
Package ‘excursions’
February 26, 2020

Type Package

Title Excursion Sets and Contour Credibility Regions for Random Fields

Version 2.4.5

Date 2020-02-24

Description Functions that compute probabilistic excursion sets, contour credibility regions, con-
tour avoiding regions, and simultaneous confidence bands for latent Gaussian random pro-
cesses and fields. The package also contains functions that calculate these quantities for mod-
els estimated with the INLA package. The main references for excursions are Bolin and Lind-
gren (2015) <doi:10.1111/rssb.12055>, Bolin and Lind-
gren (2017) <doi:10.1080/10618600.2016.1228537>, and Bolin and Lind-
gren (2018) <doi:10.18637/jss.v086.i05>. These can be generated by the citation function in R.

Depends R (>= 3.2.0), Matrix, sp

Suggests INLA (>= 0.0-1468840039), testthat, rgeos

Imports graphics, methods, stats

Additional_repositories https://inla.r-inla-download.org/R/stable

License GPL (>= 3)

Copyright The R package and code, and the main programs, were written
by and are Copyright by David Bolin and Finn Lindgren, and are
redistributable under the GNU Public License, version 3 or
later. The package also includes code from the libraries CAMD
from the SuiteSparse collection of Tim Davis, as well as
functions from the GNU Scientific library and the RngStreams
library by Pierre L'Ecuyer. For details see the COPYRIGHTS
file.

NeedsCompilation yes

RoxygenNote 7.0.2

Author David Bolin [cre, aut],
Finn Lindgren [aut]

Maintainer David Bolin <davidbolin@gmail.com>

Repository CRAN

Date/Publication 2020-02-26 13:10:06 UTC

1

2 excursions-package

R topics documented:
excursions-package . 2
continuous . 6
contourmap . 8
contourmap.colors . 11
contourmap.inla . 12
contourmap.mc . 15
excursions.inla . 17
excursions.mc . 20
excursions.variances . 22
gaussint . 23
require.nowarnings . 26
simconf . 27
simconf.inla . 28
simconf.mc . 31
simconf.mixture . 32
submesh.grid . 34
submesh.mesh . 35
summary.excurobj . 36
tricontour . 37

Index 41

excursions-package Excursion Sets and Contour Credibility Regions for Random Fields

Description

excursions is one of the main functions in the package with the same name. The function is
used for calculating excursion sets, contour credible regions, and contour avoiding sets for latent
Gaussian models. Details on the function and the package are given in the sections below.

Usage

excursions(
alpha,
u,
mu,
Q,
type,
n.iter = 10000,
Q.chol,
F.limit,
vars,
rho,
reo,
method = "EB",

excursions-package 3

ind,
max.size,
verbose = 0,
max.threads = 0,
seed

)

Arguments

alpha Error probability for the excursion set.

u Excursion or contour level.

mu Expectation vector.

Q Precision matrix.

type Type of region:

• ’>’ positive excursion region
• ’<’ negative excursion region
• ’!=’ contour avoiding region
• ’=’ contour credibility region

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

Q.chol The Cholesky factor of the precision matrix (optional).

F.limit The limit value for the computation of the F function. F is set to NA for all
nodes where F<1-F.limit. Default is F.limit = alpha.

vars Precomputed marginal variances (optional).

rho Marginal excursion probabilities (optional). For contour regions, provideP (X >
u).

reo Reordering (optional).

method Method for handeling the latent Gaussian structure:

• ’EB’ Empirical Bayes (default)
• ’QC’ Quantile correction, rho must be provided if QC is used.

ind Indices of the nodes that should be analysed (optional).

max.size Maximum number of nodes to include in the set of interest (optional).

verbose Set to TRUE for verbose mode (optional).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

Details

The estimation of the region is done using sequential importance sampling with n.iter samples.
The procedure requires computing the marginal variances of the field, which should be supplied if
available. If not, they are computed using the Cholesky factor of the precision matrix. The cost of
this step can therefore be reduced by supplying the Cholesky factor if it is available.

4 excursions-package

The latent structure in the latent Gaussian model can be handled in several different ways. The
default strategy is the EB method, which is exact for problems with Gaussian posterior distributions.
For problems with non-Gaussian posteriors, the QC method can be used for improved results. In
order to use the QC method, the true marginal excursion probabilities must be supplied using the
argument rho. Other more complicated methods for handling non-Gaussian posteriors must be
implemented manually unless INLA is used to fit the model. If the model is fitted using INLA,
the method excursions.inla can be used. See the Package section for further details about the
different options.

Value

excursions returns an object of class "excurobj". This is a list that contains the following argu-
ments:

E Excursion set, contour credible region, or contour avoiding set

G Contour map set. G = 1 for all nodes where the mu > u.

M Contour avoiding set. M = −1 for all non-significant nodes. M = 0 for nodes
where the process is significantly below u and M = 1 for all nodes where the
field is significantly above u. Which values that should be present depends on
what type of set that is calculated.

F The excursion function corresponding to the set E calculated or values up to
F.limit

rho Marginal excursion probabilities

mean The mean mu.

vars Marginal variances.

meta A list containing various information about the calculation.

Package

excursions contains functions that compute probabilistic excursion sets, contour credibility re-
gions, contour avoiding regions, contour map quality measures, and simultaneous confidence bands
for latent Gaussian random processes and fields.

Excursion sets, contour credibility regions, and contour avoiding regions
The main functions for computing excursion sets, contour credibility regions, and contour avoiding
regions are

• excursions The main function for Gaussian models.

• excursions.inla Interface for latent Gaussian models estimated using INLA.

• excursions.mc Function for analyzing models that have been estimated using Monte Carlo
methods.

The output from the functions above provides a discrete domain estimate of the regions. Based on
this estimate, the function continuous computes a continuous domain estimate.

The main reference for these functions is Bolin, D. and Lindgren, F. (2015) Excursion and contour
uncertainty regions for latent Gaussian models, JRSS-series B, vol 77, no 1, pp 85-106.

Contour map quality measures

excursions-package 5

The package provides several functions for computing contour maps and their quality measures.
These quality measures can be used to decide on an appropriate number of contours to use for the
contour map.

The main functions for computing contour maps and the corresponding quality measures are

• contourmap The main function for Gaussian models.

• contourmap.inla Interface for latent Gaussian models estimated using INLA.

• contourmap.mc Function for analyzing models that have been estimated using Monte Carlo
methods.

Other noteworthy functions relating to contourmaps are tricontour and tricontourmap, which
compute contour curves for functinos defined on triangulations, as well as contourmap.colors
which can be used to compute appropriate colors for displaying contour maps.

The main reference for these functions is Bolin, D. and Lindgren, F. (2017) Quantifying the uncer-
tainty of contour maps, Journal of Computational and Graphical Statistics, 26:3, 513-524.

Simultaneous confidence bands
The main functions for computing simultaneous confidence bands are

• simconf Function for analyzing Gaussian models.

• simconf.inla Function for analyzing latent Gaussian models estimated using INLA.

• simconf.mc Function for analyzing models estimated using Monte Carlo methods.

• simconf.mixture Function for analyzing Gaussian mixture models.

The main reference for these functions is Bolin et al. (2015) Statistical prediction of global sea
level from global temperature, Statistica Sinica, Vol 25, pp 351-367.

Author(s)

David Bolin <davidbolin@gmail.com> and Finn Lindgren <finn.lindgren@gmail.com>

References

Bolin, D. and Lindgren, F. (2015) Excursion and contour uncertainty regions for latent Gaussian
models, JRSS-series B, vol 77, no 1, pp 85-106.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

excursions.inla, excursions.mc

Examples

Create a tridiagonal precision matrix
n = 21
Q.x = sparseMatrix(i=c(1:n, 2:n), j=c(1:n, 1:(n-1)), x=c(rep(1, n), rep(-0.1, n-1)),

dims=c(n, n), symmetric=TRUE)
Set the mean value function

6 continuous

mu.x = seq(-5, 5, length=n)

calculate the level 0 positive excursion function
res.x = excursions(alpha=1, u=0, mu=mu.x, Q=Q.x,

type='>', verbose=1, max.threads=2)

Plot the excursion function and the marginal excursion probabilities
plot(res.x$F, type="l",

main='Excursion function (black) and marginal probabilites (red)')
lines(res.x$rho, col=2)

continuous Calculate continuous domain excursion and credible contour sets

Description

Calculates continuous domain excursion and credible contour sets

Usage

continuous(
ex,
geometry,
alpha,
method = c("log", "linear", "step"),
output = c("sp", "inla"),
subdivisions = 1,
calc.credible = TRUE

)

Arguments

ex An excurobj object generated by a call to excursions or contourmap.

geometry Specification of the lattice or triangulation geometry of the input. One of list(x,y),
list(loc,dims), inla.mesh.lattice, or inla.mesh, where x and y are vec-
tors, loc is a two-column matrix of coordinates, and dims is the lattice size
vector. The first three versions are all treated topologically as lattices, and the
lattice boxes are assumed convex.

alpha The target error probability. A warning is given if it is detected that the infor-
mation ex isn’t sufficient for the given alpha. Defaults to the value used when
calculating ex.

method The spatial probability interpolation transformation method to use. One of log,
linear, or step. For log, the probabilities are interpolated linearly in the trans-
formed scale. For step, a conservative step function is used.

output Specifies what type of object should be generated. sp gives a SpatialPolygons
object, and inla gives a inla.mesh.segment object.

continuous 7

subdivisions The number of mesh triangle subdivisions to perform for the interpolation of
the excursions or contour function. 0 is no subdivision. The setting has a small
effect on the evaluation of P0 for the log method (higher values giving higher
accuracy) but the main effect is on the visual appearance of the interpolation.
Default=1.

calc.credible Logical, if TRUE (default), calculate credible contour region objects in addition
to avoidance sets.

Value

A list:

M SpatialPolygons or inla.mesh.segment object. The subsets are tagged, so
that credible regions are tagged "-1", and regions between levels are tagged
as.character(0:nlevels).

F Interpolated F function.

G Contour and inter-level set indices for the interpolation.

F.geometry Mesh geometry for the interpolation.

P0 P0 measure based on interpolated F function (only for contourmap input).

Author(s)

Finn Lindgren <finn.lindgren@gmail.com>

References

Bolin, D. and Lindgren, F. (2017) Quantifying the uncertainty of contour maps, Journal of Compu-
tational and Graphical Statistics, vol 26, no 3, pp 513-524.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

Examples

if (require.nowarnings("INLA")) {
#Generate mesh and SPDE model
n.lattice = 10 #Increase for more interesting, but slower, examples
x=seq(from=0,to=10,length.out=n.lattice)
lattice=inla.mesh.lattice(x=x,y=x)
mesh=inla.mesh.create(lattice=lattice, extend=FALSE, refine=FALSE)
spde <- inla.spde2.matern(mesh, alpha=2)

#Generate an artificial sample
sigma2.e = 0.01
n.obs=100
obs.loc = cbind(runif(n.obs)*diff(range(x))+min(x),
runif(n.obs)*diff(range(x))+min(x))
Q = inla.spde2.precision(spde, theta=c(log(sqrt(0.5)), log(sqrt(1))))
x = inla.qsample(Q=Q)

8 contourmap

A = inla.spde.make.A(mesh=mesh,loc=obs.loc)
Y = as.vector(A %*% x + rnorm(n.obs)*sqrt(sigma2.e))

Calculate posterior
Q.post = (Q + (t(A) %*% A)/sigma2.e)
mu.post = as.vector(solve(Q.post,(t(A) %*% Y)/sigma2.e))
vars.post = excursions.variances(chol(Q.post))

Calculate contour map with two levels
map = contourmap(n.levels = 2, mu = mu.post, Q = Q.post,
alpha=0.1, F.limit = 0.1,max.threads=1)

Calculate the continuous representation
sets <- continuous(map, mesh, alpha=0.1)

Plot the results
reo = meshidxlattice
cols = contourmap.colors(map, col=heat.colors(100, 1),
credible.col = grey(0.5, 1))
names(cols) = as.character(-1:2)

par(mfrow = c(2,2))
image(matrix(mu.post[reo],n.lattice,n.lattice),
main="mean",axes=FALSE)
image(matrix(sqrt(vars.post[reo]),n.lattice,n.lattice),
main="sd", axes = FALSE)
image(matrix(map$M[reo],n.lattice,n.lattice),col=cols,axes=FALSE)
idx.M = setdiff(names(sets$M), "-1")
plot(sets$M[idx.M], col=cols[idx.M])
}

contourmap Contour maps and contour map quality measures for latent Gaussian
models

Description

contourmap is used for calculating contour maps and quality measures for contour maps for Gaus-
sian models.

Usage

contourmap(
mu,
Q,
vars,
n.levels,
ind,
levels,
type = c("standard", "pretty", "equalarea", "P0-optimal", "P1-optimal", "P2-optimal"),

contourmap 9

compute = list(F = TRUE, measures = NULL),
use.marginals = TRUE,
alpha,
F.limit,
n.iter = 10000,
verbose = FALSE,
max.threads = 0,
seed = NULL

)

Arguments

mu Expectation vector.

Q Precision matrix.

vars Precomputed marginal variances (optional).

n.levels Number of levels in contour map.

ind Indices of the nodes that should be analyzed (optional).

levels Levels to use in contour map.

type Type of contour map. One of:

• ’standard’ Equidistant levels between smallest and largest value of the pos-
terior mean (default).

• ’pretty’ Equally spaced ’round’ values which cover the range of the values
in the posterior mean.

• ’equalarea’ Levels such that different spatial regions are approximately
equal in size.

• ’P0-optimal’ Levels chosen to maximize the P0 measure.
• ’P1-optimal’ Levels chosen to maximize the P1 measure.
• ’P2-optimal’ Levels chosen to maximize the P2 measure.

compute A list with quality indices to compute

• ’F’: TRUE/FALSE indicating whether the contour map function should be
computed (default TRUE).

• ’measures’: A list with the quality measures to compute ("P0", "P1", "P2")
or corresponding bounds based only on the marginal probabilities ("P0-
bound", "P1-bound", "P2-bound").

use.marginals Only marginal distributions are used when finding P-optimal maps (default TRUE).

alpha Maximal error probability in contour map function (default=1).

F.limit The limit value for the computation of the F function. F is set to NA for all
nodes where F<1-F.limit. Default is F.limit = alpha.

n.iter Number or iterations in the MC sampler that is used for calculating the quantities
in compute. The default value is 10000.

verbose Set to TRUE for verbose mode (optional).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

10 contourmap

Details

The Gaussian model is specified using the mean mu and the precision matrix Q. The contour map
is then computed for the mean, using either the contour levels specified in levels, or n.levels
contours that are placed according to the argument type.

A number of quality measures can be computed based based on the specified contour map and the
Gaussian distribution. What should be computed is specified using the compute argument. For
details on these quanties, see the reference below.

Value

contourmap returns an object of class "excurobj". This is a list that can contains the following
arguments:

u Contour levels used in the contour map.

n.levels The number of contours used.

u.e The values associated with the level sets G_k.

G A vector which shows which of the level sets G_k each node belongs to.

map Representation of the contour map with map[i]=u.e[k] if i is in G_k.

F The contour map function (if computed).

M Contour avoiding sets (if F is computed). M = −1 for all non-significant nodes
and M = k for nodes that belong to Mk.

P0/P1/P2 Calculated quality measures (if computed).

P0bound/P1bound/P2bound

Calculated upper bounds quality measures (if computed).

meta A list containing various information about the calculation.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin, D. and Lindgren, F. (2017) Quantifying the uncertainty of contour maps, Journal of Compu-
tational and Graphical Statistics, vol 26, no 3, pp 513-524.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

contourmap.inla, contourmap.mc, contourmap.colors

contourmap.colors 11

Examples

n = 10
Q = Matrix(toeplitz(c(1, -0.5, rep(0, n-2))))
mu = seq(-5, 5, length=n)
lp <- contourmap(mu,Q,n.levels = 2,

compute=list(F=FALSE, measures = c("P1","P2")),
max.threads=1)

#Plot the contourmap
plot(lp$map)
#Display the quality measures
cat(c(lp$P1,lp$P2))

contourmap.colors Define a color map for displaying contour maps.

Description

contourmap.colors calculates suitable colours for displaying contour maps.

Usage

contourmap.colors(lp, zlim, col, credible.col)

Arguments

lp A contourmap calculated by contourmap, contourmap.inla, or contourmap.mc

zlim The range that should be used (optional). The default is the range of the mean
value function used when creating the contourmap.

col The colormap that the colours should be taken from.

credible.col The color that should be used for displaying the credible regions for the contour
curves (optional).

Value

A color map.

Author(s)

David Bolin <davidbolin@gmail.com>

Examples

n = 10
Q = Matrix(toeplitz(c(1, -0.5, rep(0, n-2))))
map <- contourmap(mu = seq(-5, 5, length=n),Q,n.levels = 2,

compute=list(F=FALSE),max.threads=1)
cols = contourmap.colors(map, col=heat.colors(100, 1),

credible.col = grey(0.5, 1))

12 contourmap.inla

contourmap.inla Contour maps and contour map quality measures for latent Gaussian
models

Description

An interface to the contourmap function for latent Gaussian models calculated using the INLA
method.

Usage

contourmap.inla(
result.inla,
stack,
name = NULL,
tag = NULL,
method = "QC",
n.levels,
type = c("standard", "pretty", "equalarea"),
compute = list(F = TRUE, measures = NULL),
alpha,
F.limit,
n.iter = 10000,
verbose = FALSE,
max.threads = 0,
seed = NULL,
ind,
...

)

Arguments

result.inla Result object from INLA call.

stack The stack object used in the INLA call.

name The name of the component for which to do the calculation. This argument
should only be used if a stack object is not provided, use the tag argument oth-
erwise.

tag The tag of the component in the stack for which to do the calculation. This ar-
gument should only be used if a stack object is provided, use the name argument
otherwise.

method Method for handeling the latent Gaussian structure. Currently only Empirical
Bayes (EB) and Quantile corrections (QC) are supported.

n.levels Number of levels in contour map.

type Type of contour map. One of:

contourmap.inla 13

• ’standard’ Equidistant levels between smallest and largest value of the pos-
terior mean (default).

• ’pretty’ Equally spaced ’round’ values which cover the range of the values
in the posterior mean.

• ’equalarea’ Levels such that different spatial regions are approximately
equal in size.

compute A list with quality indices to compute

• ’F’: TRUE/FALSE indicating whether the contour map function should be
computed (default TRUE)

• ’measures’: A list with the quality measures to compute ("P0", "P1", "P2")
or corresponding bounds based only on the marginal probabilities ("P0-
bound", "P1-bound", "P2-bound")

alpha Maximal error probability in contour map function (default=1)

F.limit The limit value for the computation of the F function. F is set to NA for all
nodes where F<1-F.limit. Default is F.limit = alpha.

n.iter Number or iterations in the MC sampler that is used for calculating the quantities
in compute. The default value is 10000.

verbose Set to TRUE for verbose mode (optional)

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

ind If only a part of a component should be used in the calculations, this argument
specifies the indices for that part (optional).

... Additional arguments to the contour map function. See the documentation for
contourmap for details.

Details

The INLA approximation of the quantity of interest is in general a weighted sum of Gaussian
distributions with different parameters. If method = 'EB' is used, then the contour map is computed
for the mean of the component in the weighted sum that has parameters with the highest likelihood.
If on the other hand method='QC', then the contour map is computed for the posterior mean reported
by INLA. If the EB method also is used in INLA, then this reported posterior mean is equal to the
mean of the component with the highest likelihood. Therefore, method='EB' is appropriate if the
EB method also is used in INLA, but method='QC' should be used in general.

The n.levels contours in the contour map are are placed according to the argument type. A
number of quality measures can be computed based based on the specified contour map and the
distribution of the component of interest. What should be computed is specified using the compute
argument. For details on these quanties, see the reference below.

Value

contourmap.inla returns an object of class "excurobj" with the same elements as returned by
contourmap.

14 contourmap.inla

Note

This function requires the INLA package, which is not a CRAN package. See http://www.r-inla.
org/download for easy installation instructions.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin, D. and Lindgren, F. (2017) Quantifying the uncertainty of contour maps, Journal of Compu-
tational and Graphical Statistics, 26:3, 513-524.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

contourmap, contourmap.mc, contourmap.colors

Examples

if (require.nowarnings("INLA")) {
#Generate mesh and SPDE model
n.lattice <- 10 # increase for more interesting, but slower, examples
x <- seq(from = 0, to = 10, length.out = n.lattice)
lattice <- inla.mesh.lattice(x = x, y = x)
mesh <- inla.mesh.create(lattice = lattice, extend = FALSE, refine = FALSE)
spde <- inla.spde2.matern(mesh, alpha = 2)
#Generate an artificial sample
sigma2.e = 0.01
n.obs=100
obs.loc = cbind(runif(n.obs)*diff(range(x))+min(x),

runif(n.obs)*diff(range(x))+min(x))
Q = inla.spde2.precision(spde, theta=c(log(sqrt(0.5)), log(sqrt(1))))
x = inla.qsample(Q=Q)
A = inla.spde.make.A(mesh=mesh,loc=obs.loc)
Y = as.vector(A %*% x + rnorm(n.obs) * sqrt(sigma2.e))

Estimate the parameters using INLA
mesh.index = inla.spde.make.index(name="field",n.spde=spde$n.spde)
ef = list(c(mesh.index,list(Intercept=1)))

s.obs = inla.stack(data=list(y=Y), A=list(A), effects=ef, tag="obs")
s.pre = inla.stack(data=list(y=NA), A=list(1), effects=ef,tag="pred")
stack = inla.stack(s.obs,s.pre)
formula = y ~ -1 + Intercept + f(field, model=spde)
result = inla(formula=formula, family="normal", data = inla.stack.data(stack),

control.predictor=list(A=inla.stack.A(stack),compute=TRUE),
control.compute = list(config = TRUE),
num.threads = 1)

http://www.r-inla.org/download
http://www.r-inla.org/download

contourmap.mc 15

Calculate contour map with two levels
map = contourmap.inla(result, stack = stack, tag = 'pred',

n.levels = 2, alpha=0.1, F.limit = 0.1,
max.threads = 1)

Plot the results
cols = contourmap.colors(map, col=heat.colors(100, 1),

credible.col = grey(0.5, 1))
image(matrix(map$M[mesh$idx$lattice], n.lattice, n.lattice), col = cols)
}

contourmap.mc Contour maps and contour map quality measures using Monte Carlo
samples

Description

contourmap.mc is used for calculating contour maps and quality measures for contour maps based
on Monte Carlo samples of a model.

Usage

contourmap.mc(
samples,
n.levels,
ind,
levels,
type = c("standard", "equalarea", "P0-optimal", "P1-optimal", "P2-optimal"),
compute = list(F = TRUE, measures = NULL),
alpha,
verbose = FALSE

)

Arguments

samples Matrix with model Monte Carlo samples. Each column contains a sample of the
model.

n.levels Number of levels in contour map.

ind Indices of the nodes that should be analyzed (optional).

levels Levels to use in contour map.

type Type of contour map. One of:

• ’standard’ Equidistant levels between smallest and largest value of the pos-
terior mean (default).

• ’pretty’ Equally spaced ’round’ values which cover the range of the values
in the posterior mean.

16 contourmap.mc

• ’equalarea’ Levels such that different spatial regions are approximately
equal in size.

• ’P0-optimal’ Levels chosen to maximize the P0 measure.
• ’P1-optimal’ Levels chosen to maximize the P1 measure.
• ’P2-optimal’ Levels chosen to maximize the P2 measure.

compute A list with quality indices to compute
• ’F’: TRUE/FALSE indicating whether the contour map function should be

computed (default TRUE).
• ’measures’: A list with the quality measures to compute ("P0", "P1", "P2")

or corresponding bounds based only on the marginal probabilities ("P0-
bound", "P1-bound", "P2-bound").

alpha Maximal error probability in contour map function (default=0.1).
verbose Set to TRUE for verbose mode (optional).

Details

The contour map is computed for the empirical mean of the samples. See contourmap and contourmap.inla
for further details.

Value

contourmap returns an object of class "excurobj". This is a list that can contains the following
arguments:

u Contour levels used in the contour map.
n.levels The number of contours used.
u.e The values associated with the level sets G_k.
G A vector which shows which of the level sets G_k each node belongs to.
map Representation of the contour map with map[i]=u.e[k] if i is in G_k.
F The contour map function (if computed).
M Contour avoiding sets (if F is computed). M = −1 for all non-significant nodes

and M = k for nodes that belong to Mk.
P0/P1/P2 Calculated quality measures (if computed).
P0bound/P1bound/P2bound

Calculated upper bounds quality measures (if computed).
meta A list containing various information about the calculation.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin, D. and Lindgren, F. (2017) Quantifying the uncertainty of contour maps, Journal of Compu-
tational and Graphical Statistics, 26:3, 513-524.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, 86(5), 1–20.

excursions.inla 17

See Also

contourmap, contourmap.inla, contourmap.colors

Examples

n = 100
Q = Matrix(toeplitz(c(1, -0.5, rep(0, n-2))))
mu = seq(-5, 5, length=n)
Sample the model 100 times (increase for better estimate)
X = mu + solve(chol(Q),matrix(rnorm(n=n*100),nrow=n,ncol=100))

lp <- contourmap.mc(X,n.levels = 2, compute=list(F=FALSE, measures = c("P1","P2")))

#plot contourmap
plot(lp$map)
#display quality measures
c(lp$P1,lp$P2)

excursions.inla Excursion sets and contour credible regions for latent Gaussian mod-
els

Description

Excursion sets and contour credible regions for latent Gaussian models calculated using the INLA
method.

Usage

excursions.inla(
result.inla,
stack,
name = NULL,
tag = NULL,
ind = NULL,
method,
alpha = 1,
F.limit,
u,
u.link = FALSE,
type,
n.iter = 10000,
verbose = 0,
max.threads = 0,
seed = NULL

)

18 excursions.inla

Arguments

result.inla Result object from INLA call.

stack The stack object used in the INLA call.

name The name of the component for which to do the calculation. This argument
should only be used if a stack object is not provided, use the tag argument oth-
erwise.

tag The tag of the component in the stack for which to do the calculation. This ar-
gument should only be used if a stack object is provided, use the name argument
otherwise.

ind If only a part of a component should be used in the calculations, this argument
specifies the indices for that part.

method Method for handeling the latent Gaussian structure:

• ’EB’ Empirical Bayes
• ’QC’ Quantile correction
• ’NI’ Numerical integration
• ’NIQC’ Numerical integration with quantile correction
• ’iNIQC’ Improved integration with quantle correction

alpha Error probability for the excursion set of interest. The default value is 1.

F.limit Error probability for when to stop the calculation of the excursion function. The
default value is alpha, and the value cannot be smaller than alpha. A smaller
value of F.limit results in asmaller compontation time.

u Excursion or contour level.

u.link If u.link is TRUE, u is assumed to be in the scale of the data and is then trans-
formed to the scale of the linear predictor (default FALSE).

type Type of region:

• ’>’ positive excursions
• ’<’ negative excursions
• ’!=’ contour avoiding function
• ’=’ contour credibility function

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

verbose Set to TRUE for verbose mode (optional).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

Details

The different methods for handling the latent Gaussian structure are listed in order of accuracy and
computational cost. The EB method is the simplest and is based on a Gaussian approximation of
the posterior of the quantity of interest. The QC method uses the same Gaussian approximation but
improves the accuracy by modifying the limits in the integrals that are computed in order to find the

excursions.inla 19

region. The other three methods are intended for Bayesian models where the posterior distribution
for the quantity of interest is obtained by integrating over the parameters in the model. The NI
method approximates this integration in the same way as is done in INLA, and the NIQC and iNIQC
methods combine this apprximation with the QC method for improved accuracy.

If the main purpose of the analysis is to construct excursion or contour sets for low values of alpha,
we recommend using QC for problems with Gaussian likelihoods and NIQC for problems with non-
Gaussian likelihoods. The reason for this is that the more accurate methods also have higher com-
putational costs.

Value

excursions.inla returns an object of class "excurobj". This is a list that contains the following
arguments:

E Excursion set, contour credible region, or contour avoiding set

F The excursion function corresponding to the set E calculated for values up to
F.limit

G Contour map set. G = 1 for all nodes where the mu > u.

M Contour avoiding set. M = −1 for all non-significant nodes. M = 0 for nodes
where the process is significantly below u and M = 1 for all nodes where the
field is significantly above u. Which values that should be present depends on
what type of set that is calculated.

rho Marginal excursion probabilities

mean Posterior mean

vars Marginal variances

meta A list containing various information about the calculation.

Note

This function requires the INLA package, which is not a CRAN package. See http://www.r-inla.
org/download for easy installation instructions.

Author(s)

David Bolin <davidbolin@gmail.com> and Finn Lindgren <finn.lindgren@gmail.com>

References

Bolin, D. and Lindgren, F. (2015) Excursion and contour uncertainty regions for latent Gaussian
models, JRSS-series B, vol 77, no 1, pp 85-106.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

excursions, excursions.mc

http://www.r-inla.org/download
http://www.r-inla.org/download

20 excursions.mc

Examples

In this example, we calculate the excursion function
for a partially observed AR process.

if (require.nowarnings("INLA")) {
Sample the process:
rho = 0.9
tau = 15
tau.e = 1
n = 100
x = 1:n
mu = 10*((x<n/2)*(x-n/2) + (x>=n/2)*(n/2-x)+n/4)/n
Q = tau*sparseMatrix(i=c(1:n, 2:n), j=c(1:n, 1:(n-1)),

x=c(1,rep(1+rho^2, n-2),1, rep(-rho, n-1)),
dims=c(n, n), symmetric=TRUE)

X = mu+solve(chol(Q), rnorm(n))

measure the sampled process at n.obs random locations
under Gaussian measurement noise.
n.obs = 50
obs.loc = sample(1:n,n.obs)
A = sparseMatrix(i=1:n.obs, j=obs.loc, x=rep(1, n.obs), dims=c(n.obs, n))
Y = as.vector(A %*% X + rnorm(n.obs)/sqrt(tau.e))

Estimate the parameters using INLA
ef = list(c(list(ar=x),list(cov=mu)))
s.obs = inla.stack(data=list(y=Y), A=list(A), effects=ef, tag="obs")
s.pre = inla.stack(data=list(y=NA), A=list(1), effects=ef,tag="pred")
stack = inla.stack(s.obs,s.pre)
formula = y ~ -1 + cov + f(ar,model="ar1")
result = inla(formula=formula, family="normal", data = inla.stack.data(stack),

control.predictor=list(A=inla.stack.A(stack),compute=TRUE),
control.compute = list(config = TRUE))

calculate the level 0 positive excursion function
res.qc = excursions.inla(result, stack = stack, tag = 'pred', alpha=0.99, u=0,

method='QC', type='>', max.threads=2)
plot the excursion function and marginal probabilities
plot(res.qc$rho,type="l",

main="marginal probabilities (black) and excursion function (red)")
lines(res.qc$F,col=2)
}

excursions.mc Excursion sets and contour credible regions using Monte Carlo sam-
ples

Description

excursions.mc is used for calculating excursion sets, contour credible regions, and contour avoid-
ing sets based on Monte Carlo samples of models.

excursions.mc 21

Usage

excursions.mc(
samples,
alpha,
u,
type,
rho,
reo,
ind,
max.size,
verbose = FALSE

)

Arguments

samples Matrix with model Monte Carlo samples. Each column contains a sample of the
model.

alpha Error probability for the excursion set.

u Excursion or contour level.

type Type of region:

• ’>’ positive excursions
• ’<’ negative excursions
• ’!=’ contour avoiding function
• ’=’ contour credibility function

rho Marginal excursion probabilities (optional). For contour regions, provideP (X >
u).

reo Reordering (optional).

ind Indices of the nodes that should be analysed (optional).

max.size Maximum number of nodes to include in the set of interest (optional).

verbose Set to TRUE for verbose mode (optional).

Value

excursions returns an object of class "excurobj". This is a list that contains the following argu-
ments:

E Excursion set, contour credible region, or contour avoiding set.

G Contour map set. G = 1 for all nodes where the mu > u.

M Contour avoiding set. M = −1 for all non-significant nodes. M = 0 for nodes
where the process is significantly below u and M = 1 for all nodes where the
field is significantly above u. Which values that should be present depends on
what type of set that is calculated.

F The excursion function corresponding to the set E calculated for values up to
F.limit

22 excursions.variances

rho Marginal excursion probabilities

mean The mean mu.

vars Marginal variances.

meta A list containing various information about the calculation.

Author(s)

David Bolin <davidbolin@gmail.com> and Finn Lindgren <finn.lindgren@gmail.com>

References

Bolin, D. and Lindgren, F. (2015) Excursion and contour uncertainty regions for latent Gaussian
models, JRSS-series B, vol 77, no 1, pp 85-106.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

excursions, excursions.inla

Examples

Create mean and a tridiagonal precision matrix
n = 101
mu.x = seq(-5, 5, length=n)
Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
Sample the model 100 times (increase for better estimate)
X = mu.x + solve(chol(Q.x),matrix(rnorm(n=n*1000),nrow=n,ncol=1000))
calculate the positive excursion function
res.x = excursions.mc(X,alpha=0.05,type='>',u=0)
Plot the excursion function and the marginal excursion probabilities
plot(res.x$F, type="l",

main='Excursion function (black) and marginal probabilites (red)')
lines(res.x$rho, col=2)

excursions.variances Calculate variances from a sparse precision matrix

Description

excursions.variances calculates the diagonal of the inverse of a sparse symmetric positive defi-
nite matrix Q.

Usage

excursions.variances(L, Q, max.threads = 0)

gaussint 23

Arguments

L Cholesky factor of precision matrix.

Q Precision matrix.

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

Details

The method for calculating the diagonal requires the Cholesky factor, L, of Q, which should be
supplied if available. If Q is provided, the cholesky factor is calculated and the variances are then
returned in the same ordering as Q. If L is provided, the variances are returned in the same ordering
as L, even if L@invpivot exists.

Value

A vector with the variances.

Author(s)

David Bolin <davidbolin@gmail.com>

Examples

Create a tridiagonal precision matrix
n = 21
Q = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
v2 = excursions.variances(Q=Q,max.threads=2)
var2 should be the same as:
v1 = diag(solve(Q))

gaussint Sequential estimation of Gaussian integrals

Description

gaussint is used for calculating n-dimensional Gaussian integrals∫ b

a

|Q|1/2

(2π)n/2
exp(−1

2
(x− µ)TQ(x− µ))dx

A limit value lim can be used to stop the integration if the sequential estimate goes below the limit,
which can result in substantial computational savings in cases when one only is interested in testing
if the integral is above the limit value. The integral is calculated sequentially, and estimates for all
subintegrals are also returned.

24 gaussint

Usage

gaussint(
mu,
Q.chol,
Q,
a,
b,
lim = 0,
n.iter = 10000,
ind,
use.reordering = c("natural", "sparsity", "limits"),
max.size,
max.threads = 0,
seed

)

Arguments

mu Expectation vector for the Gaussian distribution.

Q.chol The Cholesky factor of the precision matrix (optional).

Q Precision matrix for the Gaussian distribution. If Q is supplied but not Q.chol,
the cholesky factor is computed before integrating.

a Lower limit in integral.

b Upper limit in integral.

lim If this argument is used, the integration is stopped and 0 is returned if the esti-
mated value goes below lim.

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

ind Indices of the nodes that should be analyzed (optional).

use.reordering Determines what reordering to use:

• "natural" No reordering is performed.

• "sparsity" Reorder for sparsity in the cholesky factor (MMD reordering is
used).

• "limits" Reorder by moving all nodes with a=-Inf and b=Inf first and then
reordering for sparsity (CAMD reordering is used).

max.size The largest number of sub-integrals to compute. Default is the total dimension
of the distribution.

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed The random seed to use (optional).

gaussint 25

Details

The function uses sequential importance sampling to estimate the Gaussian integral, and returns all
computed sub-integrals. This means that if, for example, the function is used to compute P (x > 0)
for an n-dimensional Gaussian variable x, then all integrals P (x1 > 0, ..., xi > 0) for i = 1, ..., n
are computed.

If one is only interested in whether P (x > 0) > alpha or not, then one can stop the integration
as soon as P (x1 > 0, ..., xi > 0) < alpha. This can save a lot of computation time if P (x1 >
0, ..., xi > 0) < alpha for imuch smaller than n. This limit value is specified by the lim argument.

Which reordering to use depends on what the purpose of the calculation is and what the integration
limits are. However, in general the limits reordering is typically most appropriate since this com-
bines sparisty (which improves accuracy and reduces computational cost) with automatic handling
of dimensions with limits a = −Inf and b = Inf , which do not affect the probability but affect
the computation time if they are not handled separately.

Value

A list with elements

P Value of the integral.

E Estimated error of the P estimate.

Pv A vector with the estimates of all sub-integrals.

Ev A vector with the estimated errors of the Pv estimates.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin, D. and Lindgren, F. (2015) Excursion and contour uncertainty regions for latent Gaussian
models, JRSS-series B, vol 77, no 1, pp 85-106.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

Examples

Create mean and a tridiagonal precision matrix
n = 11
mu.x = seq(-5, 5, length=n)
Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
Calculate the probability that the variable is between mu-3 and mu+3
prob = gaussint(mu=mu.x, Q=Q.x, a= mu.x-3, b=mu.x+3, max.threads=2)
prob$P

26 require.nowarnings

require.nowarnings Warnings free loading of add-on packages

Description

Turn off all warnings for require(), to allow clean completion of examples that require unavailable
Suggested packages.

Usage

require.nowarnings(package, lib.loc = NULL, character.only = FALSE)

Arguments

package The name of a package, given as a character string.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known to
.libPaths(). Non-existent library trees are silently ignored.

character.only a logical indicating whether package can be assumed to be a character string.

Details

require(package) acts the same as require(package,quietly = TRUE) but with warnings turned
off. In particular, no warning or error is given if the package is unavailable. Most cases should use
requireNamespace(package,quietly = TRUE) instead, which doesn’t produce warnings.

Value

require.nowarnings returns (invisibly) TRUE if it succeeds, otherwise FALSE

See Also

require

Examples

This should produce no output:
if (require.nowarnings(nonexistent)) {

message("Package loaded successfully")
}

simconf 27

simconf Simultaneous confidence regions for Gaussian models

Description

simconf is used for calculating simultaneous confidence regions for Gaussian models x. The func-
tion returns upper and lower bounds a and b such that P (a < x < b) = 1− alpha.

Usage

simconf(
alpha,
mu,
Q,
n.iter = 10000,
Q.chol,
vars,
ind = NULL,
verbose = 0,
max.threads = 0,
seed = NULL

)

Arguments

alpha Error probability for the region.

mu Expectation vector for the Gaussian distribution.

Q Precision matrix for the Gaussian distribution.

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

Q.chol The Cholesky factor of the precision matrix (optional).

vars Precomputed marginal variances (optional).

ind Indices of the nodes that should be analyzed (optional).

verbose Set to TRUE for verbose mode (optional).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

Details

The pointwise confidence bands are based on the marginal quantiles, meaning that a.marignal =
mu + qalpha and b.marginal = mu + q1−alpha, where mu is the mean and qalpha is a vector with the
alpha-quantiles of x-mu.

The simultaneous confidence bands are defined as a = mu + c ∗ qalpha and b = mu + c ∗ q1−alpha,
where c is a constant computed such that P (a < x < b) = 1− alpha.

28 simconf.inla

Value

An object of class "excurobj" with elements

a The lower bound.

b The upper bound.

a.marginal The lower bound for pointwise confidence bands.

b.marginal The upper bound for pointwise confidence bands.

Author(s)

David Bolin <davidbolin@gmail.com> and Finn Lindgren <finn.lindgren@gmail.com>

References

Bolin et al. (2015) Statistical prediction of global sea level from global temperature, Statistica
Sinica, vol 25, pp 351-367.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

simconf.inla, simconf.mc, simconf.mixture

Examples

Create mean and a tridiagonal precision matrix
n = 11
mu.x = seq(-5, 5, length=n)
Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
calculate the confidence region
conf = simconf(0.05, mu.x, Q.x, max.threads=2)
Plot the region
plot(mu.x, type="l", ylim=c(-10, 10),

main='Mean (black) and confidence region (red)')
lines(conf$a, col=2)
lines(conf$b, col=2)

simconf.inla Simultaneous confidence regions for latent Gaussian models

Description

simconf.inla is used for calculating simultaneous confidence regions for latent Gaussian models
estimated using INLA.

simconf.inla 29

Usage

simconf.inla(
result.inla,
stack,
name = NULL,
tag = NULL,
ind = NULL,
alpha,
method = "NI",
n.iter = 10000,
verbose = 0,
link = FALSE,
max.threads = 0,
seed = NULL,
inla.sample = TRUE

)

Arguments

result.inla Result object from INLA call.

stack The stack object used in the INLA call.

name The name of the component for which to do the calculation. This argument
should only be used if a stack object is not provided, use the tag argument oth-
erwise.

tag The tag of the component in the stack for which to do the calculation. This ar-
gument should only be used if a stack object is provided, use the name argument
otherwise.

ind If only a part of a component should be used in the calculations, this argument
specifies the indices for that part.

alpha Error probability for the region.

method Method for handeling the latent Gaussian structure:

• ’EB’ Empirical Bayes (Gaussian approximation of posterior).
• ’NI’ Numerical integration (Calculation based on the Gaussian mixture ap-

proximation of the posterior, as calculated by INLA).

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

verbose Set to TRUE for verbose mode (optional).

link Transform output to the scale of the data using the link function as defined in
the model estimated with INLA (default FALSE).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

inla.sample Set to TRUE if inla.posterior.sample should be used for the MC integration.

30 simconf.inla

Details

See simconf for details.

Value

An object of class "excurobj" with elements

a The lower bound.

b The upper bound.

a.marginal The lower bound for pointwise confidence bands.

b.marginal The upper bound for pointwise confidence bands.

Note

This function requires the INLA package, which is not a CRAN package. See http://www.r-inla.
org/download for easy installation instructions.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin et al. (2015) Statistical prediction of global sea level from global temperature, Statistica
Sinica, vol 25, pp 351-367.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

simconf, simconf.mc, simconf.mixture

Examples

if (require.nowarnings("INLA")) {
n <- 10
x <- seq(0, 6, length.out=n)
y <- sin(x) + rnorm(n)
mu <- 1:n
result <- inla(y ~ 1 + f(mu, model='rw2'),

data=list(y=y, mu=mu), verbose=FALSE,
control.compute = list(config=TRUE),
num.threads = 1)

res <- simconf.inla(result, name='mu', alpha = 0.05, max.threads = 1)

plot(result$summary.random$mu$mean,ylim=c(-2,2))
lines(res$a)
lines(res$b)

http://www.r-inla.org/download
http://www.r-inla.org/download

simconf.mc 31

lines(res$a.marginal,col="2")
lines(res$b.marginal,col="2")
}

simconf.mc Simultaneous confidence regions using Monte Carlo samples

Description

simconf.mc is used for calculating simultaneous confidence regions based on Monte Carlo samples.
The function returns upper and lower bounds a and b such that P (a < x < b) = 1− alpha.

Usage

simconf.mc(samples, alpha, ind, verbose = FALSE)

Arguments

samples Matrix with model Monte Carlo samples. Each column contains a sample of the
model.

alpha Error probability for the region.

ind Indices of the nodes that should be analyzed (optional).

verbose Set to TRUE for verbose mode (optional).

Details

See simconf for details.

Value

An object of class "excurobj" with elements

a The lower bound.

b The upper bound.

a.marginal The lower bound for pointwise confidence bands.

b.marginal The upper bound for pointwise confidence bands.

Author(s)

David Bolin <davidbolin@gmail.com>

See Also

simconf, simconf.inla

32 simconf.mixture

Examples

Create mean and a tridiagonal precision matrix
n = 11
mu.x = seq(-5, 5, length=n)
Q.x = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
Sample the model 100 times (increase for better estimate)
X = mu.x + solve(chol(Q.x),matrix(rnorm(n=n*100),nrow=n,ncol=100))
calculate the confidence region
conf = simconf.mc(X,0.2)
Plot the region
plot(mu.x, type="l", ylim=c(-10, 10),

main='Mean (black) and confidence region (red)')
lines(conf$a, col=2)
lines(conf$b, col=2)

simconf.mixture Simultaneous confidence regions for Gaussian mixture models

Description

simconf.mixture is used for calculating simultaneous confidence regions for Gaussian mixture
models. The distribution for the process x is assumed to be

latex

The function returns upper and lower bounds a and b such that P (a < x < b) = 1− alpha.

Usage

simconf.mixture(
alpha,
mu,
Q,
w,
ind,
n.iter = 10000,
vars,
verbose = 0,
max.threads = 0,
seed = NULL,
mix.samp = TRUE

)

Arguments

alpha Error probability for the region.

mu A list with the k expectation vectors latex.

Q A list with the k precision matrices latex.

simconf.mixture 33

w A vector with the weights for each class in the mixture.

ind Indices of the nodes that should be analyzed (optional).

n.iter Number or iterations in the MC sampler that is used for approximating proba-
bilities. The default value is 10000.

vars A list with precomputed marginal variances for each class (optional).

verbose Set to TRUE for verbose mode (optional).

max.threads Decides the number of threads the program can use. Set to 0 for using the
maximum number of threads allowed by the system (default).

seed Random seed (optional).

mix.samp If TRUE, the MC integration is done by directly sampling the mixture, otherwise
sequential integration is used.

Details

See simconf for details.

Value

#’ @return An object of class "excurobj" with elements

a The lower bound.

b The upper bound.

a.marginal The lower bound for pointwise confidence bands.

b.marginal The upper bound for pointwise confidence bands.

Author(s)

David Bolin <davidbolin@gmail.com>

References

Bolin et al. (2015) Statistical prediction of global sea level from global temperature, Statistica
Sinica, vol 25, pp 351-367.

Bolin, D. and Lindgren, F. (2018), Calculating Probabilistic Excursion Sets and Related Quantities
Using excursions, Journal of Statistical Software, vol 86, no 1, pp 1-20.

See Also

simconf, simconf.inla, simconf.mc

Examples

n = 11
K = 3
mu <- Q <- list()
for(k in 1:K){

mu[[k]] = k*0.1 + seq(-5, 5, length=n)

34 submesh.grid

Q[[k]] = Matrix(toeplitz(c(1, -0.1, rep(0, n-2))))
}
calculate the confidence region
conf = simconf.mixture(0.05, mu, Q, w = rep(1/3,3), max.threads=2)

Plot the region
plot(mu[[1]],type="l")
lines(mu[[2]])
lines(mu[[3]])
lines(conf$a, col=2)
lines(conf$b, col=2)

submesh.grid Extract a part of a grid

Description

Extracts a part of a grid.

Usage

submesh.grid(z, grid = NULL)

Arguments

z A matrix with values indicating which nodes that should be present in the sub-
mesh.

grid A list with locations and dimensions of the grid.

Value

An inla.mesh object.

Note

This function requires the INLA package, which is not a CRAN package. See http://www.r-inla.
org/download for easy installation instructions.

Author(s)

Finn Lindgren <finn.lindgren@gmail.com>

http://www.r-inla.org/download
http://www.r-inla.org/download

submesh.mesh 35

Examples

Not run:
if (require(INLA)) {
nxy = 40
x=seq(from=0,to=4,length.out=nxy)
lattice=inla.mesh.lattice(x=x,y=x)
mesh=inla.mesh.create(lattice=lattice, extend=FALSE, refine=FALSE)

#extract a part of the mesh inside a circle
xy.in <- rowSums((mesh$loc[,1:2]-2)^2)<1
submesh <- submesh.grid(matrix(xy.in,nxy,nxy),

list(loc=mesh$loc,dim=c(nxy,nxy)))
plot(mesh$loc[,1:2])
lines(2+cos(seq(0,2*pi,length.out=100)), 2+sin(seq(0,2*pi,length.out=100)))
plot(submesh,add=TRUE)
points(mesh$loc[xy.in,1:2],col="2")
}
End(Not run)

submesh.mesh Extract a part of a mesh

Description

Extracts a part of a mesh

Usage

submesh.mesh(z, mesh)

Arguments

z A matrix with values indicating which nodes that should be present in the sub-
mesh.

mesh An inla.mesh object.

Value

An inla.mesh object.

Note

This function requires the INLA package, which is not a CRAN package. See http://www.r-inla.
org/download for easy installation instructions.

Author(s)

Finn Lindgren <finn.lindgren@gmail.com>

http://www.r-inla.org/download
http://www.r-inla.org/download

36 summary.excurobj

Examples

Not run:
if (require(INLA)) {
nxy = 30
x=seq(from=0,to=4,length.out=nxy)
lattice=inla.mesh.lattice(x=x,y=x)
mesh=inla.mesh.create(lattice=lattice, extend=FALSE, refine=FALSE)

#extract a part of the mesh inside a circle
xy.in <- rowSums((mesh$loc[,1:2]-2)^2)<1
submesh <- excursions:::submesh.mesh(matrix(xy.in,nxy,nxy),mesh)
plot(mesh$loc[,1:2])
lines(2+cos(seq(0,2*pi,length.out=100)), 2+sin(seq(0,2*pi,length.out=100)))
plot(submesh,add=TRUE)
points(mesh$loc[xy.in,1:2],col="2")
}
End(Not run)

summary.excurobj Summarise excurobj objects

Description

Summary method for class "excurobj"

Usage

S3 method for class 'excurobj'
summary(object, ...)

S3 method for class 'summary.excurobj'
print(x, ...)

S3 method for class 'excurobj'
print(x, ...)

Arguments

object an object of class "excurobj", usually, a result of a call to excursions.

... further arguments passed to or from other methods.

x an object of class "summary.excurobj", usually, a result of a call to summary.excurobj.

tricontour 37

tricontour Calculate contour curves on a triangulation

Description

Calculates contour curves and/or regions between them, for functions defined on a triangulation

Usage

tricontour(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
...

)

S3 method for class 'inla.mesh'
tricontour(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
...

)

S3 method for class 'matrix'
tricontour(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
loc,
...

)

S3 method for class 'list'
tricontour(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
loc,
type = c("+", "-"),
tol = 1e-07,
...

)

38 tricontour

tricontourmap(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
...

)

S3 method for class 'inla.mesh'
tricontourmap(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
...

)

S3 method for class 'matrix'
tricontourmap(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
loc,
...

)

S3 method for class 'list'
tricontourmap(
x,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
loc,
type = c("+", "-"),
tol = 1e-07,
output = c("sp", "inla.mesh.segment"),
...

)

Arguments

x An object generated by a call to inla.mesh.2d or inla.mesh.create, a triangle-
vertex index matrix, or a list of triangulation information, list(loc,graph=list(tv)).

z A vector containing the values to be contoured (NAs are allowed).

nlevels Number of contour levels desired, if and only if levels is not supplied.

levels Numeric vector of levels at which to calculate contour lines.

tricontour 39

... Additional arguments passed to the other methods.

loc coordinate matrix, to be supplied when x is given as a triangle-vertex index
matrix only.

type "+" or "-", indicating positive or negative association. For +, the generated
contours enclose regions where u1 ≤ z < u2, for - the regions fulfil u1 < z ≤
u2.

tol tolerance for determining if the value at a vertex lies on a level.

output The format of the generated output. Implemented options are "sp" (default) and
"inla.mesh.segment" (requires the INLA package).

Value

For tricontour, a list some of the same fields that inla.mesh.segment objects have:

loc A coordinate matrix

idx Contour segment indices, as a 2-column matrix, each row indexing a single
segment

grp A vector of group labels. Each segment has a label, in 1,...,nlevels*2+1,
where even labels indicate interior on-level contour segments, and odd labels
indicate boundary segments between levels.

For tricontourmap, a list:

contour A list of sp or inla.mesh.segment objects defining countour curves (level sets)

map A list of sp or inla.mesh.segment objects enclosing regions between level sets

Author(s)

Finn Lindgren <finn.lindgren@gmail.com>

Examples

if (require.nowarnings("INLA")) {
Generate mesh and SPDE model
n.lattice <- 20 #increase for more interesting, but slower, examples
x <- seq(from = 0, to = 10, length.out = n.lattice)
lattice <- inla.mesh.lattice(x = x, y = x)
mesh <- inla.mesh.create(lattice = lattice, extend = FALSE, refine = FALSE)
spde <- inla.spde2.matern(mesh, alpha = 2)

Generate an artificial sample
sigma2.e <- 0.01
n.obs <-1000
obs.loc <- cbind(runif(n.obs) * diff(range(x)) + min(x),

runif(n.obs) * diff(range(x)) + min(x))
Q <- inla.spde2.precision(spde, theta = c(log(sqrt(0.5)), log(sqrt(1))))
x <- inla.qsample(Q = Q)
A <- inla.spde.make.A(mesh = mesh, loc = obs.loc)

40 tricontour

Y <- as.vector(A %*% x + rnorm(n.obs) * sqrt(sigma2.e))

Calculate posterior
Q.post <- (Q + (t(A) %*% A)/sigma2.e)
mu.post <- as.vector(solve(Q.post,(t(A) %*% Y)/sigma2.e))

Calculate continuous contours
tric <- tricontour(mesh, z = mu.post,

levels = as.vector(quantile(x, c(0.25, 0.75))))

Discrete domain contours
map <- contourmap(n.levels = 2, mu = mu.post, Q = Q.post,

alpha=0.1, compute = list(F = FALSE), max.threads=1)

Calculate continuous contour map
setsc <- tricontourmap(mesh, z = mu.post,

levels = as.vector(quantile(x, c(0.25, 0.75))))

Plot the results
reo <- meshidxlattice
idx.setsc <- setdiff(names(setsc$map), "-1")
cols2 <- contourmap.colors(map, col=heat.colors(100, 0.5),

credible.col = grey(0.5, 0))
names(cols2) <- as.character(-1:2)

par(mfrow = c(1,2))
image(matrix(mu.post[reo], n.lattice, n.lattice),

main = "mean", axes = FALSE)
plot(setsc$map[idx.setsc], col = cols2[idx.setsc])
par(mfrow = c(1,1))

}

Index

continuous, 4, 6
contourmap, 5, 6, 8, 14, 16, 17
contourmap.colors, 5, 10, 11, 14, 17
contourmap.inla, 5, 10, 12, 16, 17
contourmap.mc, 5, 10, 14, 15

excursions, 4, 6, 19, 22, 36
excursions (excursions-package), 2
excursions-package, 2
excursions.inla, 4, 5, 17, 22
excursions.mc, 4, 5, 19, 20
excursions.variances, 22

gaussint, 23

print.excurobj (summary.excurobj), 36
print.summary.excurobj

(summary.excurobj), 36

require, 26
require.nowarnings, 26

simconf, 5, 27, 30, 31, 33
simconf.inla, 5, 28, 28, 31, 33
simconf.mc, 5, 28, 30, 31, 33
simconf.mixture, 5, 28, 30, 32
submesh.grid, 34
submesh.mesh, 35
summary.excurobj, 36, 36

tricontour, 5, 37
tricontourmap, 5
tricontourmap (tricontour), 37

41

	excursions-package
	continuous
	contourmap
	contourmap.colors
	contourmap.inla
	contourmap.mc
	excursions.inla
	excursions.mc
	excursions.variances
	gaussint
	require.nowarnings
	simconf
	simconf.inla
	simconf.mc
	simconf.mixture
	submesh.grid
	submesh.mesh
	summary.excurobj
	tricontour
	Index

