Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
Version: |
0.22.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Formula, generics, methods, Rcpp (≥ 0.12.16), rlang (≥
0.2.0) |
LinkingTo: |
Rcpp, RcppEigen |
Suggests: |
fabricatr (≥ 0.10.0), randomizr (≥ 0.20.0), AER, clubSandwich, emmeans (≥ 1.4), estimability, ivpack, lfe, margins, prediction, RcppEigen, sandwich, stargazer, testthat, car |
Enhances: |
texreg |
Published: |
2020-03-19 |
Author: |
Graeme Blair [aut, cre],
Jasper Cooper [aut],
Alexander Coppock [aut],
Macartan Humphreys [aut],
Luke Sonnet [aut],
Neal Fultz [ctb],
Lily Medina [ctb],
Russell Lenth [ctb] |
Maintainer: |
Graeme Blair <graeme.blair at ucla.edu> |
BugReports: |
https://github.com/DeclareDesign/estimatr/issues |
License: |
MIT + file LICENSE |
URL: |
https://declaredesign.org/r/estimatr/,
https://github.com/DeclareDesign/estimatr |
NeedsCompilation: |
yes |
Materials: |
NEWS |
In views: |
Econometrics |
CRAN checks: |
estimatr results |