Package ‘escalation’

May 13, 2020
Type Package

Title Modular Approach to Dose Finding Clinical Trials
Version 0.1.3

Date 2020-05-11

Maintainer Kristian Brock <kristian.brock@gmail.com>

Description Methods for working with dose-finding clinical trials. We start by
providing a common interface to various dose-finding methodologies like the
continual reassessment method (CRM) by O'Quigley et al. (1990)
<doi:10.2307/2531628>, the Bayesian optimal interval design (BOIN) by Liu &
Yuan (2015) <doi:10.1111/rssc.12089>, and the 3+3 described by Korn et al.
(1994) <doi:10.1002/sim.4780131802>. We then add optional embellishments to
provide extra desirable behaviour, like avoiding skipping doses, stopping
after n patients have been treated at the recommended dose, or demanding
that n patients are treated before stopping is allowed. By daisy-chaining
together these embellishments using the pipe operator from 'magrittr’, it is
simple to tailor the behaviour of dose-finding designs so that they do what
you want. Furthermore, using this flexible interface for creating
dose-finding designs, it is simple to run simulations or calculate
dose-pathways for future cohorts of patients.

License GPL (>=3)
Encoding UTF-8
LazyData true
Depends magrittr

Imports dplyr, tidyr (>= 1.0), tidyselect, stringr, purrr, tibble,
gtools, dfcrm, BOIN, DiagrammeR, RColorBrewer, viridis

RoxygenNote 7.0.2

Suggests testthat, knitr, rmarkdown, ggplot2, covr

VignetteBuilder knitr

NeedsCompilation no

Author Kristian Brock [aut, cre] (<https://orcid.org/0000-0002-3921-0166>)
Repository CRAN

Date/Publication 2020-05-12 23:40:15 UTC

2 R topics documented:

R topics documented:

as_tibble.dose_paths 3
calculate_probabilities 3
CONOTL e e e e 4
cohorts_of n e 5
CONLINUE v v i e i e 5
crystallised_dose_paths 6
demand n_at dose e 7
dont_skip_doses 8
doSes_gIVEN e 9
dose_IndiCes e 10
dose_paths e e 11
dose_paths_function 11
eMPITiC_tOX_Tate e e 12
enforce_three_plus_three 12
At . e e e e 13
follow_path e 14
et DOIN e e e 15
get_dferm L e e 16
get_dose_paths L 17
get_three_plus_three 18
graph_paths 19
Mean_prob_tOXo e e e 20
median_prob_tOX e e e e e e e e 20
model_frame L e e 21
NUM_CONOIt_OULCOMES v o e o e ot e e e e e e e e e e e e e 22
NUM_dOSES . . . o e e e e e e e s 22
num_dose_path_nodes 23
NUM_PAtieNtS o ottt e e e e e e e e e e e 24
NUIML_TOX .+ & v v v v e o e e e e e e e e e e e e 25
n_at_dOSe e 25
n_at_recommended_dose e e e 26
parse_phasel_outcomes e 27
phasel_outcomes_to_cohorts L 28
prob_administer e 29
prob_recommend Lo 30
prob_tox_exceeds e e e e e e e e 30
prob_tox_quantile e 31
prob_tox_samples e 32
recommended_doSe e e 32
selector e 33
selector_factory 36
select_dose_by_cibp 37
simulate_trials L e e e e 38
Simulations L. L e e e e e e 41
simulation_function L e 43

spread_paths 43

as_tibble.dose_paths

SOP_At Nl e e e e e e e e
stop_when_n_at_dose
stop_when_too_toXiC
stop_when_tox_ci_covered Lo
supports_sampling
three_plus_three L
TOX . o o e e e e e e e e e e e
tox_at_doSe e
TOX_target o e e e e e e
trial_duration
try_rescue_dose

Index

as_tibble.dose_paths Cast dose_paths object to tibble.

Description

Cast dose_paths object to tibble.

Usage

S3 method for class 'dose_paths'
as_tibble(x, ...)

Arguments
X Object of class dose_finding_paths.
Extra args passed onwards.
Value

Object of class tibble

calculate_probabilities
Calculate dose-path probabilities

Description

Crystallise a set of dose_paths with probabilities to calculate how likely each path is. Once prob-
abilised in this way, the probabilities of the terminal nodes in this set of paths will sum to 1. This

allows users to calculate operating characteristics.

4 cohort

Usage

calculate_probabilities(dose_paths, true_prob_tox)

Arguments

dose_paths Object of type dose_paths

true_prob_tox Numeric vector, true probability of toxicity.

See Also

dose_paths

Examples

Calculate dose paths for the first three cohorts in a 3+3 trial of 5 doses:
paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3, 3))

Set the true probabilities of toxicity
true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

And calculate exact operating performance

x <- paths %>% calculate_probabilities(true_prob_tox)
prob_recommend(x)

cohort Cohort numbers of evaluated patients.

Description

Get a vector of integers that reflect the cohorts to which the evaluated patients belong.

Usage
cohort(x, ...)
Arguments
X Object of type selector.
Extra args are passed onwards.
Value

an integer vector

cohorts_of n 5

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% cohort()

cohorts_of_n Sample times between patient arrivals using the exponential distribu-
tion.

Description

Sample times between patient arrivals using the exponential distribution.

Usage

cohorts_of_n(n = 3, mean_time_delta = 1)

Arguments

n integer, sample arrival times for this many patients.
mean_time_delta

the average gap between patient arrival times. I.e. the reciprocal of the rate
parameter in an Exponential distribution.

Value

data.frame with column time_delta containing durations of time between patient arrivals.

Examples

cohorts_of_n()
cohorts_of_n(n = 10, mean_time_delta = 5)

continue Should this dose-finding experiment continue?

Description

Should this dose-finding experiment continue? Or have circumstances prevailed that dictate this
trial should stop? This method is critical to the automatic calculation of statistical operating char-
acteristics and dose-pathways. You add stopping behaviours to designs using calls like stop_at_n
and stop_when_too_toxic.

6 crystallised_dose_paths

Usage

continue(x, ...)

Arguments

X Object of type selector.

Extra args are passed onwards.

Value

logical

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

modell <- get_dfcrm(skeleton = skeleton, target = target)
fitl <- modell %>% fit('INNN 2NTN')

fitl %>% continue()

model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 6)

fit2 <- model2 %>% fit('INNN 2NTN')

fit2 %>% continue()

crystallised_dose_paths
Dose-paths with probabilities attached.

Description

dose_paths reflect all possible paths a dose-finding trial may take. When the probability of those
paths is calculated using an assumed set of true dose-event probabilities, in this package those paths
are said to be crysallised. Once crystallised, operating charactersitics can be calculated.

Usage

crystallised_dose_paths(dose_paths, true_prob_tox, terminal_nodes)

Arguments

dose_paths Object of type dose_paths
true_prob_tox vector of probabilities

terminal_nodes tibble of terminal nodes on the dose-paths

Value

An object of type crystallised_dose_paths

demand_n_at_dose 7

Examples

Calculate dose paths for the first three cohorts in a 3+3 trial of 5 doses:
paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3, 3))

Set the true probabilities of toxicity

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

Crytallise the paths with the probabilities of toxicity

x <- paths %>% calculate_probabilities(true_prob_tox)

And then examine, for example, the probabilities of recommending each dose
at the terminal nodes of these paths:

prob_recommend(x)

demand_n_at_dose Demand there are n patients at a dose before condisdering stopping.

Description

This method continues a dose-finding trial until there are n patients at a dose. Once that condition
is met, it delegates stopping responsibility to its parent dose selector, whatever that might be. This
class is greedy in that it meets its own needs before asking any other selectors in a chain what they
want. Thus, different behaviours may be achieved by nesting dose selectors in different orders. See
examples.

Usage

demand_n_at_dose(parent_selector_factory, n, dose)

Arguments

parent_selector_factory
Object of type selector_factory.

n Continue at least until there are n at a dose.

dose "any' to continue until there are n at any dose; ' recommended' to continue until
there are n at the recommended dose; or an integer to continue until there are n
at a particular dose-level.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will demand 9 at any dose before it countenances stopping.
modell <- get_dfcrm(skeleton = skeleton, target = target) %>%

8 dont_skip_doses

demand_n_at_dose(n = 9, dose = 'any')

This model will recommend continuing:

modell %>% fit('INNT TNNN 2TNN 2NNN') %>% continue()

It tells you to continue because there is no selector considering when
you should stop - dfcrm implements no stopping rule by default.

In contrast, we can add a stopping selector to discern the behaviour of

demand_n_at_dose. We will demand 9 are seen at the recommended dose before

stopping is permitted in model3:

model2 <- get_dfcrm(skeleton = skeleton, target
stop_at_n(n = 12)

model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
demand_n_at_dose(n = 9, dose = 'recommended')

target) %>%

This model advocates stopping because 12 patients are seen in total:
model2 %>% fit('TNNN TNNN 2TNN 2NNN') %>% continue()

But this model advocates continuing because 9 patients have not been seen
at any dose yet:

model3 %>% fit('TNNN TNNN 2TNN 2NNN') %>% continue()

This shows how demand_n_at_dose overrides stopping behaviours that come
before it in the daisychain.

Once 9 are seen at the recommended dose, the decision to stop is made:
fit <- model3 %>% fit('TNNN TNNN 2TNN 2NNN 2TTN')

fit %>% continue()

fit %>% recommended_dose()

dont_skip_doses Prevent skipping of doses.

Description

This method optionally prevents dose selectors from skipping doses when escalating and / or deesca-
lating. The default is that skipping when escalating is prevented but skipping when deescalating is
permitted, but both of these behaviours can be altered.

Usage

dont_skip_doses(
parent_selector_factory,
when_escalating = TRUE,
when_deescalating = FALSE
)

Arguments

parent_selector_factory
Object of type selector_factory.

doses_given

when_escalating

TRUE to prevent skipping when attempting to escalate.
when_deescalating

TRUE to prevent skipping when attempting to deescalate.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

modell <- get_dfcrm(skeleton = skeleton, target = target) %>%
dont_skip_doses()

fitl <- modell %>% fit('INNN')

model2 <- get_dfcrm(skeleton = skeleton, target = target)
fit2 <- model2 %>% fit('INNN')

fitl will not skip doses
fit1l %>% recommended_dose()
But fit2 will:

fit2 %>% recommended_dose()

Similar demonstration for de-escalation

modell <- get_dfcrm(skeleton = skeleton, target = target) %>%
dont_skip_doses(when_deescalating = TRUE)

fitl <- modell %>% fit('INNN 2N 3TTT')

model2 <- get_dfcrm(skeleton = skeleton, target = target)
fit2 <- model2 %>% fit('INNN 2N 3TTT')

fit1l will not skip doses
fit1 %>% recommended_dose()
But fit2 will:

fit2 %>% recommended_dose()

doses_given Doses given to patients.

Description

Get a vector of the dose-levels that have been administered to patients.

Usage

doses_given(x, ...)

10
Arguments
X Object of type selector.
Extra args are passed onwards.
Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% doses_given()

dose_indices

dose_indices Dose indices

Description

Get the integers from 1 to the number of doses under investigation.

Usage
dose_indices(x, ...)
Arguments
X Object of type selector.
Extra args are passed onwards.
Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% dose_indices()

dose_paths 11

dose_paths Dose pathways

Description

A dose-escalation design exists to select doses in response to observed outcomes. The entire space

of possible responses can be calculated to show the behaviour of a design in response to all feasible

outcomes. The get_dose_paths function performs that task and returns an instance of this object.
Usage

dose_paths()

See Also

selector

Examples

Calculate dose-paths for the 3+3 design:
paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3))

dose_paths_function Get function for calculating dose pathways.

Description

This function does not need to be called by users. It is used internally.

Usage

dose_paths_function(selector_factory)

Arguments

selector_factory
Object of type selector_factory.

Value

A function.

12 enforce_three_plus_three

empiric_tox_rate Observed toxicity rate at each dose.

Description

Get the empirical or observed toxicity rate seen at each dose under investigation. This is simply the
number of toxicities divded by the number of patients evaluated.

Usage
empiric_tox_rate(x, ...)
Arguments
X Object of class selector
arguments passed to other methods
Value

a numerical vector

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'T1NNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% empiric_tox_rate()

enforce_three_plus_three
Enforce that a trial path has followed the 3+3 method.

Description
This function stops with en error if it detects that outcomes describing a trial path have diverged
from that advocated by the 3+3 method.

Usage

enforce_three_plus_three(outcomes, allow_deescalate = FALSE)

fit 13

Arguments

outcomes Outcomes observed. See parse_phasel_outcomes.
allow_deescalate
TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

Value

Nothing. Function stops if problem detected.

Examples

Not run:

enforce_three_plus_three('TNNN 2NTN 2NNN') # OK
enforce_three_plus_three('INNN 2NTN 2N') # OK too, albeit in-progress cohort
enforce_three_plus_three('INNN IN') # Not OK because should have escalated

End(Not run)

fit Fit a dose-finding model.

Description

Fit a dose-finding model to some outcomes.

Usage

fit(selector_factory, outcomes, ...)

Arguments

selector_factory
Object of type selector_factory.

outcomes Outcome string. See parse_phasel_outcomes.

Extra args are passed onwards.

Value

Object of generic type selector.

See Also

selector, selector_factory

14 follow_path

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% recommended_dose() # Etc

follow_path Follow a pre-determined dose administration path.

Description

This method creates a dose selector that will follow a pre-specified trial path. Whilst the trial path is
matched by realised outcomes, the selector will recommend the next dose in the desired sequence.
As soon as the observed outcomes diverge from the desired path, the selector stops giving dose
recommendations. This makes it possible, for instance, to specify a fixed escalation plan that should
be followed until the first toxicity is seen. This tactic is used by some model-based designs to get
rapidly to the doses where the action is. See, for example, the dfcrm package and Cheung (2011).

Usage
follow_path(path)

Arguments

path Follow this outcome path. See parse_phasel_outcomes.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

References

Cheung. Dose Finding by the Continual Reassessment Method. 2011. Chapman and Hall/CRC.
ISBN 9781420091519

Examples

modell <- follow_path(path = "TNNN 2NNN 3NNN 4NNN')

fitl <- modell %>% fit('INNN 2N')

fit1 %>% recommended_dose()

fit1 %>% continue()

The model recommends continuing at dose 2 because the observed outcomes
perfectly match the desired escalation path.

fit2 <- modell %>% fit('INNN 2NT')

fit2 %>% recommended_dose()

fit2 %>% continue()

Uh oh. Toxicity has now been seen. This class recommends no dose now.

get_boin 15

get_boin Get an object to fit the BOIN model using the BOIN package.

Description

Get an object to fit the BOIN model using the BOIN package.

Usage

get_boin(num_doses, target, use_stopping_rule = TRUE, ...)
Arguments

num_doses Number of doses under investigation.

target We seek a dose with this probability of toxicity.

use_stopping_rule
TRUE to use the toxicity stopping rule described in Yan et al. (2019). FALSE
to suppress the authors’ stopping rule, with the assumption being that you will
test the necessity to stop early in some other way.

Extra args are passed to select.mtd.

Value

an object of type selector_factory that can fit the BOIN model to outcomes.

References

Yan, F,, Pan, H., Zhang, L., Liu, S., & Yuan, Y. (2019). BOIN: An R Package for Designing Single-
Agent and Drug-Combination Dose-Finding Trials Using Bayesian Optimal Interval Designs. Jour-
nal of Statistical Software, 27(November 2017), 0-35. https://doi.org/10.18637/ss.v000.100

Liu, S., & Yuan, Y. (2015). Bayesian optimal designs for Phase I clinical trials. J. R. Stat. Soc. C,
64, 507-523. https://doi.org/10.1111/rssc.12089

Examples

target <- 0.25
modell <- get_boin(num_doses = 5, target = target)

outcomes <- 'TNNN 2NTN'
modell %>% fit(outcomes) %>% recommended_dose()

16 get_dfcrm

get_dfcrm Get an object to fit the CRM model using the dfcrm package.

Description

This function returns an object that can be used to fit a CRM model using methods provided by the
dfcrm package.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **resumptive** selector, meaning it carries on when the previous dose selector, where present,
has elected not to continue. For example, this allows instances of this class to be preceded by a se-
lector that follows a fixed path in an initial escalation plan, such as that provided by follow_path.
In this example, when the observed trial outcomes deviate from that initial plan, the selector fol-
lowing the fixed path elects not to continue and responsibility passes to this class. See Examples.

Usage

get_dfcrm(parent_selector_factory = NULL, skeleton, target, ...)

Arguments

parent_selector_factory
optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use CRM from the start.

skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.
target We seek a dose with this probability of toxicity.

Extra args are passed to crm.

Value

an object of type selector_factory that can fit the CRM model to outcomes.

References
Cheung, K. 2019. dfcrm: Dose-Finding by the Continual Reassessment Method. R package version
0.2-2.1. https://CRAN.R-project.org/package=dfcrm

Cheung, K. 2011. Dose Finding by the Continual Reassessment Method. Chapman and Hall/CRC.
ISBN 9781420091519

O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1
clinical trials in cancer. Biometrics. 1990;46(1):33-48. doi:10.2307/2531628

Examples

skeleton <- ¢(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
modell <- get_dfcrm(skeleton = skeleton, target = target)

get_dose_paths 17

By default, dfcrm fits the empiric model:
outcomes <- 'TNNN 2NTN'
modell %>% fit(outcomes) %>% recommended_dose()

But we can provide extra args to get_dfcrm that are than passed onwards to
the call to dfcrm::crm to override the defaults. For example, if we want

the one-parameter logistic model:

model2 <- get_dfcrm(skeleton = skeleton, target = target, model = 'logistic')
model2 %>% fit(outcomes) %>% recommended_dose()

dfcrm does not offer a two-parameter logistic model but other classes do.

We can use an initial dose-escalation plan, a pre-specified path that
should be followed until trial outcomes deviate, at which point the CRM
model takes over. For instance, if we want to use two patients at each of
the first three doses in the absence of toxicity, irrespective the model's
advice, we would run:
modell <- follow_path('1NN 2NN 3NN') %>%

get_dfcrm(skeleton = skeleton, target = target)

If outcomes match the desired path, the path is followed further:
modell %>% fit('INN 2N') %>% recommended_dose()

But when the outcomes diverge:
modell %>% fit('INN 2T') %>% recommended_dose()

Or the pre-specified path comes to an end:
modell %>% fit('INN 2NN 3NN') %>% recommended_dose()
The CRM model takes over.

get_dose_paths Calculate future dose paths.

Description

A dose-escalation design exists to select doses in response to observed outcomes. The entire space
of possible responses can be calculated to show the behaviour of a design in response to all feasible
outcomes. This function performs that task.

Usage

get_dose_paths(selector_factory, cohort_sizes, ...)

Arguments

selector_factory
Object of type selector_factory.

cohort_sizes Integer vector representing sizes of

Extra args are passed onwards.

18 get_three_plus_three

Value

Object of type dose_paths.

Examples

Calculate paths for a 3+3 design for the next two cohorts of three patients
paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3))

get_three_plus_three Get an object to fit the 3+3 model.

Description

Get an object to fit the 3+3 model.

Usage

get_three_plus_three(num_doses, allow_deescalate = FALSE, ...)
Arguments

num_doses Number of doses under investigation.

allow_deescalate
TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

Extra args are not currently used.

Value

an object of type selector_factory that can fit the 3+3 model to outcomes.

References

Storer BE. Design and Analysis of Phase I Clinical Trials. Biometrics. 1989;45(3):925-937.
doi:10.2307/2531693

Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM. A comparison of two
phase I trial designs. Statistics in Medicine. 1994;13(18):1799-1806. doi:10.1002/sim.4780131802
Examples

model <- get_three_plus_three(num_doses = 5)

fit1 <- model %>% fit('1INNN 2NTN')
fitl %>% recommended_dose()
fit1l %>% continue()

fit2 <- model %>% fit('TNNN 2NTN 2NNT')
fit2 %>% recommended_dose()

graph_paths 19

fit2 %>% continue()

graph_paths Visualise dose-paths as a graph

Description

Visualise dose-paths as a graph

Usage

graph_paths(paths, viridis_palette = "viridis”, RColorBrewer_palette = NULL)

Arguments

paths Object of type dose_paths
viridis_palette

optional name of a colour palette in the viridis package.
RColorBrewer_palette

optional name of a colour palette in the RColorBrewer package.

Details

The viridis package supports palettes: viridis, magma, plasma, inferno, and cividis. The RColor-
Brewer package supports many palettes. Refer to those packages on CRAN for more details.

Examples

paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3, 3))
Not run:

graph_paths(paths)
graph_paths(paths, viridis_palette = 'plasma')
graph_paths(paths, RColorBrewer_palette = 'Y1OrRd')

End(Not run)

20 median_prob_tox

mean_prob_tox Mean toxicity rate at each dose.

Description

Get the estimated mean toxicity rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate toxicity probabilities in different ways. If no model-
based estimate of the mean is available, this function will return a vector of NAs.

Usage
mean_prob_tox(x, ...)
Arguments
X Object of class selector
arguments passed to other methods
Value

a numerical vector

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% mean_prob_tox()

median_prob_tox Median toxicity rate at each dose.

Description

Get the estimated median toxicity rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate toxicity probabilities in different ways. If no model-
based estimate of the median is available, this function will return a vector of NAs.

Usage

median_prob_tox(x, ...)

model frame 21

Arguments
X Object of class selector
arguments passed to other methods
Value

a numerical vector

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- "TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% median_prob_tox()

model_frame Model data-frame.

Description

Get the model data-frame for a dose-finding analysis, inlcuding columns for patient id, cohort id,
dose administered, and toxicity outcome. In some scenarios, further columns are provided.

Usage
model_frame(x, ...)
Arguments
X Object of type selector.
Extra args are passed onwards.
Value

tibble, which acts like a data. frame.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% model_frame()

22 num_doses

num_cohort_outcomes Number of different possible outcomes for a cohort of patients

Description

Number of different possible outcomes for a cohort of patients, each of which will experience one
of a number of discrete outcomes. For instance, in a typical phase I dose-finding trial, each patient
will experience: no-toxicity (N); or toxicity (T). The number of possible outcomes per patient is
two. For a cohort of three patients, the number of cohort outcomes is four: NNN, NNT, NTT,
TTT. Consider a more complex example: in a seamless phase I/II trial with efficacy and toxicity
outcomes, an individual patient will experience one of four distinct outcomes: efficacy only (E);
toxicity only (T); both efficacy and toxicity (B) or neither. How many different outcomes are there
for a cohort of three patients? The answer is 20 but it is non-trivial to see why. This convenience
function calculates that number using the formula for the number of combinations with replacement,

Usage

num_cohort_outcomes(num_patient_outcomes, cohort_size)

Arguments

num_patient_outcomes
integer, number of distinct possible outcomes for each single patient

cohort_size integer, number of patients in the cohort

Value

integer, number of distinct possible cohort outcomes

Examples

As described in example, N or T in a cohort of three:

num_cohort_outcomes(num_patient_outcomes = 2, cohort_size = 3)
Also described in example, E, T, B or N in a cohort of three:
num_cohort_outcomes(num_patient_outcomes = 4, cohort_size = 3)

num_doses Number of doses.

Description

Get the number of doses under investigation in a dose-finding trial.

Usage

num_doses(x, ...)

num_dose_path_nodes 23

Arguments
X Object of type selector.
Extra args are passed onwards.
Value
integer
Examples

skeleton <- ¢(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% num_doses()

num_dose_path_nodes Number of nodes in dose-paths analysis

Description

Number of possible nodes in an exhaustive analysis of dose-paths in a dose-finding trial. The
number of nodes at depth i is the the number of nodes at depth i-1 multiplied by the number of
possible cohort outcomes at depth i. For instance, if there were 16 nodes at the previous depth and
four possible cohort outcomes at the current depth, then there are 64 possible nodes at the current
depth. Knowing the number of nodes in a dose-paths analysis helps the analyst decide whether
simulation or dose-paths are a better tool for assessing operating characteristics of a dose-finding
design.

Usage

num_dose_path_nodes(num_patient_outcomes, cohort_sizes)

Arguments

num_patient_outcomes
integer, number of distinct possible outcomes for each single patient

cohort_sizes integer vector of cohort sizes

Value

integer vector, number of nodes at increasing depths. The total number of nodes is the sum of this
vector.

24 num_patients

Examples

In a 3+3 design, there are two possible outcomes for each patient and

patients are evaluated in cohorts of three. In an analysis of dose-paths in
the first two cohorts of three, how many nodes are there?
num_dose_path_nodes(num_patient_outcomes = 2, cohort_sizes = rep(3, 2))

In contrast, using an EffTox design there are four possible outcomes for

each patient. In a similar analysis of dose-paths in the first two cohorts
of three, how many nodes are there now?
num_dose_path_nodes(num_patient_outcomes = 4, cohort_sizes = rep(3, 2))

num_patients Number of patients evaluated.

Description

Get the number of patients evaluated in a dose-finding trial.

Usage

num_patients(x, ...)

Arguments

X Object of type selector.

Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% num_patients()

num_tox

25

num_tox Total number of toxicities seen.

Description

Get the number of toxicities seen in a dose-finding trial.

Usage

num_tox(x, ...)

Arguments

X Object of type selector.

Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% num_tox()

n_at_dose Number of patients treated at each dose.

Description

Get the number of patients evaluated at each dose under investigation.

Usage
n_at_dose(x, ...)
Arguments
X Object of class selector
arguments passed to other methods
Value

an integer vector

26 n_at_recommended_dose

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- "TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% n_at_dose()

n_at_recommended_dose Number of patients treated at the recommended dose.

Description

Get the number of patients evaluated at the recommended dose.

Usage

n_at_recommended_dose(x, ...)

Arguments

X Object of class selector

arguments passed to other methods

Value

an integer

Examples

CRM example

skeleton <- c(0.05, 9.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- "TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% n_at_recommended_dose()

parse_phasel_outcomes 27

parse_phasel_outcomes Parse a string of phase I dose-finding outcomes to vector notation.

Description

Parse a string of phase I dose-finding outcomes to a binary vector notation necessary for model
invocation.

The outcome string describes the doses given, outcomes observed and groups patients into cohorts.
The format of the string is described in Brock (2019), and that itself is the phase I analogue of the
similar idea described in Brock et al. (2017). See Examples.

The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity.
These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of
patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2,
one of whom experienced toxicity, and two that did not. The results of cohorts are separated by
spaces. Thus, 2NNT 1NN extends our previous example, where the next cohort of two were treated at
dose-level 1 and neither experienced toxicity. See examples.

Usage

parse_phasel_outcomes(outcomes, as_list = TRUE)

Arguments
outcomes character string, conveying doses given and outcomes observed.
as_list TRUE (the default) to return a 1ist; FALSE to return a data. frame
Value

If as_list == TRUE, a list with elements tox, doses and num_patients. These elements are con-
gruent with those of the same name in crm_params, for example. If as_list == FALSE, a data.frame
with columns tox and doses.

References

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv:1907.00161 [stat.CO]

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

x = parse_phasel_outcomes('INNN 2NTN 3TTT')

Three cohorts of three patients. The first cohort was treated at dose 1 and
non had toxicity. The seond cohort was treated at dose 2 and one of the

three had toxicity. Finally, cohort three was treated at dose 3 and all

patients had toxicity. See:

x$num_patients # 9

28 phasel_outcomes_to_cohorts

x$doses #cCl, 1,1, 2,2, 2, 3,3, 3)
x$tox # c(0, 90, 0, 0, 1, 0, 1, 1, 1)
sum(x$tox) # 4

The same information can be parsed to a data-frame:
y = parse_phasel_outcomes('TNNN 2NTN 3TTT', as_list = FALSE)

y

phasel_outcomes_to_cohorts
Break a phase I outcome string into a list of cohort parts.

Description

Break a phase I outcome string into a list of cohort parts.
Break a phase I outcome string into a list of cohort parts.

The outcome string describes the doses given, outcomes observed and the timing of analyses that
recommend a dose. The format of the string is described in Brock (2019), and that itself is the phase
I analogue of the similar idea described in Brock _et al_. (2017).

The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity.
These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of
patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2,
one of whom experienced toxicity, and two that did not. The results of cohorts are separated by
spaces and it is assumed that a dose-finding decision takes place at the end of a cohort. Thus, 2NNT
1NN builds on our previous example, where the next cohort of two were treated at dose-level 1 and
neither of these patients experienced toxicity. See examples.

Usage

phasel1_outcomes_to_cohorts(outcomes)

Arguments
outcomes character string representing the doses given, outcomes observed, and timing of
analyses. See Description.
Value

a list with a slot for each cohort. Each cohort slot is itself a list, containing elements: * dose, the
integer dose delivered to the cohort; * outcomes, a character string representing the T or N outcomes
for the patients in this cohort.

References

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv:1907.00161 [stat.CO]

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/512874-017-0381-x

prob_administer

Examples

x = phasel_outcomes_to_cohorts('TNNN 2NNT 3TT')
length(x)

x[[1]]$dose

x[[1]]$outcomes

x[[2]]$dose

x[[2]]$outcomes

x[[3]]$dose

x[[3]]$outcomes

29

prob_administer Percentage of patients treated at each dose.

Description

Get the percentage of patients evaluated at each dose under investigation.

Usage
prob_administer(x, ...)
Arguments
X Object of class selector
arguments passed to other methods
Value

a numerical vector

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_administer()

30 prob_tox_exceeds

prob_recommend Probability of recommendation

Description

Get the probabilities that each of the doses under investigation is recommended.

Usage
prob_recommend(x, ...)
Arguments
X Object of type simulations.
arguments passed to other methods
Value

vector of probabilities

Examples

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

sims <- get_three_plus_three(num_doses = 5) %>%
simulate_trials(num_sims = 50, true_prob_tox = true_prob_tox)

sims %>% prob_recommend

prob_tox_exceeds Probability that the toxicity rate exceeds some threshold.

Description

Get the probability that the toxicity rate at each dose exceeds some threshold.

Usage
prob_tox_exceeds(x, threshold, ...)
Arguments
X Object of type selector
threshold Probability that toxicity rate exceeds what?

arguments passed to other methods

prob_tox_quantile 31

Value

numerical vector of probabilities

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)

What is probability that tox rate at each dose exceeds target by >= 10%?
fit %>% prob_tox_exceeds(threshold = target + 0.1)

prob_tox_quantile Quantile of the toxicity rate at each dose.

Description

Get the estimated quantile of the toxicity rate at each dose under investigation. This is a set of
modelled statistics. The underlying models estimate toxicity probabilities in different ways. If no
model-based estimate of the median is available, this function will return a vector of NAs.

Usage
prob_tox_quantile(x, p, ...)
Arguments
X Object of class selector
p quantile probability, decimal value between 0 and 1
arguments passed to other methods
Value

a numerical vector

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_tox_quantile(p = 0.9)

32 recommended_dose

prob_tox_samples Get samples of the probability of toxicity.

Description

Get samples of the probability of toxicity. For instance, a Bayesian approach that supports sampling
would be expected to return posterior samples of the probability of toxicity. If this class does not
support sampling, this function will raise an error. You can check whether this class supports
sampling by calling supports_sampling.

Usage
prob_tox_samples(x, tall = FALSE, ...)
Arguments
X Object of type selector
tall logical, if FALSE, a wide data-frame is returned with columns pertaining to
the doses and column names the dose indices. If TRUE, a tall data-frame is
returned with data for all doses stacked vertically. In this mode, column names
will include dose and prob_tox.
arguments passed to other methods
Value

data-frame like object

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_tox_samples()

fit %>% prob_tox_samples(tall = TRUE)

recommended_dose Recommended dose for next patient or cohort.

Description

Get the dose recommended for the next patient or cohort in a dose-finding trial.

selector 33

Usage

recommended_dose(x, ...)

Arguments

X Object of type selector.

Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 9.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% recommended_dose()

selector Dose selector.

Description

This is a core class in this package. It encapsulates that an object (e.g. a CRM model, a 3+3 model)
is able to recommend doses, keep track of how many patients have been treated at what doses,
what toxicity outcomes have been seen, and whether a trial should continue. It offers a consistent
interface to dose-finding methods from several packages, including dfcrm and BOIN. berm and
trialr will be added.

Once you have a standardised interface, modularisation offers a powerful way to adorn dose-finding
methods with extra desirable behaviour. selector objects can be daisy-chained togther using
magrittr’s pipe operator. For instance, the CRM fitting method in dfcrm is fantastic because it
runs quickly and is simple to call. However, it does not recommend that a trial stops if a dose is too
toxic or if n patients have already been treated at the recommended dose. Each of these behaviours
can be bolted on via additional selectors. Furthermore, those behaviours and more can be bolted on
to any dose selector because of the modular approach implemented in escalation. See Examples.

selector objects are obtained by calling the fit function on a selector_factory object. A
selector_factory object is obtained by initially calling a function like get_dfcrm, get_three_plus_three
or get_boin. Users may then add desired extra behaviour with subsequent calls to functions like
stop_when_n_at_dose or stop_when_too_toxic.

The selector class also supports that an object will be able to perform inferential calculations on
the rates of toxicity via functions like mean_prob_tox, median_prob_tox, and prob_tox_exceeds.
However, naturally the sophistication of those calculations will vary by model implementation. For
example, a full MCMC method will be able to quantify any probability you like by working with
posterior samples. In contrast, a method like the crm function in df'crm that uses the plug-in method
to estimate posterior dose-toxicity curves cannot natively estimate the median probability of tox.

34

Usage

selector()

Details

Every selector object implements the following functions:

See Also

tox_target
num_patients
cohort
doses_given

tox

num_tox
model_frame
num_doses
recommended_dose
continue
n_at_dose
n_at_recommended_dose
dose_indices
prob_administer
tox_at_dose
empiric_tox_rate
mean_prob_tox
median_prob_tox
prob_tox_quantile

prob_tox_exceeds

selector_factory

Examples

Start with a simple CRM model
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

model1 <- get_dfcrm(skeleton = skeleton, target = target)

Add a rule to stop when 9 patients are treated at the recommended dose
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_n_at_dose(n = 9, dose = 'recommended')

selector

selector 35

Add a rule to stop if toxicity rate at lowest dose likely exceeds target

model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_n_at_dose(n = 9, dose = 'recommended') %>%
stop_when_too_toxic(dose = 1, tox_threshold = target, confidence = 0.5)

We now have three CRM models that differ in their stopping behaviour.
Let's fit each to some outcomes to see those differences:

outcomes <- "TNNN 2NTT 1NNT'

fitl <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

fit1 %>% recommended_dose()
fit1l %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

fit3 %>% recommended_dose()
fit3 %>% continue()
Already model3 wants to stop because of excessive toxicity.

Let's carry on with models 1 and 2 by adding another cohort:

outcomes <- "TNNN 2NTT TNNT TNNN'
fitl <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

fit1l %>% recommended_dose()
fitl %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

Modell wants to continue - in fact it will never stop.
In contrast, model2 has seen 9 at dose 1 so, rather than suggest dose 1
again, it suggests the trial should stop.

For contrast, let us consider a BOIN model on the same outcomes
boin_fitter <- get_boin(num_doses = length(skeleton), target = target)
fit4 <- boin_fitter %>% fit(outcomes)

fit4 %>% recommended_dose()

fit4 %>% continue()

Full selector interface:
fit <- fit2

fit %>% tox_target()

fit %>% num_patients()
fit %>% cohort()

fit %>% doses_given()

fit %>% tox()

fit %>% num_tox()

36 selector_factory

fit %>% model_frame()

fit %>% num_doses()

fit %>% dose_indices()

fit %>% recommended_dose()

fit %>% continue()

fit %>% n_at_dose()

fit %>% n_at_recommended_dose()
fit %>% prob_administer()

fit %>% tox_at_dose()

fit %>% empiric_tox_rate()

fit %>% mean_prob_tox()

fit %>% median_prob_tox()

fit %>% prob_tox_quantile(0.9)
fit %>% prob_tox_exceeds(0.5)

selector_factory Dose selector factory.

Description

Along with selector, this is the second core class in the escalation package. It exists to do one
thing: fit outcomes from dose-finding trials to the models we use to select doses.

A selector_factory object is obtained by initially calling a function like get_dfcrm, get_three_plus_three
or get_boin. Users may then add desired extra behaviour with subsequent calls to functions like
stop_when_n_at_dose or stop_when_too_toxic. selector objects are obtained by calling the

fit function on a selector_factory object. Refer to examples to see how this works.

Usage

selector_factory()

See Also

selector

Examples

Start with a simple CRM model

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

modell <- get_dfcrm(skeleton = skeleton, target = target)

Add a rule to stop when 9 patients are treated at the recommended dose
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_n_at_dose(n = 9, dose = 'recommended')

Add a rule to stop if toxicity rate at lowest dose likely exceeds target
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_dose_by_cibp 37

stop_when_n_at_dose(n = 9, dose = 'recommended') %>%
stop_when_too_toxic(dose = 1, tox_threshold = target, confidence = 0.5)

We now have three CRM models that differ in their stopping behaviour.
Let's fit each to some outcomes to see those differences:

outcomes <- "TNNN 2NTT TINNT'

fit1l <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

fit1 %>% recommended_dose()
fitl %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

fit3 %>% recommended_dose()
fit3 %>% continue()
Already model3 wants to stop because of excessive toxicity.

Let's carry on with models 1 and 2 by adding another cohort:

outcomes <- "TNNN 2NTT TNNT TNNN'
fitl <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

fitl %>% recommended_dose()
fit1l %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

Modell wants to continue - in fact it will never stop.
In contrast, model2 has seen 9 at dose 1 so, rather than suggest dose 1
again, it suggests the trial should stop.

For contrast, let us consider a BOIN model on the same outcomes
boin_fitter <- get_boin(num_doses = length(skeleton), target = target)
fit4 <- boin_fitter %>% fit(outcomes)

fit4 %>% recommended_dose()

fit4 %>% continue()

select_dose_by_cibp Select dose by the CIBP selection criterion.

Description

This method selects dose by the convex infinite bounds penalisation (CIBP) criterion of Mozgunov
& Jaki. Their method is mindful of the uncertainty in the estimates of the probability of toxicity
and uses an asymmetry parameter to penalise escalation to risky doses.

38 simulate_trials

Usage

select_dose_by_cibp(parent_selector_factory, a, target = NULL)

Arguments
parent_selector_factory
Object of type selector_factory.
a Number between 0 and 2, the asymmetry parameter. See References.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

References

Mozgunov P, Jaki T. Improving safety of the continual reassessment method via a modified alloca-
tion rule. Statistics in Medicine.1-17. doi:10.1002/sim.8450

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.33

Let's compare escalation behaviour of a CRM model without CIBP criterion:

modell <- get_dfcrm(skeleton = skeleton, target = target)

To one with the CIBP criterion:

model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
select_dose_by_cibp(a = 0.3)

Despite one-in-three tox at first dose, regular model is ready to escalate:
modell %>% fit('INTN') %>% recommended_dose()

But the model using CIBP is more risk averse:

model2 %>% fit('INTN') %>% recommended_dose()

simulate_trials Simulate clinical trials.

Description

This function takes a selector_factory, such as that returned by get_dfcrm, get_boin or get_three_plus_three,
and conducts many notional clinical trials. We conduct simulations to learn about the operating
characteristics of adaptive trial designs.

Usage

simulate_trials(selector_factory, num_sims, true_prob_tox, ...)

simulate_trials 39

Arguments

selector_factory
Object of type selector_factory.

num_sims integer, number of trial iterations to simulate.
true_prob_tox numeric vector of true but unknown toxicity probabilities

Extra args are passed onwards.

Details

By default, dose decisions in simulated trials are made after each cohort of 3 patients. This can be
changed by providing a function that simulates the arrival of new patients. The new patients will
be added to the existing patients and the model will be fit to the set of all patients. The function
that simulates patient arrivals should take as a single parameter a data-frame with one row for each
existing patient and columns including cohort, patient, dose, tox, time (and possibly also eff and
weight, if a phase I/II or time-to-event method is used). The provision of data on the existing patients
allows the patient sampling function to be adaptive. The function should return a data-frame with a
row for each new patient and a column for time_delta, the time between the arrival of this patient
and the previous, as in cohorts_of_n. See Examples.

This method can simulate the culmination of trials that are partly completed. We just have to specify
the outcomes already observed via the previous_outcomes parameter. Each simulated trial will
commence from those outcomes seen thus far. See Examples.

We can specify the immediate next dose by specifying next_dose. If omitted, the next dose is
calculated by invoking the model on the outcomes seen thus far.

Designs must eventually choose to stop the trial. However, some selectors like those derived from
get_dfcrm offer no default stopping method. You may need to append stopping behaviour to
your selector via something like stop_at_n or stop_when_n_at_dose, etc. To safeguard against
simulating runaway trials that never end, the function will halt a simulated trial after 30 invocations
of the dose-selection decision. To breach this limit, specify i_like_big_trials = TRUE in the
function call. However, when you forego the safety net, the onus is on you to write selectors that
will eventually stop the trial! See Examples.

The model is fit to the prevailing data at each dose selection point. By default, only the final model
fit for each simulated trial is retained. This is done to conserve memory. With a high number of sim-
ulated trials, storing many model fits per trial may cause the executing machine to run out of mem-
ory. However, you can force this method to retain all model fits by specifying return_all_fits =
TRUE. See Examples.

Value

Object of type simulations.

See Also

simulations
selector_factory
get_dfcrm
get_boin

40
get_three_plus_three
cohorts_of_n
Examples

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

Regular usage examples, for 3+3:

sims <- get_three_plus_three(num_doses = 5) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)

and continual reassessment method:

skeleton <- c(0.05, 9.1, 0.25, 0.4, 0.6)

target <- 0.25

sims <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)

Lots of useful information is contained in the returned object:
sims %>% num_patients()

sims %>% num_doses()

sims %>% dose_indices()

sims %>% n_at_dose()

sims %>% n_at_recommended_dose()
sims %>% tox_at_dose()

sims %>% num_tox()

sims %>% recommended_dose()

sims %>% prob_administer()

sims %>% prob_recommend()

sims %>% trial_duration()

By default, dose decisions are made after each cohort of 3 patients. See
Details. To override, specify an alternative function via the
sample_patient_arrivals parameter. E.g. to use cohorts of 2, we run:
patient_arrivals_func <- function(current_data) cohorts_of_n(n = 2)
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%

simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,

sample_patient_arrivals = patient_arrivals_func)

To simulate the culmination of trials that are partly completed, specify
the outcomes already observed via the previous_outcomes parameter:
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
previous_outcomes = "INTN')
Outcomes can be described by above outcome string method or data-frame:
previous_outcomes <- data.frame(
patient = 1:3,
cohort = c(1, 1, 1),
tox = c(@, 1, 0),
dose = c(1, 1, 1)

simulate_trials

simulations 41

sims <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
previous_outcomes = previous_outcomes)

We can specify the immediate next dose:
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
next_dose = 5)

By default, the method will stop simulated trials after 30 dose selections.
To suppress this, specify i_like_big_trials = TRUE. However, please take
care to specify selectors that will eventually stop!
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 99) %>%
simulate_trials(num_sims = 1, true_prob_tox = true_prob_tox,
i_like_big_trials = TRUE)

By default, only the final model fit is retained for each simulated trial.
To retain all interim model fits, specify return_all_fits = TRUE.
sims <- get_three_plus_three(num_doses = 5) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
return_all_fits = TRUE)
Verify that there are now many analyses per trial with:
sapply(sims$fits, length)

simulations Simulated trials.

Description

This class encapsulates that many notional or virtual trials can be simulated. Each recommends a
dose (or doses), keeps track of how many patients have been treated at what doses, what toxicity
outcomes have been seen, and whether a trial advocates continuing, etc. We run simulations to learn
about the operating characteristics of a trial design.

Computationally, the simulations class supports much of the same interface as selector, and a
little more. Thus, many of the same generic functions are supported - see Examples. However,
compared to selectors, the returned objects reflect that there are many trials instead of one, e.g.
num_patients(sims), returns as an integer vector the number of patients used in the simulated
trials.

Usage

simulations(fits, true_prob_tox, ...)

42 simulations

Arguments

fits Simulated model fits, arranged as list of lists.
true_prob_tox vector of true toxicity probabilities

Extra args

Details
The simulations object implements the following functions:

* num_patients

e num_doses

* dose_indices

e n_at_dose

* tox_at_dose

* num_tox

* recommended_dose
e prob_administer
* prob_recommend

e trial_duration

Value

list with slots: fits containing model fits; and true_prob_tox, contianing the assumed true prob-
ability of toxicity.

See Also

selector

simulate_trials

Examples

Simulate performance of the 3+3 design:

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

sims <- get_three_plus_three(num_doses = 5) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)

The returned object has type 'simulations'. The supported interface is:

sims %>% num_patients()

sims %>% num_doses()

sims %>% dose_indices()

sims %>% n_at_dose()

sims %>% tox_at_dose()

sims %>% num_tox()

sims %>% recommended_dose()

sims %>% prob_administer()

sims %>% prob_recommend()

simulation_function

sims %>% trial_duration()

Access the list of model fits for the ith simulated trial using:

i<-1
sims$fits[[i]]

and the jth model fit for the ith simulated trial using:

j <=1
sims$fits[[i]1CL3]]
and so on.

43

simulation_function

Get function for simulating trials.

Description

This function does not need to be called by users. It is used internally.

Usage

simulation_function(selector_factory)

Arguments

selector_factory

Object of type selector_factory.

Value

A function.

spread_paths

Spread the information in dose_finding_paths object to a wide
data.frame format.

Description

Spread the information in dose_finding_paths object to a wide data.frame format.

Usage

spread_paths(df = NULL, dose_finding_paths = NULL, max_depth = NULL)

44 stop_at_n

Arguments
df Optional data. frame like that returned by as_tibble(dose_finding_paths). Columns
.depth, .node, .parent are required. All other columns are spread with a suffix
reflecting depth.

dose_finding_paths
Optional instance of dose_finding_paths. Required if ‘df* is null.

max_depth integer, maximum depth of paths to traverse.

Value

A data.frame

Examples

Not run:

Calculate paths for the first two cohorts of three patients a CRM trial

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

cohort_sizes <- c(3, 3)

paths <- get_dfcrm(skeleton = skeleton, target = target) %>%
get_dose_paths(cohort_sizes = cohort_sizes)

End(Not run)

stop_at_n Stop when there are n patients in total.

Description

This function adds a restriction to stop a trial when n patients have been evaluated. It does this by
adding together the number of patients treated at all doses and stopping when that total exceeds n.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **greedy** selector, meaning that it prioritises its own behaviour over the behaviour of other
selectors in the chain. That is, it will advocate stopping when the condition has been met, even
if the selectors further up the chain would advocate to keep going. In can be interpreted as an
overriding selector. This allows the decision to stop to be executed as soon as it is warranted. Be
aware though, that there are other selectors that can be placed after this class that will override the
stopping behaviour. See Examples.

Usage

stop_at_n(parent_selector_factory, n)

Arguments

parent_selector_factory
Object of type selector_factory.

n Stop when there are this many patients.

stop_at_n

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

Create CRM model that will stop when 15 patients are evaluated:
modell <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 15)

With 12 patients, this trial should not stop:
fitl <- modell %>% fit('INNN 2NTN 2TNN 2NNN')
fit1 %>% recommended_dose()

fit1l %>% continue()

With 15 patients, this trial should stop:

fit2 <- modell %>% fit('INNN 2NTN 2TNN 2NNN 2NTT')
fit2 %>% recommended_dose()

fit2 %>% continue()

The stopping behaviour can be overruled by the order of selectors.
In model2, demanding 9 at recommended dose will trump stopping at 12:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 12) %>%
demand_n_at_dose(dose = 'recommended', n = 9)

In model3, stopping at 12 will trump demanding 9 at recommended dose:
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%
demand_n_at_dose(dose = 'recommended', n = 9) %>%
stop_at_n(n = 12)

This model will continue because 9 have not been seen at recommended dose.
fit3 <- model2 %>% fit('TINNN 2NNN 2NNN 3NNN')

fit3 %>% recommended_dose()

fit3 %>% continue()

This model will stop because 12 have been seen.
fit4 <- model3 %>% fit('TNNN 2NNN 2NNN 3NNN')
fit4 %>% recommended_dose()

fit4 %>% continue()

With enough observations though, both models will advise stopping because
both conditions have been met:

fit5 <- model2 %>% fit('TNNN 2NNN 2NNN 5NNN 5NNN 5NNN')

fit5 %>% recommended_dose()

fit5 %>% continue()

fit6 <- model3 %>% fit('TNNN 2NNN 2NNN 5NNN 5NNN 5NNN')
fit6 %>% recommended_dose()
fit6 %>% continue()

45

46 stop_when_n_at_dose

stop_when_n_at_dose Stop when there are n patients at a dose.

Description

This method stops a dose-finding trial when there are n patients at a dose. It can stop when the rule
is triggered at the recommended dose, at a particular dose, or at any dose.

Usage

stop_when_n_at_dose(parent_selector_factory, n, dose)

Arguments

parent_selector_factory
Object of type selector_factory.

n Stop when there are n at a dose.

dose 'any' to stop when there are n at any dose; ' recommended’' to stop when there
are n at the recommended dose; or an integer to stop when there are n at a
particular dose-level.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will stop when 12 are seen at any dose:
modell <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_n_at_dose(n = 12, dose = 'any')

This model fit will not stop:

modell %>% fit(' INNN 2NTN 2TNN 2NNN') %>% continue()

But this model fit will stop:

modell %>% fit('TNNN 2NTN 2TNN 2NNN 2NTT') %>% continue()

This model will stop when 12 are seen at the recommended dose:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_n_at_dose(n = 12, dose = 'recommended')

This model fit will not stop:

fit2 <- model2 %>% fit('INNN 2NTN 2TNN 2NNN')
fit2 %>% recommended_dose()

fit2 %>% continue()

stop_when_too_toxic 47

But this model fit will stop:

fit3 <- model2 %>% fit('INNN 2NTN 2TNN 2NNN 2NNT')
fit3 %>% recommended_dose()

fit3 %>% continue()

stop_when_too_toxic Stop when a dose is too toxic.

Description

This method stops a dose-finding trial when sufficient probabilistic confidence is reached that the
rate of toxicity at a dose exceeds some threshold. In other words, it stops when it is likely that a
dose is too toxic. It can stop when the rule is triggered at the recommended dose, at a particular
dose, or at any dose. See Details.

Usage

stop_when_too_toxic(parent_selector_factory, dose, tox_threshold, confidence)

Arguments

parent_selector_factory
Object of type selector_factory.

dose 'any' to stop when any dose is too toxic; 'recommended' to stop when the
recommended dose is too toxic; or an integer to stop when a particular dose-
level is too toxic.

tox_threshold We are interested in toxicity probabilities greater than this threshold.

confidence Stop when there is this much total probability mass supporting that the toxicity
rate exceeds the threshold.

Details

The method for calculating probability mass for toxicity rates will ultimately be determined by the
dose-finding model used and the attendant inferential mechanism. For instance, the crm function
in the dfcrm package calculates the posterior expected mean and variance of the slope parameter
in a CRM model. It does not use MCMC to draw samples from the posterior distribution. Thus,
to perform inference on the posterior probability of toxicity, this package assumes the dfcrm slope
parameter follows a normal distribution with the mean and variance calculated by dfcrm. In contrast,
the stan_crm function in the trialr package needs no such assumption because it samples from
the posterior parameter distribution and uses those samples to infer on the posterior probability of
toxicity at each dose, dependent on the chosen model for the dose-toxicity curve.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

48 stop_when_tox_ci_covered

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

We compare a CRM model without a toxicity stopping rule to one with it:

modell <- get_dfcrm(skeleton = skeleton, target = target)

model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_too_toxic(dose = 'any', tox_threshold = 0.5, confidence = 0.7)

outcomes <- 'TNNN 2NNN 3NNT 3NNN 3TNT 2NNN'
fitl <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

Naturally the first does not advocate stopping:
fit1 %>% recommended_dose()
fitl %>% continue()

However, after the material toxicity at dose 3, ithe rule is fired:

fit2 %>% recommended_dose()

fit2 %>% continue()

To verify the requirement to stop, let's calculate the probability that the
toxicity rate exceeds 50%

fit2 %>% prob_tox_exceeds(0.5)

stop_when_tox_ci_covered
Stop when uncertainty interval of prob tox is covered.

Description

This method stops a dose-finding trial when the symmetric uncertainty interval for the probability
of toxicity falls within a range. This allows trials to be stopped when sufficient precision on the
pobability of toxicity has been achieved. See Details.

Usage

stop_when_tox_ci_covered(
parent_selector_factory,
dose,
lower,
upper,
width = 0.9

Arguments

parent_selector_factory
Object of type selector_factory.

stop_when_tox_ci_covered 49

dose

lower
upper

width

Details

"any ' to stop when the interval for any dose is covered; ' recommended’ to stop
when the interval for the recommended dose is covered ; or an integer to stop
when the interval for a particular dose-level is covered.

Stop when lower interval bound exceeds this value
Stop when upper interval bound is less than this value

Width of the uncertainty interval. Default is 0.9, i.e. a range from the 5th to the
95th percentiles.

The method for calculating probability mass for toxicity rates will ultimately be determined by the
dose-finding model used and the attendant inferential mechanism. For instance, the crm function
in the dfcrm package calculates the posterior expected mean and variance of the slope parameter
in a CRM model. It does not use MCMC to draw samples from the posterior distribution. Thus,
to perform inference on the posterior probability of toxicity, this package assumes the dfcrm slope
parameter follows a normal distribution with the mean and variance calculated by dfcrm. In contrast,
the stan_crm function in the trialr package needs no such assumption because it samples from
the posterior parameter distribution and uses those samples to infer on the posterior probability of
toxicity at each dose, dependent on the chosen model for the dose-toxicity curve.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

We compare a CRM model without this stopping rule:

modell <- get_dfcrm(skeleton = skeleton, target = target)

To two with it, the first demanding a relatively tight CI:

model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_tox_ci_covered(dose = 'recommended', lower = ©.15, upper = 0.35)

and the second demanding a relatively loose CI:

model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_tox_ci_covered(dose = 'recommended', lower = 0.05, upper

outcomes <-

0.45)

"TNNN 2NNN 3NNT 3NNN 3TNT 2NNN'

fit1l <- modell %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

Naturally the first does not advocate stopping:
fit1l %>% recommended_dose()
fitl %>% continue()

The second does not advocate stopping either:
fit2 %>% recommended_dose()
fit2 %>% continue()

50 supports_sampling

This is because the CI is too wide:
fit2 %>% prob_tox_quantile(p = 0.05)
fit2 %>% prob_tox_quantile(p = 0.95)

However, the third design advocates stopping because the CI at the
recommended dose is covered:

fit3 %>% recommended_dose()

fit3 %>% continue()

To verify the veracity, inspect the quantiles:

fit3 %>% prob_tox_quantile(p = 0.05)

fit3 %>% prob_tox_quantile(p = 0.95)

supports_sampling Does this selector support sampling of outcomes?

Description

Learn whether this selector supports sampling of outcomes. For instance, is it possible to get pos-
terior samples of the probability of toxicity at each dose? If true, prob_tox_samples will return a
data-frame of samples.

Usage

supports_sampling(x, ...)

Arguments

X Object of type selector

arguments passed to other methods

Value

logical

Examples

CRM example

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

outcomes <- 'TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% supports_sampling()

three_plus_three 51

three_plus_three Fit the 3+3 model to some outcomes.

Description

Fit the 3+3 model to some outcomes.

Usage

three_plus_three(
outcomes,
num_doses,
allow_deescalate = FALSE,
strict_mode = TRUE

)

Arguments
outcomes Outcomes observed. See parse_phasel_outcomes.
num_doses Number of doses under investigation.

allow_deescalate
TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

strict_mode TRUE to raise errors if it is detected that the 3+3 algorithm has not been fol-
lowed.

Value

lits containing recommended_dose and a logical value continue saying whether the trial should
continue.

References

Storer BE. Design and Analysis of Phase I Clinical Trials. Biometrics. 1989;45(3):925-937.
doi:10.2307/2531693

Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM. A comparison of two
phase I trial designs. Statistics in Medicine. 1994;13(18):1799-1806. doi:10.1002/sim.4780131802

Examples

three_plus_three('2NNN 3NNT', num_doses = 7)

52

tox_at_dose

tox Binary toxicity outcomes.

Description

Get a vector of the binary toxicity outcomes for evaluated patients.

Usage
tox(x, ...)
Arguments
X Object of type selector.
Extra args are passed onwards.
Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, .25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %% tox()

tox_at_dose Number of toxicities seen at each dose.

Description

Get the number of toxicities seen at each dose under investigation.

Usage
tox_at_dose(x, ...)
Arguments
X Object of class selector
arguments passed to other methods
Value

an integer vector

tox_target

Examples

CRM example

skeleton <- ¢(0.05, 0.1, .25, 0.4, 0.6)

target <- 0.25

outcomes <- "TNNN 2NTN'

fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% tox_at_dose()

53

tox_target Target toxicity rate

Description

Get the target toxicity rate, if supported. NULL if not.

Usage

tox_target(x, ...)

Arguments

X Object of type selector.

Extra args are passed onwards.

Value

numeric

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('INNN 2NTN')

fit %>% tox_target()

54 try_rescue_dose

trial_duration Duration of trials.

Description

Get the length of time that trials take to recruit all patients.

Usage
trial_duration(x, ...)
Arguments
X Object of type simulations.
arguments passed to other methods
Value

vector of numerical times

Examples

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

sims <- get_three_plus_three(num_doses = 5) %>%
simulate_trials(num_sims = 50, true_prob_tox = true_prob_tox)

sims %>% trial_duration

try_rescue_dose Demand that a rescue dose is tried before stopping is permitted.

Description

This method continues a dose-finding trial until a safety dose has been given to n patients. Once that
condition is met, it delegates dose selelcting and stopping responsibility to its parent dose selector,
whatever that might be. This class is greedy in that it meets its own needs before asking any other
selectors higher in the chain what they want. Thus, different behaviours may be achieved by nesting
dose selectors in different orders. See examples.

Usage

try_rescue_dose(parent_selector_factory, n, dose)

try_rescue_dose

Arguments

parent_selector_factory
Object of type selector_factory.

n Continue at least until there are n at a dose.
dose an integer to identify the sought rescue dose-level.
Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will demand the lowest dose is tried in at least two patients

before the trial is stopped for excess toxicity

modell <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_too_toxic(dose = 1, tox_threshold = 0.35, confidence = 0.8) %>%
try_rescue_dose(dose = 1, n = 2)

In contrast, this model will stop for excess toxicity without trying dose 1
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_when_too_toxic(dose = 1, tox_threshold = 0.35, confidence = 0.8)

For non-toxic outcomes, both designs will continue at sensible doses:
fit1l <- modell %>% fit('2NNN')

fitl %>% recommended_dose()

fitl %>% continue()

fit2 <- model2 %>% fit('2NNN')
fit2 %>% recommended_dose()
fit2 %>% continue()

For toxic outcomes, the design 1 will use dose 1 before stopping is allowed
fitl <- modell %>% fit('2TTT')

fitl %>% recommended_dose()

fitl %>% continue()

For toxic outcomes, however, design 2 will stop despite dose 1 being
untested:

fit2 <- model2 %>% fit('2TTT')

fit2 %>% recommended_dose()

fit2 %>% continue()

After dose 1 is given the requisite number of times, dose recommendation
and stopping revert to being determined by the underlying dose selector:
fitl <- modell %>% fit('2TTT 1T')

fitl %>% recommended_dose()

fit1l %>% continue()

55

56

fitl <- modell %>% fit('2TTT 1TT")
fit1 %>% recommended_dose()
fit1l %>% continue()

try_rescue_dose

Index

as_tibble.dose_paths, 3

calculate_probabilities, 3
cohort, 4, 34
cohorts_of_n, 5, 39, 40
continue, 5, 34

crm, 16, 33,47, 49
crystallised_dose_paths, 6

demand_n_at_dose, 7
dont_skip_doses, 8
dose_indices, 10, 34, 42
dose_paths, 3, 4,6, 11, 18, 19
dose_paths_function, 11
doses_given, 9, 34

empiric_tox_rate, 12, 34
enforce_three_plus_three, 12

fit, 13,33, 36
follow_path, 14, 16

get_boin, 15, 33, 36, 38, 39
get_dfcrm, 16, 33, 36, 38, 39
get_dose_paths, 11,17
get_three_plus_three, 18, 33, 36, 38, 40
graph_paths, 19

mean_prob_tox, 20, 33, 34
median_prob_tox, 20, 33, 34
model_frame, 21, 34

n_at_dose, 25, 34, 42
n_at_recommended_dose, 26, 34
num_cohort_outcomes, 22
num_dose_path_nodes, 23
num_doses, 22, 34, 42
num_patients, 24, 34, 42
num_tox, 25, 34, 42

parse_phasel_outcomes, 13, 14,27, 51

phasel_outcomes_to_cohorts, 28
prob_administer, 29, 34, 42
prob_recommend, 30, 42
prob_tox_exceeds, 30, 33, 34
prob_tox_quantile, 31, 34
prob_tox_samples, 32

recommended_dose, 32, 34, 42

select.mtd, 15
select_dose_by_cibp, 37
selector, 4, 6, 10-13, 20, 21, 23-26, 29-33,
33, 36,41, 42, 50, 52, 53
selector_factory, 7-9, 11, 13-18, 33, 34,
36, 36, 38, 39,4349, 55
simulate_trials, 38, 42
simulation_function, 43
simulations, 30, 39, 41, 54
spread_paths, 43
stop_at_n, 5, 39, 44
stop_when_n_at_dose, 33, 36, 39, 46
stop_when_too_toxic, 5, 33, 36, 47
stop_when_tox_ci_covered, 48
supports_sampling, 32, 50

three_plus_three, 51
tibble, 3, 21

tox, 34,52
tox_at_dose, 34, 42,52
tox_target, 34, 53
trial_duration, 42, 54
try_rescue_dose, 54

	as_tibble.dose_paths
	calculate_probabilities
	cohort
	cohorts_of_n
	continue
	crystallised_dose_paths
	demand_n_at_dose
	dont_skip_doses
	doses_given
	dose_indices
	dose_paths
	dose_paths_function
	empiric_tox_rate
	enforce_three_plus_three
	fit
	follow_path
	get_boin
	get_dfcrm
	get_dose_paths
	get_three_plus_three
	graph_paths
	mean_prob_tox
	median_prob_tox
	model_frame
	num_cohort_outcomes
	num_doses
	num_dose_path_nodes
	num_patients
	num_tox
	n_at_dose
	n_at_recommended_dose
	parse_phase1_outcomes
	phase1_outcomes_to_cohorts
	prob_administer
	prob_recommend
	prob_tox_exceeds
	prob_tox_quantile
	prob_tox_samples
	recommended_dose
	selector
	selector_factory
	select_dose_by_cibp
	simulate_trials
	simulations
	simulation_function
	spread_paths
	stop_at_n
	stop_when_n_at_dose
	stop_when_too_toxic
	stop_when_tox_ci_covered
	supports_sampling
	three_plus_three
	tox
	tox_at_dose
	tox_target
	trial_duration
	try_rescue_dose
	Index

