Unconditional Exact Tests in the exact2x2 R package
 Michael P. Fay, Sally A. Hunsberger
 August 2, 2020

Summary

These notes describe the calculations for the uncondExact 2×2 function in the exact $2 \times 2 \mathrm{R}$ package. This function does unconditional exact tests for the two sample binomial problem. It has options for serval different test statistics, mid p-value adjustments, and Berger and Boos adjustments.

1 Definition and Calculation of the Unconditional Exact Tests

1.1 Defining the General Method

Let $\mathbf{X}=\left[X_{1}, X_{2}\right]$ with $X_{a} \sim \operatorname{Binom}\left(n_{a}, \theta_{a}\right)$ for $a=1,2$. Suppose we are interested in $\beta=b(\theta)$, where $b(\theta)$ is some function of θ_{1} and θ_{2}. Common examples are the difference, $\beta_{d}=\theta_{2}-\theta_{1}$, the ratio, $\beta_{r}=\theta_{2} / \theta_{1}$, and the odds ratio, $\beta_{o r}=\left\{\theta_{2}\left(1-\theta_{1}\right)\right\} /\left\{\theta_{1}\left(1-\theta_{2}\right)\right\}$.

We want to test hypotheses of the form $H_{0}: \theta \in \Theta_{0}$ versus $H_{1}: \theta \in \Theta_{1}$, where Θ_{0} and Θ_{1} are the set of all possible values of $\left[\theta_{1}, \theta_{2}\right]$ under the null hypothesis or the alternative hypothesis, repspectively. It is convenient to write Θ_{0} and Θ_{1} in terms of β. For example,

$$
\Theta_{0}=\left\{\theta: b(\theta)=\beta_{0}\right\}
$$

For this example, instead of writing the null hypothesis as $H_{0}: \theta \in \Theta_{0}$, we write it in terms of $\beta=b(\theta)$ as $H_{0}: \beta=\beta_{0}$. We are generally interested in three classes of hypotheses: two-sided hypotheses,

$$
\begin{array}{ll}
H_{0}: & \beta=\beta_{0} \\
H_{1}: & \beta \neq \beta_{0}
\end{array}
$$

or one of the one-sided hypotheses,

$$
\begin{array}{cl}
\text { Alternative is Less } & \text { Alternative is Greater } \\
H_{0}: \beta \geq \beta_{0} & H_{0}: \beta \leq \beta_{0} \\
H_{1}: \beta<\beta_{0} & H_{1}: \beta>\beta_{0} .
\end{array}
$$

First consider parmtype="difference". Let $T(\mathbf{X})$ be some test statistic, where larger values suggest that θ_{2} is larger than θ_{1}. Then a valid (i.e., exact) p -value for testing $H_{0}: \beta \geq \beta_{0}$ is

$$
p_{U}\left(\mathbf{x}, \beta_{0}\right)=\sup _{\theta: b(\theta) \geq \beta_{0}} \operatorname{Pr}_{\theta}[T(\mathbf{X}) \leq T(\mathbf{x})] .
$$

For testing $H_{0}: \beta \leq \beta_{0}$ the p -value is

$$
p_{L}\left(\mathbf{x}, \beta_{0}\right)=\sup _{\theta: b(\theta) \leq \beta_{0}} \operatorname{Pr}_{\theta}[T(\mathbf{X}) \geq T(\mathbf{x})] .
$$

When parmtype='ratio' then when $\mathbf{x}=[0,0]$ there is no information about the ratio and we define the p -value as 1 . Similarly, when parmtype='oddsratio' and $\mathbf{x}=[0,0]$ or $\mathbf{x}=\left[n_{1}, n_{2}\right]$ there is no information about the odds ratio and we define the p-value as 1 , and we do not calculate probabilities in p-value calculations over values with no information. Specifically, let \mathcal{X}_{I} denote the set of \mathbf{X} values with information about β. Then if $\mathbf{x} \notin \mathcal{X}_{I}$ set $p_{U}\left(\mathbf{x}, \beta_{0}\right)$ and $p_{L}\left(\mathbf{x}, \beta_{0}\right)$ to 1 , otherwise let $p_{U}\left(\mathbf{x}, \beta_{0}\right)$ be

$$
\sup _{\theta: b(\theta) \geq \beta_{0}} P_{\theta}\left[T(\mathbf{X}) \leq T(\mathbf{x}) \mid \mathbf{X} \in \mathcal{X}_{I}\right] P_{\theta}\left[\mathbf{X} \in \mathcal{X}_{I}\right]
$$

and analogously, let $p_{L}\left(\mathbf{x}, \beta_{0}\right)$ be

$$
\sup _{\theta: b(\theta) \leq \beta_{0}} P_{\theta}\left[T(\mathbf{X}) \geq T(\mathbf{x}) \mid \mathbf{X} \in \mathcal{X}_{I}\right] P_{\theta}\left[\mathbf{X} \in \mathcal{X}_{I}\right] .
$$

Since we never reject when $\mathbf{x} \notin \mathcal{X}_{I}$, these definitions give valid p-values, and additionally when $\mathbf{x} \notin \mathcal{X}_{I}$ we do not need to define $T(\mathbf{x})$.

The tsmethod option gives two ways to calculate the two-sided p-value. The default option is 'central' to give a central p-value, which is

$$
\begin{aligned}
p_{t s}\left(\mathbf{x}, \beta_{0}\right) & =p_{\text {central }}\left(\mathbf{x}, \beta_{0}\right) \\
& =\min \left\{1,2 p_{U}\left(\mathbf{x}, \beta_{0}\right), 2 p_{L}\left(\mathbf{x}, \beta_{0}\right)\right\}
\end{aligned}
$$

The second options is tsmethod='square'. For this option, we square the test statistic, $T(\mathbf{x})$, defined in the next section, and define the p-value as

$$
\begin{aligned}
p_{t s}\left(\mathbf{x}, \beta_{0}\right) & =p_{\text {square }}\left(\mathbf{x}, \beta_{0}\right) \\
& =\left\{\begin{array}{c}
\sup _{\theta \in \Theta_{0}} \operatorname{Pr}_{\theta}\left[T^{2}(\mathbf{X}) \geq T^{2}(\mathbf{x})\right] \text { (for parmtype="difference") } \\
\sup _{\theta \in \Theta_{0}} \operatorname{Pr}_{\theta}\left[T^{2}(\mathbf{X}) \geq T^{2}(\mathbf{x}) \mid X \in \mathcal{X}_{I}\right] \operatorname{Pr}_{\theta}\left[X \in \mathcal{X}_{I}\right] \text { (otherwise). }
\end{array}\right.
\end{aligned}
$$

Since the probability expression only depends on the ordering, and since the ordering of the square of $T(\mathbf{X})$ is the same as the ordering of absolute value of $T(\mathbf{X})$, we can equivalently write $p_{\text {square }}$ in terms of absolute values.

These exact p-values are necessarily conservative because for most $\theta \in \Theta_{0}$ we have

$$
\operatorname{Pr}_{\theta}\left[p_{U}\left(\mathbf{X}, \beta_{0}\right) \leq \alpha\right]<\alpha
$$

A less conservative approach, but one that is no longer valid (i.e., no longer exact), is to use a mid-p value. For example, the mid-p value associated with p_{U} is

$$
p_{U m i d}\left(\mathbf{x}, \Theta_{0}\right)=\sup _{\theta: b(\theta) \geq \beta_{0}}\left\{\operatorname{Pr}_{\theta}[T(\mathbf{X})<T(\mathbf{x})]+\frac{1}{2} \operatorname{Pr}_{\theta}[T(\mathbf{X})=T(\mathbf{x})]\right\}
$$

Other mid p-values are defined analogously.

1.2 Options for $T(\mathrm{x})$

1.2.1 Overview

We now give the $T(\mathbf{x})$ function that is defined by three options: parmtype, nullparm, and method. The option parmtype is one of 'difference', 'ratio' or 'odds ratio', and it determines the parameter associated with the confidence interval. The option nullparm defines β_{0}. The default for nullparm $=$ NULL, which is replaced by $\beta_{0}=0$ for parmtype='difference' and $\beta_{0}=1$ for parmtype='ratio' or 'odds ratio'. Finally, method defines the type of T function:
simple: then T is an estimate of the parmtype using the estimates $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=$ x_{2} / n_{2}.
simpleTB: simple with a tie break. Ties in T using the simple method are broken based on variability, with larger variability further away from the null.
score: here T is based on a score statistic.
wald pooled: T is a Wald statistic on the difference in sample means using the pooled variance estimate.
wald unpooled: T is a Wald statistic on the difference in sample means using an unpooled variance estimate.

FisherAdj: T is a one-sided mid p-value using Fisher's exact test. Note that we create an exact unconditional test using the ordering by the mid p -value, so the test is valid (or exact), even though the mid p-values when used as p-values directly are not necessarily valid.

1.2.2 Simple: Difference

When method='simple' and parmtype='difference' we have,

$$
T(\mathbf{x})=T\left(\left[x_{1}, x_{2}\right]\right)=\frac{x_{2}}{n_{2}}-\frac{x_{1}}{n_{1}}-\beta_{0}
$$

The order does not change as β_{0} changes.

1.2.3 Simple with Tie Break: Difference

When method='simpleTB' and parmtype='difference' and tsmethod='central' we use $T(\mathbf{x})$ from the previous subsection, then break ties by ordering by $T^{*}(\mathbf{x})$ within each tied value for $T(\mathbf{x})$, where

$$
T^{*}(\mathbf{x})=\frac{\hat{\theta}_{2}-\hat{\theta}_{1}}{\sqrt{\frac{\hat{\theta}_{1}\left(1-\hat{\theta}_{1}\right)}{n_{1}}+\frac{\hat{\theta}_{2}\left(1-\hat{\theta}_{2}\right)}{n_{2}}}}
$$

where $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=x_{2} / n_{2}$. If T^{*} gives a ratio of $0 / 0$ then it is set to 0 .

The idea behind T^{*} is that with each $\hat{\beta}_{d}=\hat{\theta}_{2}-\hat{\theta}_{1}$ value, values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_{d}$ is positive and ranked lower when $\hat{\beta}_{d}$ is negative). We do not subtract β_{0} from the numerator, because we do not want the order to change for different hypotheses, which makes calculations more difficult and could possibly lead to non-unified inferences (e.g., reject the null at level α but the $1-\alpha$ CI for β_{d} includes 0).

1.2.4 Score:Difference

When method='score' and parmtype='difference' we have,

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\frac{\frac{x_{2}}{n_{2}}-\frac{x_{1}}{n_{1}}-\beta_{0}}{\sqrt{\tilde{\theta}_{1}\left(1-\tilde{\theta}_{1}\right) / n_{1}+\tilde{\theta}_{2}\left(1-\tilde{\theta}_{2}\right) / n_{2}}}
$$

where $\tilde{\theta}_{1}$ and $\tilde{\theta}_{2}$ are the maximum likelihood estimates of θ_{1} and θ_{2} under the restriction that $b(\theta)=\beta_{0}$. See the code of constMLE.difference for the formula, or the Appendix of Farrington and Manning (1990).

1.2.5 Wald-Pooled: Difference

When method='wald-pooled' and parmtype='difference' we have,

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\frac{\hat{\theta}_{2}-\hat{\theta}_{1}-\beta_{0}}{\sqrt{\hat{\theta}(1-\hat{\theta})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=x_{2} / n_{2}$ and $\hat{\theta}=\left(x_{1}+x_{2}\right) /\left(n_{1}+n_{2}\right)$. If T gives a ratio of $0 / 0$ then it is set to 0 .

1.2.6 Wald-Unpooled: Difference

When method='wald-unpooled' and parmtype='difference' we have,

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\frac{\hat{\theta}_{2}-\hat{\theta}_{1}-\beta_{0}}{\sqrt{\hat{\theta}_{1}\left(1-\hat{\theta}_{1}\right) / n_{1}+\hat{\theta}_{2}\left(1-\hat{\theta}_{2}\right) / n_{2}}}
$$

where $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=x_{2} / n_{2}$. If T gives a ratio of $0 / 0$ then it is set to 0 .

1.2.7 Simple: Ratio

When method='simple' and parmtype='ratio' we have,

$$
\begin{aligned}
T(\mathbf{x})=T\left(\left[x_{1}, x_{2}\right]\right) & =\log \left(\frac{\hat{\theta}_{2}}{\beta_{0} \hat{\theta}_{1}}\right) \\
& =\log \left(\hat{\theta}_{2}\right)-\log \left(\hat{\theta}_{1}\right)-\log \left(\beta_{0}\right)
\end{aligned}
$$

where $\hat{\theta}_{a}=x_{a} / n_{a}$ for $a=1,2$. Note $\log (0) \equiv \infty$ and $\log (0)-\log (0) \equiv N A$. We do not need to define $N A$ values since $x=[0,0]$ has no information (see Section 1.1).

1.2.8 Simple with Tie Break: Ratio

When method='simpleTB' and parmtype='ratio' we used $T(\mathbf{x})$ from the previous subsection, then break ties by ordering by $T^{*}(\mathbf{x})$ within each tied value for $T(\mathbf{x})$, where

$$
T^{*}(\mathbf{x})=\left\{\begin{array}{cc}
x_{2} & \text { if } x_{1}=0 \text { and } x_{2}>0 \\
1 / x_{1} & \text { if } x_{1}>0 \text { and } x_{2}=0 \\
0 & \text { if } x_{1}=n_{1} \text { and } x_{2}=n_{2} \\
\frac{\log \left(\hat{\theta}_{2}\right)-\log \left(\hat{\theta}_{1}\right)}{\sqrt{\frac{1}{x_{1}}-\frac{1}{n_{1}}+\frac{1}{x_{2}}-\frac{1}{n_{2}}}} & \text { if } x_{1}>0 \text { and } x_{2}>0 \text { and } \operatorname{not}\left(x_{1}=n_{1} \text { and } x_{2}=n_{2}\right)
\end{array}\right.
$$

where $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=x_{2} / n_{2}$.
In words, when $x_{1} / n_{1}=\hat{\theta}_{1}=0$ and $x_{2}>0$ then $T(\mathbf{x})=-\infty$ and we order by x_{2}; otherwise when we order $x_{2} / n_{2}=\hat{\theta}_{2}=0$ and $x_{1}>0$ then $T(\mathbf{x})=\infty$ and we order by $1 / x_{1}$; otherwise when $\hat{\theta}_{1}=\hat{\theta}_{2}=1$ we do not break the ties (by setting $T^{*}(\mathbf{x})=0$); otherwise for each $\log \left(\hat{\beta}_{r}\right)=\log \left(\hat{\theta}_{2} / \hat{\theta}_{1}\right)$ value, we rank values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_{r}>1$ and ranked lower when $\hat{\beta}_{r}<1$ is negative). The variance formula comes from the variance estimate of the $\log \left(\hat{\beta}_{r}\right)$. Fleiss, Levin, and Paik (2003, p. 132, equation 6.112, except there is a typo) give the variance expression,

$$
\operatorname{var}\left(\log \left(\hat{\beta}_{r}\right)\right) \approx \sqrt{\frac{n_{1}-x_{1}}{x_{1} n_{1}}+\frac{n_{2}-x_{2}}{x_{2} n_{2}}}=\sqrt{\frac{1}{x_{1}}-\frac{1}{n_{1}}+\frac{1}{x_{2}}-\frac{1}{n_{2}}} .
$$

We do not subtract $\log \left(\beta_{0}\right)$ from the numerator in the $T^{*}(\mid b f x)$ function to keep it simple.

1.2.9 Score: Ratio

When method='score' and parmtype='ratio' we have,

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\frac{\hat{\theta}_{2}-\hat{\theta}_{1} \beta_{0}}{\sqrt{\beta_{0} \tilde{\theta}_{1}\left(1-\tilde{\theta}_{1}\right) / n_{1}+\tilde{\theta}_{2}\left(1-\tilde{\theta}_{2}\right) / n_{2}}}
$$

where $\tilde{\theta}_{1}$ and $\tilde{\theta}_{2}$ are the maximum likelihood estimates of θ_{1} and θ_{2} under the restriction that $\beta_{r}=b(\theta)=\beta_{0}$; for the formula for $\tilde{\theta}_{a}$ for $a=1,2$, see either the constrMLE.ratio, Miettinen and Nurminen (1985).

1.2.10 Simple: Odds Ratio

When method='simple' and parmtype='odds ratio' we have,

$$
T(\mathbf{x})=T\left(\left[x_{1}, x_{2}\right]\right)=\log \left(\frac{\hat{\theta}_{2}\left(1-\hat{\theta}_{1}\right)}{\beta_{0} \hat{\theta}_{1}\left(1-\hat{\theta}_{2}\right)}\right)
$$

where $\hat{\theta}_{a}=x_{a} / n_{a}$ for $a=1,2$.

1.2.11 Simple with Tie Break: Odds Ratio

When method='simpleTB' and parmtype='oddsratio' we used $T(\mathbf{x})$ from the previous subsection, then break ties by ordering by $T^{*}(\mathbf{x})$ within each tied value for $T(\mathbf{x})$, where

$$
T^{*}(\mathbf{x})=\left\{\begin{array}{cc}
x_{2} & \text { if } x_{1}=0 \text { or } x_{2}=n_{2} \\
1 / x_{1} & \text { if } x_{1}=n_{1} \text { or } x_{2}=0 \\
\frac{\log \left(x_{2}\right)-\log \left(n_{2}-x_{2}\right)-\log \left(x_{1}\right)+\log \left(n_{1}-x_{1}\right)}{\sqrt{\frac{1}{x_{1}}+\frac{1}{n_{1}-x_{1}}+\frac{1}{x_{2}}+\frac{1}{n_{2}-x_{2}}}} & \text { otherwise }
\end{array}\right.
$$

where $\hat{\theta}_{1}=x_{1} / n_{1}$ and $\hat{\theta}_{2}=x_{2} / n_{2}$.
In words, when $\hat{\beta}_{o r}=\infty$ then we order by x_{2}; otherwise when $\hat{\beta}_{o r}=-\infty$ then we order by $1 / x_{1}$; otherwise for each $\log \left(\hat{\beta}_{\text {or }}\right)$ value, we rank values with lower variability are more extreme (i.e., ranked higher when $\hat{\beta}_{r}>1$ and ranked lower when $\hat{\beta}_{r}<1$ is negative). The variance formula comes from the variance estimate of the $\log \left(\hat{\beta}_{o r}\right)$. Fleiss, Levin, and Paik (2003, p. 102, equation 6.19) give the variance estimate for $\operatorname{var}\left(\hat{\beta}_{o r}\right)$, and using the delta method, the estimate for $\operatorname{var}\left(\log \left(\hat{\beta}_{o r}\right)\right)$ is

$$
\operatorname{var}\left(\log \left(\hat{\beta}_{o r}\right)\right) \approx \sqrt{\frac{1}{x_{1}}+\frac{1}{n_{1}-x_{1}}+\frac{1}{x_{2}}+\frac{1}{n_{2}-x_{2}}} .
$$

We do not subtract $\log \left(\beta_{0}\right)$ from the numerator to keep it simple.

1.2.12 Score: Odds Ratio

When method='score' and parmtype='oddsratio' we use (see Agresti and Min, 2002, p. 381, except we do not square the statistic because we want to allow one-sided inferences),

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\left\{n_{2}\left(\frac{x_{2}}{n_{2}}-\tilde{\theta}_{2}\right)\right\} \sqrt{\frac{1}{n_{1} \tilde{\theta}_{1}\left(1-\tilde{\theta}_{1}\right)}+\frac{1}{n_{2} \tilde{\theta}_{2}\left(1-\tilde{\theta}_{2}\right)}},
$$

where $\tilde{\theta}_{1}$ and $\tilde{\theta}_{2}$ are the maximum likelihood estimates of θ_{1} and θ_{2} under the restriction that

$$
\tilde{\beta}_{o r}=\frac{\tilde{\theta}_{2}\left(1-\tilde{\theta}_{1}\right)}{\tilde{\theta}_{1}\left(1-\tilde{\theta}_{2}\right)}=\beta_{0} .
$$

For the formula for $\tilde{\theta}_{a}$ for $a=1,2$, see either the function constrMLE.oddsratio or Miettinen and Nurminen (1985).

1.2.13 FisherAdj: Difference, Ratio, or Odds Ratio

When method='FisherAdj' we order by the mid p-value from a one-sided Fisher's exact test. We do not change the ordering as the β_{0} changes, so it can be used with any parmtype.

Using the phyper and dhyper functions for the hypergeometric distribution, this becomes:

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\operatorname{phyper}(x 2, n 2, n 1, x 2+x 1)-0.5 * \operatorname{dhyper}(x 2, n 2, n 1, x 1+x 2)
$$

Figure 1: Plots of the orderings using plotT. Dark blue is highest, dard red is lowest, white is the middle, and black is no information. The default is method="FisherAdj" (same for all parmtypes), the method="simple" order by the plug-in estimates with sample proportions.

2 Comparing Orderings

In Figure 1 we show the default orderings and the method="simple" orderings for different values of parmtype.

In Figure 2 we show the similarity of several of the parmtype="difference" orderings.
The wald method gives a strange ordering at $x=(0,0)$ and $x=\left(n_{1}, n_{2}\right)$ when β_{0} is close to zero (see Figure 3).

When tsmethod="square" then a small difference in β_{0} can make a big difference in the p-value (see Figure 4 for ordering difference, Figure 5 for a p-value example).

Figure 2: Plots of the orderings using plotT. Notice how the orderings are nearly the same for the 4 methods. The FisherAdj method has the advantage that it does not change with parmtype or β_{0}.

Figure 3: Plots of the orderings using plotT. Since we define $0 / 0=0$, when we have $\hat{\theta}_{1}=\hat{\theta}_{2}$ and $\beta_{0}=0$ then the Wald methods give 0 (see Figure 1). But when $\beta_{0}=0.01$ these values at $x=(0,0)$ and $x=\left(n_{1}, n_{2}\right)$ go to $-\infty$.

Figure 4: Plots of the orderings using plotT. Small changes in β_{0} can have large changes in the ordering, because of the denominators equalling 0 at $x=(0,0)$ and $x=\left(n_{1}, n_{2}\right)$.

Figure 5: P-values from method="wald-pooled", tsmethod="square", and parmtype="difference" for the data $x_{1} / n_{1}=5 / 13$ and $x_{2} / n_{2}=12 / 14$. Notice the strange behaviour of the p-value at $\beta_{0}=0$. This is because the denominator at $x=(0,0)$ and $x=\left(n_{1}, n_{2}\right)$ is 0 and $0 / 0$ is defined as zero, and the p-value is defined as the sup over the sample space which can give very large probability mass at $x=(0,0)$ or $x=\left(n_{1}, n_{2}\right)$.

3 Confidence Intervals

Then we can create $100(1-\alpha) \%$ confidence regions as the set of β_{0} value that fail to reject the associated null hypothesis. For example,

$$
C_{t s}(\mathbf{x}, 1-\alpha)=\left\{\beta: p_{t s}(\mathbf{x}, \beta)>\alpha\right\}
$$

gives a "two-sided" confidence region. The region may not be an interval if the p-value function is not unimodal. This problem occurs with Fisher's exact test (the Fisher-Irwin version, or 'minlike' version). For central confidence regions we take the union of the onesided confidence regions, in other words,

$$
C_{c}(\mathbf{x}, 1-\alpha)=C_{L}(\mathbf{x}, 1-\alpha / 2) \cup C_{U}(\mathbf{x}, 1-\alpha / 2),
$$

where C_{L} and C_{U} are the one-sided confidence regions,

$$
C_{L}(\mathbf{x}, 1-\alpha / 2)=\left\{\beta: p_{L}(\mathbf{x}, \beta)>\alpha / 2\right\}
$$

and

$$
C_{U}(\mathbf{x}, 1-\alpha / 2)=\left\{\beta: p_{U}(\mathbf{x}, \beta)>\alpha / 2\right\} .
$$

If the regions are intervals, and we let $L(\mathbf{x}, 1-\alpha / 2)=\min C_{L}(\mathbf{x}, 1-\alpha / 2)$ and $U(\mathbf{x}, 1-\alpha / 2)=$ $\max C_{U}(\mathbf{x}, 1-\alpha / 2)$, then the central interval is

$$
C_{c}(\mathbf{x}, 1-\alpha)=\{L(\mathbf{x}, 1-\alpha / 2), U(\mathbf{x}, 1-\alpha / 2)\}
$$

For the mid-p confidence regions, we replace the p-values with the mid-p values.

4 Berger and Boos Adjustment

The Berger-Boos (1994) adjustment is as follows. Do the usual unconditional exact test, but instead of taking the supremum over the entire null parameter space, we calculate a 100 (1$\gamma) \%$ confidence region over the null space, and only search within that. The $100(1-\gamma) \%$ confidence region is the union of the $100(1-\gamma / 2)$ exact central two-sided confidence interval for θ_{1} and the analogous $100(1-\gamma / 2)$ interval for θ_{2}. This is the method used by StatXact. Searching over that space gives anti-conservative p-values, so we turn those anti-conservative p-values into valid p-values by adding γ to them. For details see Berger and Boos (1994) or the StatXact manual.

5 The E+M Adjustment

Lloyd (2008) proposed another adjustment called the estimated and maximized $(E+M)$ p -value that can be applied to any ordering and any parmtype. In this method, we replace an ordering statistic, T, with T^{*}, where T^{*} is an estimated p-value when testing $H_{0}: \beta \leq$ β_{0} (or the negative estimated p-value when testing $H_{0}: \beta \geq \beta_{0}$). We estimate the pvalue by plugging in $\hat{\theta}_{0}=\left[\hat{\theta}_{10}, \hat{\theta}_{20}\right]$ instead of taking the supremum of θ under the null, where θ_{0} is the maximum likelihood estimator of θ under the null hypothesis. For example, the approximation for p_{L} uses $\hat{p}_{L}\left(\mathbf{x}, \beta_{0}\right)=P_{\hat{\theta}_{0}}[T(\mathbf{X}) \leq T(\mathbf{x})]$. Then we "maximize" using $T^{*}(\mathbf{x})=\hat{p}_{L}\left(\mathbf{x}, \beta_{0}\right)$ instead of T as the ordering function. For details see Loyd (2008).

References

Agresti, A and Min, Y (2002). Biostatistics 3: 379-386.
Berger, RL, and Boos, DD (1994). JASA 89: 1012-1016.
Farrington and Manning (1990). Statistics in Medicine 1447-1454.
Fay, MP, and Brittain, EH (2016). "Finite sample pointwise confidence intervals for a survival distribution with right-censored data." Statistics in Medicine 35: 2726-2740.

Fleiss, JL, Levin, B, Paik, MC (2003). Statistical Methods for Rates and Proportions, Third edition. Wiley: New York.

Lloyd, CJ (2008). Exact p-values for discrete models obtained by estimation and maximization. Australian and New Zealand Journal of Statistics 50(4): 329-345.

Miettinen and Nurminen (1985). Statistics in Medicine 213-226.

