Package 'ergm'

June 10, 2019
Version 3.10.4
Date 2019-06-10
Title Fit, Simulate and Diagnose Exponential-Family Models for Networks

Depends network (>=1.15)
Imports robustbase ($>=0.93 .5$), coda ($>=0.19 .2$), trust ($>=0.1 .7$), Matrix ($>=1.2 .17$), lpSolve ($>=5.6 .13$), parallel, methods, MASS ($>=7.3 .51 .4$), statnet.common ($>=4.3 .0$), purrr ($>=$ 0.3 .2), rlang $(>=0.3 .4)$, tibble $(>=2.1 .1)$, dplyr $(>=0.8 .0 .1)$

Suggests lattice ($>=0.20 .38$), latticeExtra ($>=0.6 .28$), sna ($>=2.4$), latentnet ($>=2.9 .0$), rmarkdown ($>=1.12$), knitr ($>=1.22$), Rmpi ($>=0.6 .9$), testthat ($>=2.1 .1$), tergm, ergm.count, ergm.userterms, networkDynamic

SystemRequirements OpenMPI

BugReports https://github.com/statnet/ergm/issues

Description

An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). 'ergm' is a part of the Statnet suite of packages for network analysis.
License GPL-3 + file LICENSE
URL https://statnet.org
VignetteBuilder rmarkdown, knitr
RoxygenNote 6.1.1

Encoding UTF-8

Collate 'InitErgm.bipartite.R' 'InitErgmConstraint.R'
'InitErgmProposal.R' 'InitErgmProposal.blockdiag.R'
'InitErgmReference.R' 'ergm-deprecated.R' 'InitErgmTerm.R'
'InitErgmTerm.bipartite.degree.R' 'InitErgmTerm.coincidence.R'
'InitErgmTerm.dgw_sp.R' 'InitErgmTerm.extra.R'
'InitErgmTerm.indices.R' 'InitErgmTerm.test.R'
'InitErgmTerm.transitiveties.R' 'InitWtErgmProposal.R'
'InitWtErgmTerm.R' 'anova.ergm.R' 'anova.ergmlist.R'

```
'approx.hotelling.diff.test.R' 'as.network.numeric.R'
'build_term_index.R' 'check.ErgmTerm.R' 'control.ergm.R'
'control.ergm.bridge.R' 'control.gof.R' 'control.logLik.ergm.R'
'control.san.R' 'control.simulate.R' 'data.R' 'ergm-defunct.R'
'ergm-disambiguation.R' 'ergm.CD.fixed.R' 'ergm.Cprepare.R'
'ergm.MCMCse.R' 'ergm.MCMCse.lognormal.R' 'ergm.MCMLE.R'
'ergm.R' 'ergm.allstats.R' 'ergm.bounddeg.R' 'ergm.bridge.R'
'ergm.check.R' 'ergm.coefficient.degeneracy.R'
'ergm.curved.statsmatrix.R' 'ergm.degeneracy.R' 'ergm.design.R'
'ergm.errors.R' 'ergm.estimate.R' 'ergm.eta.R' 'ergm.etagrad.R'
'ergm.etagradmult.R' 'ergm.etamap.R' 'ergm.geodistn.R'
'ergm.getCDsample.R' 'ergm.getMCMCsample.R' 'ergm.getnetwork.R'
'ergm.initialfit.R' 'ergm.llik.R' 'ergm.llik.obs.R'
'ergm.logitreg.R' 'ergm.mapl.R' 'ergm.maple.R' 'ergm.mple.R'
'ergm.pen.glm.R' 'ergm.phase12.R' 'ergm.pl.R'
'ergm.reviseinit.R' 'ergm.robmon.R' 'ergm.san.R'
'ergm.stepping.R' 'ergm.stocapprox.R' 'ergm.sufftoprob.R'
'ergm.utility.R' 'ergmMPLE.R' 'ergm_estfun.R' 'ergm_model.R'
'ergm_model.utils.R' 'ergm_proposal.R' 'formula.utils.R'
'get.node.attr.R' 'godfather.R' 'gof.ergm.R' 'is.curved.R'
'is.durational.R' 'is.dyad.independent.R' 'is.inCH.R'
'locator.R' 'logLik.ergm.R' 'mcmc.diagnostics.ergm.R'
'network.list.R' 'network.update.R' 'nparam.R'
'parallel.utils.R' 'param_names.R' 'pending_update_network.R'
'print.ergm.R' 'print.network.list.R' 'print.summary.ergm.R'
'rlebdm.R' 'simulate.ergm.R' 'summary.ergm.R'
'summary.ergm_model.R' 'summary.network.list.R'
'summary.statistics.network.R' 'to_ergm_Cdouble.R'
'vcov.ergm.R' 'wtd.median.R' 'zzz.R'
```


NeedsCompilation yes

Author Mark S. Handcock [aut],
David R. Hunter [aut],
Carter T. Butts [aut],
Steven M. Goodreau [aut],
Pavel N. Krivitsky [aut, cre] (https://orcid.org/0000-0002-9101-3362),
Martina Morris [aut],
Li Wang [ctb],
Kirk Li [ctb],
Skye Bender-deMoll [ctb],
Chad Klumb [ctb]

Maintainer Pavel N. Krivitsky <pavel@uow.edu. au>

Repository CRAN
Date/Publication 2019-06-10 05:30:07 UTC

R topics documented:

ergm-package 4
anova.ergm 6
approx.hotelling.diff.test 8
as.edgelist 9
as.network.numeric 10
check.ErgmTerm 11
control.ergm 13
control.ergm.bridge 22
control.ergm.godfather 23
control.gof 24
control.logLik.ergm 26
control.san 27
control.simulate.ergm 29
degreedist 31
ecoli 32
edges 33
enformulate.curved 33
ergm 35
ergm-constraints 42
ergm-parallel 46
ergm-references 48
ergm-terms 49
ergm.allstats 78
ergm.bounddeg 79
ergm.bridge.llr 81
ergm.degeneracy 83
ergm.exact 84
ergm.geodistdist 85
ergm.getnetwork 86
ergm.godfather 87
ergmMPLE 88
ergm_MCMC_sample 90
ergm_plot.mcmc.list 92
eut-upgrade 92
faux.desert.high 93
faux.dixon.high 95
faux.magnolia.high 96
faux.mesa.high 98
fix.curved 99
florentine 101
g4 102
Getting.Started 103
geweke.diag.mv 105
gof 106
hamming 108
is.curved 109
is.durational 110
is.dyad.independent 111
is.inCH 112
kapferer 113
logLik.ergm 114
logLikNull 115
mcmc.diagnostics 116
molecule 118
network.list 118
node-attr 119
nparam 121
param_names 122
print.summary.ergm 122
samplk 124
sampson 125
san 127
search.ergmTerms 130
simulate.ergm 131
spectrum0.mvar 136
summary.formula 136
update.network 137
wtd.median 139
Index 140
ergm-package Fit, Simulate and Diagnose Exponential-Family Models for Networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from exponential-family random graph models (ERGMs). For a list of functions type: help(package=' ergm')
For a complete list of the functions, use library (help="ergm") or read the rest of the manual. For a simple demonstration, use demo(packages="ergm").
When publishing results obtained using this package, please cite the original authors as described in citation(package="ergm").
All programs derived from this package must cite it.

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a generalization of the Markov random network models introduced by Frank and Strauss (1986), which in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the complex dependencies within relational data structures. To date, the use of stochastic network models for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential properties of nontrivial models.
This manual introduces software tools for the representation, visualization, and analysis of network data that address each of these previous shortcomings. The package relies on the network package which allows networks to be represented in R. The ergm package implements maximum likelihood estimates of ERGMs to be calculated using Markov Chain Monte Carlo (via ergm). The package also provides tools for simulating networks (via simulate.ergm) and assessing model goodness-of-fit (see mcmc.diagnostics and gof.ergm).
A number of Statnet Project packages extend and enhance ergm. These include tergm (Temporal ERGM), which provides extensions for modeling evolution of networks over time; ergm.count, which facilitates exponential family modeling for networks whose dyadic measurements are counts; and ergm. userterms, which allows users to implement their own ERGM terms.

For detailed information on how to download and install the software, go to the ergm website: https://statnet.org. A tutorial, support newsgroup, references and links to further resources are provided there.

Author(s)

Mark S. Handcock handcock@stat.ucla.edu,
David R. Hunter dhunter@stat.psu.edu,
Carter T. Butts <buttsc@uci. edu>,
Steven M. Goodreau <goodreau@u. washington. edu>,
Pavel N. Krivitsky krivitsky@stat.psu.edu, and
Martina Morris morrism@u.washington.edu
Maintainer: Pavel N. Krivitsky krivitsky@stat.psu.edu

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, https://statnet. org.
Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7). https://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the Royal Statistical Society, B, 36, 192-236.
Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.
Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https: //cran.r-project.org/package=sna

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical Software, 24(2). https://www.jstatsoft.org/v24/i02/.
Butts C (2015). network: Classes for Relational Data. The Statnet Project (https://statnet. org). R package version 1.12.0, https://cran.r-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association, 81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal of Statistical Software, 24(8). https://www. jstatsoft.org/v24/i08/.
Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working Paper
\#39, Center for Statistics and the Social Sciences, University of Washington. https://www. csss.washington.edu/Papers/wp39.pdf
Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks. Statnet Project, Seattle, WA. Version 1.0, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA. Version 3, https://statnet.org.
Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 3, https: //statnet.org.
Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics, 15: 565-583
Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). https://www.jstatsoft.org/v24/i03/.
Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical networks. Seattle, WA. Version 2, https://statnet. org.
Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696
Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www. jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks Journal of the American Statistical Association, 85, 204-212.

```
anova.ergm ANOVA for ERGM Fits
```


Description

Compute an analysis of variance table for one or more ERGM fits.

Usage

\#\# S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)

```
## S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE, scale = 0,
    test = "F")
```


Arguments

object, ... objects of class ergm, usually, a result of a call to ergm.
eval.loglik a logical specifying whether the log-likelihood will be evaluated if missing.
scale numeric. An estimate of the noise variance σ^{2}. If zero this will be estimated from the largest model considered.
test a character string specifying the test statistic to be used. Can be one of "F", "Chisq" or "Cp", with partial matching allowed, or NULL for no test.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the reductions in the residual sum of squares as each term of the formula is added in turn are given in the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum of squares for each model. For all but the first model, the change in degrees of freedom and sum of squares is also given. (This only make statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user.
Optionally the table can include test statistics. Normally the F statistic is most appropriate, which compares the mean square for a row to the residual sum of squares for the largest model considered. If scale is specified chi-squared tests can be used. Mallows' C_{p} statistic is the residual sum of squares plus twice the estimate of σ^{2} times the residual degrees of freedom.

If any of the objects do not have estimated log-likelihoods, produces an error, unless eval.loglik=TRUE.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values and 's default of na.action = na.omit is used, and anova. ergmlist will detect this with an error.

See Also

The model fitting function ergm, anova, logLik.ergm for adding the log-likelihood to an existing ergm object.

Examples

```
data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)
fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
    fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.
anova(fit0, fit1)
anova(fit0, fit1, fit2)
```

```
approx.hotelling.diff.test
```

Approximate Hotelling $T^{\wedge} 2$-Test for One Sample Means

Description

A multivariate hypothesis test for a single population mean or a difference between them. This version attempts to adjust for multivariate autocorrelation in the samples.

Usage

approx.hotelling.diff.test(x, y $=$ NULL, mu0 $=0$, assume.indep $=$ FALSE, var.equal $=$ FALSE)

Arguments

x
y
mu0 an optional numeric vector: for a 1-sample test, the poulation mean under the null hypothesis; and for a 2 -sample test, the difference between population means under the null hypothesis; defaults to a vector of 0s.
assume. indep if TRUE, performs an ordinary Hotelling's test without attempting to account for autocorrelation.
var.equal for a 2-sample test, perform the pooled test: assume population variance-covariance matrices of the two variables are equal.

Value

An object of class htest with the following information:
statistic The T^{2} statistic.
parameter Degrees of freedom.
p.value $\quad \mathrm{P}$-value.
method Method specifics.
null.value Null hypothesis mean or mean difference.
alternative Always "two.sided".
estimate Sample difference.
covariance Estimated variance-covariance matrix of the estimate of the difference.
It has a print method print. htest().

Note

For mcmc. list input, the variance for this test is estimated with unpooled means. This is not strictly correct.

References

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and W. A. Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

See Also

t.test()

```
as.edgelist
```

Convert a network object into a numeric edgelist matrix

Description

Constructs an edgelist in the format expected by ergm's internal functions
NOTE: the as.edgelist functions have been moved to the network package, and this help file may be removed in the future. See as. edgelist

Details

Constructs an edgelist matrix from a network, sorted tails-major order, with tails first, and, for undirected networks, tail < head.
The as.matrix.network(nw, matrix.type="edgelist") provides similar functionality but it does not enforce ordering..

Note
The as.edgelist functions have been moved to the network package. See as.edgelist

See Also

See alsoas.edgelist, as.matrix. network.edgelist

Examples

```
data(faux.mesa.high)
as.edgelist(faux.mesa.high)
```

```
as.network.numeric Create a Simple Random network of a Given Size
```


Description

as.network. numeric creates a random Bernoulli network of the given size as an object of class network.

Usage

```
## S3 method for class 'numeric'
as.network(x, directed = TRUE, hyper = FALSE,
    loops = FALSE, multiple = FALSE, bipartite = FALSE,
    ignore.eval = TRUE, names.eval = NULL, edge.check = FALSE,
    density = NULL, init = NULL, numedges = NULL, ...)
```


Arguments

x
directed logical; should edges be interpreted as directed?
hyper logical; are hyperedges allowed? Currently ignored.
loops logical; should loops be allowed? Currently ignored.
multiple logical; are multiplex edges allowed? Currently ignored.
bipartite count; should the network be interpreted as bipartite? If present (i.e., nonNULL) it is the count of the number of actors in the bipartite network. In this case, the number of nodes is equal to the number of actors plus the number of events (with all actors preceding all events). The edges are then interpreted as nondirected.
ignore.eval logical; ignore edge values? Currently ignored.
names.eval optionally, the name of the attribute in which edge values should be stored. Currently ignored.

edge.check	logical; perform consistency checks on new edges? density numeric; the probability of a tie for Bernoulli networks. If neither density nor init is given, it defaults to the number of nodes divided by the number of dyads (so the expected number of ties is the same as the number of nodes.)
init	numeric; the log-odds of a tie for Bernoulli networks. It is only used if density is not specified.
numedges	count; if present, sample the Bernoulli network conditional on this number of edges (rather than independently with the specified probability).
\ldots	additional arguments

Details

The network will have not have vertex, edge or network attributes. These can be added with operators such as \%v\%, \%n\%, \%e\%.

Value

An object of class network

References

Butts, C.T. 2002. "Memory Structures for Relational Data in R: Classes and Interfaces" Working Paper.

See Also

network

Examples

```
#Draw a random directed network with 25 nodes
g<-network(25)
#Draw a random undirected network with density 0.1
g<-network(25, directed=FALSE, density=0.1)
#Draw a random bipartite network with 10 events and 5 actors and density 0.1
g<-network(5, bipartite=10, density=0.1)
```

check.ErgmTerm Ensures an Ergm Term and its Arguments Meet Appropriate Condi-
tions

Description

Helper functions for implementing ergm() terms, to check whether the term can be used with the specified network. For information on ergm terms, see ergm-terms. ergm. checkargs, ergm. checkbipartite, and ergm. checkderected are helper functions for an old API and are deprecated. Use check. ErgmTerm.

Usage

```
check.ErgmTerm(nw, arglist, directed = NULL, bipartite = NULL,
    nonnegative = FALSE, varnames = NULL, vartypes = NULL,
    defaultvalues = list(), required = NULL, response = NULL,
    dep.inform = rep(FALSE, length(required)), dep.warn = rep(FALSE,
    length(required)))
```


Arguments

nw the network that term X is being checked against
arglist the list of arguments for term X
directed logical, whether term X requires a directed network; default=NULL
bipartite whether term X requires a bipartite network (T or F); default=NULL
nonnegative whether term X requires a network with only nonnegative weights; default=FALSE
varnames the vector of names of the possible arguments for term X; default=NULL
vartypes the vector of types of the possible arguments for term X; default=NULL
defaultvalues the list of default values for the possible arguments of term X ; default=list()
required the logical vector of whether each possible argument is required; default=NULL
response Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
dep.inform, dep.warn
a list of length equal to the number of arguments the term can take; if the corresponding element of the list is not FALSE, a message() or a warning() respectively will be issued if the user tries to pass it; if the element is a character string, it will be used as a suggestion for replacement.

Details

The check.ErgmTerm function ensures for the InitErgmTerm. X function that the term X :

- is applicable given the 'directed' and 'bipartite' attributes of the given network
- is not applied to a directed bipartite network
- has an appropiate number of arguments
- has correct argument types if arguments where provided
- has default values assigned if defaults are available
by halting execution if any of the first 3 criteria are not met.

Value

A list of the values for each possible argument of term X; user provided values are used when given, default values otherwise. The list also has an attr (, "missing") attribute containing a named logical vector indicating whether a particular argument had been set to its default.
control.ergm Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning 'ergm' fitting.

Usage

control.ergm(drop = TRUE, init = NULL, init.method = NULL, main.method = c("MCMLE", "Robbins-Monro", "Stochastic-Approximation", "Stepping"), force.main = FALSE, main.hessian = TRUE, checkpoint $=$ NULL, resume $=$ NULL, MPLE.max.dyad.types $=1 \mathrm{e}+06$, MPLE.samplesize = 50000, MPLE.type = c("glm", "penalized"), MCMC. prop.weights = "default", MCMC.prop.args = list(), MCMC.interval $=1024$, MCMC.burnin = MCMC.interval * 16, MCMC.samplesize = 1024, MCMC.effectiveSize = NULL, MCMC.effectiveSize.damp = 10, MCMC.effectiveSize.maxruns = 1000, MCMC.effectiveSize.base = 1/2, MCMC.effectiveSize.points = 5, MCMC.effectiveSize.order = 1, MCMC.return.stats = TRUE, MCMC.runtime.traceplot = FALSE, MCMC.init.maxedges = 20000, MCMC.max.maxedges = Inf, MCMC.addto.se = TRUE, MCMC.compress = FALSE, MCMC.packagenames $=c()$, SAN.maxit $=4$, SAN.nsteps.times $=8$, SAN.control $=$ control.san(term.options = term.options, SAN.maxit = SAN.maxit, SAN.prop.weights = MCMC. prop.weights, SAN.prop.args = MCMC.prop.args, SAN.init.maxedges = MCMC.init.maxedges, SAN.max.maxedges = MCMC.max.maxedges, SAN.nsteps = MCMC.burnin * SAN.nsteps.times, SAN.samplesize = MCMC.samplesize, SAN.packagenames = MCMC.packagenames, parallel = parallel, parallel.type = parallel.type, parallel.version.check = parallel.version.check), MCMLE.termination = c("Hummel", "Hotelling", "precision", "none"), MCMLE.maxit $=20$, MCMLE.conv.min.pval $=0.5$, MCMLE.NR.maxit $=100$, MCMLE.NR.reltol = sqrt(.Machine\$double.eps), obs.MCMC.samplesize = MCMC.samplesize, obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin, obs.MCMC.burnin.min = obs.MCMC.burnin/10, obs.MCMC.prop.weights = MCMC.prop.weights, obs.MCMC.prop.args = MCMC.prop.args, obs.MCMC.impute.min_informative $=$ function(nw) network.size(nw)/4, obs.MCMC.impute.default_density = function(nw) 2/network.size(nw), MCMLE.check.degeneracy $=$ FALSE, MCMLE.MCMC.precision $=0.005$, MCMLE.MCMC.max.ESS.frac = 0.1, MCMLE.metric = c("lognormal", "logtaylor", "Median.Likelihood", "EF.Likelihood", "naive"), MCMLE.method = c("BFGS", "Nelder-Mead"), MCMLE.trustregion = 20, MCMLE.dampening = FALSE, MCMLE.dampening.min.ess $=20$, MCMLE.dampening.level = 0.1, MCMLE.steplength.margin $=0.05$, MCMLE.steplength = NVL2(MCMLE.steplength.margin, 1, 0.5),

```
MCMLE.adaptive.trustregion = 3, MCMLE.sequential = TRUE,
MCMLE.density.guard.min = 10000, MCMLE.density.guard = exp(3),
MCMLE.effectiveSize = NULL, MCMLE.last.boost = 4,
MCMLE.Hummel.esteq = TRUE, MCMLE.Hummel.miss.sample = 100,
MCMLE.Hummel.maxit = 25, MCMLE.steplength.min = 1e-04,
MCMLE.effectiveSize.interval_drop = 2,
MCMLE.save_intermediates = NULL, SA.phase1_n = NULL,
SA.initial_gain = NULL, SA.nsubphases = 4, SA.niterations = NULL,
SA.phase3_n = NULL, SA.trustregion = 0.5, RM.phase1n_base = 7,
RM.phase2n_base = 100, RM.phase2sub = 7, RM.init_gain = 0.5,
RM.phase3n = 500, Step.MCMC.samplesize = 100, Step.maxit = 50,
Step.gridsize = 100, CD.nsteps = 8, CD.multiplicity = 1,
CD.nsteps.obs = 128, CD.multiplicity.obs = 1, CD.maxit = 60,
CD.conv.min.pval = 0.5, CD.NR.maxit = 100,
CD.NR.reltol = sqrt(.Machine$double.eps), CD.metric = c("naive",
"lognormal", "logtaylor", "Median.Likelihood", "EF.Likelihood"),
CD.method = c("BFGS", "Nelder-Mead"), CD.trustregion = 20,
CD.dampening = FALSE, CD.dampening.min.ess = 20,
CD.dampening.level = 0.1, CD.steplength.margin = 0.5,
CD.steplength = 1, CD.adaptive.trustregion = 3,
CD.adaptive.epsilon = 0.01, CD.Hummel.esteq = TRUE,
CD.Hummel.miss.sample = 100, CD.Hummel.maxit = 25,
CD.steplength.min = 1e-04, loglik.control = control.logLik.ergm(),
term.options = NULL, seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE, ...)
```


Arguments

drop
Logical: If TRUE, terms whose observed statistic values are at the extremes of their possible ranges are dropped from the fit and their corresponding parameter estimates are set to plus or minus infinity, as appropriate. This is done because maximum likelihood estimates cannot exist when the vector of observed statistic lies on the boundary of the convex hull of possible statistic values.
init numeric or NA vector equal in length to the number of parameters in the model or NULL (the default); the initial values for the estimation and coefficient offset terms. If NULL is passed, all of the initial values are computed using the method specified by control\$init.method. If a numeric vector is given, the elements of the vector are interpreted as follows:

- Elements corresponding to terms enclosed in offset () are used as the fixed offset coefficients. Note that offset coefficients alone can be more conveniently specified using ergm() argument offset. coef. If both offset. coef and init arguments are given, values in offset. coef will take precedence.
- Elements that do not correspond to offset terms and are not NA are used as starting values in the estimation.
- Initial values for the elements that are NA are fit using the method specified by control\$init.method.
Passing control.ergm(init=coef(prev.fit)) can be used to "resume" an uncoverged ergm() run, but see enformulate.curved.
init.method A chatacter vector or NULL. The default method depends on the reference measure used. For the binary ("Bernoulli") ERGMs, with dyad-independent constraints, it's maximum pseudo-likelihood estimation (MPLE). Other valid values include "zeros" for a 0 vector of appropriate length and "CD" for contrastive divergence. If passed explicitly, this setting overrides the reference's limitations.
Valid initial methods for a given reference are set by the InitErgmReference.* function.
main.method One of "MCMLE" (default),"Robbins-Monro", "Stochastic-Approximation", or "Stepping". Chooses the estimation method used to find the MLE. MCMLE attempts to maximize an approximation to the log-likelihood function. Robbins-Monro and Stochastic-Approximation are both stochastic approximation algorithms that try to solve the method of moments equation that yields the MLE in the case of an exponential family model. Another alternative is a partial stepping algorithm (Stepping) as in Hummel et al. (2012). The direct use of the likelihood function has many theoretical advantages over stochastic approximation, but the choice will depend on the model and data being fit. See Handcock (2000) and Hunter and Handcock (2006) for details.
Note that in recent versions of ERGM, the enhancements of Stepping have been folded into the default MCMLE, which is able to handle more modeling scenarios.
force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact MLE can be computed via maximum pseudolikelihood estimation.
main.hessian Logical: If TRUE, then an approximate Hessian matrix is used in the MCMCbased estimation method.
checkpoint At the start of every iteration, save the state of the optimizer in a way that will allow it to be resumed. The name is passed through sprintf() with iteration number as the second argument. (For example, checkpoint="step_\%03d.RData" will save to step_001.RData, step_002.RData, etc.)
resume If given a file name of an RData file produced by checkpoint, the optimizer will attempt to resume after restoring the state. Control parameters from the saved state will be reused, except for those whose value passed via control.ergm() had change from the saved run. Note that if the network, the model, or some critical settings differ between runs, the results may be undefined.
MPLE.max.dyad.types
Maximum number of unique values of change statistic vectors, which are the predictors in a logistic regression used to calculate the MPLE. This calculation uses a compression algorithm that allocates space based on MPLE. max. dyad. types.

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.
MPLE. type One of "glm" or "penalized". Chooses method of calculating MPLE. "glm" is the usual formal logistic regression, whereas "penalized" uses the bias-reduced method of Firth (1993) as originally implemented by Meinhard Ploner, Daniela Dunkler, Harry Southworth, and Georg Heinze in the "logistf" package.
MCMC.prop.weights, obs.MCMC.prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices depending on selected reference and constraints
arguments of the ergm() function, but often include "TNT" and "random", and the "default" is to use the one with the highest priority available.
The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks. obs.MCMC. prop.weights, if given separately, specifies the weights to be used for the constrained MCMC when missing dyads are present, defaulting to the same as MCMC. prop.weights.
MCMC.prop.args, obs.MCMC.prop.args
An alternative, direct way of specifying additional arguments to proposal. obs.MCMC.prop.args, if given separately, specifies the weights to be used for the constrained MCMC when missing dyads are present, defaulting to the same as MCMC. prop.args.
MCMC.interval Number of proposals between sampled statistics. Increasing interval will reduces the autocorrelation in the sample, and may increase the precision in estimates by reducing MCMC error, at the expense of time. Set the interval higher for larger networks.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.
MCMC.samplesize
Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm. Increasing sample size may increase the precision in the estimates by reducing MCMC error, at the expense of time. Set it higher for larger networks, or when using parallel functionality.
MCMC.return.stats
Logical: If TRUE, return the matrix of MCMC-sampled network statistics. This matrix should have MCMC. samplesize rows. This matrix can be used directly by the coda package to assess MCMC convergence.
MCMC. runtime.traceplot
Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.
MCMC.init.maxedges, MCMC.max.maxedges
These parameters control how much space is allocated for storing edgelists for return at the end of MCMC sampling. Allocating more than needed wastes memory, so MCMC. init. maxedges is the initial amount allocated, but it will be incremented by a factor of 10 if exceeded during the simulation, up to MCMC.max. maxedges, at which point the process will stop with an error.

MCMC.addto.se Whether to add the standard errors induced by the MCMC algorithm to the estimates' standard errors.
MCMC. compress Logical: If TRUE, the matrix of sample statistics returned is compressed to the set of unique statistics with a column of frequencies post-pended.
MCMC. packagenames
Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange setups.
SAN.maxit When target.stats argument is passed to ergm(), the maximum number of attempts to use san to obtain a network with statistics close to those specified.
SAN.nsteps.times
Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the amount of SAN burn-in (arguably, the most important of SAN parameters) without overriding the other SAN.control defaults.

SAN.control Control arguments to san. See control.san for details.
MCMLE.termination
The criterion used for terminating MCMLE estimation:

- "Hummel" Terminate when the Hummel step length is 1 for two consecutive iterations. For the last iteration, the sample size is boosted by a factor of MCMLE. last. boost. See Hummel et. al. (2012).

Note that this criterion is incompatible with MCMLE. steplength $\neq 1$ or MCMLE. steplength.margin $=$ NULL.

- "Hotelling" After every MCMC sample, an autocorrelation-adjusted Hotelling's $\mathrm{T}^{\wedge} 2$ test for equality of MCMC-simulated network statistics to observed is conducted, and if its P-value exceeds MCMLE.conv.min.pval, the estimation is considered to have converged and finishes. This was the default option in ergm version 3.1.
- "precision" Terminate when the estimated loss in estimating precision due to using MCMC standard errors is below the precision bound specified by MCMLE. MCMC. precision, and the Hummel step length is 1 for two consecutive iterations. See MCMLE.MCMC. precision for details. This feature is in experimental status until we verify the coverage of the standard errors.
Note that this criterion is incompatible with MCMLE. steplength $\neq 1$ or MCMLE.steplength.margin $=$ NULL.
- "none" Stop after MCMLE . maxit iterations.

MCMLE.maxit Maximum number of times the parameter for the MCMC should be updated by maximizing the MCMC likelihood. At each step the parameter is changed to the values that maximizes the MCMC likelihood based on the current sample.
MCMLE.conv.min.pval
The P -value used in the Hotelling test for early termination.
MCMLE.NR.maxit, MCMLE.NR.reltol
The method, maximum number of iterations and relative tolerance to use within the optim rountine in the MLE optimization. Note that by default, ergm uses trust, and falls back to optim only when trust fails.
obs.MCMC.samplesize, obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.burnin.min
Sample size, burnin, and interval parameters for the MCMC sampling used when unobserved data are present in the estimation routine.
obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density
Controls for imputation of missing dyads for initializing MCMC sampling. If numeric, obs.MCMC.impute.min_informative specifies the minimum number dyads that need to be non-missing before sample network density is used as the
imputation density. It can also be specified as a function that returns this value. obs.MCMC.impute.default_density similarly controls the imputation density when number of non-missing dyads is too low.
MCMLE. check. degeneracy
Logical: If TRUE, employ a check for model degeneracy.
MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac
MCMLE.MCMC. precision is a vector of upper bounds on the standard errors induced by the MCMC algorithm, expressed as a percentage of the total standard error. The MCMLE algorithm will terminate when the MCMC standard errors are below the precision bound, and the Hummel step length is 1 for two consecutive iterations. This is an experimental feature.
If effective sample size is used (see MCMC. effectiveSize), then ergm may increase the target ESS to reduce the MCMC standard error.

MCMLE.metric Method to calculate the loglikelihood approximation. See Hummel et al (2010) for an explanation of "lognormal" and "naive".
MCMLE.method Deprecated. By default, ergm uses trust, and falls back to optim with NelderMead method when trust fails.
MCMLE.trustregion
Maximum increase the algorithm will allow for the approximated likelihood at a given iteration. See Snijders (2002) for details.
Note that not all metrics abide by it.
MCMLE. dampening
(logical) Should likelihood dampening be used?
MCMLE.dampening.min.ess
The effective sample size below which dampening is used.

MCMLE. dampening. level

The proportional distance from boundary of the convex hull move.
MCMLE.steplength.margin
The extra margin required for a Hummel step to count as being inside the convex hull of the sample. Set this to 0 if the step length gets stuck at the same value over several iteraions. Set it to NULL to use fixed step length. Note that this parameter is required to be non-NULL for MCMLE termination using Hummel or precision criteria.
MCMLE.steplength
Multiplier for step length, which may (for values less than one) make fitting more stable at the cost of computational efficiency. Can be set to "adaptive"; see MCMLE. adaptive.trustregion.
If MCMLE. steplength.margin is not NULL, the step length will be set using the algorithm of Hummel et al. (2010). In that case, it will serve as the maximum step length considered. However, setting it to anything other than 1 will preclude using Hummel or precision as termination criteria.
MCMLE.adaptive.trustregion
Maximum increase the algorithm will allow for the approximated loglikelihood at a given iteration when MCMLE . steplength="adaptive".

MCMLE.sequential
Logical: If TRUE, the next iteration of the fit uses the last network sampled as the starting network. If FALSE, always use the initially passed network. The results should be similar (stochastically), but the TRUE option may help if the target. stats in the ergm() function are far from the initial network.
MCMLE.density.guard.min, MCMLE.density.guard
A simple heuristic to stop optimization if it finds itself in an overly dense region, which usually indicates ERGM degeneracy: if the sampler encounters a network configuration that has more than MCMLE.density.guard.min edges and whose number of edges is exceeds the observed network by more than MCMLE. density.guard, the optimization process will be stopped with an error.
MCMLE.effectiveSize, MCMLE.effectiveSize.interval_drop, MCMC.effectiveSize, MCMC.effectiveSize.damp
Set MCMLE.effectiveSize to non-NULL value to adaptively determine the burn-in and the MCMC length needed to get the specified effective size using the method of Sahlin (2011); 50 is a reasonable value. This feature is in experimental status until we verify the coverage of the standard errors.
MCMLE.last.boost
For the Hummel termination criterion, increase the MCMC sample size of the last iteration by this factor.
MCMLE. Hummel.esteq
For curved ERGMs, should the estimating function values be used to compute the Hummel step length? This allows the Hummel stepping algorithm converge when some sufficient statistics are at 0 .
MCMLE. Hummel.miss. sample
In fitting the missing data MLE, the rules for step length become more complicated. In short, it is necessary for all points in the constrained sample to be in the convex hull of the unconstrained (though they may be on the border); and it is necessary for their centroid to be in its interior. This requires checking a large number of points against whether they are in the convex hull, so to speed up the procedure, a sample is taken of the points most likely to be outside it. This parameter specifies the sample size.
MCMLE. Hummel.maxit
Maximum number of iterations in searching for the best step length.
MCMLE.steplength.min
Stops MCMLE estimation when the step length gets stuck below this minimum value.
MCMLE.save_intermediates
Every iteration, after MCMC sampling, save the MCMC sample and some miscellaneous information to a file with this name. This is mainly useful for diagnostics and debugging. The name is passed through sprintf() with iteration number as the second argument. (For example, MCMLE. save_intermediates="step_\%03d.RData" will save to step_001.RData, step_002.RData, etc.)
SA.phase1_n Number of MCMC samples to draw in Phase 1 of the stochastic approximation algorithm. Defaults to 7 plus 3 times the number of terms in the model. See Snijders (2002) for details.
SA.initial_gain
Initial gain to Phase 2 of the stochastic approximation algorithm. See Snijders (2002) for details.

SA.nsubphases Number of sub-phases in Phase 2 of the stochastic approximation algorithm. Defaults to MCMLE . maxit. See Snijders (2002) for details.
SA. niterations Number of MCMC samples to draw in Phase 2 of the stochastic approximation algorithm. Defaults to 7 plus the number of terms in the model. See Snijders (2002) for details.

SA.phase3_n Sample size for the MCMC sample in Phase 3 of the stochastic approximation algorithm. See Snijders (2002) for details.
SA.trustregion The trust region parameter for the likelihood functions, used in the stochastic approximation algorithm.
RM.phase1n_base, RM.phase2n_base, RM.phase2sub, RM.init_gain, RM.phase3n
The Robbins-Monro control parameters are not yet documented.
Step.MCMC.samplesize
MCMC sample size for the preliminary steps of the "Stepping" method of optimization. This is usually chosen to be smaller than the final MCMC sample size (which equals MCMC. samplesize). See Hummel et al. (2012) for details.
Step.maxit Maximum number of iterations (steps) allowed by the "Stepping" method.
Step.gridsize Integer N such that the "Stepping" style of optimization chooses a step length equal to the largest possible multiple of $1 / N$. See Hummel et al. (2012) for details.
CD.nsteps, CD.multiplicity

Main settings for contrastive divergence to obtain initial values for the estimation: respectively, the number of Metropolis-Hastings steps to take before reverting to the starting value and the number of tentative proposals per step. Computational experiments indicate that increasing CD.multiplicity improves the estimate faster than increasing CD. nsteps - up to a point - but it also samples from the wrong distribution, in the sense that while as CD. nsteps $\rightarrow \infty$, the CD estimate approaches the MLE, this is not the case for CD.multiplicity.
In practice, MPLE, when available, usually outperforms CD for even a very high CD.nsteps (which is, in turn, not very stable), so CD is useful primarily when MPLE is not available. This feature is to be considered experimental and in flux.
The default values have been set experimentally, providing a reasonably stable,
if not great, starting values.
CD.nsteps.obs, CD.multiplicity.obs

When there are missing dyads, CD.nsteps and CD.multiplicity must be set to a relatively high value, as the network passed is not necessarily a good start for CD. Therefore, these settings are in effect if there are missing dyads in the observed network, using a higher default number of steps.
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol,

Miscellaneous tuning parameters of the CD sampler and optimizer. These have the same meaning as their MCMC. * counterparts.
Note that only the Hotelling's stopping criterion is implemented for CD.
CD.metric, CD.method, CD.trustregion, CD.dampening, CD.dampening.min.ess, Miscellaneous tuning parameters of the CD sampler and optimizer. These have the same meaning as their MCMC. * counterparts.
Note that only the Hotelling's stopping criterion is implemented for CD.
CD. dampening.level, CD.steplength.margin, CD.steplength, CD. adaptive.trustregion,
Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC. $*$ counterparts.
Note that only the Hotelling's stopping criterion is implemented for CD.

Details

This function is only used within a call to the ergm() function. See the usage section in ergm() for details.

Value

A list with arguments as components.

References

- Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph Models. Journal of Social Structure. Available from https://www.cmu.edu/ joss/content/articles/volume3/Snijders.pdf.
- Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.
- Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15: 565-583.
- Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving SimulationBased Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, 21: 920-939.
- Kristoffer Sahlin. Estimating convergence of Markov chain Monte Carlo simulations. Master's Thesis. Stockholm University, 2011. https://www2.math.su.se/matstat/ reports/master/2011/rep2/report.pdf

See Also

ergm(). The control.simulate function performs a similar function for simulate.ergm; control.gof performs a similar function for gof.
control.ergm.bridge Auxiliary for Controlling ergm.bridge

Description

Auxiliary function as user interface for fine-tuning ergm.bridge algorithm, which approximates log likelihood ratios using bridge sampling.

Usage

control.ergm.bridge(nsteps $=20$, MCMC.burnin $=10000$, MCMC.interval $=100$, MCMC. samplesize $=10000$, obs.MCMC.samplesize = MCMC. samplesize, obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin, MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC. init.maxedges $=$ 20000, MCMC.packagenames $=c()$,
term.options $=$ list(), seed $=$ NULL, parallel $=0$,
parallel.type = NULL, parallel.version.check = TRUE)

Arguments

nsteps Number of geometric bridges to use.
MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.
MCMC. interval Number of proposals between sampled statistics.
MCMC. samplesize
Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm.
obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize
The obs versions of these arguments are for the unobserved data simulation algorithm.
MCMC. prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.
MCMC. prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC. init.maxedges
Maximum number of edges expected in network.
MCMC. packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
term.options A list of additional arguments to be passed to term initializers. It can also be set globally via option(ergm.term=list(...)).
seed Seed value (integer) for the random number generator. See set. seed.
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel.version.check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the ergm. bridge.llr or ergm.bridge.dindstart.llk functions.

Value

A list with arguments as components.

```
See Also
ergm.bridge.llr, ergm.bridge.dindstart.llk
```

```
control.ergm.godfather
```

Control parameters for ergm. godfather().

Description

Returns a list of its arguments.

Usage

control.ergm.godfather(GF.init.maxedges.mul = 5, term.options = NULL)

Arguments

GF.init.maxedges.mul
How much space is allocated for the edgelist of the final network. It is used adaptively, so should not be greater than 10.
term. options A list of additional arguments to be passed to term initializers. It can also be set globally via option(ergm.term=list(...)).
control.gof Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.
The control.gof.ergm version is intended to be used with gof.ergm() specifically and will "inherit" as many control parameters from ergm fit as possible().

Usage

control.gof.formula(nsim $=100$, MCMC.burnin $=10000$,
MCMC.interval = 1000, MCMC.prop.weights = "default",
MCMC. prop.args = list(), MCMC.init.maxedges = 20000,
MCMC. packagenames $=c()$, MCMC. runtime.traceplot $=$ FALSE,
network.output = "network", seed = NULL, parallel = 0,
parallel.type $=$ NULL, parallel.version.check $=$ TRUE)
control.gof.ergm(nsim $=100$, MCMC.burnin $=$ NULL,
MCMC.interval $=$ NULL, MCMC.prop.weights $=$ NULL,
MCMC.prop.args $=$ NULL, MCMC.init.maxedges $=$ NULL,
MCMC. packagenames $=$ NULL, MCMC. runtime.traceplot $=$ FALSE,
network.output = "network", seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE)

Arguments

nsim Number of networks to be randomly drawn using Markov chain Monte Carlo. This sample of networks provides the basis for comparing the model to the observed network.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.
MCMC. interval Number of proposals between sampled statistics.

MCMC.prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.
MCMC. prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC. init.maxedges
Maximum number of edges expected in network.
MCMC. packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
MCMC. runtime.traceplot
Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.
network. output R class with which to output networks. The options are "network" (default) and "edgelist.compressed" (which saves space but only supports networks without vertex attributes)
seed Seed value (integer) for the random number generator. See set. seed.
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel. version.check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the gof function. See the usage section in gof for details.

Value

A list with arguments as components.

See Also

gof. The control.simulate function performs a similar function for simulate.ergm; control.ergm performs a similar function for ergm.

Description

Auxiliary function as user interface for fine-tuning logLik.ergm algorithm, which approximates log likelihood values.

Usage

control.logLik.ergm(nsteps $=20$, MCMC.burnin $=$ NULL, MCMC.interval $=$ NULL, MCMC. samplesize $=$ NULL, obs.MCMC.samplesize = MCMC. samplesize, obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin, MCMC.prop.weights = NULL, MCMC.prop.args = NULL, warn.dyads = NULL, MCMC.init.maxedges = NULL, MCMC.packagenames = NULL, term.options $=$ NULL, seed $=$ NULL, parallel $=$ NULL, parallel.type $=$ NULL, parallel.version.check $=$ TRUE)

Arguments

nsteps \quad Number of geometric bridges to use.
MCMC. burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.

MCMC. interval Number of proposals between sampled statistics.
MCMC. samplesize
Number of network statistics, randomly drawn from a given distribution on the set of all networks, returned by the Metropolis-Hastings algorithm.
obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize
The obs versions of these arguments are for the unobserved data simulation algorithm.
MCMC. prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

MCMC. prop.args An alternative, direct way of specifying additional arguments to proposal.
warn.dyads Whether or not a warning should be issued when sample space constraints render the observed number of dyads ill-defined. Now defunct: use options (ergm. logLik.warn_dyads= . . .) instead.
MCMC.init.maxedges Maximum number of edges expected in network.
MCMC. packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
term. options A list of additional arguments to be passed to term initializers. It can also be set globally via option(ergm. term=list(...)).
seed Seed value (integer) for the random number generator. See set. seed.
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel.version.check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the logLik. ergm function.

Value

A list with arguments as components.

See Also

logLik.ergm
control.san Auxiliary for Controlling SAN

Description

Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage

control.san(SAN.maxit $=4$, SAN.tau $=1$, SAN.invcov $=$ NULL, SAN.invcov.diag = FALSE, SAN.nsteps.alloc = function(nsim) 2^{\wedge} seq_len(nsim), SAN.nsteps = 2^19, SAN. samplesize $=2^{\wedge} 12$, SAN.init.maxedges = 20000, SAN.max.maxedges = 2^26, SAN.prop.weights = "default", SAN.prop.args = list(), SAN. packagenames $=c()$, term.options $=$ list(), seed $=$ NULL, parallel $=0$, parallel.type $=$ NULL, parallel.version.check $=$ TRUE)

Arguments

SAN.maxit Number of temperature levels to use.
SAN.tau Tuning parameter, specifying the temperature of the process during the penultimate iteration. (During the last iteration, the temperature is set to 0 , resulting in a greedy search, and during the previous iterations, the temperature is set to SAN.tau*(iterations left after this one).
SAN.invcov Initial inverse covariance matrix used to calculate Mahalanobis distance in determining how far a proposed MCMC move is from the target. stats vector. If NULL, initially set to the identity matrix, then during subsequent runs estimated empirically.
SAN.invcov.diag
Whether to only use the diagonal of the covariance matrix. It seems to work better in practice.
SAN.nsteps.alloc
Either a numeric vector or a function of the number of runs giving a sequence of relative lengths of simulated annealing runs.
SAN.nsteps Number of MCMC proposals for all the annealing runs combined.
SAN. samplesize Number of realisations' statistics to obtain for tuning purposes.
SAN.init.maxedges
Maximum number of edges expected in network.
SAN.max.maxedges
Hard upper bound on the number of edges in the network.
SAN.prop.weights
Specifies the method to allocate probabilities of being proposed to dyads. Defaults to "default", which picks a reasonable default for the specified constraint. Other possible values are "TNT", "random", and "nonobserved", though not all values may be used with all possible constraints.

SAN.prop.args An alternative, direct way of specifying additional arguments to proposal. SAN. packagenames

Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
term.options A list of additional arguments to be passed to term initializers. It can also be set globally via option(ergm.term=list(...)).
seed Seed value (integer) for the random number generator. See set. seed.
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel. version. check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.

Details

This function is only used within a call to the san function. See the usage section in san for details.

Value

A list with arguments as components.

See Also

san
control.simulate.ergm Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation. control. simulate, control.simulate.formula, and control.simulate.formula.ergm are all aliases for the same function.
While the others supply a full set of simulation settings, control.simulate.ergm when passed as a control parameter to simulate. $\operatorname{ergm}()$ allows some settings to be inherited from the ERGM stimation while overriding others.

Usage

control.simulate.formula.ergm(MCMC.burnin $=10000$, MCMC.interval = 1000, MCMC.prop.weights = "default", MCMC. prop.args = list(), MCMC.init.maxedges = 20000, MCMC. packagenames $=c()$, MCMC. runtime.traceplot $=$ FALSE, network.output = "network", term.options = NULL, parallel = 0, parallel.type $=$ NULL, parallel.version.check $=$ TRUE, ...)
control.simulate(MCMC.burnin $=10000$, MCMC.interval $=1000$, MCMC.prop.weights = "default", MCMC.prop.args = list(), MCMC. init.maxedges $=20000$, MCMC. packagenames $=c()$, MCMC.runtime.traceplot = FALSE, network.output = "network", term.options $=$ NULL, parallel $=0$, parallel.type $=$ NULL, parallel.version.check = TRUE, ...)
control.simulate.formula(MCMC.burnin $=10000$, MCMC.interval $=1000$,
MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC.init.maxedges $=20000$, MCMC. packagenames $=c()$,
MCMC.runtime.traceplot $=$ FALSE, network.output = "network", term.options $=$ NULL, parallel $=0$, parallel.type $=$ NULL, parallel.version.check = TRUE, ...)
control.simulate.ergm(MCMC.burnin $=$ NULL, MCMC.interval $=$ NULL,

```
MCMC.prop.weights = NULL, MCMC.prop.args = NULL,
MCMC.init.maxedges = NULL, MCMC.packagenames = NULL,
MCMC.runtime.traceplot = FALSE, network.output = "network",
term.options = NULL, parallel = 0, parallel.type = NULL,
parallel.version.check = TRUE, ...)
```


Arguments

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to a fairly large number.

MCMC. interval Number of proposals between sampled statistics.
MCMC. prop.weights
Specifies the proposal distribution used in the MCMC Metropolis-Hastings algorithm. Possible choices are "TNT" or "random"; the "default" is one of these two, depending on the constraints in place (as defined by the constraints argument of the ergm function), though not all weights may be used with all constraints. The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with or without a tie as a candidate for toggling, whereas the random option puts equal weight on all possible dyads, though the interpretation of random may change according to the constraints in place. When no constraints are in place, the default is TNT, which appears to improve Markov chain mixing particularly for networks with a low edge density, as is typical of many realistic social networks.

MCMC. prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges
Maximum number of edges expected in network.
MCMC. packagenames
Names of packages in which to look for change statistic functions in addition to those autodetected. This argument should not be needed outside of very strange setups.
MCMC. runtime.traceplot
Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC MLE iteration.
network. output R class with which to output networks. The options are "network" (default) and "edgelist.compressed" (which saves space but only supports networks without vertex attributes)
term.options A list of additional arguments to be passed to term initializers. It can also be set globally via option(ergm.term=list(...)).
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism). See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK". Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel.version.check
Logical: If TRUE, check that the version of ergm running on the slave nodes is the same as that running on the master node.
... Additional arguments, passed to other functions This argument is helpful because it collects any control parameters that have been deprecated; a warning message is printed in case of deprecated arguments.

Details

This function is only used within a call to the simulate function. See the usage section in simulate. ergm for details.

Value

A list with arguments as components.

See Also

simulate.ergm, simulate.formula. control.ergm performs a similar function for ergm; control.gof performs a similar function for gof.

degreedist | Computes and Returns the Degree Distribution Information for a |
| :--- |
| Given Network |

Description

The degreedist generic computes and returns the degree distribution (number of vertices in the network with each degree value) for a given network. This help page documents the function. For help about the ERGM sample space constraint with that name, try help("degreedist-constraint").

Usage

degreedist(object, ...)
\#\# S3 method for class 'network'
degreedist(object, print = TRUE, ...)

Arguments

object a network object or some other object for which degree distribution is meaningful.
... Additional arguments to functions.
print logical, whether to print the degree distribution.

Value

If directed, a matrix of the distributions of in and out degrees; this is row bound and only contains degrees for which one of the in or out distributions has a positive count. If bipartite, a list containing the degree distributions of b1 and b2. Otherwise, a vector of the positive values in the degree distribution

Methods (by class)

- network: Method for network objects.

Examples

```
data(faux.mesa.high)
degreedist(faux.mesa.high)
```

ecoli Two versions of an E. Coli network dataset

Description

This network data set comprises two versions of a biological network in which the nodes are operons in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the transcription factor that regulates the second.

Usage

data(ecoli)

Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an undirected version of the same network, in which all arcs are treated as edges and the five isolated nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001; Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by ShenOrr et al (2002).

References

Salgado et al (2001), Regulondb (version 3.2): Transcriptional Regulation and Operon Organization in Escherichia Coli K-12, Nucleic Acids Research, 29(1): 72-74.
Shen-Orr et al (2002), Network Motifs in the Transcriptional Regulation Network of Escerichia Coli, Nature Genetics, 31(1): 64-68.
edges

```
edges edges (disambiguation)
```


Description

edges may refer to:

- An ERGM statistic (help("edges-term"))
- An ERGM sample space constraint (help("edges-constraint"))

$$
\begin{array}{ll}
\text { enformulate. curved } & \begin{array}{l}
\text { Convert a curved ERGM into a form suitable as initial values for the } \\
\text { same ergm. }
\end{array}
\end{array}
$$

Description

The generic enformulate. curved converts an ergm object or formula of a model with curved terms to the variant in which the curved parameters embedded into the formula and are removed from the parameter vector. This is the form required by ergm calls.

Usage

enformulate.curved(object, ...)
\#\# S3 method for class 'ergm'
enformulate.curved(object, ...)
\#\# S3 method for class 'formula'
enformulate.curved(object, theta, response = NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula (or the formula used in the fit) must have all of their arguments passed by name.
... Unused at this time.
theta Curved model parameter configuration.
response \quad Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.

Details

Because of a current kludge in ergm, output from one run cannot be directly passed as initial values (control.ergm(init=)) for the next run if any of the terms are curved. One workaround is to embed the curved parameters into the formula (while keeping fixed=FALSE) and remove them from control.ergm(init=).

This function automates this process for curved ERGM terms included with the ergm package. It does not work with curved terms not included in ergm.

Value

A list with the following components:
formula The formula with curved parameter estimates incorporated.
theta The coefficient vector with curved parameter estimates removed.

See Also

```
ergm, simulate.ergm
```


Examples

```
data(sampson)
gest<-ergm(samplike~edges+gwesp(decay=.5, fixed=FALSE),
    control=control.ergm(MCMC.burnin=1024, MCMC.interval=8, MCMLE.maxit=1))
# Error:
gest2<-try(ergm(gest$formula,
    control=control.ergm(init=coef(gest), MCMC.burnin=1024,
                                    MCMC.interval=8, MCMLE.maxit=1)))
print(gest2)
# Works:
tmp<-enformulate.curved(gest)
tmp
gest2<-try(ergm(tmp$formula,
    control=control.ergm(init=tmp$theta, MCMC.burnin=1024,
                                    MCMC.interval=8, MCMLE.maxit=1)))
summary(gest2)
```

ergm Exponential-Family Random Graph Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of a given network, y, on a set of nodes is $h(y) \exp \{\eta(\theta) \cdot g(y)\} / c(\theta)$, where $h(y)$ is the reference measure (usually $h(y)=1$), $g(y)$ is a vector of network statistics for $y, \eta(\theta)$ is a natural parameter vector of the same length (with $\eta(\theta)=\theta$ for most terms), and $c(\theta)$ is the normalizing constant for the distribution. ergm can return a maximum pseudo-likelihood estimate, an approximate maximum likelihood estimate based on a Monte Carlo scheme, or an approximate contrastive divergence estimate based on a similar scheme. (For an overview of the package, see ergm-package.)

Usage

```
    ergm(formula, response = NULL, reference = ~Bernoulli,
    constraints = ~., offset.coef = NULL, target.stats = NULL,
    eval.loglik = getOption("ergm.eval.loglik"), estimate = c("MLE",
    "MPLE", "CD"), control = control.ergm(), verbose = FALSE, ...)
    is.ergm(object)
    ## S3 method for class 'ergm'
    nobs(object, ...)
    ## S3 method for class 'ergm'
    print(x, digits = max(3, getOption("digits") - 3), ...)
    ## S3 method for class 'ergm'
    coef(object, ...)
    ## S3 method for class 'ergm'
    coefficients(object, ...)
    ## S3 method for class 'ergm'
    vcov(object, sources = c("all", "model", "estimation"),
    ...)
```

Arguments
formula An R formula object, of the form y \sim <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms and Morris, Handcock and Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM terms (terms for weighted edges). To create a network object in R, use the network() function, then add nodal attributes to it using the \%v\% operator if

	necessary. Enclosing a model term in offset () fixes its value to one specified
in offset. coef.	
response	Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a	
binary ERGM.	
reference	A one-sided formula specifying the reference measure (h(y)) to be used. (De-
faults to ~Bernoulli.) See help for ERGM reference measures implemented in	
the ergm package.	
A formula specifying one or more constraints on the support of the distribution	
of the networks being modeled, using syntax similar to the formula argument,	
on the right-hand side. Multiple constraints may be given, separated by "+" and	
"-" operators. (See ERGM constraints for the explanation of their semantics.)	
Together with the model terms in the formula and the reference measure, the	
constraints define the distribution of networks being modeled.	
It is also possible to specify a proposal function directly either by passing a string	
with the function's name (in which case, arguments to the proposal should be	
specified through the prop.args argument to control.ergm) or by giving it on	
the LHS of the constraints formula, in which case it will override the one chosen	

control	A list of control parameters for algorithm tuning. Constructed using control .ergm.
verbose	logical; if this is TRUE, the program will print out additional information, including goodness of fit statistics.
	Additional arguments, to be passed to lower-level functions.
object	an ergm object.
x, digits	See print().
	Automatically called when an object of class ergm is printed. Currently, summarizes the size of the MCMC sample, the θ vector governing the selection of the sample, and the Monte Carlo MLE. The optional digits argument specifies the significant digits for coefficients
sources	For the vcov method, specify whether to return the covariance matrix from the ERGM model, the estimation process, or both combined.

Value

ergm returns an object of class ergm that is a list consisting of the following elements:
coef The Monte Carlo maximum likelihood estimate of θ, the vector of coefficients for the model parameters.
sample The $n \times p$ matrix of network statistics, where n is the sample size and p is the number of network statistics specified in the model, generated by the last iteration of the MCMC-based likelihood maximization routine. These statistics are centered with respect to the observed statistics or target.stats, unless missing data MLE is used.
sample.obs As sample, but for the constrained sample.
iterations The number of Newton-Raphson iterations required before convergence.
MCMCtheta The value of θ used to produce the Markov chain Monte Carlo sample. As long as the Markov chain mixes sufficiently well, sample is roughly a random sample from the distribution of network statistics specified by the model with the parameter equal to MCMC the ta. If estimate="MPLE" then MCMCtheta equals the MPLE.
loglikelihood The approximate change in log-likelihood in the last iteration. The value is only approximate because it is estimated based on the MCMC random sample.
gradient The value of the gradient vector of the approximated loglikelihood function, evaluated at the maximizer. This vector should be very close to zero.
covar Approximate covariance matrix for the MLE, based on the inverse Hessian of the approximated loglikelihood evaluated at the maximizer.
failure Logical: Did the MCMC estimation fail?
network Original network
newnetworks A list of the final networks at the end of the MCMC simulation, one for each thread.
newnetwork The first (possibly only) element of netwonetworks.
coef.init The initial value of θ.

```
est.cov The covariance matrix of the model statistics in the final MCMC sample.
coef.hist, steplen.hist, stats.hist, stats.obs.hist
    For the MCMLE method, the history of coefficients, Hummel step lengths, and
    average model statistics for each iteration..
control The control list passed to the call.
etamap The set of functions mapping the true parameter theta to the canonical parameter
    eta (irrelevant except in a curved exponential family model)
formula The original formula entered into the ergm function.
target.stats The target.stats used during estimation (passed through from the Arguments)
target.esteq Used for curved models to preserve the target mean values of the curved terms.
    It is identical to target.stats for non-curved models.
constrained The list of constraints implied by the constraints used by original ergm call
constraints Constraints used during estimation (passed through from the Arguments)
reference The reference measure used during estimation (passed through from the Argu-
    ments)
estimate The estimation method used (passed through from the Arguments).
offset vector of logical telling which model parameters are to be set at a fixed value
    (i.e., not estimated).
drop If control$drop=TRUE, a numeric vector indicating which terms were dropped
    due to to extreme values of the corresponding statistics on the observed network,
    and how:
    0 The term was not dropped.
    -1 The term was at its minimum and the coefficient was fixed at -Inf.
    +1 The term was at its maximum and the coefficient was fixed at +Inf.
estimable A logical vector indicating which terms could not be estimated due to a constraints
    constraint fixing that term at a constant value.
null.lik Log-likelihood of the null model. Valid only for unconstrained models.
mle.lik The approximate log-likelihood for the MLE. The value is only approximate
    because it is estimated based on the MCMC random sample.
degeneracy.value
    Score calculated to assess the degree of degeneracy in the model. Only shows
    when MCMLE.check.degeneracy is TRUE in control.ergm.
degeneracy.type
    Supporting output for degeneracy.value. Only shows when MCMLE.check.degeneracy
    is TRUE in control.ergm. Mainly for internal use.
```

See the method print.ergm for details on how an ergm object is printed. Note that the method summary.ergm returns a summary of the relevant parts of the ergm object in concise summary format.

Methods (by generic)

- nobs: Return the number of informative dyads of a model fit.
- print:
- coef: extracts estimated model coefficients.
- coefficients: An alias for ergm.
- vcov: extracts the variance-covariance matrix of parameter estimates.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the observed network is never taken; instead, only the change in the number of triangles is recorded for each edge toggle.
In the implementation of ergm, the model is initialized in R, then all the model information is passed to a C program that generates the sample of network statistics using MCMC. This sample is then returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm. This can be chosen with the control.ergm(style="Robbins-Monro") option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a MetropolisHastings algorithm, depends on two things: The constraints, which define the set of possible networks that could be proposed in a particular Markov chain step, and the weights placed on these possible steps by the proposal distribution. The former may be controlled using the constraints argument described above. The latter may be controlled using the prop. weights argument to the control. ergm function.

The package is designed so that the user could conceivably add additional proposal types.

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals through sequential importance sampling. Statnet Project, Seattle, WA. Version 1. https://statnet. org.
Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7). https://www.jstatsoft.org/v24/i07/.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https: //cran.r-project.org/package=sna.
Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical Software, 24(2). https://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (https://statnet.org). R package version 1.12.0, https://cran.r-project.org/package=network.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal of Statistical Software, 24(8). https://www. jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in press.
Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working Paper \#39, Center for Statistics and the Social Sciences, University of Washington. https://www. csss.washington.edu/Papers/wp39.pdf
Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks. Statnet Project, Seattle, WA. Version 1.0, https://statnet. org.
Handcock MS and Gile KJ (2010). Modeling Social Networks from Sampled Data. Annals of Applied Statistics, 4(1), 5-25. doi: 10.1214/08AOAS221
Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA. Version 2, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, https: //statnet.org.
Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). https://www.jstatsoft.org/v24/i03/.
Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696
Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www. jstatsoft.org/v24/i04/.
Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph Models. Journal of Social Structure. Available from https://www.cmu.edu/joss/content/ articles/volume3/Snijders.pdf.

See Also

network, $\% \mathrm{v} \%, \% \mathrm{n} \%$, ergm-terms, ergmMPLE, summary.ergm, print.ergm

Examples

```
#
# load the Florentine marriage data matrix
#
data(flo)
#
# attach the sociomatrix for the Florentine marriage data
# This is not yet a network object.
#
flo
#
```

```
# Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
# print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
# create a vector indicating the wealth of each family (in thousands of lira)
# and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
# create a plot of the social network
#
plot(flomarriage)
#
# now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
# Use 'data(package = "ergm")' to list the data sets in a
#
data(package="ergm")
#
# Load a network object of the Florentine data
#
data(florentine)
#
# Fit a model where the propensity to form ties between
# families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
# add terms for the propensity to form 2-stars and triangles
# of families
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)
# import synthetic network that looks like a molecule
data(molecule)
# Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
# create a plot of the social network
# colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)
```

```
# measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)
# compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle
    + nodematch("atomic type",diff=TRUE),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)
# Extract parameter estimates as a numeric vector:
coef(gest)
# Sources of variation in parameter estimates:
vcov(gest, sources="model")
vcov(gest, sources="estimation")
vcov(gest, sources="all") # the default
```

ergm-constraints Sample Space Constraints for Exponential-Family Random Graph
Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of a given network, y, on a set of nodes is $h(y) \exp \{\eta(\theta) \cdot g(y)\} / c(\theta)$, where $h(y)$ is the reference measure (usually $h(y)=1$), $g(y)$ is a vector of network statistics for $y, \eta(\theta)$ is a natural parameter vector of the same length (with $\eta(\theta)=\theta$ for most terms), and $c(\theta)$ is the normalizing constant for the distribution.
This page describes the constraints (the networks y for which $h(y)>0$) that are included with the ergm package. Other packages may add new constraints.

Constraints formula

A constraints formula is a one- or two-sided formula whose left-hand side is an optional direct selection of the InitErgmProposal function and whose right-hand side is a series of one or more terms separated by "+" and "-" operators, specifying the constraint.
The sample space (over and above the reference distribution) is determined by iterating over the constraints terms from left to right, each term updating it as follows:

- If the constraint introduces complex dependence structure (e.g., constrains degree or number of edges in the network), then this constraint always restricts the sample space. It may only have a " + " sign.
- If the constraint only restricts the set of dyads that may vary in the sample space (e.g., blockdiagonal structure or fixing specific dyads at specific values) and has a " + " sign, the set of dyads that may vary is restricted to those that may vary according to this constraint and all the constraints to date.
- If the constraint only restricts the set of dyads that may vary in the sample space but has a "-" sign, the set of dyads that may vary is expanded to those that may vary according to this constraint or all the constraints up to date.

For example, a constraints formula $\sim a-b+c-d$ with all constraints dyadic will allow dyads permitted by either ' a ' or ' b ' but only if they are also permitted by ' c '; as well as all dyads permitted by ' d '. If ' A ', ' B ', ' C ', and ' D ' were logical matrices, the matrix of variable dyads would be equal to '((A|B)\&C)|D'.

Terms with a positive sign can be viewed as "adding" a constraint while those with a negative sign can be viewed as "relaxing" a constraint.

Constraints implemented in the ergm package

. or NULL (dyad-independent) A placeholder for no constraints: all networks of a particular size and type have non-zero probability. Cannot be combined with other constraints.
bd(attribs, maxout, maxin, minout, minin) Constrain maximum and minimum vertex degree. See "Placing Bounds on Degrees" section for more information.
blockdiag(attrname) (dyad-independent) Force a block-diagonal structure (and its bipartite analogue) on the network. Only dyads (i, j) for which attrname(i)==attrname(j) can have edges.
Note that the current implementation requires that blocks be contiguous for "unipartite" graphs, and for bipartite graphs, they must be contiguous within a partition and must have the same ordering in both partitions. (They do not, however, require that all blocks be represented in both partitions, but those that overlap must have the same order.)
degrees and nodedegrees Preserve the degree of each vertex of the given network: only networks whose vertex degrees are the same as those in the network passed in the model formula have non-zero probability. If the network is directed, both indegree and outdegree are preserved.
odegrees, idegrees, b1degrees, b2degrees For directed networks, odegrees preserves the outdegree of each vertex of the given network, while allowing indegree to vary, and conversely for idegrees. b1degrees and b2degrees perform a similar function for bipartite networks.
degreedist Preserve the degree distribution of the given network: only networks whose degree distributions are the same as those in the network passed in the model formula have non-zero probability.
idegreedist and odegreedist Preserve the (respectively) indegree or outdegree distribution of the given network.
edges Preserve the edge count of the given network: only networks having the same number of edges as the network passed in the model formula have non-zero probability.
observed (dyad-independent) Preserve the observed dyads of the given network.
fixedas (present, absent) (dyad-independent) Preserve the edges in 'present' and preclude the edges in 'absent'. Both 'present' and 'absent' can take input object as edgelist and network, the latter will convert to the corresponding edgelist.
fixallbut (free.dyads) (dyad-independent) Preserve the dyad status in all but free.dyads. free.dyads can take input object as edgelist and network, the latter will convert to the corresponding edgelist.
Not all combinations of the above are supported.

Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control for activity or popularity processes), to account for known outliers of some kind, and thus we wish to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the survey asked everyone to name only three friends total) or as a function of the attributes of the nodes to which a node has edges (e.g., we specify that nodes designated "male" have a maximum number of outdegrees to nodes designated "female"). To accomplish this we use the constraints term bd.

Let's consider the simple cases first. Suppose you want to condition on the total number of degrees regardless of attributes. That is, if you had a survey that asked respondents to name three alters and no more, then you might want to limit your maximal outdegree to three without regard to any of the alters' attributes. The argument is then:

```
constraints=~bd(maxout=3)
```

Similar calls are used to restrict the number of indegrees (maxin), the minimum number of outdegrees (minout), and the minimum number of indegrees (minin).
You can also set ego specific limits. For example:

```
constraints=bd(maxout=rep(c(3,4),c(36,35)))
```

limits the first 36 to 3 and the other 35 to 4 outdegrees.
Multiple restrictions can be combined. bd is very flexible. In general, the bd term can contain up to five arguments:

```
bd(attribs=attribs,
    maxout=maxout,
    maxin=maxin,
    minout=minout,
    minin=minin)
```

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as above). If an individual entry in maxout,..., minin is NA then no restriction of that kind is applied to that actor.
In general, attribs is a matrix of the attributes on which we are conditioning. The dimensions of attribs are n_nodes rows by attrcount columns, where attrcount is the number of distinct attribute values on which we want to condition (i.e., a separate column is required for "male" and "female" if we want to condition on the number of ties to both "male" and "female" partners). The value of attribs[n, i], therefore, is TRUE if node n has attribute value i, and FALSE otherwise. (Note that, since each column represents only a single value of a single attribute, the values of this matrix are all Boolean (TRUE or FALSE).) It is important to note that attribs is a matrix of nodal attributes, not alter attributes.

So, for instance, if we wanted to construct an attribs matrix with two columns, one each for male and female attribute values (we are conditioning on these values of the attribute "sex"), and the attribute sex is represented in ads.sex as an $n_{\text {_node-long vector of } 0 \text { s and } 1 s \text { (men and women), then }}$ our code would look as follows:

```
# male column: bit vector, TRUE for males
attrsex1 <- (ads.sex == 0)
# female column: bit vector, TRUE for females
attrsex2 <- (ads.sex == 1)
# now create attribs matrix
attribs <- matrix(ncol=2,nrow=71, data=c(attrsex1,attrsex2))
```

maxout is a matrix of alter attributes, with the same dimensions as the attribs matrix. maxout is $n _$nodes rows by attrcount columns. The value of maxout $[n, i]$, therefore, is the maximum number of outdegrees permitted from node n to nodes with the attribute i (where a NA means there is no maximum).
For example: if we wanted to create a maxout matrix to work with our attribs matrix above, with a maximum from every node of five outedges to males and five outedges to females, our code would look like this:

```
# every node has maximum of 5 outdegrees to male alters
maxoutsex1 <- c(rep(5,71))
# every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))
# now create maxout matrix
maxout <- cbind(maxoutsex1,maxoutsex2)
```

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices; maxin and minin will both be ignored in this case.

References

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal of Statistical Software, 24(8). https://www. jstatsoft.org/v24/i08/.
Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics.
Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). https://www.jstatsoft.org/v24/i03/.
Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696
Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www. jstatsoft.org/v24/i04/.

Description

For estimation that require MCMC, ergm can take advantage of multiple CPUs or CPU cores on the system on which it runs, as well as computing clusters. It uses package parallel and snow to facilitate this, and supports all cluster types that they does. The number of nodes used and the parallel API are controlled using the parallel and parallel.type arguments passed to the control functions, such as control.ergm.
The ergm.getCluster function is usually called internally by the ergm process (in ergm_MCMC_sample) and will attempt to start the appropriate type of cluster indicated by the control.ergm settings. It will also check that the same version of ergm is installed on each node.

The ergm. stopCluster shuts down a cluster, but only if ergm.getCluster was responsible for starting it.
The ergm. restartCluster restarts and returns a cluster, but only if ergm.getCluster was responsible for starting it.
nthreads is a simple generic to obtain the number of parallel processes represented by its argument, keeping in mind that having no cluster (e.g., NULL) represents one thread.

Usage

```
ergm.getCluster(control = NULL, verbose = FALSE,
        stop_on_exit = parent.frame())
ergm.stopCluster(..., verbose = FALSE)
ergm.restartCluster(control = NULL, verbose = FALSE)
nthreads(clinfo = NULL, ...)
## S3 method for class 'cluster'
nthreads(clinfo = NULL, ...)
## S3 method for class 'NULL'
nthreads(clinfo = NULL, ...)
## S3 method for class 'control.list'
nthreads(clinfo = NULL, ...)
```


Arguments

control a control.ergm (or similar) list of parameter values from which the parallel settings should be read; can also be NULL, in which case an existing cluster is used if started, or no cluster otherwise.

```
verbose logical, should detailed status info be printed to console?
stop_on_exit An environment or NULL. If an environment, defaulting to that of the calling
        function, the cluster will be stopped when the calling the frame in question exits.
... not currently used
clinfo a cluster or another object.
```


Details

Further details on the various cluster types are included below.

PSOCK clusters

The parallel package is used with PSOCK clusters by default, to utilize multiple cores on a system. The number of cores on a system can be determined with the detectCores function.

This method works with the base installation of R on all platforms, and does not require additional software.
For more advanced applications, such as clusters that span multiple machines on a network, the clusters can be initialized manually, and passed into ergm using the parallel control argument. See the second example below.

MPI clusters

To use MPI to accelerate ERGM sampling, pass the control parameter parallel.type="MPI". ergm requires the snow and Rmpi packages to communicate with an MPI cluster.
Using MPI clusters requires the system to have an existing MPI installation. See the MPI documentation for your particular platform for instructions.
To use ergm across multiple machines in a high performance computing environment, see the section "User initiated clusters" below.

User initiated clusters

A cluster can be passed into ergm with the parallel control parameter. ergm will detect the number of nodes in the cluster, and use all of them for MCMC sampling. This method is flexible: it will accept any cluster type that is compatible with snow or parallel packages. Usage examples for a multiple-machine high performance MPI cluster can be found at the statnet wiki: https: //statnet.csde.washington.edu/trac/wiki/ergmParallel

Examples

```
# Uses 2 SOCK clusters for MCMLE estimation
data(faux.mesa.high)
nw <- faux.mesa.high
fauxmodel.01 <- ergm(nw ~ edges + isolates + gwesp(0.2, fixed=TRUE),
    control=control.ergm(parallel=2, parallel.type="PSOCK"))
summary(fauxmodel.01)
```


Description

This page describes the possible reference measures (baseline distributions) for found in the ergm package, particularly the default (Bernoulli) reference measure for binary ERGMs.

The reference measure is specified on the RHS of a one-sided formula passed as the reference argument to ergm. See the ergm documentation for a complete description of how reference measures are specified.

Possible reference measures to represent baseline distributions

Reference measures currently available are:
Bernoulli Bernoulli-reference ERGM: Specifies each dyad's baseline distribution to be Bernoulli with probability of the tie being 0.5 . This is the only reference measure used in binary mode.
DiscUnif (a, b) Discrete-Uniform-reference ERGM: Specifies each dyad's baseline distribution to be discrete uniform between a and b (both inclusive): $h(y)=1$, with the support being $\mathrm{a}, \mathrm{a}+1, \ldots, \mathrm{~b}-1, \mathrm{~b}$. At this time, both a and b must be finite.

Unif(a, b) Coninuous-Uniform-reference ERGM: Specifies each dyad's baseline distribution to be continuous uniform between a and b (both inclusive): $h(y)=1$, with the support being [a, b]. At this time, both a and b must be finite.

StdNormal Standard-Normal-reference ERGM: Specifies each dyad's baseline distribution to be the normal distribution with mean 0 and variance 1.

References

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

See Also

ergm, network, $\% \mathrm{v} \%, \% \mathrm{n} \%$, sna, summary.ergm, print.ergm
ergm-terms Terms used in Exponential Family Random Graph Models

Description

The function ergm is used to fit exponential random graph models, in which the probability of a given network, y, on a set of nodes is

$$
h(y) \exp \{\eta(\theta) \cdot g(y)\} / c(\theta)
$$

where $h(y)$ is the reference measure (for valued network models), $g(y)$ is a vector of network statistics for $y, \eta(\theta)$ is a natural parameter vector of the same length (with $\eta(\theta)=\theta$ for most terms), and $c(\theta)$ is the normalizing constant for the distribution.
The network statistics $g(y)$ are entered as terms in the function call to ergm. This page describes the possible terms (and hence network statistics) included in ergm package.
A cross-referenced HTML version of the term documentation is available via vignette ('ergm-term-crossRef') and terms can also be searched via search. ergmTerms.

Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics. This is done via a formula, that is, an R formula object, of the form $\mathrm{y} \sim<$ term $1>+<$ term $2>\ldots$, where y is a network object or a matrix that can be coerced to a network object, and <term $1>$, <term 2>, etc, are each terms chosen from the list given below. To create a network object in R, use the network function, then add nodal attributes to it using the $\% \mathrm{v} \%$ operator if necessary.

Binary and valued ERGM terms:

ergm functions such as ergm and simulate (for ERGMs) may operate in two modes: binary and weighted/valued, with the latter activated by passing a non-NULL value as the response argument, giving the edge attribute name to be modeled/simulated.
Binary ERGM statistics cannot be used in valued mode and vice versa. However, a substantial number of binary ERGM statistics - particularly the ones with dyadic indepenence - have simple generalizations to valued ERGMs, and have been adapted in ergm. They have the same form as their binary ERGM counterparts, with an additional argument: form, which, at this time, has two possible values: "sum" (the default) and "nonzero". The former creates a statistic of the form $\sum_{i, j} x_{i, j} y_{i, j}$, where $y_{i, j}$ is the value of dyad (i, j) and $x_{i, j}$ is the term's covariate associated with it. The latter computes the binary version, with the edge considered to be present if its value is not 0 .
Valued version of some binary ERGM terms have an argument threshold, which sets the value above which a dyad is conidered to have a tie. (Value less than or equal to threshold is considered a nontie.)

Nodal attribute levels and indices:

Terms taking a categorical nodal covariate also take the levels argument. (There are analogous b1levels and b2levels arguments for some terms that apply to bipartite networks, and the levels2 argument for mixing terms.) The levels argument can be used to control the set and the ordering of attribute levels.

Terms that allow the selection of nodes do so with the nodes argument, which is interpreted in the same way as the levels argument, where the categories are the relevant nodal indices themselves. Both levels and nodes use the new level selection UI. (See Specifying Vertex Attributes and Levels for details.)

Legacy arguments:

The legacy base and keep arguments are deprecated as of version 3.10, and replaced by the
levels UI. The levels argument provides consistent and flexible mechanisms for specifying which attribute levels to exclude (previously handled by base) and include (previously handled by keep). If levels or nodes argument is given, then base and keep arguments are ignored. The legacy arguments will most likely be removed in a future version.
Note that this exact behavior is new in version 3.10, and it differs slightly from older versions: previously if both levels and base/keep were given, levels argument was applied first and then applied the base/keep argument. Since version 3.10, base/keep would be ignored, even if old term behavior is invoked (as described in the next section).

Term versioning:

When a term's behavior has changed from prior version, it is often possible to invoke the old behavior by setting and/or passing a version term option, giving the verison (constructed by as.package_version) desired.

Custom ergm terms:

Users and other packages may build custom terms, and package ergm. userterms provides tools for implementing them.
The current recommendation for any package implementing additional terms is to create a help file with a name or alias ergm-terms, so that help("ergm-terms") will list ERGM terms available from all loaded packages.

Terms included in the ergm package

As noted above, a cross-referenced HTML version of the term documentation is available via vignette('ergm-term-crossRef') and terms can also be searched via search.ergmTerms.
absdiff(attr, pow=1) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal at
Absolute difference: The attr argument specifies a quantitative attribute (see Specifying Vertex Attributes and Levels for details). This term adds one network statistic to the model equaling the sum of abs(attr[i]-attr[j])^pow for all edges (i,j) in the network.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
absdiffcat (attr, base=NULL, levels=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nod:
Categorical absolute difference: The attr argument specifies a quantitative attribute (see Specifying Vertex Attributes and Levels for details). This term adds one statistic for every possible nonzero distinct value of abs (attr[i]-attr[j]) in the network; the value of each such statistic is the number of edges in the network with the corresponding absolute difference. The optional argument levels specifies which nonzero differences to include in or exclude from the model (see Specifying Vertex Attributes and Levels for details). For example, if the possible values of abs(attr[i]-attr[j]) are $0,0.5,3,3.5$, and 10 , then to omit 0.5 and 10 one could set levels=2:3 (we wish to retain the second and third nonzero difference, when differences are sorted in increasing order). Note that this term should generally be used only
when the quantitative attribute has a limited number of possible values; an example is the "Grade" attribute of the faux.mesa.high or faux.magnolia.high datasets.
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
altkstar (lambda, fixed=FALSE) (binary) (undirected) (curved) (categorical nodal attribute) Alternating k-star: This term adds one network statistic to the model equal to a weighted alternating sequence of k-star statistics with weight parameter lambda. This is the version given in Snijders et al. (2006). The gwdegree and altkstar produce mathematically equivalent models, as long as they are used together with the edges (or kstar(1)) term, yet the interpretation of the gwdegree parameters is slightly more straightforward than the interpretation of the altkstar parameters. For this reason, we recommend the use of the gwdegree instead of altkstar. See Section 3 and especially equation (13) of Hunter (2007) for details. The optional argument fixed indicates whether the decay parameter is fixed at the given value, or is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This term can only be used with undirected networks.
asymmetric (attr=NULL, diff=FALSE, keep=NULL, levels=NULL) (binary) (directed) (dyad-independent) (triad-rel Asymmetric dyads: This term adds one network statistic to the model equal to the number of pairs of actors for which exactly one of $(i \rightarrow j)$ or $(j \rightarrow i)$ exists. This term can only be used with directed networks. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If attr is specified, only asymmetric pairs that match on the vertex attribute attr are counted. The optional modifiers diff and levels are used in the same way as for the nodematch term; refer to this term for details and an example. The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep.
atleast (threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with values greater than or equal to a threshold Adds one statistic equaling to the number of dyads whose values equal or exceed threshold.
atmost (threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with values less than or equal to a threshold Adds one statistic equaling to the number of dyads whose values equal or are exceeded by threshold.
b1 concurrent (by=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) Concurrent node count for the first mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model, equal to the number of nodes in the first mode of the network with degree 2 or higher. The first mode of a bipartite network object is sometimes known as the "actor" mode. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details); it functions just like the by argument of the b1degree term. Without the optional argument, this statistic is equivalent to b1mindegree(2). This term can only be used with undirected bipartite networks.
b1cov (attr) (binary) (undirected) (bipartite) (dyad-independent) (quantitative nodalattribute) (frequently-used), b1 Main effect of a covariate for the first mode in a bipartite (aka two-mode) network: The attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single network statistic for each quantitative attribute or matrix column to the model equaling the total value of attr(i) for all edges (i, j) in the network. This term may only be used with bipartite networks. For categorical attributes, see b1factor.

Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
b1degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (bipartite) (undirected)
Degree range for the first mode in a bipartite (a.k.a. two-mode) network: The from and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors has length 1 , it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the i th such statistic equals the number of nodes of the first mode ("actors") in the network of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in semiopen interval [from, to). The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and odegrange. For undirected networks, see degrange, and see b2degrange for degrees of the second mode ("events").
b1degree (d, by=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used Degree for the first mode in a bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes of degree $\mathrm{d}[\mathrm{i}]$ in the first mode of a bipartite network, i.e. with exactly $\mathrm{d}[\mathrm{i}]$ edges. The first mode of a bipartite network object is sometimes known as the "actor" mode. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then each node's degree is tabulated only with other nodes having the same value of the by attribute.
This term can only be used with undirected bipartite networks.
b1factor (attr, base=1, levels=-1) (binary) (bipartite) (undirected) (dyad-independent) (frequently-used) (categ Factor attribute effect for the first mode in a bipartite (aka two-mode) network: The attr argument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute. Each of these statistics gives the number of times a node with that attribute in the first mode of the network appears in an edge. The first mode of a bipartite network object is sometimes known as the "actor" mode.
The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of b1factor("fruit", levels=-(2:3)), b1factor("fruit", levels=c (1,4)), and b1factor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
This term can only be used with undirected bipartite networks.
b1mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the first mode in a bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes in the first mode of a bipartite network with at least degree $d[i]$. The first mode of a bipartite network object is sometimes known as the "actor" mode.
This term can only be used with undirected bipartite networks.
b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) (bipart Nodal attribute-based homophily effect for the first mode in a bipartite (aka two-mode) network: This term is introduced in Bomiriya et al (2014). The attr argument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). Out of the two arguments (discount parameters) alpha and beta, both of which take values from [0,1], only one should be set at a time. If none is set to a value other than 1 , this term will simply be a homophily based two-star statistic. This term adds one statistic to the model unless diff is set to TRUE, in which case the term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute. To include only the attribute values you wish, use the levels arguments.
The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep.
If an alpha discount parameter is used, each of these statistics gives the sum of the number of common second-mode nodes raised to the power alpha for each pair of first-mode nodes with that attribute. If a beta discount parameter is used, each of these statistics gives half the sum of the number of two-paths with two first-mode nodes with that attribute as the two ends of the two path raised to the power beta for each edge in the network. The byb2attr argument specifies a second mode categorical attribute. Setting this argument will separate the orginal statistics based on the values of the set second mode attribute- i.e. for example, if diff is FALSE, then the sum of all the statistics for each level of this second-mode attribute will be equal to the original b1nodematch statistic where byb2attr set to NULL. This term can only be used with undirected bipartite networks.
b1 sociality (nodes=-1) (binary) (bipartite) (undirected) (dyad-independent), b1sociality (nodes=-1, form="sum'
Degree: This term adds one network statistic for each node in the first bipartition, equal to the number of ties of that node. By default, nodes=-1 means that the statistic for the first node will be omitted, but this argument may be changed to control which statistics are included. The nodes argument is interpreted using the new UI for level specification (see Specifying Vertex Attributes and Levels for details), where both the attribute and the sorted unique values are the vector of vertex indices $1: n b 1$, where nb1 is the size of the first bipartition. This term can only be used with bipartite networks. For directed networks, see sender and receiver. For unipartite networks, see sociality.
$\mathrm{b} 1 \mathrm{star}(\mathrm{k}$, attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) k-Stars for the first mode in a bipartite (aka two-mode) network: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k . The i th such statistic counts the number of distinct $\mathrm{k}[\mathrm{i}]$-stars whose center node is in the first mode of the network. The first mode of a bipartite network object is sometimes known as the "actor" mode. A k-star is defined to be a center node N and a set of k different nodes $\left\{O_{1}, \ldots, O_{k}\right\}$ such that the ties $\left\{N, O_{i}\right\}$ exist for $i=1, \ldots, k$. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then the count is over the number of k-stars (with center node in the first mode) where all nodes have the same value of the attribute. This term can only be used for undirected bipartite networks. Note that b1star(1) is equal to b2star(1) and to edges.
b1starmix(k, attrname, base=NULL, diff=TRUE, levels=NULL) (binary) (bipartite) (undirected) (categorical nod Mixing matrix for k-stars centered on the first mode of a bipartite network: Only a single value of k is allowed. This term counts all k -stars in which the b 2 nodes (called events in some contexts) are homophilous in the sense that they all share the same value of attrname. However, the b1 node (in some contexts, the actor) at the center of the k-star does NOT have to have the same value as the b2 nodes; indeed, the values taken by the b1 nodes may be completely distinct from those of the b2 nodes, which allows for the use of this term in cases where there are two separate nodal attributes, one for the b1 nodes and another for the b2 nodes (in this case, however, these two attributes should be combined to form a single nodal attribute called attrname. A different statistic is created for each value of attrname seen in a b1 node, even if no k -stars are observed with this value. Whether a different statistic is created for each value seen in a b2 node depends on the value of the diff argument: When diff=TRUE, the default, a different statistic is created for each value and thus the behavior of this term is reminiscent of the nodemix term, from which it takes its name; when diff=FALSE, all homophilous k-stars are counted together, though these k-stars are still categorized according to the value of the central b1 node.
The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of b1starmix ("fruit", levels=-(2:3)), b1starmix("fruit", levels=c (1,4)), and b1starmix("fruit", levels=c("apple", "pear")). By default, all levels are included.
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) (bipartite) (u Two-star census for central nodes centered on the first mode of a bipartite network: This term takes two nodal attributes (see Specifying Vertex Attributes and Levels for details), one for b1 nodes (actors in some contexts) and one for b2 nodes (events in some contexts). Only b1attr is required; if b2attr is not passed, it is assumed to be the same as b1attr. Assuming that there are n_{1} values of b1attr among the b1 nodes and n_{2} values of b2attr among the b 2 nodes, then the total number of distinct categories of two stars according to these two attributes is $n_{1}\left(n_{2}\right)\left(n_{2}+1\right) / 2$. By default, this model term creates a distinct statistic counting each of these categories. The b1levels, b2levels, base, and levels2 arguments may be used to leave some of these categories out (see Specifying Vertex Attributes and Levels for details).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base. The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels2 are passed, levels2 overrides base.
b2concurrent (by=NULL) (binary) (bipartite) (undirected) (frequently-used) Concurrent node count for the second mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model, equal to the number of nodes in the second mode of the network with degree 2 or higher. The second mode of a bipartite network object is sometimes known as the "event" mode. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details); it functions just like the by argument of the b2degree term. Without the optional argument, this statistic is equivalent to b2mindegree(2).
This term can only be used with undirected bipartite networks.
b2cov(attr) (binary) (undirected) (bipartite) (dyad-independent) (quantitative nodal attribute) (frequently-used), b Main effect of a covariate for the second mode in a bipartite (aka two-mode) network: The attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single network statistic for each quantitative attribute or matrix column to the model equaling the total value of attr (j) for all edges (i, j) in the network. This term may only be used with bipartite networks. For categorical attributes, see b2factor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (bipartite) (undirected) Degree range for the second mode in a bipartite (a.k.a. two-mode) network: The from and to arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors has length 1 , it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the i th such statistic equals the number of nodes of the second mode ("events") in the network of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in semiopen interval [from, to). The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and odegrange. For undirected networks, see degrange, and see b1degrange for degrees of the first mode ("actors").
b2degree(d, by=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)
Degree for the second mode in a bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes of degree $\mathrm{d}[\mathrm{i}]$ in the second mode of a bipartite network, i.e. with exactly $\mathrm{d}[\mathrm{i}]$ edges. The second mode of a bipartite network object is sometimes known as the "event" mode. The optional term by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then each node's degree is tabulated only with other nodes having the same value of the by attribute.
This term can only be used with undirected bipartite networks.
b2factor(attr, base=1, levels=-1) (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attrib Factor attribute effect for the second mode in a bipartite (aka two-mode) network: The attr argument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute. Each of these statistics gives the number of times a node with that attribute in the second mode of the network appears in an edge. The second mode of a bipartite network object is sometimes known as the "event" mode.
The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of b2factor("fruit", levels=-(2:3)), b2factor("fruit", levels=c (1,4)), and b2factor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also including edges. The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
This term can only be used with undirected bipartite networks.
b2mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the second mode in a bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes in the second mode of a bipartite network with at least degree $d[i]$. The second mode of a bipartite network object is sometimes known as the "event" mode.
This term can only be used with undirected bipartite networks.
b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) (bipart
Nodal attribute-based homophily effect for the second mode in a bipartite (aka two-mode)
network: This term is introduced in Bomiriya et al (2014). The attr argument specifies a
categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). Out of
the two arguments (discount parameters) alpha and beta, both which takes values from [0,1],
only one should be set at a time. If none is set to a value other than 1 , this term will simply be
a homophily based two-star statistic. This term adds one statistic to the model unless diff is
set to TRUE, in which case the term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute. To include only the attribute values you wish, use the levels argument.
The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep.
If an alpha discount parameter is used, each of these statistics gives the sum of the number of common first-mode nodes raised to the power alpha for each pair of second-mode nodes with that attribute. If a beta discount parameter is used, each of these statistics gives half the sum of the number of two-paths with two second-mode nodes with that attribute as the two ends of the two path raised to the power beta for each edge in the network. The byb1attr argument specifies a first mode categorical attribute. Setting this argument will separate the orginal statistics based on the values of the set first mode attribute- i.e. for example, if diff is FALSE, then the sum of all the statistics for each level of this first-mode attribute will be equal to the original b2nodematch statistic where byb1attr set to NULL.
This term can only be used with undirected bipartite networks.
b2sociality (nodes=-1) (binary) (bipartite) (undirected) (dyad-independent), b2sociality (nodes=-1, form="sum'
Degree: This term adds one network statistic for each node in the second bipartition, equal to the number of ties of that node. By default, nodes=-1 means that the statistic for the first node (in the second bipartition) will be omitted, but this argument may be changed to control which statistics are included. The nodes argument is interpreted using the new UI for level specification (see Specifying Vertex Attributes and Levels for details), where both the attribute and the sorted unique values are the vector of vertex indices ($n b 1+1$):n, where $n b 1$ is the size of the first bipartition and n is the total number of nodes in the network. Thus nodes=120 will include only the statistic for the 120th node in the second biparition, while nodes=I (120) will include only the statistic for the 120th node in the entire network. This term can only be used with undirected bipartite networks. For directed networks, see sender and receiver. For unipartite networks, see sociality.
$\mathrm{b} 2 \mathrm{star}(\mathrm{k}$, attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
k-Stars for the second mode in a bipartite (aka two-mode) network: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k . The i th such statistic counts the number of distinct $\mathrm{k}[\mathrm{i}]$-stars whose center node is in the second mode of the network. The second mode of a bipartite network object is sometimes known as the "event" mode. A k-star is defined to be a center node N and a set of k different nodes $\left\{O_{1}, \ldots, O_{k}\right\}$ such that the ties $\left\{N, O_{i}\right\}$ exist for $i=1, \ldots, k$. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then the count is over the number of k-stars (with center node in the second mode) where all nodes have the same value of the attribute. This term can only be used for undirected bipartite networks. Note that b2star(1) is equal to b1star(1) and to edges.
b2starmix(k, attrname, base=NULL, diff=TRUE, levels=NULL) (binary) (bipartite) (undirected) (categorical nod Mixing matrix for k-stars centered on the second mode of a bipartite network: This term is exactly the same as b1starmix except that the roles of b1 and b2 are reversed.
b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) (bipartite) (u Two-star census for central nodes centered on the second mode of a bipartite network: This term is exactly the same as b1twostar except that the roles of b1 and b2 are reversed.
balance (binary) (triad-related) (directed) (undirected) Balanced triads: This term adds one network statistic to the model equal to the number of triads in the network that are balanced. The balanced triads are those of type 102 or 300 in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see ?triad.classify in the \{sna\} package. For an undirected network, the balanced triads are those with an even number of ties (i.e., 0 and 2).
coincidence(levels=NULL, active=0) (binary) (bipartite) (undirected) Coincident node count for the second mode in a bipartite (aka two-mode) network: By default this term adds one network statistic to the model for each pair of nodes of mode two. It is equal to the number of (first mode) mutual partners of that pair. The first mode of a bipartite network object is sometimes known as the "actor" mode and the seconds as the "event" mode. So this is the number of actors going to both events in the pair. The optional argument levels specifies which pairs of nodes in mode two to include (see Specifying Vertex Attributes and Levels for details). The second optional argument, active, selects pairs for which the observed count is at least active. If both levels and active are specified, then active is ignored. (Thus, indices passed as levels should correspond to indices when levels = NULL and active = 0 .) This term can only be used with undirected bipartite networks.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
concurrent (by=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute) Concurrent node count: This term adds one network statistic to the model, equal to the number of nodes in the network with degree 2 or higher. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details); it functions just like the by argument of the degree term. This term can only be used with undirected networks.
concurrentties(by=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute) Concurrent tie count: This term adds one network statistic to the model, equal to the number of ties incident on each actor beyond the first. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details); it functions just like the by argument of the degree term. This term can only be used with undirected networks.
ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute), a
Cyclic triples: By default, this term adds one statistic to the model, equal to the number of cyclic triples in the network, defined as a set of edges of the form $\{(i \rightarrow j),(j \rightarrow k),(k \rightarrow i)\}$. Note that for all directed networks, triangle is equal to ttriple+ctriple, so at most two of these three terms can be in a model. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, then the statistic is the number of cyclic triples where all three nodes have the same value of the attribute. If attr is specified and diff is TRUE, then one statistic is added to the model for each value of attr (or each value of attr specified by levels if that argument is passed), equal to the number of cyclic triples where all three nodes have that value of the attribute. This term can only be used with directed networks.
cycle (k) (binary) (directed) (undirected) Cycles: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k ; the i th such statistic equals the number of cycles in the network with length exactly k[i]. The cycle statistic applies to both directed and undirected networks. For directed networks, it counts directed cycles of length k, as opposed to undirected cycles in the undirected case. The directed cycle terms of lengths 2 and 3 are equivalent to mutual and ctriple (respectively). The undirected cycle term of length 3 is equivalent to triangle, and there is no undirected cycle term of length 2.
cyclicalties(attr=NULL, levels=NULL) (binary) (directed), cyclicalties(threshold=0) (valued) (directed) (und Cyclical ties: This term adds one statistic, equal to the number of ties $i \rightarrow j$ such that there exists a two-path from j to i. (Related to the ttriple term.) The binary version takes a nodal attribute attr, and, if given, all three nodes involved (i, j, and the node on the two-path) must match on this attribute in order for $i \rightarrow j$ to be counted. The binary version of this term can only be used with directed networks. The valued version can be used with both directed and undirected.
cyclicalweights(twopath="min", combine="max", affect="min") (valued) (directed) (undirected)
Cyclical weights: This statistic implements the cyclical weights statistic, like that defined by Krivitsky (2012), Equation 13, but with the focus dyad being $y_{j, i}$ rather than $y_{i, j}$. The currently implemented options for twopath is the minimum of the constituent dyads ("min") or their geometric mean ("geomean"); for combine, the maximum of the 2-path strengths ("max") or their sum ("sum"); and for affect, the minimum of the focus dyad and the combined strength of the two paths ("min") or their geometric mean ("geomean"). For each of these options, the first (and the default) is more stable but also more conservative, while the second is more sensitive but more likely to induce a multimodal distribution of networks.
ddsp(d, type="OTP") (binary) (directed) Directed dyadwise shared partners: This term adds one network statistic to the model for each element in d where the i th such statistic equals the number of dyads in the network with exactly d[i] shared partners. This term can only be used with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"

Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (undirected) (categorical nodal att
Degree range: The from and to arguments are vectors of distinct integers (or +Inf , for to (its
default)). If one of the vectors has length 1 , it is recycled to the length of the other. Otherwise,
they must have the same length. This term adds one network statistic to the model for each
element of from (or to); the i th such statistic equals the number of nodes in the network of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edges in semiopen interval [from, to). The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with undirected networks; for directed networks see idegrange and odegrange. This term can be used with bipartite networks, and will count nodes of both first and second mode in the specified degree range. To count only nodes of the first mode ("actors"), use b1degrange and to count only those fo the second mode ("events"), use b2degrange.
degree(d, by=NULL, homophily=FALSE, levels=NULL) (binary) (undirected) (categorical nodal attribute) (frequen Degree: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes in the network of degree $d[i]$, i.e. with exactly $d[i]$ edges. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with undirected networks; for directed networks see idegree and odegree.
degree1. 5 (binary) (undirected) Degree to the $3 / 2$ power: This term adds one network statistic to the model equaling the sum over the actors of each actor's degree taken to the $3 / 2$ power (or, equivalently, multiplied by its square root). This term is an undirected analog to the terms of Snijders et al. (2010), equations (11) and (12). This term can only be used with undirected networks.
degreepopularity (binary) (undirected) (deprecated) Degree popularity (deprecated): see degree1.5.
degcrossprod (binary) (undirected) Degree Cross-Product: This term adds one network statistic equal to the mean of the cross-products of the degrees of all pairs of nodes in the network which are tied. Only coded for undirected networks.
degcor (binary) (undirected) Degree Correlation: This term adds one network statistic equal to the correlation of the degrees of all pairs of nodes in the network which are tied. Only coded for undirected networks.
density (binary) (dyad-independent) (directed) (undirected) Density: This term adds one network statistic equal to the density of the network. For undirected networks, density equals
kstar(1) or edges divided by $n(n-1) / 2$; for directed networks, density equals edges or istar (1) or ostar (1) divided by $n(n-1)$.
diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) (dyad-independent) (frequently-used) (directe Difference: The attr argument specifies a quantitative vertex attribute (see Specifying Vertex Attributes and Levels for details). For values of pow other than 0, this term adds one network statistic to the model, equaling the sum, over directed edges (i, j), of sign.action(attr[i]-attr[j])^pow if dir is "t-h" (the default), "tail-head", or "b1-b2" and of sign. action(attr[j]-attr[i])^pow if "h-t", "head-tail", or "b2-b1". That is, the argument dir determines which vertex's attribute is subtracted from which, with tail being the origin of a directed edge and head being its destination, and bipartite networks' edges being treated as going from the first part (b1) to the second (b2).
If pow $==0$, the exponentiation is replaced by the signum function: +1 if the difference is positive, 0 if there is no difference, and -1 if the difference is negative. Note that this function is applied after the sign.action. The comparison is exact, so when using calculated values of attr, ensure that values that you want to be considered equal are, in fact, equal.
The following sign.actions are possible:
"identity" (the default) no transformation of the difference regardless of sign
"abs" absolute value of the difference: equivalent to the absdiff term
"posonly" positive differences are kept, negative differences are replaced by 0
"negonly" negative differences are kept, positive differences are replaced by 0
Note that this term may not be meaningful for unipartite undirected networks unless sign. action=="abs". When used on such a network, it behaves as if all edges were directed, going from the lowerindexed vertex to the higher-indexed vertex.
desp(d, type="OTP") (binary) (directed) Directed edgewise shared partners: This term adds one network statistic to the model for each element in d where the i th such statistic equals the number of edges in the network with exactly $\mathrm{d}[\mathrm{i}]$ shared partners. This term can only be used with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
dgwdsp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically weighted dyadwise shared partner distribution: This term adds one network statistic to the model equal to the geometrically weighted dyadwise shared partner distribution with decay parameter decay parameter, which should be non-negative. (this parameter was called alpha
prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). Note that the GWDSP statistic is equal to the sum of GWNSP plus GWESP.
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying DSP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
dgwesp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically weighted edgewise shared partner distribution: This term adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared partner distribution with decay parameter decay parameter, which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006).
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying ESP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
dgwnsp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically weighted non-edgewise shared partner distribution: This term is just like gwesp and gwdsp except it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads that do not have an edge) shared partner distribution with decay parameter decay parameter, which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006).
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying NSP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw.cutoff term option control parameter. (See control.ergm.)
dnsp(d, type="OTP") (binary) (directed) Directed non-edgewise shared partners: This term adds one network statistic to the model for each element in d where the i th such statistic equals the number of non-edges in the network with exactly $\mathrm{d}[\mathrm{i}]$ shared partners. This term can only be used with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct configurations are possible for directed graphs, selected using the type argument. Currently, terms may be defined with respect to five of these configurations; they are defined here as follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff $i \rightarrow$ $k \rightarrow j$. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff $j \rightarrow$ $k \rightarrow i$. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j) iff $i \rightarrow k, j \rightarrow k$.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff $k \rightarrow i, k \rightarrow j$.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define closely related statistics to several of the above, using slightly different terminology.
$\mathrm{dsp}(\mathrm{d})$ (binary) (directed) (undirected) Dyadwise shared partners: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in
d ; the i th such statistic equals the number of dyads in the network with exactly $\mathrm{d}[\mathrm{i}]$ shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the dyad).
dyadcov (x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute) Dyadic covariate: The x argument is either a square matrix of covariates, one for each possible edge in the network, the name of a network attribute of covariates, or a network; if the latter, optional argument attrname provides the name of the quantitative edge attribute to use for covariate values (in this case, missing edges in x are assigned a covariate value of zero). This term adds three statistics to the model, each equal to the sum of the covariate values for all dyads occupying one of the three possible non-empty dyad states (mutual, upper-triangular asymmetric, and lower-triangular asymmetric dyads, respectively), with the empty or null state serving as a reference category. If the network is undirected, x is either a matrix of edgewise covariates, or a network; if the latter, optional argument attrname provides the name of the edge attribute to use for edge values. This term adds one statistic to the model, equal to the sum of the covariate values for each edge appearing in the network. The edgecov and dyadcov terms are equivalent for undirected networks.
edgecov $(x$, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (frequently-used), edgecov (x, at Edge covariate: The x argument is either a square matrix of covariates, one for each possible edge in the network, the name of a network attribute of covariates, or a network; if the latter, optional argument attrname provides the name of the quantitative edge attribute to use for covariate values (in this case, missing edges in x are assigned a covariate value of zero). This term adds one statistic to the model, equal to the sum of the covariate values for each edge appearing in the network. The edgecov term applies to both directed and undirected networks. For undirected networks the covariates are also assumed to be undirected. The edgecov and dyadcov terms are equivalent for undirected networks.
edges (binary) (valued) (dyad-independent) (directed) (undirected) (frequently-used) , a.k.a nonzero (valued) (direct Edges: This term adds one network statistic equal to the number of edges (i.e. nonzero values) in the network. For undirected networks, edges is equal to kstar (1); for directed networks, edges is equal to both ostar (1) and istar (1).
esp(d) (binary) (directed) (undirected) Edgewise shared partners: This is just like the dsp term, except this term adds one network statistic to the model for each element in d where the i th such statistic equals the number of edges (rather than dyads) in the network with exactly $\mathrm{d}[\mathrm{i}]$ shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the edge and in the same direction).
equalto (value=0, tolerance=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with values equal to a specific value (within tolerance): Adds one statistic equal to the number of dyads whose values are within tolerance of value, i.e., between value-tolerance and value+tolerance, inclusive.
greaterthan (threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with values strictly greater than a threshold: Adds one statistic equal to the number of dyads whose values exceed threshold.
gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (bipartite) (undirected) (curve Geometrically weighted degree distribution for the first mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the decay parameter, which should be non-negative, for
nodes in the first mode of a bipartite network. The first mode of a bipartite network object is sometimes known as the "actor" mode. The decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved exponential family model (the default).
The optional argument cutoff sets the number of underlying degree terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with undirected bipartite networks.
gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (bipartite) (undirected) (curve Geometrically weighted degree distribution for the second mode in a bipartite (aka two-mode) network: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the which should be non-negative, for nodes in the second mode of a bipartite network. The second mode of a bipartite network object is sometimes known as the "event" mode. The decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used as merely the starting value for the estimation in a curved exponential family model (the default).
The optional argument cutoff sets the number of underlying degree terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with undirected bipartite networks.
gwdegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (undirected) (curved) (frequently Geometrically weighted degree distribution: This term adds one network statistic to the model equal to the weighted degree distribution with decay controlled by the decay parameter. The decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006).
The optional argument cutoff sets the number of underlying degree terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with undirected networks.
gwdsp(decay=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically weighted dyadwise shared partner distribution: This term adds one network statistic to the model equal to the geometrically weighted dyadwise shared partner distribution with decay parameter decay parameter, which should be non-negative. The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the
estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the dyad).
The optional argument cutoff sets the number of underlying DSP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
gwesp (decay=0, fixed=FALSE, cutoff=30) (binary) (frequently-used) (directed) (undirected) (curved) Geometrically weighted edgewise shared partner distribution: This term is just like gwdsp except it adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared partner distribution with decay parameter decay parameter, which should be non-negative. The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can be used with directed and undirected networks. For directed networks the geometric weighting is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the edge and in the same direction). The optional argument cutoff
The optional argument cutoff sets the number of underlying ESP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
gwidegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (directed) (curved) Geometrically weighted in-degree distribution: This term adds one network statistic to the model equal to the weighted in-degree distribution with decay parameter decay parameter, which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can only be used with directed networks.
The optional argument cutoff sets the number of underlying degree terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate degree statistics are calculated for nodes having each separate value of the attribute.
gwnsp(decay=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically weighted nonedgewise shared partner distribution: This term is just like gwesp and gwdsp except it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads that do not have an edge) shared partner distribution with weight parameter decay parameter, which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The optional argument fixed indicates whether the decay parameter is fixed at the given value, or is to be fit as a curved exponential-family model (see Hunter and Handcock, 2006). The default is FALSE, which means the scale parameter is not fixed and thus the model is a CEF model. This term can be used with directed and undirected networks. For directed networks the geometric weighting is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and in the same direction).

The optional argument cutoff sets the number of underlying NSP terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
gwodegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (directed) (curved) Geometrically weighted out-degree distribution: This term adds one network statistic to the model equal to the weighted out-degree distribution with decay parameter decay parameter, which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the estimation of decay in a curved exponential family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can only be used with directed networks.
The optional argument cutoff sets the number of underlying degree terms to use in computing the statistics when fixed=FALSE, in order to reduce the computational burden. Its default value can also be controlled by the gw. cutoff term option control parameter. (See control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate degree statistics are calculated for nodes having each separate value of the attribute.
hamming (x , cov, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) Hamming distance: This term adds one statistic to the model equal to the weighted or unweighted Hamming distance of the network from the network specified by x. (If no argument is given, x is taken to be the observed network, i.e., the network on the left side of the \sim in the formula that defines the ERGM.) Unweighted Hamming distance is defined as the total number of pairs (i, j) (ordered or unordered, depending on whether the network is directed or undirected) on which the two networks differ. If the optional argument cov is specified, then the weighted Hamming distance is computed instead, where each pair (i, j) contributes a prespecified weight toward the distance when the two networks differ on that pair. The argument cov is either a matrix of edgewise weights or a network; if the latter, the optional argument attrname provides the name of the edge attribute to use for weight values.
hammingmix(attr, x, base=NULL, levels=NULL, levels2=NULL) (binary) (directed) (dyad-independent)
Hamming distance within mixing: By default, this term adds one statistic to the model for every possible pairing of attribute values of the network for the vertex attribute specified by attr (see Specifying Vertex Attributes and Levels). Each such statistic is the Hamming distance (i.e., the number of differences) between the appropriate subset of dyads in the network and the corresponding subset in x. The ordering of the attribute values is alphabetical by default, but this may be overridden using the levels arguments. The optional arguments levels and levels2 allow the user to control what pairings are included (see Specifying Vertex Attributes and Levels), and the order in which they appear. For example levels2=-2 will omit the second statistic, making it the de facto reference category.
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels2 are passed, levels2 overrides base.
This term can only be used with directed networks.
idegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attr
In-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to
(its default)). If one of the vectors has length 1 , it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the i th such statistic equals the number of nodes in the network
of in-degree greater than or equal to from[i] but strictly less than to[i], i.e. with in-edge count in semiopen interval [from, to). The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and b2degrange. For in-degrees, see idegrange.
idegree (d, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute) (frequentl In-degree: The d argument is a vector of distinct integers. This term adds one network statistic to the model for each element in d ; the i th such statistic equals the number of nodes in the network of in-degree $\mathrm{d}[\mathrm{i}]$, i.e. the number of nodes with exactly $\mathrm{d}[\mathrm{i}]$ in-edges. The optional term by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with directed networks; for undirected networks see degree.
idegree1.5 (binary) (directed) In-degree to the $3 / 2$ power: This term adds one network statistic to the model equaling the sum over the actors of each actor's indegree taken to the $3 / 2$ power (or, equivalently, multiplied by its square root). This term is analogous to the term of Snijders et al. (2010), equation (12). This term can only be used with directed networks.
idegreepopularity (binary) (directed) (deprecated) In-degree popularity (deprecated): see idegree1.5.
ininterval (lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) (directed) (undirected) (dyad-independent) Number of dyads whose values are in an interval Adds one statistic equaling to the number of dyads whose values are between lower and upper. Argument open is a logical vector of length 2 that controls whether the interval is open (exclusive) on the lower and on the upper end, respectively. open can also be specified as one of "[]", "(]", "[)", and "()".
intransitive (binary) (directed) (triad-related) Intransitive triads: This term adds one statistic to the model, equal to the number of triads in the network that are intransitive. The intransitive triads are those of type $111 \mathrm{D}, 201,111 \mathrm{U}, 021 \mathrm{C}$, or 030 C in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in the sna package. Note the distinction from the ctriple term. This term can only be used with directed networks.
isolates (binary) (directed) (undirected) (frequently-used) Isolates: This term adds one statistic to the model equal to the number of isolates in the network. For an undirected network, an isolate is defined to be any node with degree zero. For a directed network, an isolate is any node with both in-degree and out-degree equal to zero.
istar (k, attr=NULL, levels=NULL) (binary) (directed) (categorical nodal attribute) In-stars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k. The i th such statistic counts the number of distinct k [i]-instars in the network, where a k-instar is defined to be a node N and a set of k different nodes $\left\{O_{1}, \ldots, O_{k}\right\}$ such that the ties $\left(O_{j} \rightarrow N\right)$ exist for $j=1, \ldots, k$. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is
specified then the count is over the number of k-instars where all nodes have the same value of the attribute. This term can only be used for directed networks; for undirected networks see kstar. Note that istar(1) is equal to both ostar(1) and edges.
$\operatorname{kstar}(\mathrm{k}$, attr=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute) k-Stars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k . The i th such statistic counts the number of distinct $\mathrm{k}[\mathrm{i}]$ stars in the network, where a k-star is defined to be a node N and a set of k different nodes $\left\{O_{1}, \ldots, O_{k}\right\}$ such that the ties $\left\{N, O_{i}\right\}$ exist for $i=1, \ldots, k$. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then the count is over the number of k-stars where all nodes have the same value of the attribute. This term can only be used for undirected networks; for directed networks, see istar, ostar, twopath and m2star. Note that kstar(1) is equal to edges.
smallerthan(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with values strictly smaller than a threshold: Adds one statistic equaling to the number of dyads whose values exceeded by threshold.
localtriangle (x) (binary) (triad-related) (directed) (undirected) Triangles within neighborhoods: This term adds one statistic to the model equal to the number of triangles in the network between nodes "close to" each other. For an undirected network, a local triangle is defined to be any set of three edges between nodal pairs $\{(i, j),(j, k),(k, i)\}$ that are in the same neighborhood. For a directed network, a triangle is defined as any set of three edges $(i \rightarrow j),(j \rightarrow k)$ and either $(k \rightarrow i)$ or $(k \leftarrow i)$ where again all nodes are within the same neighborhood. The argument x is an undirected network or an symmetric adjacency matrix that specifies whether the two nodes are in the same neighborhood. Note that triangle, with or without an argument, is a special case of localtriangle.
m2star (binary) (directed) Mixed 2-stars, a.k.a 2-paths: This term adds one statistic to the model, equal to the number of mixed 2-stars in the network, where a mixed 2-star is a pair of distinct edges $(i \rightarrow j),(j \rightarrow k)$. A mixed 2 -star is sometimes called a 2-path because it is a directed path of length 2 from i to k via j. However, in the case of a 2-path the focus is usually on the endpoints i and k, whereas for a mixed 2 -star the focus is usually on the midpoint j. This term can only be used with directed networks; for undirected networks see kstar (2). See also twopath.
meandeg (binary) (dyad-independent) (directed) (undirected) Mean vertex degree: This term adds one network statistic to the model equal to the average degree of a node. Note that this term is a constant multiple of both edges and density.
mm (attrs, levels=NULL, levels2=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (ca Mixing matrix cells and margins: attrs is a two-sided formula whose LHS gives the attribute or attribute function (see Specifying Vertex Attributes and Levels) for the rows of the mixing matrix and whose RHS gives that for its columns. A one-sided formula (e.g., $\sim A$) is symmetrized (e.g., A~A). levels similarly specifies the subset of rows and columns to be used. levels2 can then be used to filter which specific cells of the matrix to include. A two-sided formula with a dot on one side calculates the margins of the mixing matrix, analogously to nodefactor, with A~. calculating the row/sender/b1 margins and.\sim A calculating the column/receiver/b2 margins.
mutual(same=NULL, by=NULL, diff=FALSE, keep=NULL, levels=NULL) (binary) (directed) (frequently-used), mutua Mutuality: In binary ERGMs, equal to the number of pairs of actors i and j for which $(i \rightarrow j)$ and $(j \rightarrow i)$ both exist. For valued ERGMs, equal to $\sum_{i<j} m\left(y_{i, j}, y_{j, i}\right)$, where m is determined by form argument: "min" for $\min \left(y_{i, j}, y_{j, i}\right)$, "nabsdiff" for $-\left|y_{i, j}, y_{j, i}\right|$, "product"
for $y_{i, j} y_{j, i}$, and "geometric" for $\sqrt{y_{i, j}} \sqrt{y_{j, i}}$. See Krivitsky (2012) for a discussion of these statistics. form="threshold" simply computes the binary mutuality after thresholding at threshold.
This term can only be used with directed networks. The binary version also has the following capabilities: if the optional same argument is passed (see Specifying Vertex Attributes and Levels for details), only mutual pairs that match on the attribute are counted; separate counts for each unique matching value can be obtained by using diff=TRUE with same; and if by is passed (again, see Specifying Vertex Attributes and Levels), then each node is counted separately for each mutual pair in which it occurs and the counts are tabulated by unique values of the attribute. This means that the sum of the mutual statistics when by is used will equal twice the standard mutual statistic. Only one of same or by may be used, and only the former is affected by diff; if both same and by are passed, by is ignored. Finally, if levels is passed, this tells which statistics should be kept whenever the mutual term would ordinarily result in multiple statistics (see Specifying Vertex Attributes and Levels).
The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep.
nearsimmelian (binary) (directed) (triad-related) Near simmelian triads: This term adds one statistic to the model equal to the number of near Simmelian triads, as defined by Krackhardt and Handcock (2007). This is a sub-graph of size three which is exactly one tie short of being complete. This term can only be used with directed networks.
nodecov (attr) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute),
Main effect of a covariate: The attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single network statistic for each quantitative attribute or matrix column to the model equaling the sum of $\operatorname{attr}(\mathrm{i})$ and $\operatorname{attr}(\mathrm{j})$ for all edges (i, j) in the network. For categorical attributes, see nodefactor. Note that for directed networks, nodecov equals nodeicov plus nodeocov.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
nodecovar (valued) (directed) (undirected) (quantitative nodal attribute) Uncentered covariance of dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k}\left(y_{i, j} y_{i, k}+\right.$ $\left.y_{k, j} y_{k, j}\right)$. This can be viewed as a valued analog of the kstar(2) statistic.
nodefactor (attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attr
Factor attribute effect: The attr argument specifies one or more categorical attributes (see Specifying Vertex Attributes and Levels for details). This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute (or each combination of the attributes given). Each of these statistics gives the number of times a node with that attribute or those attributes appears in an edge in the network.
The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of nodefactor("fruit", levels=-(2:3)), nodefactor("fruit", levels=c (1,4)), and nodefactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter levels).

The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
nodeicov (attr) (binary) (directed) (quantitative nodal attribute) (frequently-used), nodeicov (attr, form="sum") Main effect of a covariate for in-edges: The attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single network statistic for each quantitative attribute or matrix column to the model equaling the total value of $\operatorname{attr}(\mathrm{j})$ for all edges (i, j) in the network. This term may only be used with directed networks. For categorical attributes, see nodeifactor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
nodeicovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of in-dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k} y_{k, j} y_{k, j}$. This can be viewed as a valued analog of the istar (2) statistic.
nodeifactor (attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (categorical nodal attribute) (freq Factor attribute effect for in-edges: The attr argument specifies one or more categorical attributes (see Specifying Vertex Attributes and Levels for details). This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute (or each combination of the attributes given). Each of these statistics gives the number of times a node with that attribute or those attributes appears as the terminal node of a directed tie.
The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of nodeifactor("fruit", levels=-(2:3)), nodeifactor("fruit", levels=c (1,4)), and nodeifactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
For an analogous term for quantitative vertex attributes, see nodeicov.
nodeisqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered covariance of square roots of in-dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k} \sqrt{y_{i, j}} \sqrt{y_{k, j}}$. This can be viewed as a valued analog of the istar(2) statistic. tributes (see Specifying Vertex Attributes and Levels for details). When diff=FALSE, this term adds one network statistic to the model, which counts the number of edges (i, j) for which $\operatorname{attr}(\mathrm{i})==\operatorname{attr}(\mathrm{j})$. This is also called "uniform homophily," because each group is assumed to have the same propensity for within-group ties. When multiple attribute names are given, the statistic counts only ties for which all of the attributes match. When diff=TRUE, p network statistics are added to the model, where p is the number of unique values of the attr attribute. The k th such statistic counts the number of edges (i, j) for which attr $(\mathrm{i})==$
$\operatorname{attr}(\mathrm{j})==$ value (k), where value (k) is the k th smallest unique value of the attr attribute. This is also called "differential homophily," because each group is allowed to have a unique propensity for within-group ties. Note that a statistical test of uniform vs. differential homophily should be conducted using the ANOVA function.
By default, matches on all levels k are counted. The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of nodematch("fruit", levels=-(2:3)), nodematch("fruit", levels=c(1,4)), and nodematch("fruit", levels=c("apple", "pear")). This works for both diff=TRUE and diff=FALSE.
The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep.
nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=NULL) (binary) (dyad-indep Nodal attribute mixing: The attr argument specifies one or more categorical vertex attributes (see Specifying Vertex Attributes and Levels for details). By default, this term adds one network statistic to the model for each possible pairing of attribute values. The statistic equals the number of edges in the network in which the nodes have that pairing of values. (When multiple attributes are specified, a statistic is added for each combination of attribute values for those attributes.) In other words, this term produces one statistic for every entry in the mixing matrix for the attribute(s). By default, the ordering of the attribute values is lexicographic: alphabetical (for nominal categories) or numerical (for ordered categories), but this can be overridden using the levels arguments. The optional arguments levels, levels2, b1levels, and b2levels control what statistics are included in the model, and the order in which they appear. levels2 apply to all networks; levels applies to unipartite networks; b1levels and b2levels apply to bipartite networks (see Specifying Vertex Attributes and Levels).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels2 are passed, levels2 overrides base.
nodeocov (attr) (binary) (directed) (dyad-independent)(quantitative nodal attribute), nodeocov (attr, form="sum"
Main effect of a covariate for out-edges: The attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single network statistic for each quantitative attribute or matrix column to the model equaling the total value of attr(i) for all edges (i, j) in the network. This term may only be used with directed networks. For categorical attributes, see nodeofactor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above section on versioning for invoking the old behavior.
nodeocovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of out-dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k} y_{i, j} y_{i, k}$. This can be viewed as a valued analog of the ostar (2) statistic.
nodeofactor (attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (categorical nodal attribute), node Factor attribute effect for out-edges: The attr argument specifies one or more categorical attributes (see Specifying Vertex Attributes and Levels for details). This term adds multiple network statistics to the model, one for each of (a subset of) the unique values of the attr attribute (or each combination of the attributes given). Each of these statistics gives the number of times a node with that attribute or those attributes appears as the node of origin of a directed tie.

The optional levels argument controls which levels of the attribute should be included and which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For example, if the "fruit" attribute has levels "orange", "apple", "banana", and "pear", then to include just two levels, one for "apple" and one for "pear", use any of nodeofactor ("fruit", levels=-(2:3)), nodeofactor("fruit", levels=c (1,4)), and nodeofactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics equals the number of edges and hence a linear dependency would arise in any model also including edges. The default, levels=-1, is therefore to omit the first (in lexicographic order) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and levels are passed, levels overrides base.
This term can only be used with directed networks.
nodeosqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered covariance of square roots of out-dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k} \sqrt{y_{i, j}} \sqrt{y_{i, k}}$. This can be viewed as a valued analog of the ostar(2) statistic.
nodesqrtcovar (center=TRUE) (valued) (non-negative) (directed) (undirected) (quantitative nodal attribute)
Covariance of square roots of dyad values incident on each actor: This term adds one statistic equal to $\sum_{i, j, k}\left(\sqrt{y_{i, j}} \sqrt{y_{i, k}}+\sqrt{y_{k, j}} \sqrt{y_{k, j}}\right)$ if center=FALSE. This can be viewed as a valued analog of the $k s t a r(2)$ statistic. If center $=$ FALSE (the default), the statistic is instead $\sum_{i, j, k}\left(\left(\sqrt{y_{i, j}}-\sqrt{y}\right)\left(\sqrt{y_{i, k}}-\sqrt{y}\right)+\left(\sqrt{y_{k, j}}-\sqrt{y}\right)\left(\sqrt{y_{k, j}}-\sqrt{y}\right)\right)$, where \sqrt{y} is the mean of the square root of dyad values.
nsp (d) (binary) (directed) (undirected) Nonedgewise shared partners: This is just like the dsp and esp terms, except this term adds one network statistic to the model for each element in d where the i th such statistic equals the number of non-edges (that is, dyads that do not have an edge) in the network with exactly $\mathrm{d}[\mathrm{i}]$ shared partners. This term can be used with directed and undirected networks. For directed networks the count is over homogeneous shared partners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and in the same direction).
odegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attri Out-degree range: The from and to arguments are vectors of distinct integers (or +Inf , for to (its default)). If one of the vectors has length 1 , it is recycled to the length of the other. Otherwise, they must have the same length. This term adds one network statistic to the model for each element of from (or to); the i th such statistic equals the number of nodes in the network of out-degree greater than or equal to from[i] but strictly less than to[i], i.e. with out-edge count in semiopen interval [from, to). The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and b2degrange. For in-degrees, see idegrange.
odegree (d, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute) (frequentl.
Out-degree: The d argument is a vector of distinct integers. This term adds one network statis-
tic to the model for each element in d ; the i th such statistic equals the number of nodes in the network of out-degree $d[i]$, i.e. the number of nodes with exactly $d[i]$ out-edges. The optional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork consisting of only edges whose endpoints have the same value of the by attribute. If by is specified and homophily is FALSE (the default), then separate degree statistics are calculated for nodes having each separate value of the attribute. This term can only be used with directed networks; for undirected networks see degree.
odegree1. 5 (binary) (directed) Out-degree to the $3 / 2$ power: This term adds one network statistic to the model equaling the sum over the actors of each actor's outdegree taken to the $3 / 2$ power (or, equivalently, multiplied by its square root). This term is analogous to the term of Snijders et al. (2010), equation (12). This term can only be used with directed networks.
odegreepopularity (binary) (directed) (deprecated) Out-degree popularity (deprecated): see odegree1.5.
opentriad (binary) (undirected) (triad-related) Open triads: This term adds one statistic to the model equal to the number of 2-stars minus three times the number of triangles in the network. It is currently only implemented for undirected networks.
ostar (k, attr=NULL, levels=NULL) (binary) (directed) (categorical nodal attribute) k-Outstars: The k argument is a vector of distinct integers. This term adds one network statistic to the model for each element in k . The i th such statistic counts the number of distinct $\mathrm{k}[\mathrm{i}]$-outstars in the network, where a k-outstar is defined to be a node N and a set of k different nodes $\left\{O_{1}, \ldots, O_{k}\right\}$ such that the ties $\left(N \rightarrow O_{j}\right)$ exist for $j=1, \ldots, k$. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is specified then the count is the number of k-outstars where all nodes have the same value of the attribute. This term can only be used with directed networks; for undirected networks see kstar. Note that ostar(1) is equal to both istar (1) and edges.
receiver(base=1, nodes=-1) (binary) (directed) (dyad-independent), receiver(base=1, nodes=-1, form="sum") Receiver effect: This term adds one network statistic for each node equal to the number of inties for that node. This measures the popularity of the node. The term for the first node is omitted by default because of linear dependence that arises if this term is used together with edges, but its coefficient can be computed as the negative of the sum of the coefficients of all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt parametrization of the $\$ \mathrm{p} _1 \$$ model (Holland and Leinhardt, 1981). The base and nodes arguments allow the user to determine which nodes' statistics should be included or excluded (see Specifying Vertex Attributes and Levels for details). The argument nodes is preferred to base, although base carries a default value of 1 for backwards compatibility. (If both base and nodes are supplied, then nodes overrides base.) This term can only be used with directed networks. For undirected networks, see sociality.
sender (base=1, nodes=-1) (binary) (directed) (dyad-independent), sender(base=1, nodes=-1, form="sum") (val Sender effect: This term adds one network statistic for each node equal to the number of outties for that node. This measures the activity of the node. The term for the first node is omitted by default because of linear dependence that arises if this term is used together with edges, but its coefficient can be computed as the negative of the sum of the coefficients of all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt parametrization of the \$p_1\$ model (Holland and Leinhardt, 1981). The nodes arguments allow the user to determine which nodes' statistics should be included or excluded (see Specifying Vertex Attributes and Levels for details).

The argument base is retained for backwards compatibility and may be removed in a future version. When both base and nodes are passed, nodes overrides base.
This term can only be used with directed networks. For undirected networks, see sociality.
simmelian (binary) (directed) (triad-related) Simmelian triads: This term adds one statistic to
the model equal to the number of Simmelian triads, as defined by Krackhardt and Handcock
(2007). This is a complete sub-graph of size three. This term can only be used with directed networks.
simmelianties (binary) (triad-related) (directed) Ties in simmelian triads: This term adds one statistic to the model equal to the number of ties in the network that are associated with Simmelian triads, as defined by Krackhardt and Handcock (2007). Each Simmelian has six ties in it but, because Simmelians can overlap in terms of nodes (and associated ties), the total number of ties in these Simmelians is less than six times the number of Simmelians. Hence this is a measure of the clustering of Simmelians (given the number of Simmelians). This term can only be used with directed networks.
smalldiff(attr, cutoff) (binary) (dyad-independent) (directed) (undirected) (quantitative nodal attribute) Number of ties between actors with similar (but not necessarily identical) attribute values: The attr argument specifies a quantitative vertex attribute (see Specifying Vertex Attributes and Levels for details). This term adds one statistic, having as its value the number of edges in the network for which the incident actors' attribute values differ less than cutoff; that is, number of edges between i to j such that abs (attr[i]-attr[j])<cutoff.
sociality (attr=NULL, base=1, levels=NULL, nodes=-1) (binary) (undirected) (dyad-independent) (categorical \mathbf{n} Undirected degree: This term adds one network statistic for each node equal to the number of ties of that node. The optional attr argument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). If provided, this term only counts ties between nodes with the same value of the attribute (an actor-specific version of the nodematch term), restricted to be one of the values specified by levels if levels is not NULL. This term can only be used with undirected networks. For directed networks, see sender and receiver. By default, nodes=-1 means that the statistic for the first node will be omitted, but this argument may be changed to control which statistics are included just as for the nodes argument of sender and receiver terms.
The argument base is retained for backwards compatibility and may be removed in a future version. When both base and nodes are passed, nodes overrides base.
sum(pow=1) (valued) (directed) (undirected) Sum of dyad values (optionally taken to a power): This term adds one statistic equal to the sum of dyad values taken to the power pow, which defaults to 1 .
threetrail (keep=NULL, levels=NULL) (binary) (directed) (undirected) (triad-related), Threetrails: a.k.a. threepath. For an undirected network, this term adds one statistic equal to the number of 3-trails, where a 3-trail is defined as a "trail" of length three that traverses three distinct edges. Note that a 3-trail need not include four distinct nodes; in particular, a triangle counts as three 3-trails. For a directed network, this term adds four statistics (or some subset of these four specified by the levels argument), one for each of the four distinct types of directed three-paths. If the nodes of the path are written from left to right such that the middle edge points to the right (R), then the four types are RRR, RRL, LRR, and LRL. That is, an RRR 3-trail is of the form $i \rightarrow j \rightarrow k \rightarrow l$, and RRL 3-trail is of the form $i \rightarrow j \rightarrow k \leftarrow l$, etc. Like in the undirected case, there is no requirement that the nodes be distinct in a directed 3 -trail. However, the three edges must all be distinct. Thus, a mutual tie $i \leftrightarrow j$ does not count
as a 3-trail of the form $i \rightarrow j \rightarrow i \leftarrow j$; however, in the subnetwork $i \leftrightarrow j \rightarrow k$, there are two directed 3-trails, one LRR $(k \leftarrow j \rightarrow i \leftarrow j)$ and one $\operatorname{RRR}(j \rightarrow i \rightarrow j \leftarrow k)$.
The argument keep is retained for backwards compatibility and may be removed in a future version. When both keep and levels are passed, levels overrides keep. This term used to be (inaccurately) called threepath. That name has been deprecated and may be removed in a future version.
transitive (binary) (directed) (triad-related) Transitive triads: This term adds one statistic to the model, equal to the number of triads in the network that are transitive. The transitive triads are those of type 120D, 030T, 120U, or 300 in the categorization of Davis and Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in the sna package. Note the distinction from the ttriple term. This term can only be used with directed networks.
transitiveties(attr=NULL, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute), transi
Transitive ties: This term adds one statistic, equal to the number of ties $i \rightarrow j$ such that there exists a two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal attribute attr, and, if given, all three nodes involved (i, j, and the node on the two-path) must match on this attribute in order for $i \rightarrow j$ to be counted. The binary version of this term can only be used with directed networks. The valued version can be used with both directed and undirected.
transitiveweights(twopath="min", combine="max", affect="min") (valued) (directed) (undirected) (non-negative) Transitive weights: This statistic implements the transitive weights statistic defined by Krivitsky (2012), Equation 13. The currently implemented options for twopath is the minimum of the constituent dyads ("min") or their geometric mean ("geomean"); for combine, the maximum of the 2-path strengths ("max") or their sum ("sum"); and for affect, the minimum of the focus dyad and the combined strength of the two paths ("min") or their geometric mean ("geomean"). For each of these options, the first (and the default) is more stable but also more conservative, while the second is more sensitive but more likely to induce a multimodal distribution of networks.
triadcensus(levels) (binary) (triad-related) (directed) (undirected) Triad census: For a directed network, this term adds one network statistic for each of an arbitrary subset of the 16 possible types of triads categorized by Davis and Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D, 111 and 300. Note that at least one category should be dropped; otherwise a linear dependency will exist among the 16 statistics, since they must sum to the total number of three-node sets. By default, the category 003 , which is the category of completely empty three-node sets, is dropped. This is considered category zero, and the others are numbered 1 through 15 in the order given above. By using the levels argument (see Specifying Vertex Attributes and Levels for details), the user may specify a set of terms to add other than the default value of 1:15. Each statistic is the count of the corresponding triad type in the network. For details on the 16 types, see ?triad. classify in the \{sna\} package, on which this code is based. For an undirected network, the triad census is over the four types defined by the number of ties (i.e., $0,1,2$, and 3), and the default is to add $1: 3$, which is to say that the 0 is dropped; however, this too may be controlled by changing the levels argument.
triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) (frequently-used) (triad-related) (directed) (undirected) Triangles: By default, this term adds one statistic to the model equal to the number of triangles in the network. For an undirected network, a triangle is defined to be any set $\{(i, j),(j, k),(k, i)\}$ of three edges. For a directed network, a triangle is defined as any set of three edges $(i \rightarrow j)$ and $(j \rightarrow k)$ and either $(k \rightarrow i)$ or $(k \leftarrow i)$. The former case is called a "transitive triple" and the latter is called a "cyclic triple", so in the case of a directed net-
work, triangle equals ttriple plus ctriple - thus at most two of these three terms can be in a model. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, then the count is restricted to those triples of nodes with equal values of the vertex attribute specified by attr. If attr is specified and diff is TRUE, then one statistic is added for each value of attr (or each value specified by levels if that argument is passed), equal to the number of triangles where all three nodes have that value of the attribute.
tripercent (attr=NULL, diff=FALSE, levels=NULL) (binary) (undirected) (triad-related) (categorical nodal attribu Triangle percentage: By default, this term adds one statistic to the model equal to 100 times the ratio of the number of triangles in the network to the sum of the number of triangles and the number of 2-stars not in triangles (the latter is considered a potential but incomplete triangle). In case the denominator equals zero, the statistic is defined to be zero. For the definition of triangle, see triangle. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, the counts (both numerator and denominator) are restricted to those triples of nodes with equal values of the vertex attribute specified by attr. If attr is specified and diff is TRUE, then one statistic is added for each value of attr (or each value specified by levels if that argument is passed), where the counts (both numerator and denominator) are restricted to those triples of nodes with that value of the vertex attribute specified by attr. This is often called the mean correlation coefficient. This term can only be used with undirected networks; for directed networks, it is difficult to define the numerator and denominator in a consistent and meaningful way.
ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute), a
Transitive triples: By default, this term adds one statistic to the model, equal to the number of transitive triples in the network, defined as a set of edges $\{(i \rightarrow j),(j \rightarrow k),(i \rightarrow k)\}$. Note that triangle equals ttriple+ctriple for a directed network, so at most two of the three terms can be in a model. The optional argument attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, then the count is over the number of transitive triples where all three nodes have the same value of the attribute. If attr is specified and diff is TRUE, then one statistic is added for each value of attr (or each value of attr specified by levels if that argument is passed), equal to the number of transitive triples where all three nodes have that value of attr. This term can only be used with directed networks.
twopath (binary) (directed) (undirected) 2-Paths: This term adds one statistic to the model, equal to the number of 2-paths in the network. For a directed network this is defined as a pair of edges $(i \rightarrow j),(j \rightarrow k)$, where i and j must be distinct. That is, it is a directed path of length 2 from i to k via j. For directed networks a 2-path is also a mixed 2 -star but the interpretation is usually different; see m2star. For undirected networks a twopath is defined as a pair of edges $\{i, j\},\{j, k\}$. That is, it is an undirected path of length 2 from i to k via j, also known as a 2-star.

References

- Bomiriya, R. P, Bansal, S., and Hunter, D. R. (2014). Modeling Homophily in ERGMs for Bipartite Networks. Submitted.
- Butts, CT. (2008). "A Relational Event Framework for Social Action." Sociological Methodology, 38(1).
- Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218-251. Boston: Houghton Mifflin.
- Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76: 33-50.
- Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family models for networks. Journal of Computational and Graphical Statistics, 15: 565-583.
- Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks, 29: 216-230.
- Krackhardt, D. and Handcock, M. S. (2007). Heider versus Simmel: Emergent Features in Dynamic Structures. Lecture Notes in Computer Science, 4503, 14-27.
- Krivitsky P. N. (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696
- Robins, G; Pattison, P; and Wang, P. (2009). "Closure, Connectivity, and Degree Distributions: Exponential Random Graph (p*) Models for Directed Social Networks." Social Networks, 31:105-117.
- Snijders T. A. B., G. G. van de Bunt, and C. E. G. Steglich. Introduction to Stochastic ActorBased Models for Network Dynamics. Social Networks, 2010, 32(1), 44-60. doi: 10.1016/ j.socnet.2009.02.004
- Morris M, Handcock MS, and Hunter DR. Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 2008, 24(4), 1-24. https://www.jstatsoft.org/v24/i04
- Snijders, T. A. B., P. E. Pattison, G. L. Robins, and M. S. Handcock (2006). New specifications for exponential random graph models, Sociological Methodology, 36(1): 99-153.

See Also

ergm package, search. ergmTerms, ergm, network, $\% \mathrm{v} \%$, \%n\%

Examples

```
## Not run:
ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
ergm(molecule ~ edges + kstar(2:3) + triangle
    + nodematch("atomic type",diff=TRUE)
    + triangle + absdiff("atomic type"))
## End(Not run)
```


Description

ergm.allstats produces a matrix of network statistics for an arbitrary statnet exponential-family random graph model. One possible use for this function is to calculate the exact loglikelihood function for a small network via the ergm. exact function.

Usage

ergm.allstats(formula, zeroobs = TRUE, force $=$ FALSE, maxNumChangeStatVectors $=2^{\wedge} 16, \ldots$)

Arguments

formula an formula object of the form y \sim <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in, use the network () function, then add nodal attributes to it using the \%v\% operator if necessary.
zeroobs Logical: Should the vectors be centered so that the network passed in the formula has the zero vector as its statistics?
force Logical: Should the algorithm be run even if it is determined that the problem may be very large, thus bypassing the warning message that normally terminates the function in such cases?
maxNumChangeStatVectors
Maximum possible number of distinct values of the vector of statistics. It's good to use a power of 2 for this.
... further arguments; not currently used.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The algorithm starts with the network passed in formula, then recursively toggles each edge twice so that every possible network is visited.
ergm.allstats should only be used for small networks, since the number of possible networks grows extremely fast with the number of nodes. An error results if it is used on a directed network of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

Value

Returns a list object with these two elements:

weights	integer of counts, one for each row of statmat telling how many networks share the corresponding vector of statistics.
statmat	matrix in which each row is a unique vector of statistics.

See Also

```
ergm.exact
```


Examples

```
# Count by brute force all the edge statistics possible for a 7-node
# undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
system.time(a <- ergm.allstats(mynw~edges))
# Summarize results
rbind(t(a$statmat),a$weights)
# Each value of a$weights is equal to 21-choose-k,
# where k is the corresponding statistic (and 21 is
# the number of dyads in an 7-node undirected network).
# Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))
# Simple ergm.exact outpuf for this network.
# We know that the loglikelihood for my empty 7-node network
# should simply be -21*log(1+exp(eta)), so we may check that
# the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)
```

 ergm.bounddeg
 Initializes the parameters to bound degree during sampling

Description

Not normally called directly by user, ergm. bounddeg initializes the list of parameters used to bound the degree during the Metropolis Hastings sampling process, and issues warnings if the original network doesn't meet the constraints specified by 'bounddeg'.

Usage

ergm.bounddeg(bounddeg, nw)

Arguments

bounddeg a list of parameters which may contain the following for a network of size n nodes:

- attribs: an nxp matrix, where entry ij is TRUE if node i has attribute j , and FALSE otherwise; default=an nx1 matrix of 1's
- maxout : an nxp matrix, where entry ij is the maximum number of out degrees for node i to nodes with attribute j; default=an nxp matrix of the value ($\mathrm{n}-1$)
- maxin : defined similarly to maxout, but ignored for undirected networks; default=an nxp matrix of the value ($n-1$)
- minout : defined similarly to maxout; default=an nxp matrix of 0's
- minin : defined similarly to maxout, but ignored for undirected networks; default=an nxp matrix of 0 's
nw
the orginal network specified to ergm in 'formula'

Details

In some modeling situations, the degree of certain nodes are constrained to lie in a certain range (rather than their theoretically possible range of 0 to $n-1$). Such sample space constraints may be incorporated into the ergm modeling process, and if so then the MCMC routine is prevented from visiting network states that violate any of these bounds.
In case there are categories of nodes and degree bounds for each set of categories, such constraints may be incorporated as well. For instance, if the nodes are girls and boys, and there is a maximum of 5 out-ties to boys and a maximum of 5 out-ties to girls for each node, we would define p to be 2 , and the nxp matrix attribs would have TRUE in the first column (say) for exactly those nodes that are boys and TRUE in the second column for only the girls. The maxout matrix would consist of all 5 s in this case, and the other arguments would be left as their default values.
Since the observed network is generally the beginning of the Markov chain, it must satisfy all of the degree constraints itself; thus, this function returns an error message if any bound is violated by the observed network.

Value

a list of parameters used to bound degree during sampling

condAllDegExact	
attribs	always FALSE
maxout	as defined above
maxin	as defined above
minout	as defined above
minin	as defined above

See Also

ergm-proposals

```
ergm.bridge.llr
```

Bridge sampling to evaluate ERGM log-likelihoods and log-likelihood ratios

Description

ergm. bridge. llr uses bridge sampling with geometric spacing to estimate the difference between the log-likelihoods of two parameter vectors for an ERGM via repeated calls to simulate.formula. ergm.
ergm.bridge. 0.1 lk is a convenience wrapper that returns the log-likelihood of configuration θ relative to the reference measure. That is, the configuration with $\theta=0$ is defined as having loglikelihood of 0 .
ergm.bridge. dindstart. 11 k is a wrapper that uses a dyad-independent ERGM as a starting point for bridge sampling to estimate the log-likelihood for a given dyad-dependent model and parameter configuration. Note that it only handles binary ERGMs (response=NULL) and with constraints (constraints=) that that do not induce dyadic dependence.

Usage

ergm.bridge.llr(object, response $=$ NULL, constraints $=\sim$., from, to, basis $=$ NULL, verbose $=$ FALSE,... , llronly $=$ FALSE, control = control.ergm.bridge())
ergm.bridge.0.llk(object, response = response, constraints = ~., coef, ..., llkonly = TRUE, control = control.ergm.bridge())
ergm.bridge.dindstart.llk(object, response = NULL, constraints = ~.,
coef, dind = NULL, coef.dind = NULL, basis = NULL, ...,
llkonly = TRUE, control = control.ergm.bridge())

Arguments

object A model formula. See ergm for details.
response Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
constraints A one-sided formula specifying one or more constraints on the support of the distribution of the networks being simulated. See the documentation for a similar argument for ergm for more information.
from, to The initial and final parameter vectors.
basis An optional network object to start the Markov chain. If omitted, the default is the left-hand-side of the object.
verbose Logical: If TRUE, print detailed information.
... Further arguments to ergm.bridge.llr and simulate.formula.ergm.
llronly Logical: If TRUE, only the estiamted log-ratio will be returned by ergm.bridge.llr.

control	Control arguments. See control.ergm.bridge for details.
coef	A vector of coefficients for the configuration of interest.
llkonly	Whether only the estiamted log-likelihood should be returned by the ergm.bridge.0.llk and ergm.bridge.dindstart.llk. (Defaults to TRUE.)
dind	A one-sided formula with the dyad-independent model to use as a starting point. Defaults to the dyad-independent terms found in the formula object with an overal density term (edges) added if not redundant.
coef.dind	Parameter configuration for the dyad-independent starting point. Defaults to the MLE of dind.

Value

If llronly=TRUE or llkonly=TRUE, these functions return the scalar log-likelihood-ratio or the log-likelihood. Otherwise, they return a list with the following components:
llr The estimated log-ratio.
llrs The estimated log-ratios for each of the nsteps bridges.
path A numeric matrix with nsteps rows, with each row being the respective bridge's parameter configuration.
stats A numeric matrix with nsteps rows, with each row being the respective bridge's vector of simulated statistics.

Dtheta.Du The gradient vector of the parameter values with respect to position of the bridge.
ergm.bridge.0.1lk result list also includes an llk element, with the log-likelihood itself (with the reference distribution assumed to have likelihood 0).
ergm.bridge.dindstart. 11 k result list also includes an 11 k element, with the log-likelihood itself and an llk.dind element, with the log-likelihood of the nearest dyad-independent model.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics.

See Also

```
simulate.formula.ergm
```

ergm.degeneracy Checks an ergm Object for Degeneracy

Description

The ergm. degeneracy function checks a given ergm object for degeneracy by computing and returning the instability value of the model and the value of the log-likelihood function at the maximized theta values

Usage

ergm.degeneracy (object, control = object\$control, fast = TRUE, test.only = FALSE, verbose = FALSE)

Arguments

object
an ergm object
control the list of control parameters as returned by control.ergm; default=control.ergm()
fast whether the degeneracy check should be "fast", i.e to sample changeobs(?) when there are >100, rather than use all changeobs; default=TRUE
test.only whether to silence printing of the model instability calculation (T or F); this parameter is ignored if the instability >1; default=FALSE
verbose whether to print a notification when 'object' is deemed degenerate (T or F); default=FALSE

Value

returns the original ergm object with 2 additional components:
degeneracy.value
the instability of the model
degeneracy.type
a 2-element vector containing
loglikelihood the value of the log-likelihood function corresponding to 'theta'; if degenerate, this is a vector of Inf
theta the vector of theta values found through maximixing the log- likelihood; if degenerate, this is 'guess'

Description

ergm.exact calculates the exact loglikelihood, evaluated at eta, for the statnet exponentialfamily random graph model represented by formula.

Usage

ergm.exact(eta, formula, statmat $=$ NULL, weights = NULL, ...)

Arguments

eta vector of canonical parameter values at which the loglikelihood should be evaluated.
formula an link\{formula\} object of the form $\mathrm{y} \sim$ <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in, use the network () function, then add nodal attributes to it using the $\% \mathrm{v} \%$ operator if necessary.
statmat if NULL, call ergm.allstats to generate all possible graph statistics for the networks in this model.
weights In case statmat is not NULL, this should be the vector of counts corresponding to the rows of statmat. If statmat is NULL, this is generated by the call to ergm.allstats.
... further arguments; not currently used.

Details

ergm. exact should only be used for small networks, since the number of possible networks grows extremely fast with the number of nodes. An error results if it is used on a directed network of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case this function is to be called repeatedly, for instance by an optimization routine, it is preferable to call ergm.allstats first, then pass statmat and weights explicitly to avoid repeatedly calculating these objects.

Value

Returns the value of the exact loglikelihood, evaluated at eta, for the statnet exponential-family random graph model represented by formula.

See Also

ergm.allstats

Examples

```
# Count by brute force all the edge statistics possible for a 7-node
# undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
system.time(a <- ergm.allstats(mynw~edges))
# Summarize results
rbind(t(a$statmat),a$weights)
# Each value of a$weights is equal to 21-choose-k,
# where k is the corresponding statistic (and 21 is
# the number of dyads in an 7-node undirected network).
# Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))
# Simple ergm.exact outpuf for this network.
# We know that the loglikelihood for my empty 7-node network
# should simply be -21*log(1+exp(eta)), so we may check that
# the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)
```

ergm.geodistdist Calculate geodesic distance distribution for a network or edgelist

Description

ergm.geodistdist calculates geodesic distance distribution for a given network and returns it as a vector.
ergm.geodistn calculates geodesic deistance distribution based on an input edgelist, and has very little error checking so should not normally be called by users. The C code requires the edgelist to be directed and sorted correctly.

Usage

ergm.geodistdist(nw, directed $=$ is.directed(nw))
ergm.geodistn(edgelist, $\mathrm{n}=\max ($ edgelist), directed $=$ FALSE)

Arguments

nw	network object over which distances should be calculated
directed	logical, should the network be treated as directed
edgelist	an edgelist representation of a network as an mx2 matrix
n	integer, size of the network

Details

ergm.geodistdist is a network wrapper for ergm.geodistn, which calculates and returns the geodesic distance distribution for a given network via full_geodesic_distribution.C

Value

a vector ans with length equal to the size of the network where

- ans[i], $i=1, \ldots, n-1$ is the number of pairs of geodesic length i
- ans[n] is the number of pairs of geodesic length infinity.

See Also

See also the sna package geodist function

Examples

```
data(faux.mesa.high)
ergm.geodistdist(faux.mesa.high)
```

ergm.getnetwork Acquire and verify the network from the LHS of an ergm formula and verify that it is a valid network.

Description

The function function ensures that the network in a given formula is valid; if so, the network is returned; if not, execution is halted with warnings.

Usage

ergm.getnetwork(formula, loopswarning = TRUE)

Arguments

$$
\begin{array}{ll}
\text { formula } & \begin{array}{l}
\text { a two-sided formula whose LHS is a network, an object that can be coerced to } \\
\text { a network, or an expression that evaluates to one. }
\end{array} \\
\text { loopswarning } & \begin{array}{l}
\text { whether warnings about loops should be printed (TRUE or FALSE); defaults to } \\
\text { TRUE. }
\end{array}
\end{array}
$$

Value

A network object constructed by evaluating the LHS of the model formula in the formula's environment.
ergm.godfather
A function to apply a given series of changes to a network.

Description

Gives the network a series of proposals it can't refuse. Returns the statistics of the network, and, optionally, the final network.

Usage

```
ergm.godfather(formula, changes = NULL, response = NULL,
    end.network = FALSE, stats.start = FALSE, changes.only = FALSE,
    verbose = FALSE, control = control.ergm.godfather())
```


Arguments

formula	An ergm-style formula, with a network on its LHS.
changes	Either a matrix with three columns: tail, head, and new value, describing the changes to be made; or a list of such matrices to apply these changes in a se- quence. For binary network models, the third column may be omitted. In that case, the changes are treated as toggles. Note that if a list is passed, it must either be all of changes or all of toggles.
response	Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
end.network	Whether to return a network that results. Defaults to FALSE.
stats.start	Whether to return the network statistics at start (before any changes are ap- plied) as the first row of the statistics matrix. Defaults to FALSE, to produce output similar to that of simulate for ERGMs when output="stats", where initial network's statistics are not returned.
changes.only	Whether to return network statistics or only their changes relative to the initial network.
verbose	Whether to print progress messages.
control	A control list generated by control.ergm. godfather.

Value

If end. network==FALSE (the default), an mcmc object with the requested network statistics associed with the network series produced by applying the specified changes. Its mcmc attributes encode the timing information: so start (out) gives the time point associated with the first row returned, and end(out) out the last. The "thinning interval" is always 1.
If end.network==TRUE, return a network object, representing the final network, with a matrix of statistics described in the previous paragraph attached to it as an attr-style attribute "stats".

See Also

tergm: tergm.godfather(), simulate.ergm(), simulate.formula()

Examples

```
    data(florentine)
```

 ergm. godfather(flomarriage~edges+absdiff("wealth")+triangles,
 changes=list(cbind(1:2,2:3),
 cbind \((3,5)\),
 cbind \((3,5)\),
 cbind(1:2,2:3)),
 stats.start=TRUE)
 ergmMPLE
 ERGM Predictors and response for logistic regression calculation of MPLE

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the MPLE for an ERGM.

Usage

```
ergmMPLE(formula, fitmodel = FALSE, output = c("matrix", "array",
    "fit"), as.initialfit = TRUE, control = control.ergm(),
    verbose = FALSE, ...)
```


Arguments

formula	An ERGM formula. See ergm.
fitmodel	Deprecated. Use output="fit" instead.
output	Character, partially matched. See Value.
as.initialfit	Logical. Specifies whether terms are initialized with argument initialfit==TRUE (the default). Generally, if TRUE, all curved ERGM terms will be treated as hav- ing their curved parameters fixed. See Example.
control	A list of control parameters for tuning the fitting of an ERGM. Most of these parameters are irrelevant in this context. See control.ergm for details about all of the control parameters.
verbose	Logical; if TRUE, the program will print out some additional information.
\ldots	Additional arguments, to be passed to lower-level functions.

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row of this matrix is associated with a particular pair (ordered or unordered, depending on whether the network is directed or undirected) of nodes, and the row equals the change in the vector of network statistics (as defined in formula) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the predictor matrix is the matrix of change statistics and the response vector is the observed network (i.e., each entry is either 0 or 1 , depending on whether the corresponding edge exists or not).

Using output="matrix", note that the result of the fit may be obtained from the glm function, as shown in the examples below.
When output="array", the MPLE.max.dyad. types control parameter must be greater than network.dyadcount (.) of the response network, or not all elements of the array that ought to be filled in will be.

Value

If output=="matrix" (the default), then only the response, predictor, and weights are returned; thus, the MPLE may be found by hand or the vector of change statistics may be used in some other way. To save space, the algorithm will automatically search for any duplicated rows in the predictor matrix (and corresponding response values). ergmMPLE function will return a list with three elements, response, predictor, and weights, respectively the response vector, the predictor matrix, and a vector of weights, which are really counts that tell how many times each corresponding response, predictor pair is repeated.

If output=="array", a list with similarly named three elements is returned, but response is formatted into a sociomatrix; predictor is a 3-dimensional array of with cell predictor [t, h, k] containing the change score of term k for dyad (t, h); and weights is also formatted into a sociomatrix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.

In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k] will be NA and weights[i,i] will be 0 ; and for a unipartite undirected network, lower triangle of each predictor[, ,k] matrix will be set to NA, with the lower triangle of weights being set to 0 .
If output=="fit", then ergmMPLE simply calls the ergm function with the estimate="MPLE" option set, returning an object of class ergm that gives the fitted pseudolikelihood model.

See Also

```
ergm, glm
```


Examples

```
data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")
mplesetup <- ergmMPLE(formula)
# Obtain MPLE coefficients "by hand":
glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),
    weights = mplesetup$weights, family="binomial")$coefficients
# Check that the coefficients agree with the output of the ergm function:
```

```
ergmMPLE(formula, output="fit")$coef
# We can also format the predictor matrix into an array:
mplearray <- ergmMPLE(formula, output="array")
# The resulting matrices are big, so only print the first 5 actors:
mplearray$response[1:5,1:5]
mplearray$predictor[1:5,1:5,]
mplearray$weights[1:5,1:5]
formula2 <- faux.mesa.high ~ gwesp(0.5,fix=FALSE)
# The term is treated as fixed: only the gwesp term is returned:
colnames(ergmMPLE(formula2, as.initialfit=TRUE)$predictor)
# The term is treated as curved: individual esp# terms are returned:
colnames(ergmMPLE(formula2, as.initialfit=FALSE)$predictor)
```

ergm_MCMC_sample Internal Function to Sample Networks and Network Statistics

Description

This is an internal function, not normally called directly by the user. The ergm_MCMC_sample function samples networks and network statistics using an MCMC algorithm via MCMC_wrapper and is caple of running in multiple threads using ergm_MCMC_slave.
The ergm_MCMC_slave function calls the actual C routine and does minimal preprocessing.

Usage

ergm_MCMC_sample(nw, model, proposal, control, theta = NULL, response $=$ NULL, update.nws $=$ TRUE, verbose $=$ FALSE,... , eta $=$ ergm.eta(theta, model\$etamap))
ergm_MCMC_slave(Clist, proposal, eta, control, verbose, ..., prev.run = NULL, burnin = NULL, samplesize = NULL, interval $=$ NULL, maxedges $=$ NULL)

Arguments

nw
model
theta
proposal a list of the parameters needed for Metropolis-Hastings proposals and the result of calling ergm_proposal().
control list of MCMC tuning parameters; see control.ergm().
a network (or pending_update_network) object representing the sampler state.
an ergm_model to be sampled from, as returned by ergm_model().
the (possibly curved) parameters of the model.

response	Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
update.nws	whether to actually update the network state or to return an object "promising" to update the network.
verbose	verbosity level.
\ldots	additional arugments.
eta	the natural parameters of the model; by default constructed from theta. Clist prev.run
the list of parameters returned by ergm. Cprepare	

Details

Note that the returned stats will be relative to the original network, i.e., the calling function must shift the statistics if required. The calling function must also attach column names to the statistics matrix if required.

Value

ergm_MCMC_sample returns a list containing:
stats an mcmc.list with sampled statistics.
networks a list of final sampled networks, one for each thread.
status status code, propagated from ergm.mcmcslave.
final.interval adaptively determined MCMC interval.
If update. nws==FALSE, rather than returning the updated networks, the function will return a pending_update_network.
ergm_MCMC_slave returns the MCMC sample as a list of the following:
s the matrix of statistics.
newnwtails the vector of tails for the new network.
newnwheads the vector of heads for the new network.
newnwweights the vector of weights for the new network (if applicable)
status success or failure code: 0 is success, 1 for too many edges, and 2 for a MetropolisHastings proposal failing.
maxedges maximum allowed edges at the time of return.

Note

ergm_MCMC_sample and ergm_MCMC_slave replace ergm.getMCMCsample and ergm.mcmcslave respectively. They differ slightly in their argument names and in their return formats. For example, ergm_MCMC_sample expects proposal rather than MHproposal and theta or eta rather than eta0; and it does not return statsmatrix or newnetwork elements. Rather, if parallel processing is not in effect, stats is an mcmc.list with one chain and networks is a list with one element.
ergm_plot.mcmc.list Plot MCMC list using lattice package graphics

Description

Plot MCMC list using lattice package graphics

Usage

ergm_plot.mcmc.list(x, main = NULL, vars.per.page = 3, ...)

Arguments

$x \quad$ an mcmc. list object containing the mcmc diagnostic samples.
main character, main plot heading title.
vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra package is not installed.
.. additional arguments, currently unused.

Note

This is not a method at this time.

```
eut-upgrade Updating ergm.userterms prior to 3.1
```


Description

Explanation and instructions for updating custom ERGM terms developed prior to the release of ergm version 3.1 (including 3.0-999 preview release) to be used with versions 3.1 or later.

Explanation

ergm. userterms - Statnet's mechanism enabling users to write their own ERGM terms - comes in a form of an R package containing files for the user to put their own statistics into (i.e., changestats. user. h , changestats.user.c, and InitErgmTerm.user.R), as well as some boilerplate to support them (e.g., edgetree.h, edgetree.c, changestat.h, changestat.c, etc.).

Although the ergm. userterms API is stable, recent developments in ergm have necessitated the boilerplate files in ergm.userterms to be updated. To reiterate, the user-written statistic source code (changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) can be used without modification, but other files that came with the package need to be changed.

To make things easier in the future, we have implemented a mechanism (using R's LinkingTo API, in case you are wondering) that will keep things in sync in releases after the upcoming one. However, for the upcoming release, we need to transition to this new mechanism.

Instructions

The transition entails the following steps. They only need to be done once for a package. Future releases will keep up to date automatically.

1. Download the up-to-date ergm. userterms source from CRAN using, e.g., download. packages and unpack it.
2. Copy the R and C files defining the user-written terms (usually changestats. user. h , changestats.user.c, and InitErgmTerm.user.R) and only those files from the old ergm. userterms source code to the new. Do not copy the boilerplate files that you did not modify.
3. If you have customized the package DESCRIPTION file (e.g., to change the package name) or zzz.R (e.g., to change the startup message), modify them as needed in the updated ergm. userterms, but do not simply overwrite them with their old versions.
4. Make sure that your ergm installation is up to date, and rebuild ergm. userterms.

Description

This data set represents a simulation of a directed in-school friendship network. The network is named faux.desert.high.

Usage

data(faux. desert.high)

Format

faux. desert.high is a network object with 107 vertices (students, in this case) and 439 directed edges (friendship nominations). To obtain additional summary information about it, type summary (faux. desert.high).
The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student's grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:
Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003 statnet: Software tools for the Statistical Modeling of Network Data https://statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:
The school in question (a single school with 7th through 12th grades) was selected from the Add Health "structure files." Documentation on these files can be found here: https://www.cpc.unc. edu/projects/addhealth/codebooks/wave1/structur.zip.
The stucture file contains directed out-ties representing each instance of a student who named another student as a friend. Students could nominate up to 5 male and 5 female friends. Note that registered students who did not take the AddHealth survey or who were not listed by name on the schools' student roster are not included in the stucture files. In addition, we removed any students with missing values for race, grade or sex.
The following ergm model was fit to the original data:

```
desert.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)
```

Then the faux.desert.high dataset was created by simulating a single network from the above model fit:

```
    faux.desert.high <- simulate(desert.fit, nsim=1, burnin=1e+8,
constraint = "edges")
```


References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high
faux.dixon.high Faux dixon High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is named faux.dixon.high.

Usage

data(faux.dixon.high)

Format

faux.dixon.high is a network object with 248 vertices (students, in this case) and 1197 directed edges (friendship nominations). To obtain additional summary information about it, type summary (faux.dixon.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student's grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:
Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003 statnet: Software tools for the Statistical Modeling of Network Data https://statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:
The school in question (a single school with 7th through 12th grades) was selected from the Add Health "structure files." Documentation on these files can be found here: https://www.cpc.unc. edu/projects/addhealth/codebooks/wave1/structur.zip.

The stucture file contains directed out-ties representing each instance of a student who named another student as a friend. Students could nominate up to 5 male and 5 female friends. Note that registered students who did not take the AddHealth survey or who were not listed by name on the schools' student roster are not included in the stucture files. In addition, we removed any students with missing values for race, grade or sex.
The following ergm model was fit to the original data:

```
dixon.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)
```

Then the faux.dixon.high dataset was created by simulating a single network from the above model fit:

```
faux.dixon.high <- simulate(dixon.fit, nsim=1, burnin=1e+8,
constraint = "edges")
```


References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high
faux.magnolia.high Goodreau's Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named faux.magnolia.high because the school commnunities on which it is based are large and located in the southern US.

Usage

```
data(faux.magnolia.high)
```


Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974 undirected edges (mutual friendships). To obtain additional summary information about it, type summary (faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student's grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.
When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:
Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003 statnet: Software tools for the Statistical Modeling of Network Data https://statnet.org.

Source

The data set is based upon a model fit to data from two school communities from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were combined into a single network dataset. Students who did not take the AddHealth survey or who were not listed on the schools' student rosters were eliminated, then an undirected link was established between any two individuals who both named each other as a friend. All missing race, grade, and sex values were replaced by a random draw with weights determined by the size of the attribute classes in the school.
The following ergm model was fit to the original data:

```
magnolia.fit <- ergm (magnolia ~ edges +
nodematch("Grade",diff=T) + nodematch("Race",diff=T) +
nodematch("Sex",diff=F) + absdiff("Grade") + gwesp(0.25,fixed=T),
burnin=10000, interval=1000, MCMCsamplesize=2500, maxit=25,
control=control.ergm(steplength=0.25))
```

Then the faux.magnolia.high dataset was created by simulating a single network from the above model fit:

```
    faux.magnolia.high <- simulate (magnolia.fit, nsim=1,
burnin=100000000, constraint = "edges")
```


References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical Association, 278: 823-32.

See Also

```
network, plot.network, ergm, faux.mesa.high
```

faux.mesa.high Goodreau's Faux Mesa High School as a network object

Description

This data set (formerly called "fauxhigh") represents a simulation of an in-school friendship network. The network is named faux.mesa. high because the school commnunity on which it is based is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data(faux.mesa.high)

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undirected edges (mutual friendships). To obtain additional summary information about it, type summary (faux.mesa.high).
The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indicating each student's grade in school. The Race attribute is based on the answers to two questions, one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black (non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997) should be cited. In addition this package should be cited as:
Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003 statnet: Software tools for the Statistical Modeling of Network Data https://statnet.org.

Source

The data set is based upon a model fit to data from one school community from the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was done with the students' response to questions on race and grade. These three attribute vectors were permuted independently. Missing values for each were randomly assigned with weights determined by the size of the attribute classes in the school.

The following ergm formula was used to fit a model to the original data:

```
~ edges + nodefactor("Grade") + nodefactor("Race") +
nodefactor("Sex") + nodematch("Grade",diff=TRUE) +
nodematch("Race",diff=TRUE) + nodematch("Sex",diff=FALSE) +
gwdegree(1.0,fixed=TRUE) + gwesp(1.0,fixed=TRUE) + gwdsp(1.0,fixed=TRUE)
```

The resulting model fit was then applied to a network with actors possessing the permuted attributes and with the same number of edges as in the original data.
The processes for handling missing data and defining the race attribute are described in Hunter, Goodreau \& Handcock (2008).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2008). Goodness of Fit of Social Network Models, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Findings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.magnolia.high
fix.curved Convert a curved ERGM into a corresponding "fixed" ERGM.

Description

The generic fix.curved converts an ergm object or formula of a model with curved terms to the variant in which the curved parameters are fixed. Note that each term has to be treated as a special case.

Usage

```
fix.curved(object, ...)
\#\# S3 method for class 'ergm'
fix.curved(object, ...)
\#\# S3 method for class 'formula'
fix.curved(object, theta, response = NULL, ...)
```


Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula (or the formula used in the fit) must have all of their arguments passed by name.
... Unused at this time.
theta Curved model parameter configuration.
response \quad Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.

Details

Some ERGM terms such as gwesp and gwdegree have two forms: a curved form, for which their decay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term's components (esp(1), esp(2), ... and degree(1), degree(2), ..., respectively) and a "fixed" form where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself. It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic.
This function thus takes in a fit or a formula and performs this mapping, returning a "fixed" model and parameter specification. It only works for curved ERGM terms included with the ergm package. It does not work with curved terms not included in ergm.

Value

A list with the following components:

formula	The "fixed" formula.
theta	The "fixed" parameter vector.

See Also

ergm, simulate.ergm

Examples

```
data(sampson)
gest<-ergm(samplike~edges+gwesp(decay=.5,fixed=FALSE),
```

```
    control=control.ergm(MCMLE.maxit=3, MCMC.burnin=1024, MCMC.interval=128))
summary(gest)
# A statistic for esp(1),...,esp(16)
simulate(gest,output="stats")
tmp<-fix.curved(gest)
tmp
# A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, output="stats")
```

florentine \quad| Florentine Family Marriage and Business Ties Data as a "network" |
| :--- |
| object |

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is originally from Padgett (1994) via UCINET and stored as a network object.

Usage

data(florentine)

Details

Breiger \& Pattison (1986), in their discussion of local role analysis, use a subset of data on the social relations among Renaissance Florentine families (person aggregates) collected by John Padgett from historical documents. The two relations are business ties (flobusiness - specifically, recorded financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger \& Pattison point out, the original data are symmetrically coded. This is acceptable perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed). To remedy this, the financial ties can be recoded as directed relations using some external measure of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth each family's net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats on the civic council) held between 1282-1344; and (3) totalties the total number of business or marriage ties in the total dataset of 116 families (see Breiger \& Pattison (1986), p 239).
Substantively, the data include families who were locked in a struggle for political control of the city of Florence around 1430. Two factions were dominant in this struggle: one revolved around the infamous Medicis (9), the other around the powerful Strozzis (15).

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper delivered to the Social Science History Association.

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their algebras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five ties stored as a network object.

Usage

```
    data(g4)
```


Details

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it exists, but the maximum psuedolikelihood estimator does not.

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

```
data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))
```

Getting. Started Getting Started with "ergm": Fit, simulate and diagnose exponentialfamily models for networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models. For a list of functions type: help(package='ergm')

For a complete list of the functions, use library (help="ergm") or read the rest of the manual. For a simple demonstration, use demo(packages="ergm").
When publishing results obtained using this package the original authors are to be cited as given in citation("ergm"):

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris. 2003 ergm: Fit, simulate and diagnose exponential-family models for networks https://statnet.org.
All published work derived from this package must cite it. For complete citation information, use citation(package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a generalization of the Markov random network models introduced by Frank and Strauss (1986), which in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the complex dependencies within relational data structures. To date, the use of stochastic network models for networks has been limited by three interrelated factors: the complexity of realistic models, the lack of simulation tools for inference and validation, and a poor understanding of the inferential properties of nontrivial models.
This manual introduces software tools for the representation, visualization, and analysis of network data that address each of these previous shortcomings. The package relies on the network package which allows networks to be represented in R. The ergm package allows maximum likelihood estimates of exponential random network models to be calculated using Markov Chain Monte Carlo. The package also provides tools for plotting networks, simulating networks and assessing model goodness-of-fit.
For detailed information on how to download and install the software, go to the ergm website: https://statnet.org. A tutorial, support newsgroup, references and links to further resources are provided there.

Author(s)

Mark S. Handcock handcock@stat.ucla.edu,
David R. Hunter dhunter@stat.psu.edu,
Carter T. Butts <buttsc@uci. edu>,
Steven M. Goodreau <goodreau@u. washington.edu>,

Pavel N. Krivitsky krivitsky@stat.psu.edu, and
Martina Morris morrism@u.washington.edu
Maintainer: David R. Hunter dhunter@stat.psu.edu

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, https://statnet. org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7). https://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the Royal Statistical Society, B, 36, 192-236.
Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https: //cran.r-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical Software, 24(2). https://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (https://statnet.org). R package version 1.12.0, https://cran.r-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association, 81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal of Statistical Software, 24(8). https://www. jstatsoft.org/v24/i08/.
Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Exponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in press.
Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working Paper
\#39, Center for Statistics and the Social Sciences, University of Washington. https://www. csss.washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks. Statnet Project, Seattle, WA. Version 1.0, https://statnet. org.
Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA. Version 2, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, https: //statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics, 15: 565-583.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software, 24(3). https://www.jstatsoft.org/v24/i03/.
Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical networks. Seattle, WA. Version 2, https://statnet.org.

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www. jstatsoft.org/v24/i04/.
Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the American Statistical Association, 85, 204-212.

```
geweke.diag.mv Multivariate version of coda's coda::geweke.diag().
```


Description

Rather than comparing each mean independently, compares them jointly. Note that it returns an htest object, not a geweke. diag object.

Usage

geweke.diag.mv(x, frac1 = 0.1, frac2 = 0.5, split.mcmc.list = FALSE)

Arguments

x

 an mcme, mcmc. list, or just a matrix with observations in rows and variables in columns.frac1, frac2 the fraction at the start and, respectively, at the end of the sample to compare. split.mcmc.list
when given an mcmc. list, whether to test each chain individually.

Value

An object of class htest, inheriting from that returned by approx. hotelling.diff.test(), but with p-value considered to be 0 on insufficient sample size.

Note

If approx.hotelling.diff.test() returns an error, then assume that burn-in is insufficient.

See Also

coda::geweke.diag(), approx.hotelling.diff.test()

Description

gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the goodness-of-fit of exponential family random graph models. See ergm for more information on these models.

Usage

```
gof(object, ...)
## S3 method for class 'ergm'
gof(object, ..., coef = NULL, GOF = NULL,
    constraints = NULL, control = control.gof.ergm(), verbose = FALSE)
## S3 method for class 'formula'
gof(object, ..., coef = NULL, GOF = NULL,
    constraints = ~., control = NULL, unconditional = TRUE,
    verbose = FALSE)
## S3 method for class 'gof'
print(x, ...)
## S3 method for class 'gof'
plot(x, ..., cex.axis = 0.7, plotlogodds = FALSE,
    main = "Goodness-of-fit diagnostics", normalize.reachability = FALSE,
    verbose = FALSE)
```


Arguments

object Either a formula or an ergm object. See documentation for ergm.
... Additional arguments, to be passed to lower-level functions.
coef When given either a formula or an object of class ergm, coef are the parameters from which the sample is drawn. By default set to a vector of 0 .
GOF formula; an formula object, of the form ~ <model terms> specifying the statistics to use to diagnosis the goodness-of-fit of the model. They do not need to be in the model formula specified in formula, and typically are not. Currently supported terms are the degree distribution ("degree" for undirected graphs, or "idegree" and/or "odegree" for directed graphs), geodesic distances ("distance"), shared partner distributions ("espartners" and "dspartners"), the triad census ("triadcensus"), and the terms of the original model ("model"). The default formula for undirected networks is \sim degree + espartners + distance + model, and the default formula for directed networks is \sim idegree + odegree + espartners + distance +

```
model. By default a "model" term is added to the formula. It is a very useful overall validity check and a reminder of the statistical variation in the estimates of the mean value parameters. To omit the "model" term, add "- model" to the formula.
constraints A one-sided formula specifying one or more constraints on the support of the distribution of the networks being modeled. See the help for similarly-named argument in ergm for more information. For gof. formula, defaults to unconstrained. For gof.ergm, defaults to the constraints with which object was fitted.
control A list to control parameters, constructed using control.gof.formula or control.gof.ergm (which have different defaults).
verbose Provide verbose information on the progress of the simulation.
unconditional logical; if TRUE, the simulation is unconditional on the observed dyads. if not TRUE, the simulation is conditional on the observed dyads. This is primarily used internally when the network has missing data and a conditional GoF is produced.
\(x \quad\) an object of class gof for printing or plotting.
cex.axis Character expansion of the axis labels relative to that for the plot.
plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum geodesic distance, shared partners). This is an alternative to the probability of a dyad having the same property.
main Title for the goodness-of-fit plots.
normalize.reachability
Should the reachability proportion be normalized to make it more comparable with the other geodesic distance proportions.
```


Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the output of a call to ergm and the model used for that call is the one fit.
For GOF = ~model, the model's observed sufficient statistics are plotted as quantiles of the simulated sample. In a good fit, the observed statistics should be near the sample median (0.5).

Value

gof, gof.ergm, and gof.formula return an object of class gof.ergm, which inherits from class gof. This is a list of the tables of statistics and p-values. This is typically plotted using plot.gof.

Methods (by class)

- ergm: Perform simulation to evaluate goodness-of-fit for a specific ergm() fit.
- formula: Perform simulation to evaluate goodness-of-fit for a model configuration specified by a formula, coefficient, constraints, and other settings.
- gof: print.gof summaries the diagnostics such as the degree distribution, geodesic distances, shared partner distributions, and reachability for the goodness-of-fit of exponential family random graph models. See ergm for more information on these models. (summary. gof is a deprecated alias that may be repurposed in the future.)
- gof: plot.gof plots diagnostics such as the degree distribution, geodesic distances, shared partner distributions, and reachability for the goodness-of-fit of exponential family random graph models. See ergm for more information on these models.

Note

For gof.ergm and gof.formula, default behavior depends on the directedness of the network involved; if undirected then degree, espartners, and distance are used as default properties to examine. If the network in question is directed, "degree" in the above is replaced by idegree and odegree.

See Also

```
ergm(), network(), simulate.ergm(), summary.ergm()
```


Examples

```
data(florentine)
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)
# test the gof.ergm function
gofflo <- gof(gest)
gofflo
# Plot all three on the same page
# with nice margins
par(mfrow=c(1,3))
par(oma=c(0.5, 2, 1, 0.5))
plot(gofflo)
# And now the log-odds
plot(gofflo, plotlogodds=TRUE)
# Use the formula version of gof
gofflo2 <-gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)
```

hamming hamming (disambiguation)

Description

hamming may refer to:

- An ERGM statistic (help("hamming-term"))
- A ERGM sample space constraint (help("hamming-constraint"))

```
is.curved Testing for curved exponential family
```


Description

These functions test whether an ERGM fit, formula, or some other object represents a curved exponential family.

The method for NULL always returns FALSE by convention.

Usage

```
is.curved(object, ...)
## S3 method for class 'NULL'
is.curved(object, ...)
## S3 method for class 'formula'
is.curved(object, response = NULL, basis = NULL, ...)
## S3 method for class 'ergm'
is.curved(object, ...)
```


Arguments

object An ergm object or an ERGM formula.
... Arguments passed on to lower-level functions.
response \quad Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
basis See ergm().

Details

Curvature is checked by testing if all model parameters are canonical.

Value

TRUE if the object represents a curved exponential family; FALSE otherwise.

Description

These functions test whether an ERGM model or formula is durational dependent or not. If the formula or model does not include any terms that need information about the duration of existing ties, the ergm proceass can use more efficient internal data structures.

The method for NULL always returns FALSE by convention.
The method for character always returns FALSE by convention.

Usage

```
is.durational(object, ...)
## S3 method for class 'NULL'
is.durational(object, ...)
## S3 method for class 'character'
is.durational(object, ...)
## S3 method for class 'formula'
is.durational(object, response = NULL, basis = NULL,
    ...)
```


Arguments

object An ergm object or an ERGM formula, or some characters, e.g., object="all" for monitoring purpose.
... Unused at this time.
response Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
basis See ergm().

Value

TRUE if the ERGM terms in the formula or model are durational dependent ; FALSE otherwise.
is.dyad.independent Testing for dyad-independence

Description

These functions test whether an ERGM fit, a formula, or some other object represents a dyadindependent model.
The method for NULL always returns FALSE by convention.

Usage

```
is.dyad.independent(object, ...)
## S3 method for class 'NULL'
is.dyad.independent(object, ...)
## S3 method for class 'formula'
is.dyad.independent(object, response = NULL,
    basis = NULL, ...)
## S3 method for class 'ergm_conlist'
is.dyad.independent(object, object.obs = NULL,
    ...)
## S3 method for class 'ergm'
is.dyad.independent(object, ...)
```


Arguments

object The object to be tested for dyadic independence.
... Unused at this time.
response \quad Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a binary ERGM.
basis See ergm.
object.obs For the ergm_conlist method, the observed data constraint.

Details

Dyad independence is determined by checking if all of the constituent parts of the object (formula, ergm terms, constraints, etc.) are flagged as dyad-independent.

Value

TRUE if the model implied by the object is dyad-independent; FALSE otherwise.
is. $\mathrm{inCH} \quad$ Determine whether a vector is in the closure of the convex hull of some sample of vectors

Description

is. inCH returns TRUE if and only if p is contained in the convex hull of the points given as the rows of M. If p is a matrix, each row is tested individually, and TRUE is returned if all rows are in the convex hull.

Usage

is.inCH(p, M, verbose = FALSE, ...)

Arguments

$\mathrm{p} \quad$ A d-dimensional vector or a matrix with d columns
M An r by d matrix. Each row of M is a d-dimensional vector.
verbose A logical vector indicating whether to print progress
... arguments passed directly to linear program solver

Details

The d-vector p is in the convex hull of the d-vectors forming the rows of M if and only if there exists no separating hyperplane between p and the rows of M. This condition may be reworded as follows:

Letting $q=\left(1 p^{\prime}\right)^{\prime}$ and $L=(1 M)$, if the maximum value of $z^{\prime} q$ for all z such that $z^{\prime} L \leq 0$ equals zero (the maximum must be at least zero since $\mathrm{z}=0$ gives zero), then there is no separating hyperplane and so p is contained in the convex hull of the rows of M. So the question of interest becomes a constrained optimization problem.

Solving this problem relies on the package lpSolve to solve a linear program. We may put the program in "standard form" by writing $z=a-b$, where a and b are nonnegative vectors. If we write $x=\left(a^{\prime} b^{\prime}\right)^{\prime}$, we obtain the linear program given by:
Minimize $\left(-q^{\prime} q^{\prime}\right) x$ subject to $x^{\prime}(L-L) \leq 0$ and $x \geq 0$. One additional constraint arises because whenever any strictly negative value of $\left(-q^{\prime} q^{\prime}\right) x$ may be achieved, doubling x arbitrarily many times makes this value arbitrarily large in the negative direction, so no minimizer exists. Therefore, we add the constraint $\left(q^{\prime}-q^{\prime}\right) x \leq 1$.

This function is used in the "stepping" algorithm of Hummel et al (2012).

Value

Logical, telling whether p is (or all rows of p are) in the closed convex hull of the points in M.

References

- https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html
- Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, 21: 920939.

kapferer Kapferer's tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 individuals who were present at both data-collection time periods. However, these data only reflect data collected during the first period. The individuals' names are included as a nodal covariate called names.

Details

An interaction is defined by Kapferer as "continuous uninterrupted social activity involving the participation of at least two persons"; only transactions that were relatively frequent are recorded. All of the interactions in this particular dataset are "sociational", as opposed to "instrumental". Kapferer explains the difference (p. 164) as follows:
"I have classed as transactions which were sociational in content those where the activity was markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink together. Examples of instrumental transactions are the lending or giving of money, assistance at times of personal crisis and help at work."
Kapferer also observed and recorded instrumental transactions, many of which are unilateral (directed) rather than reciprocal (undirected), though those transactions are not recorded here. In addition, there was a second period of data collection, from September 1965 to January 1966, but these data are also not recorded here. All data are given in Kapferer's 1972 book on pp. 176-179.

During the first time period, there were 43 individuals working in this particular tailor shop; however, the better-known dataset includes only those 39 individuals who were present during both time collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus, we give two separate network datasets here: kapferer is the well-known 39-individual dataset, whereas kapferer2 is the full 43-individual dataset.

Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manchester University Press.
logLik.ergm A logLik method for ergm fits.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary. If the log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE.

Usage

```
## S3 method for class 'ergm'
logLik(object, add = FALSE, force.reeval = FALSE,
    eval.loglik = add || force.reeval, control = control.logLik.ergm(),
    ...)
```


Arguments

object An ergm fit, returned by ergm.
add Logical: If TRUE, instead of returning the log-likelihood, return object with log-likelihood value set.
force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an estiamte.
eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.
control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.
... Other arguments to the likelihood functions.

Value

The form of the output of logLik.ergm depends on add: add=FALSE (the default), a logLik object. If add=TRUE (the default), an ergm object with the log-likelihood set.
As of version 3.1, all likelihoods for which logLikNull is not implemented are computed relative to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0 , and all other models are defined relative to that.)

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for networks, Journal of Computational and Graphical Statistics.

See Also

logLik, logLikNull, ergm.bridge.llr, ergm.bridge.dindstart.llk

Examples

```
# See help(ergm) for a description of this model. The likelihood will
# not be evaluated.
data(florentine)
## Not run:
# The default maximum number of iterations is currently 20. We'll only
# use 2 here for speed's sake.
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE,
    control=control.ergm(MCMLE.maxit=2))
# Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)
# Evaluate the log-likelihood and attach it to the object.
# The default number of bridges is currently 20. We'll only use 3 here
# for speed's sake.
gest.logLik <- logLik(gest, add=TRUE)
gest.logLik <- logLik(gest, add=TRUE, control=control.logLik.ergm(nsteps=3))
# Deviances, AIC, and BIC are now shown:
summary(gest.logLik)
# Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(flomarriage)*log(1/2)
## End(Not run)
```

logLikNull Calculate the null model likelihood

Description

Calculate the null model likelihood

Usage

logLikNull(object, ...)
\#\# S3 method for class 'ergm'
logLikNull(object, control = control.logLik.ergm(), ...)

Arguments

object a fitted model.
... further arguments to lower-level functions.
logLikNull computes, when possible the log-probability of the data under the null model (reference distribution).
control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

Value
logLikNull returns an object of type logLik if it is able to compute the null model probability, and NA otherwise.

Methods (by class)

- ergm: A method for ergm fits; currently only implemented for binary ERGMs with dyadindependent sample-space constraints.

```
mcmc.diagnostics Conduct MCMC diagnostics on a model fit
```


Description

This function prints diagnistic information and creates simple diagnostic plots for MCMC sampled statistics produced from a fit.

Usage

mcmc.diagnostics(object, ...)
\#\# S3 method for class 'ergm'
mcmc.diagnostics(object, center = TRUE, esteq $=$ TRUE, vars.per.page = 3, ...)

Arguments

object A model fit object to be diagnosed.
... Additional arguments, to be passed to plotting functions.
center Logical: If TRUE, center the samples on the observed statistics.
esteq Logical: If TRUE, for statistics corresponding to curved ERGM terms, summarize the curved statistics by their estimating equation values (evaluated at the MLE of any curved parameters) (i.e., $\eta_{I}^{\prime}(\hat{\theta}) \cdot g_{I}(y)$ for I being indices of the canonical parameters in question), rather than the canonical (sufficient) vectors of the curved statistics $\left(g_{I}(y)\right)$.
vars.per. page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra package is not installed.

Details

A pair of plots are produced for each statistic:a trace of the sampled output statistic values on the left and density estimate for each variable in the MCMC chain on the right. Diagnostics printed to the console include correlations and convergence diagnostics.

For ergm() specifically, recent changes in the estimation algorithm mean that these plots can no longer be used to ensure that the mean statistics from the model match the observed network statistics. For that functionality, please use the GOF command: gof (object, GOF=~model).

In fact, an ergm output object contains the matrix of statistics from the MCMC run as component $\$$ sample. This matrix is actually an object of class mcmc and can be used directly in the coda package to assess MCMC convergence. Hence all MCMC diagnostic methods available in coda are available directly. See the examples and https://www.mrc-bsu.cam.ac.uk/software/bugs/ the-bugs-project-winbugs/coda-readme/.
More information can be found by looking at the documentation of ergm.

Value

mcmc.diagnostics.ergm returns some degeneracy information, if it is included in the original object. The function is mainly used for its side effect, which is to produce plots and summary output based on those plots.

Methods (by class)

- ergm:

References

Markov University of Washington, run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statistical Science, 7, 493-497.
Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegelhalter and S. Richardson, eds.). London, U.K.: Chapman and Hall.
This function is based on the coda package It is based on the the R function raftery.diag in coda. raftery.diag, in turn, is based on the FORTRAN program gibbsit written by Steven Lewis which is available from the Statlib archive.

See Also

ergm, network package, coda package, summary. ergm

Examples

```
## Not run:
#
data(florentine)
#
# test the mcmc.diagnostics function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
# Plot the probabilities first
#
mcmc.diagnostics(gest)
#
# Use coda directly
```

\#
library (coda)
\#
plot(gest\$sample, ask=FALSE)
\#
\# A full range of diagnostics is available
\# using codamenu()
\#
\#\# End(Not run)
molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm documentation. It has an interesting elongated shape

- reminencent of a chemical molecule. It is stored as a network object.

Usage

```
data(molecule)
```


See Also

florentine, sampson, network, plot.network, ergm

```
network.list A convenience container for a list of network objects, output by
    simulate.ergm among others.
```


Description

A convenience container for a list of network objects, output by simulate.ergm among others.

Usage

network.list(object, ...)
\#\# S3 method for class 'network.list'
print(x, stats.print $=$ FALSE,..)
\#\# S3 method for class 'network.list'
summary (object, stats.print $=$ TRUE,
net.print $=$ FALSE, net.summary $=$ FALSE,..)

Arguments

$$
\begin{array}{ll}
\text { object, } x & \text { a list of networks or a network. list object. } \\
\ldots & \begin{array}{l}
\text { for network.list, additional attributes to be set on the network list; for others, } \\
\text { arguments passed down to lower-level functions. }
\end{array} \\
\text { stats.print } & \text { Logical: If TRUE, print network statistics. } \\
\text { net.print } & \begin{array}{l}
\text { Logical: If TRUE, print network overviews. } \\
\text { net.summary }
\end{array} \\
\text { Logical: If TRUE, print network summaries. }
\end{array}
$$

Methods (by generic)

- print: A print() method for network lists.
- summary: A summary () method for network lists.

See Also

```
simulate.ergm
```


Examples

```
# Draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),
    basis=g.use, control=control.simulate(
        MCMC.burnin=100000,
        MCMC.interval=1000))
print(g.sim)
summary(g.sim)
```

 node-attr Specifying nodal attributes and their levels

Description

This document describes the ways to specify nodal attributes or functions of nodal attributes and which levels for categorical factors to include. For the helper functions to facilitate this, see node-attr-api.

Details

Term nodal attribute arguments, typically called attr, attrs, by, or on are interpreted as follows:
a character string Extract the vertex attribute with this name.
a character vector of length >1 Extract the vertex attributes and paste them together, separated by dots if the term expects categorical attributes and (typically) combine into a covariate matrix if it expects quantitative attributes.
a function The function is called on the LHS network, expected to return a vector or matrix of appropriate dimension. (Shorter vectors and matrix columns will be recycled as needed.)
a formula The expression on the RHS of the formula is evaluated in an environment of the vertex attributes of the network, expected to return a vector or matrix of appropriate dimension. (Shorter vectors and matrix columns will be recycled as needed.) Within this expression, the network itself accessible as either . or .nw. For example, nodecov (\sim abs (Grade-mean(Grade))/network.size(.)) would return the absolute difference of each actor's "Grade" attribute from its network-wide mean, divided by the network size.

For categorical attributes, to select which levels are of interest and their ordering, use the argument levels. Selection of nodes (from the appropriate vector of nodal indices) is likewise handled as the selection of levels, using the argument nodes. These arguments are interpreted as follows:
an expression wrapped in I () Use the given list of levels as is.
a numeric or logical vector Used for indexing of a list of all possible levels (typically, unique values of the attribute) in default older (typically lexicographic), i.e., sort (unique(attr)) [levels]. In particular, levels=TRUE will retain all levels. Negative values exclude. To specify numeric or logical levels literally, wrap in I ().
NULL Retain all possible levels; usually equivalent to passing TRUE.
a character vector Use as is.
a function The function is called on the list of unique values of the attribute, the values of the attribute themselves, and the network itself, depending on its arity. Its return value is interpreted as above.
a formula The expression on the RHS of the formula is evaluated in an environment in which the network itself is accessible as .nw, the list of unique values of the attribute as . or as .levels, and the attribute vector itself as .attr. Its return value is interpreted as above.

Note that levels or nodes often has a default that is sensible for the term in question.

Examples

```
data(faux.mesa.high)
# Activity by grade with a baseline grade excluded:
summary(faux.mesa.high~nodefactor(~Grade))
# Retain all levels:
summary(faux.mesa.high~nodefactor(~Grade, levels=TRUE)) # or levels=NULL
# Mixing between lower and upper grades:
summary(faux.mesa.high~mm(~Grade>=10))
```

```
# Mixing between grades 7 and 8 only:
summary(faux.mesa.high~mm("Grade", levels=I(c(7,8))))
# or
summary(faux.mesa.high~mm("Grade", levels=1:2))
# or using levels2 (see ? mm) to filter the combinations of levels,
summary(faux.mesa.high~mm("Grade",
        levels2=~sapply(.levels,
            function(1)
                            l[[1]]%in%c(7,8) && l[[2]]%in%c(7,8))))
```

nparam Length of the parameter vector associated with an object or with its
terms.

Description

This is a generic that returns the number of parameters associated with a model or a model fit.

Usage

nparam(object, ...)
\#\# Default S3 method:
nparam(object, ...)
\#\# S3 method for class 'ergm'
nparam(object, offset $=$ NA, ...)

Arguments

object An object for which number of parameters is defined.
... Additional arguments to methods.
offset If NA (the default), all model terms are counted; if TRUE, only offset terms are counted; and if FALSE, offset terms are skipped.

Methods (by class)

- default: By default, the length of the coef() vector is returned.
- ergm: A method to return the number of parameters of an ergm fit.

Description

This is a generic that returns a vector giving the names of the parameters associated with a model or a model fit.

Usage

param_names(object, ...)
\#\# Default S3 method:
param_names(object, ...)

Arguments

object An object for which parameter names are defined.
... Additional arguments to methods.

Methods (by class)

- default: By default, the names of the coef() vector is returned.

```
print.summary.ergm Summarizing ERGM Model Fits
```


Description

summary method for ergm fits.

Usage

```
## S3 method for class 'summary.ergm'
print(x, digits = max(3, getOption("digits") - 3),
        correlation = FALSE, covariance = FALSE,
        signif.stars = getOption("show.signif.stars"), eps.Pvalue = 1e-04,
        print.header = TRUE, print.formula = TRUE, print.fitinfo = TRUE,
        print.coefmat = TRUE, print.message = TRUE, print.deviances = TRUE,
        print.drop = TRUE, print.offset = TRUE, print.degeneracy = TRUE,
        ...)
    ## S3 method for class 'ergm'
    summary(object, ..., correlation = FALSE,
        covariance = FALSE, total.variation = TRUE)
```


Arguments

$x \quad$ object of class summary.ergm returned by summary. ergm().
digits Significant digits for coefficients
correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned and printed.
covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned and printed.
signif.stars whether to print dots and stars to signify statistical significance. See print. summary. lm().
eps.Pvalue $\quad p$-values below this level will be printed as "<eps.Pvalue".
print.header, print.formula, print.fitinfo, print.coefmat, print.message, print.deviances, print.dr which components of the fit summary to print.
... Arguments to logLik.ergm
object an object of class "ergm", usually, a result of a call to ergm.
total.variation
logical; if TRUE, the standard errors reported in the Std. Error column are based on the sum of the likelihood variation and the MCMC variation. If FALSE only the likelihood varuation is used. The p-values are based on this source of variation.

Details

summary . ergm tries to be smart about formatting the coefficients, standard errors, etc.

Value

The function summary.ergm computes and returns a list of summary statistics of the fitted ergm model given in object. Note that for backwards compatibility, it returns two coefficient tables: \$coefs which does not contain the z-statistics and \$coefficeints which does (and is therefore more similar to those returned by summary. $\operatorname{lm}()$).

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.
Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

```
data(florentine)
x <- ergm(flomarriage ~ density)
summary(x)
```


Description

Three network objects containing the "liking" nominations of Sampson's (1969) monks at the three time points.

Usage
 data(samplk)

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the expulsion of four monks- namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark. Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original group.

Of particular interest are the data on positive affect relations ("liking," using the terminology later adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on "liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B among these top choices.
The data were gathered at three times to capture changes in group sentiment over time. They represent three time points in the period during which a new cohort had entered the monastery near the end of the study but before the major conflict began. These three time points are labeled T2, T3, and T4 in Tables D5 through D16 in the appendices of Sampson's 1969 dissertation. and the corresponding network data sets are named samplk1, samplk2, and samplk3, respectively.
See also the data set sampson containing the time-aggregated graph samplike.
samplk3 is a data set of Hoff, Raftery and Handcock (2002).
The data sets are stored as network objects with three vertex attributes:
group Groups of novices as classified by Sampson, that is, "Loyal", "Outcasts", and "Turks", but with a fourth group called the "Waverers" by White et al. (1975) that comprises two of the original Loyal opposition and one of the original Outcasts. See the samplike data set for the original classifications of these three waverers.
cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to the monastery.
vertex.names The given names of the novices. NB: These names have been corrected as of ergm version 3.6.1.

This data set is standard in the social network analysis literature, having been modeled by Holland and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small piece of the data collected by Sampson.
This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8, Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17, Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm versions 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2, and samplk3 networks reflected the original Sampson (1969) ordering of the names even though the vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version 3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold, Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter, Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias, Simplicius.

Source

Sampson, S. \sim F. (1968), A novitiate in a period of change: An experimental and case study of relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.
http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I. Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.
Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis with Pajek, Cambridge: Cambridge University Press

See Also

sampson, florentine, network, plot.network, ergm

sampson | Cumulative network of positive affection within a monastery as a "net- |
| :--- |
| work" object |

Description

A network object containing the cumulative "liking" nominations of Sampson's (1969) monks over the three time points.

Usage
 ```data(sampson)```

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the expulsion of four monks- namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark. Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original group.
Of particular interest are the data on positive affect relations ("liking," using the terminology later adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on "liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B among these top choices.
The data were gathered at three times to capture changes in group sentiment over time. They represent three time points in the period during which a new cohort had entered the monastery near the end of the study but before the major conflict began. These three time points are labeled T2, T3, and T4 in Tables D5 through D16 in the appendices of Sampson's 1969 dissertation. The samplike data set is the time-aggregated network. Thus, a tie from monk A to monk B exists if A nominated B as one of his three (or four, in case of ties) best friends at any of the three time points.
See also the data sets samplk1, samplk2, and samplk3, containing the networks at each of the three individual time points.

The data set is stored as a network object with three vertex attributes:
group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks".
cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to the monastery.
vertex.names The given names of the novices. NB: These names have been corrected as of ergm version 3.6.1; see details below.

In addition, the data set has an edge attribute, nominations, giving the number of times (out of 3) that monk A nominated monk B.
This data set is standard in the social network analysis literature, having been modeled by Holland and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small piece of the data collected by Sampson.

This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8, Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17, Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm version 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2, and samplk3 networks reflected the original Sampson (1969) ordering of the names even though the vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version 3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold, Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter, Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias, Simplicius.

Source

Sampson, S. $\sim \mathrm{F}$. (1968), A novitiate in a period of change: An experimental and case study of relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.
http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I. Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis with Pajek, Cambridge: Cambridge University Press

See Also

florentine, network, plot.network, ergm

san | Use Simulated Annealing to attempt to match a network to a vector of |
| :--- |
| mean statistics |

Description

This function attempts to find a network or networks whose statistics match those passed in via the target.stats vector.

Usage

```
san(object, ...)
\#\# S3 method for class 'formula'
san(object, response = NULL, reference = ~Bernoulli,
    constraints \(=\sim\)., target.stats \(=\) NULL, nsim \(=\) NULL, basis = NULL,
    output = c("network", "edgelist", "pending_update_network"),
    only.last \(=\) TRUE, control \(=\) control.san(), verbose \(=\) FALSE, ...)
\#\# S3 method for class 'ergm_model'
san(object, response \(=\) NULL,
    reference \(=\sim\) Bernoulli, constraints \(=\sim\)., target.stats \(=\) NULL,
    nsim = NULL, basis = NULL, output = c("network", "edgelist",
    "pending_update_network"), only.last = TRUE, control = control.san(),
    verbose = FALSE, ...)
\#\# S3 method for class 'ergm'
san(object, formula = object\$formula,
    constraints = object\$constraints, target.stats = object\$target.stats,
    nsim = NULL, basis = NULL, output = c("network", "edgelist",
    "pending_update_network"), only.last = TRUE,
    control = object\$control\$SAN.control, verbose = FALSE, \(\ldots\).
```


Arguments

object	Either a formula or an ergm object. The formula should be of the form y \sim <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in, use the network() function, then add nodal attributes to it using the \%v\% operator if necessary.		
\ldots	Further arguments passed to other functions. Name of the edge attribute whose value is to be modeled. Defaults to NULL for simple presence or absence.		
response	One-sided formula whose RHS gives the reference measure to be used. (De- faults to ~Bernoulli.)		
constraints \quadA one-sided formula specifying one or more constraints on the support of the distribution of the networks being simulated. See the documentation for a simi- lar argument for ergm and see list of implemented constraints for more informa- tion. For simulate.formula, defaults to no constraints. For simulate.ergm, defaults to using the same constraints as those with which object was fitted.			
target.stats	A vector of the same length as the number of terms implied by the formula, which is either object itself in the case of san. formula or object\$formula in		
the case of san.ergm.		\quad	Number of networks to generate. Deprecated: just use replicate().
:---			

output	Character, one of "network" (default), "edgelist", or "pending_update_network": determines the output format. Partial matching is performed. if TRUE, only return the last network generated; otherwise, return a network. list with nsim networks.
only.last	A list of control parameters for algorithm tuning; see control.san.
control	Logical or numeric giving the level of verbosity. Higher values produce more verbose output.
formula	(By default, the formula is taken from the ergm object. If a different formula object is wanted, specify it here.

Value

A network or list of networks that hopefully have network statistics close to the target.stats vector.

Methods (by class)

- formula: Sufficient statistics are specified by a formula.
- ergm_model: A lower-level function that expects a pre-initialized ergm_model.
- ergm: Sufficient statistics and other settings are inherited from the ergm fit unless overridden.

Examples

```
# initialize x to a random undirected network with 50 nodes and a density of 0.1
x <- network(50, density = 0.05, directed = FALSE)
# try to find a network on 50 nodes with 300 edges, 150 triangles,
# and 1250 4-cycles, starting from the network x
y <- san(x ~ edges + triangles + cycle(4), target.stats = c(300, 150, 1250))
# check results
summary(y ~ edges + triangles + cycle(4))
# initialize x to a random directed network with 50 nodes
x <- network(50)
# add vertex attributes
x %v% 'give' <- runif(50, 0, 1)
x %v% 'take' <- runif(50, 0, 1)
# try to find a set of 100 directed edges making the outward sum of
# 'give' and the inward sum of 'take' both equal to 62.5, so in
# edges (i,j) the node i tends to have above average 'give' and j
# tends to have above average 'take'
y <- san(x ~ edges + nodeocov('give') + nodeicov('take'), target.stats = c(100, 62.5, 62.5))
# check results
summary(y ~ edges + nodeocov('give') + nodeicov('take'))
```

```
# initialize x to a random undirected network with 50 nodes
x <- network(50, directed = FALSE)
# add a vertex attribute
x %v% 'popularity' <- runif(50, 0, 1)
# try to find a set of 100 edges making the total sum of
# popularity(i) and popularity(j) over all edges (i,j) equal to
# 125, so nodes with higher popularity are more likely to be
# connected to other nodes
y <- san(x ~ edges + nodecov('popularity'), target.stats = c(100, 125))
# check results
summary(y ~ edges + nodecov('popularity'))
# creates a network with denser "core" spreading out to sparser
# "periphery"
plot(y)
```


Description

Searches through the ergm. terms help page and prints out a list of terms appropriate for the specified network's structural constraints, optionally restricting by additional categories and keyword matches.

Usage

search.ergmTerms(keyword, net, categories, name)

Arguments

keyword optional character keyword to search for in the text of the term descriptions. Only matching terms will be returned. Matching is case insensitive.
net a network object that the term would be applied to, used as template to determine directedness, bipartite, etc
categories optional character vector of category tags to use to restrict the results (i.e. 'curved', 'triad-related')
name optional character name of a specific term to return

Details

Uses grep internally to match keywords against the term description, so keywords is currently matched as a single phrase. Category tags will only return a match if all of the specified tags are included in the term.

Value

prints out the name and short description of matching terms, and invisibly returns them as a list. If name is specified, prints out the full definition for the named term.

Author(s)

skyebend@uw.edu

See Also

See also ergm. terms for the complete documentation

Examples

```
# find all of the terms that mention triangles
search.ergmTerms('triangle')
# two ways to search for bipartite terms:
# search using a bipartite net as a template
myNet<-network.initialize(5,bipartite=3)
search.ergmTerms(net=myNet)
# or request the bipartite category
search.ergmTerms(categories='bipartite')
# search on multiple categories
search.ergmTerms(categories=c('bipartite','dyad-independent'))
# print out the content for a specific term
search.ergmTerms(name='b2factor')
```

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models. See ergm for more information on these models.
The method for ergm objects inherits the model, the coefficients, the response attribute, the reference, the constraints, and most simulation parameters from the model fit, unless overridden by passing them explicitly. Unless overridden, the simulation is initialized with a random draw from the fitted model, saved by ergm().

Usage

```
\#\# S3 method for class 'formula'
simulate(object, nsim = 1, seed = NULL, coef,
    response \(=\) NULL, reference \(=\sim\) Bernoulli, constraints \(=\sim\).,
    monitor = NULL, basis = NULL, statsonly = FALSE, esteq = FALSE,
    output = c("network", "stats", "edgelist", "pending_update_network"),
    simplify = TRUE, sequential = TRUE,
    control = control.simulate.formula(), verbose \(=\) FALSE,... ,
    do. sim = TRUE)
\#\# S3 method for class 'ergm_model'
simulate (object, nsim \(=1\), seed \(=\) NULL, coef,
    response \(=\) NULL, reference \(=\sim\) Bernoulli, constraints \(=\sim\).,
    monitor = NULL, basis = NULL, esteq = FALSE,
    output = c("network", "stats", "edgelist", "pending_update_network"),
    simplify = TRUE, sequential = TRUE,
    control \(=\) control.simulate.formula(), verbose \(=\) FALSE, ...)
\#\# S3 method for class 'ergm'
simulate(object, nsim \(=1\), seed \(=\) NULL,
    coef \(=\) object\$coef, response \(=\) object\$response,
    reference = object\$reference, constraints = object\$constraints,
    monitor \(=\) NULL, basis \(=\) object\$newnetwork, statsonly \(=\) FALSE,
    esteq = FALSE, output = c("network", "stats", "edgelist",
    "pending_update_network"), simplify = TRUE, sequential = TRUE,
    control = control.simulate.ergm(), verbose = FALSE, ...)
```


Arguments

object	Either a formula or an ergm object. The formula should be of the form y \sim <model terms>, where y is a network object or a matrix that can be coerced to a network object. For the details on the possible <model terms>, see ergm-terms. To create a network object in, use the network() function, then add nodal attributes to it using the \%v\% operator if necessary.
number of networks to be randomly drawn from the given distribution on the	
set of all networks, returned by the Metropolis-Hastings algorithm.	
need	Seed value (integer) for the random number generator. See set. seed. coef Vector of parameter values for the model from which the sample is to be drawn. If object is of class ergm, the default value is the vector of estimated coeffi- cients.
response	Name of the edge attribute whose value is to be modeled in the valued ERGM framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.	

constraints	A one-sided formula specifying one or more constraints on the support of the distribution of the networks being simulated. See the documentation for a simi- lar argument for ergm and see list of implemented constraints for more informa- tion. For simulate.formula, defaults to no constraints. For simulate.ergm, defaults to using the same constraints as those with which object was fitted.
A one-sided formula specifying one or more terms whose value is to be moni-	
tored. These terms are appeneded to the model, along with a coefficient of 0, so	
their statistics are returned. An ergm_model objectcan be passed as well.	

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the first argument of the function. If the first argument is a formula then this defines the model. If the first argument is the output of a call to ergm then the model used for that call is the one fit - and unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given as the first argument then a Bernoulli network is generated with the probability of ties defined by prob or coef.
Note that the first network is sampled after burnin steps, and any subsequent networks are sampled each interval steps after the first.

More information can be found by looking at the documentation of ergm.

Value

If output=="stats" an memc object containing the simulated network statistics. If control\$parallel>0, an mcmc. list object. If simplify=TRUE (the default), these would then be "stacked" and converted to a standard matrix. A logical vector indicating whether or not the term had come from the monitor= formula is stored in attr()-style attribute "monitored".
Otherwise, a representation of the simulated network is returned, in the form specified by output. In addition to a network representation or a list thereof, they have the following attr-style attributes:
formula The formula used to generate the sample.
stats An mcmc or mcmc. list object as above.
control Control parameters used to generate the sample.
constraints Constraints used to generate the sample.
reference The reference measure for the sample.
monitor The monitoring formula.
response The edge attribute used as a response.
The following are the permitted network formats:
"network" If nsim==1, an object of class network. If nsim>1, it returns an object of class network. list
(a list of networks) with the above-listed additional attributes.
"edgelist" An edgelist representation of the network, or a list thereof, depending on nsim.
"pending_update_network" A semi-internal representation of a network consisting of a network object emptied of edges, with an attached edgelist matrix, or a list thereof, depending on nsim.

If simplify==FALSE, the networks are returned as a nested list, with outer list being the parallel chain (including 1 for no parallelism) and inner list being the samples within that chains (including 1 , if one network per chain). If TRUE, they are concatenated, and if a total of one network had been simulated, the network itself will be returned.

Note

simulate.ergm_model() is a lower-level interface, providing a simulate() method for ergm_model class. The basis argument is required; monitor, if passed, must be an ergm_model as well; and constraints can be an ergm_proposal object instead.

See Also

ergm, network
simulate.ergm

Examples

```
#
# Let's draw from a Bernoulli model with 16 nodes
# and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
# What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
# Now simulate a network with higher mutuality
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#
# How do the statistics look?
#
summary(g.sim ~ edges + mutual)
#
# Let's draw from a Bernoulli model with 16 nodes
# and tie probability 0.1
#
g.use <- network(16,density=0.1,directed=FALSE)
#
# Starting from this network let's draw 3 realizations
# of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),
            basis=g.use, control=control.simulate(
                MCMC.burnin=1000,
                MCMC.interval=100))
g.sim
summary(g.sim)
#
# attach the Florentine Marriage data
#
data(florentine)
#
# fit an edges and 2-star model using the ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
# Draw from the fitted model (statistics only), and observe the number
# of triangles as well.
#
g.sim <- simulate(gest, nsim=10,
    monitor=~triangles, output="stats",
    control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))
g.sim
```

```
spectrum0.mvar Multivariate version of coda's spectrum0.ar().
```


Description

Its return value, divided by nrow (cbind (x)), is the estimated variance-covariance matrix of the sampling distribution of the mean of x if x is a multivatriate time series with $\operatorname{AR}(p)$ structure, with p determined by AIC.

Usage

spectrum0.mvar(x, order.max = NULL, aic = is.null(order.max), tol $=$.Machine\$double.eps^0.5, ...)

Arguments

x
order.max
aic use AIC to select the order (up to order.max).
tol drop components until the reciprocal condition number of the transformed variancecovariance matrix is greater than this.
... additional arguments to $\operatorname{ar}()$.

Note

$\operatorname{ar}()$ fails if crossprod (x) is singular, which is remedied by mapping the variables onto the principal components of x, dropping redundant dimentions.

```
summary.formula Calculation of network or graph statistics or other attributes specified
    on a formula
```


Description

Most generally, this function computes those summaries of the object on the LHS of the formula that are specified by its RHS. In particular, if given a network as its LHS and ergm-terms on its RHS, it computes the sufficient statistics associated with those terms.

Usage

\#\# S3 method for class 'formula'
summary (object, ...)

Arguments

object A formula having as its LHS a network object or a matrix that can be coerced to a network object, a network. list, or other types to be summarized using a formula. (See 'methods('summary_formula') for the possible LHS types.
. . further arguments passed to or used by methods.

Details

In practice, summary.formula() is a thin wrapper around the summary_formula() generic, which dispatches methods based on the class of the LHS of the formula.
summary. formula for networks understands the lasttoggle "API".

Value

A vector of statistics specified in RHS of the formula.

See Also

ergm(), network(), ergm-terms

Examples

```
#
# Lets look at the Florentine marriage data
#
data(florentine)
#
# test the summary_formula function
#
summary(flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary(m ~ edges) # twice as large as it should be
summary(m ~ edges, directed=FALSE) # Now it's correct
```

 update. network Update the edges in a network based on a matrix

Description

Replaces the edges in a network object with the edges corresponding to the sociomatrix or edge list specified by new.

Usage

```
## S3 method for class 'network'
update(object, new, matrix.type = NULL,
    attrname = NULL, ..., ignore.nattr = c("bipartite", "directed",
    "hyper", "loops", "mnext", "multiple", "n"), ignore.vattr = c())
```


Arguments

object	a network object. new Either an adjacency matrix (a matrix of values indicating the presence and/or the value of a tie from i to j) or an edge list (a two-column matrix listing origin and destination node numbers for each edge, with an optional third column for the value of the edge).
matrix.type	One of "adjacency" or "edgelist" telling which type of matrix new is. Default is to use the which.matrix. type function.
attrname	For a network with edge weights gives the name of the edge attribute whose names to set.
\ldots	Additional arguments; currently unused.
ignore.nattr	Character vector of the names of network-level attributes to ignore when updat- ing network objects (defaults to standard network properties).
ignore.vattr	Character vector of the names of vertex-level attributes to ignore when updating network objects.

Value

A new network object with the edges specified by new and network and vertex attributes copied from the input network object. Input network is not modified.

See Also

```
ergm(), network
```


Examples

```
#
data(florentine)
#
# test the network.update function
#
# Create a Bernoulli network
rand.net <- network(network.size(flomarriage))
# store the sociomatrix
rand.mat <- rand.net[,]
# Update the network
update(flomarriage, rand.mat, matrix.type="adjacency")
# Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(flomarriage)[1:5,]
```

```
update(flomarriage, rand.mat, matrix.type="edgelist")
```

 wtd.median Weighted Median

Description

Compute weighted median.

Usage

wtd.median(x, na.rm = FALSE, weight = FALSE)

Arguments

x	Vector of data, same length as weight
na.rm	Logical: Should NAs be stripped before computation proceeds?
weight	Vector of weights

Details

Uses a simple algorithm based on sorting.

Value

Returns an empirical . 5 quantile from a weighted sample.

Index

*Topic classes

as.network.numeric, 10
*Topic datasets
ecoli, 32
faux.desert.high, 93
faux.dixon.high, 95
faux.magnolia.high, 96
faux.mesa.high, 98
florentine, 101
g4, 102
kapferer, 113
molecule, 118
samplk, 124
sampson, 125
*Topic graphs
as.network.numeric, 10
gof, 106
*Topic models
anova.ergm, 6
control.ergm, 13
control.ergm.bridge, 22
control.logLik.ergm, 26
control.san, 27
control.simulate.ergm, 29
ergm, 35
ergm-constraints, 42
ergm-package, 4
ergm-references, 48
ergm-terms, 49
ergm.allstats, 78
ergm.exact, 84
ergmMPLE, 88
Getting. Started, 103
gof, 106
logLik.ergm, 114
mcmc.diagnostics, 116
print.summary.ergm, 122
san, 127
simulate.ergm, 131
summary.formula, 136
update.network, 137
*Topic model
enformulate.curved, 33
ergm.bridge.llr, 81
fix.curved, 99
is.curved, 109
is.durational, 110
is.dyad.independent, 111
*Topic package
ergm-package, 4
Getting. Started, 103
*Topic regression
anova.ergm, 6
ergmMPLE, 88
print.summary.ergm, 122
*Topic robust
wtd.median, 139
\%n\%, 77
\%v\%, 77

A ERGM sample space constraint, 108
absdiff (ergm-terms), 49
absdiffcat (ergm-terms), 49
altkstar (ergm-terms), 49
An ERGM sample space constraint, 33
An ERGM statistic, 33, 108
anova, 7
anova.ergm, 6
anova.ergmlist, 7
anova.ergmlist (anova.ergm), 6
approx.hotelling.diff.test, 8
approx.hotelling.diff.test(), 105
$\operatorname{ar}(), 136$
as.edgelist, 9, 9, 10
as.matrix.network, 9
as.matrix.network.edgelist, 10
as.network.numeric, 10,10
as.package_version, 50
asymmetric (ergm-terms), 49
atleast (ergm-terms), 49
atmost (ergm-terms), 49
attr, 134
attr(), 134
attrname (node-attr), 119
attrs (node-attr), 119
b1 concurrent (ergm-terms), 49
b1cov (ergm-terms), 49
b1degrange (ergm-terms), 49
b1degree (ergm-terms), 49
b1degrees (ergm-constraints), 42
b1factor (ergm-terms), 49
b1mindegree (ergm-terms), 49
b1nodematch (ergm-terms), 49
b1sociality (ergm-terms), 49
b1star (ergm-terms), 49
b1starmix (ergm-terms), 49
b1twostar (ergm-terms), 49
b2concurrent (ergm-terms), 49
b2cov (ergm-terms), 49
b2degrange (ergm-terms), 49
b2degree (ergm-terms), 49
b2degrees (ergm-constraints), 42
b2factor (ergm-terms), 49
b2mindegree (ergm-terms), 49
b2nodematch (ergm-terms), 49
b2sociality (ergm-terms), 49
b2star (ergm-terms), 49
b2starmix (ergm-terms), 49
b2twostar (ergm-terms), 49
balance (ergm-terms), 49
bd (ergm-constraints), 42
Bernoulli (ergm-references), 48
blockdiag (ergm-constraints), 42
by (node-attr), 119
check.ErgmTerm, 11
cluster, 47
coda: :geweke.diag(), 105
coef, 123
coef(), 121, 122
coef.ergm (ergm), 35
coefficients.ergm (ergm), 35
coincidence (ergm-terms), 49
concurrent (ergm-terms), 49
concurrentties (ergm-terms), 49
constraints-ergm (ergm-constraints), 42
constraints.ergm (ergm-constraints), 42
control.ergm, 13, 25, 31, 36, 37, 39, 46, 61, 62, 64-66, 88
control.ergm(), 90
control.ergm.bridge, 21, 22, 82
control.ergm.godfather, 23, 87
control.gof, 22, 24, 31
control.gof.ergm, 107
control.gof.formula, 107
control.logLik.ergm, 26, 114, 115
control.san, 17, 27, 129
control.simulate, 22,25
control.simulate
(control.simulate.ergm), 29
control.simulate.ergm, 29, 133
control.simulate.formula, 133
control\$drop, 38
control\$init.method, 14
ctriad (ergm-terms), 49
ctriple (ergm-terms), 49
cycle (ergm-terms), 49
cyclicalties (ergm-terms), 49
cyclicalweights (ergm-terms), 49
ddsp (ergm-terms), 49
degcor (ergm-terms), 49
degcrossprod (ergm-terms), 49
degrange (ergm-terms), 49
degree, 100
degree (ergm-terms), 49
degree1.5 (ergm-terms), 49
degreedist, 31
degreedist-constraint
(ergm-constraints), 42
degreepopularity (ergm-terms), 49
degrees (ergm-constraints), 42
density (ergm-terms), 49
desp (ergm-terms), 49
dgwdsp (ergm-terms), 49
dgwesp (ergm-terms), 49
dgwnsp (ergm-terms), 49
diff (ergm-terms), 49
DiscUnif (ergm-references), 48
dnsp (ergm-terms), 49
download. packages, 93
dsp (ergm-terms), 49
dyadcov (ergm-terms), 49
ecoli, 32
ecoli1 (ecoli), 32
ecoli2 (ecoli), 32
edgecov (ergm-terms), 49
edgelist, 134
edges, 33
edges-constraint (ergm-constraints), 42
edges-term (ergm-terms), 49
end, 87
enformulate.curved, 14,33
environment, 47
equal to (ergm-terms), 49
ergm, 4, 5, 7, 21-28, 30, 31, 33-35, 35, 36-39, 42, 43, 46-50, 77, 81, 83, 87-89, 92-100, 103, 106-111, 114, 116-118, 121-123, 128, 129, 131-134
ERGM constraints, 36
ERGM reference measures, 36, 132
$\operatorname{ergm}(), 11,14,16,17,19,21,22,107-110$, 116, 131, 137, 138
ergm-constraints, 42
ergm-package, 4
ergm-parallel, 46
ergm-references, 48
ergm-terms, 11, 49, 137
ergm.allstats, 78, 84
ergm. bounddeg, 79
ergm.bridge.0.llk (ergm.bridge.llr), 81
ergm.bridge.dindstart.llk, 23, 114
ergm.bridge.dindstart.llk
(ergm.bridge.llr), 81
ergm.bridge.llr, 23, 81, 114
ergm. constraints (ergm-constraints), 42
ergm.count, 5
ergm. Cprepare, 91
ergm. degeneracy, 83
ergm. exact, 78, 79, 84
ergm.geodesicmatrix (ergm.geodistdist), 85
ergm.geodistdist, 85
ergm.geodistn (ergm.geodistdist), 85
ergm.getCluster (ergm-parallel), 46
ergm.getnetwork, 86
ergm.godfather, 87
ergm.godfather(), 23
ergm.nodegeodesics (ergm.geodistdist), 85
ergm.pairgeodesic (ergm.geodistdist), 85
ergm. parallel (ergm-parallel), 46
ergm.references (ergm-references), 48
ergm. restartCluster (ergm-parallel), 46
ergm. stopCluster (ergm-parallel), 46
ergm.terms, 130, 131
ergm. terms (ergm-terms), 49
ergm.userterms, 5, 50, 92, 93
ergm_conlist, 111
ergm_MCMC_sample, 46, 90
ergm_MCMC_slave (ergm_MCMC_sample), 90
ergm_model, 90, 129, 133, 134
ergm_model(), 90
ergm_plot.mcmc.list, 92
ergm_proposal, 134
ergm_proposal(), 90
ergmMPLE, 40, 88
esp, 100
esp (ergm-terms), 49
eut-upgrade, 92
faux. desert.high, 93, 95, 96
faux.dixon.high, 95
faux.magnolia.high, 51, 95, 96, 96, 99
faux.mesa.high, 51, 95, 96, 98, 98
fauxhigh (faux.mesa.high), 98
fix.curved, 99
fixallbut (ergm-constraints), 42
fixedas (ergm-constraints), 42
flobusiness (florentine), 101
flomarriage (florentine), 101
florentine, 101
formula, 35, 38, 78, 107, 128, 129, 132-134
g4, 102
geodist, 86
Getting. Started, 103
geweke.diag.mv, 105
glm, 89
gof, 22, 25, 31, 106, 106, 107
gof.ergm, 5, 107
gof.ergm(), 24
gof.formula, 107
greaterthan (ergm-terms), 49
grep, 130
gwb1degree (ergm-terms), 49
gwb2degree (ergm-terms), 49
gwdegree, 100
gwdegree (ergm-terms), 49
gwdsp (ergm-terms), 49
gwesp, 100
gwesp (ergm-terms), 49
gwidegree (ergm-terms), 49
gwnsp (ergm-terms), 49
gwodegree (ergm-terms), 49
hamming, 108
hamming-constraint (ergm-constraints), 42
hamming-term (ergm-terms), 49
hammingmix (ergm-terms), 49

I () , 120
idegrange (ergm-terms), 49
idegree (ergm-terms), 49
idegree1. 5 (ergm-terms), 49
idegreedist (ergm-constraints), 42
idegreepopularity (ergm-terms), 49
idegrees (ergm-constraints), 42
ininterval (ergm-terms), 49
InitErgmTerm, 12
InitErgmTerm (ergm-terms), 49
intransitive (ergm-terms), 49
is.curved, 109
is.durational, 110
is.dyad. independent, 111
is.ergm (ergm), 35
is.inCH, 112
isolates (ergm-terms), 49
istar (ergm-terms), 49
istar(2), 70
kapferer, 113
kapferer2 (kapferer), 113
kstar (ergm-terms), 49
kstar(2), 69, 72
lasttoggle, 137
list of implemented constraints, 128, 133
localtriangle (ergm-terms), 49
logLik, 114, 116
logLik.ergm, 7, 27, 114, 123
logLikNull, 114, 115
m2star (ergm-terms), 49
match (ergm-terms), 49
matrix, 134
mcmc, $87,105,134$
mcmc.diagnostics, 5, 116
mcmc.diagnostics.ergm, 117
mcmc.list, 9, 91, 92, 105, 134
meandeg (ergm-terms), 49
message(), 12
mm (ergm-terms), 49
molecule, 118
mutual (ergm-terms), 49
nearsimmelian (ergm-terms), 49
network, $5,10,11,32,35,49,77,78,81$, 84-87, 90, 94-99, 101-103, 118, $124,126,128,132-134,137,138$
network(), 108, 137
network.list, 118, 129, 134, 137
nobs.ergm (ergm), 35
node-attr, 119
nodecov (ergm-terms), 49
nodecovar (ergm-terms), 49
nodedegrees (ergm-constraints), 42
nodefactor (ergm-terms), 49
nodeicov (ergm-terms), 49
nodeicovar (ergm-terms), 49
nodeifactor (ergm-terms), 49
nodeisqrtcovar (ergm-terms), 49
nodemain (ergm-terms), 49
nodematch (ergm-terms), 49
nodemix (ergm-terms), 49
nodeocov (ergm-terms), 49
nodeocovar (ergm-terms), 49
nodeofactor (ergm-terms), 49
nodeosqrtcovar (ergm-terms), 49
nodesqrtcovar (ergm-terms), 49
nonzero (ergm-terms), 49
nparam, 121
nsp (ergm-terms), 49
nthreads (ergm-parallel), 46
NULL, 46, 120
observed (ergm-constraints), 42
odegrange (ergm-terms), 49
odegree (ergm-terms), 49
odegree1. 5 (ergm-terms), 49
odegreedist (ergm-constraints), 42
odegreepopularity (ergm-terms), 49
odegrees (ergm-constraints), 42
on (node-attr), 119
opentriad (ergm-terms), 49
ostar (ergm-terms), 49
ostar(2), 71, 72
parallel (ergm-parallel), 46
parallel processing, 21, 23, 25, 27, 28, 30
parallel-ergm (ergm-parallel), 46
parallel.ergm (ergm-parallel), 46
param_names, 122
pending_update_network, 90, 91
plot.gof, 107, 108
plot.gof (gof), 106
plot.network, 95, 96, 98, 99
print(), 37, 119
print.ergm, 38, 40
print.ergm (ergm), 35
print.gof, 107
print.gof (gof), 106
print.htest(), 9
print. network.list (network.list), 118
print.summary.ergm, 122
print.summary.lm(), 123
receiver (ergm-terms), 49
references-ergm (ergm-references), 48
references.ergm (ergm-references), 48
replicate(), 128
samplike, 124, 125, 127
samplike (sampson), 125
samplk, 124
samplk1, 125-127
samplk1 (samplk), 124
samplk2, 125-127
samplk2 (samplk), 124
samplk3, 125-127
samplk3 (samplk), 124
sampson, 124, 125
san, 17, 29, 127
search.ergmTerms, 49, 50, 77, 130
sender (ergm-terms), 49
set.seed, $21,23,25,27,28,132$
simmelian (ergm-terms), 49
simmelianties (ergm-terms), 49
simulate, $31,49,87,131$
simulate(), 134
simulate.ergm, $5,22,25,31,34,100,118$, 119, 131
simulate.ergm(), 29, 88, 108
simulate.ergm_model (simulate.ergm), 131
simulate.ergm_model(), 133, 134
simulate.formula, 31
simulate.formula (simulate.ergm), 131
simulate.formula(), 88
simulate.formula.ergm, 81,82
smalldiff (ergm-terms), 49
smallerthan (ergm-terms), 49
sna, 67, 75
sociality (ergm-terms), 49
Specifying Vertex Attributes and Levels, 50-60, 64-76
spectrum0. ar (), 136
spectrum0.mvar, 136
sprintf(), 15, 19
start, 87
StdNormal (ergm-references), 48
sum (ergm-terms), 49
summary, 122, 123
summary (summary.formula), 136
summary(), 119
summary.ergm, 38, 40, 117, 123
summary.ergm (print. summary.ergm), 122
summary.ergm(), 108, 123
summary.formula, 136
summary.formula(), 137
summary.lm(), 123
summary.network.list (network.list), 118
summary_formula(), 137
t.test(), 9
tailor (kapferer), 113
tergm, 5
tergm: :tergm.godfather(), 88
terms-ergm (ergm-terms), 49
terms.ergm (ergm-terms), 49
the ERGM sample space constraint with
that name, 31
threepath (ergm-terms), 49
threetrail (ergm-terms), 49
transitive (ergm-terms), 49
transitiveties (ergm-terms), 49
transitiveweights (ergm-terms), 49
triad.classify, 67, 75
triadcensus (ergm-terms), 49
triangle (ergm-terms), 49
triangles (ergm-terms), 49
tripercent (ergm-terms), 49
ttriad (ergm-terms), 49
ttriple (ergm-terms), 49
twopath (ergm-terms), 49
Unif (ergm-references), 48
update.network, 137
vcov.ergm (ergm), 35
warning(), 12
which.matrix.type, 138
wtd.median, 139

