "iris flower data set",
description = description,
output_file = "data_dict_iris.md",
output_dir = tempdir())
To clean a variable you can use clean_var
. With one line of code you can rename a variable, replace NA-values and set a minimum and maximum for the value.
iris %>%
clean_var(Sepal.Length,
min_val = 4.5,
max_val = 7.0,
na = 5.8,
name = "sepal_length") %>%
describe()
#> # A tibble: 6 x 8
#> variable type na na_pct unique min mean max
#> <chr> <chr> <int> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 sepal_length dbl 0 0 26 4.5 5.81 7
#> 2 Sepal.Width dbl 0 0 23 2 3.06 4.4
#> 3 Petal.Length dbl 0 0 43 1 3.76 6.9
#> 4 Petal.Width dbl 0 0 22 0.1 1.2 2.5
#> 5 Species fct 0 0 3 NA NA NA
#> 6 is_versicolor dbl 0 0 2 0 0.33 1
The explore package comes with a set easy to remember function to connect, read and write from/to a datawarehouse (dwh) using odbc.
# connect to a dwh(odbc DSN must be defined)
dwh <- dwh_connect("DWH_DSN")
# if you need to pass user and password
dwh <- dwh_connect("DWH_DSN",
user = "myuser",
pwd = rstudioapi::askForPassword()
)
# read table from a dwh
data <- dwh_read_table(dwh, "db.tablename")
# read data from a dwh using sql
data <- dwh_read_data(dwh, sql = "select * from db.tablename")
# disconnect from dwh
dwh_disconnect(dwh)
To write large data to a dwh you can use dwh_fastload()
. It connects to a dwh, writes the data and disconnects.
# connect to a dwh(odbc DSN must be defined)
data %>% dwh_fastload("DWH_DSN", "db.tablename")