
Package ‘ergm’
June 10, 2019

Version 3.10.4

Date 2019-06-10

Title Fit, Simulate and Diagnose Exponential-Family Models for
Networks

Depends network (>= 1.15)

Imports robustbase (>= 0.93.5), coda (>= 0.19.2), trust (>= 0.1.7),
Matrix (>= 1.2.17), lpSolve (>= 5.6.13), parallel, methods,
MASS (>= 7.3.51.4), statnet.common (>= 4.3.0), purrr (>=
0.3.2), rlang (>= 0.3.4), tibble (>= 2.1.1), dplyr (>= 0.8.0.1)

Suggests lattice (>= 0.20.38), latticeExtra (>= 0.6.28), sna (>= 2.4),
latentnet (>= 2.9.0), rmarkdown (>= 1.12), knitr (>= 1.22),
Rmpi (>= 0.6.9), testthat (>= 2.1.1), tergm, ergm.count,
ergm.userterms, networkDynamic

SystemRequirements OpenMPI

BugReports https://github.com/statnet/ergm/issues

Description
An integrated set of tools to analyze and simulate networks based on exponential-family ran-
dom graph models (ERGMs). 'ergm' is a part of the Statnet suite of packages for network analysis.

License GPL-3 + file LICENSE

URL https://statnet.org

VignetteBuilder rmarkdown, knitr

RoxygenNote 6.1.1

Encoding UTF-8

Collate 'InitErgm.bipartite.R' 'InitErgmConstraint.R'
'InitErgmProposal.R' 'InitErgmProposal.blockdiag.R'
'InitErgmReference.R' 'ergm-deprecated.R' 'InitErgmTerm.R'
'InitErgmTerm.bipartite.degree.R' 'InitErgmTerm.coincidence.R'
'InitErgmTerm.dgw_sp.R' 'InitErgmTerm.extra.R'
'InitErgmTerm.indices.R' 'InitErgmTerm.test.R'
'InitErgmTerm.transitiveties.R' 'InitWtErgmProposal.R'
'InitWtErgmTerm.R' 'anova.ergm.R' 'anova.ergmlist.R'

1

https://github.com/statnet/ergm/issues
https://statnet.org

2

'approx.hotelling.diff.test.R' 'as.network.numeric.R'
'build_term_index.R' 'check.ErgmTerm.R' 'control.ergm.R'
'control.ergm.bridge.R' 'control.gof.R' 'control.logLik.ergm.R'
'control.san.R' 'control.simulate.R' 'data.R' 'ergm-defunct.R'
'ergm-disambiguation.R' 'ergm.CD.fixed.R' 'ergm.Cprepare.R'
'ergm.MCMCse.R' 'ergm.MCMCse.lognormal.R' 'ergm.MCMLE.R'
'ergm.R' 'ergm.allstats.R' 'ergm.bounddeg.R' 'ergm.bridge.R'
'ergm.check.R' 'ergm.coefficient.degeneracy.R'
'ergm.curved.statsmatrix.R' 'ergm.degeneracy.R' 'ergm.design.R'
'ergm.errors.R' 'ergm.estimate.R' 'ergm.eta.R' 'ergm.etagrad.R'
'ergm.etagradmult.R' 'ergm.etamap.R' 'ergm.geodistn.R'
'ergm.getCDsample.R' 'ergm.getMCMCsample.R' 'ergm.getnetwork.R'
'ergm.initialfit.R' 'ergm.llik.R' 'ergm.llik.obs.R'
'ergm.logitreg.R' 'ergm.mapl.R' 'ergm.maple.R' 'ergm.mple.R'
'ergm.pen.glm.R' 'ergm.phase12.R' 'ergm.pl.R'
'ergm.reviseinit.R' 'ergm.robmon.R' 'ergm.san.R'
'ergm.stepping.R' 'ergm.stocapprox.R' 'ergm.sufftoprob.R'
'ergm.utility.R' 'ergmMPLE.R' 'ergm_estfun.R' 'ergm_model.R'
'ergm_model.utils.R' 'ergm_proposal.R' 'formula.utils.R'
'get.node.attr.R' 'godfather.R' 'gof.ergm.R' 'is.curved.R'
'is.durational.R' 'is.dyad.independent.R' 'is.inCH.R'
'locator.R' 'logLik.ergm.R' 'mcmc.diagnostics.ergm.R'
'network.list.R' 'network.update.R' 'nparam.R'
'parallel.utils.R' 'param_names.R' 'pending_update_network.R'
'print.ergm.R' 'print.network.list.R' 'print.summary.ergm.R'
'rlebdm.R' 'simulate.ergm.R' 'summary.ergm.R'
'summary.ergm_model.R' 'summary.network.list.R'
'summary.statistics.network.R' 'to_ergm_Cdouble.R'
'vcov.ergm.R' 'wtd.median.R' 'zzz.R'

NeedsCompilation yes

Author Mark S. Handcock [aut],
David R. Hunter [aut],
Carter T. Butts [aut],
Steven M. Goodreau [aut],
Pavel N. Krivitsky [aut, cre] (<https://orcid.org/0000-0002-9101-3362>),
Martina Morris [aut],
Li Wang [ctb],
Kirk Li [ctb],
Skye Bender-deMoll [ctb],
Chad Klumb [ctb]

Maintainer Pavel N. Krivitsky <pavel@uow.edu.au>

Repository CRAN

Date/Publication 2019-06-10 05:30:07 UTC

R topics documented: 3

R topics documented:
ergm-package . 4
anova.ergm . 6
approx.hotelling.diff.test . 8
as.edgelist . 9
as.network.numeric . 10
check.ErgmTerm . 11
control.ergm . 13
control.ergm.bridge . 22
control.ergm.godfather . 23
control.gof . 24
control.logLik.ergm . 26
control.san . 27
control.simulate.ergm . 29
degreedist . 31
ecoli . 32
edges . 33
enformulate.curved . 33
ergm . 35
ergm-constraints . 42
ergm-parallel . 46
ergm-references . 48
ergm-terms . 49
ergm.allstats . 78
ergm.bounddeg . 79
ergm.bridge.llr . 81
ergm.degeneracy . 83
ergm.exact . 84
ergm.geodistdist . 85
ergm.getnetwork . 86
ergm.godfather . 87
ergmMPLE . 88
ergm_MCMC_sample . 90
ergm_plot.mcmc.list . 92
eut-upgrade . 92
faux.desert.high . 93
faux.dixon.high . 95
faux.magnolia.high . 96
faux.mesa.high . 98
fix.curved . 99
florentine . 101
g4 . 102
Getting.Started . 103
geweke.diag.mv . 105
gof . 106
hamming . 108
is.curved . 109

4 ergm-package

is.durational . 110
is.dyad.independent . 111
is.inCH . 112
kapferer . 113
logLik.ergm . 114
logLikNull . 115
mcmc.diagnostics . 116
molecule . 118
network.list . 118
node-attr . 119
nparam . 121
param_names . 122
print.summary.ergm . 122
samplk . 124
sampson . 125
san . 127
search.ergmTerms . 130
simulate.ergm . 131
spectrum0.mvar . 136
summary.formula . 136
update.network . 137
wtd.median . 139

Index 140

ergm-package Fit, Simulate and Diagnose Exponential-Family Models for Networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from exponential-family random
graph models (ERGMs). For a list of functions type: help(package='ergm')

For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").

When publishing results obtained using this package, please cite the original authors as described
in citation(package="ergm").

All programs derived from this package must cite it.

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,

ergm-package 5

the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package implements maximum likelihood
estimates of ERGMs to be calculated using Markov Chain Monte Carlo (via ergm). The package
also provides tools for simulating networks (via simulate.ergm) and assessing model goodness-
of-fit (see mcmc.diagnostics and gof.ergm).

A number of Statnet Project packages extend and enhance ergm. These include tergm (Temporal
ERGM), which provides extensions for modeling evolution of networks over time; ergm.count,
which facilitates exponential family modeling for networks whose dyadic measurements are counts;
and ergm.userterms, which allows users to implement their own ERGM terms.

For detailed information on how to download and install the software, go to the ergm website:
https://statnet.org. A tutorial, support newsgroup, references and links to further resources
are provided there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,
Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>

Maintainer: Pavel N. Krivitsky <krivitsky@stat.psu.edu>

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, https://statnet.
org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
https://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the
advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https:
//cran.r-project.org/package=sna

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). https://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: Classes for Relational Data. The Statnet Project (https://statnet.
org). R package version 1.12.0, https://cran.r-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

https://statnet.org
https://statnet.org
https://statnet.org
https://www.jstatsoft.org/v24/i07/
https://cran.r-project.org/package=sna
https://cran.r-project.org/package=sna
https://www.jstatsoft.org/v24/i02/
https://statnet.org
https://statnet.org
https://cran.r-project.org/package=network

6 anova.ergm

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). https://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. https://www.
csss.washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 3, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools
for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 3, https:
//statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical
networks. Seattle, WA. Version 2, https://statnet.org.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www.
jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks Journal of the
American Statistical Association, 85, 204-212.

anova.ergm ANOVA for ERGM Fits

Description

Compute an analysis of variance table for one or more ERGM fits.

Usage

S3 method for class 'ergm'
anova(object, ..., eval.loglik = FALSE)

https://www.jstatsoft.org/v24/i08/
https://www.csss.washington.edu/Papers/wp39.pdf
https://www.csss.washington.edu/Papers/wp39.pdf
https://statnet.org
https://statnet.org
https://statnet.org
https://statnet.org
https://www.jstatsoft.org/v24/i03/
https://statnet.org
https://doi.org/10.1214/12-EJS696
https://www.jstatsoft.org/v24/i04/
https://www.jstatsoft.org/v24/i04/

anova.ergm 7

S3 method for class 'ergmlist'
anova(object, ..., eval.loglik = FALSE, scale = 0,
test = "F")

Arguments

object, ... objects of class ergm, usually, a result of a call to ergm.

eval.loglik a logical specifying whether the log-likelihood will be evaluated if missing.

scale numeric. An estimate of the noise variance σ2. If zero this will be estimated
from the largest model considered.

test a character string specifying the test statistic to be used. Can be one of "F",
"Chisq" or "Cp", with partial matching allowed, or NULL for no test.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ Cp statistic is the residual sum of
squares plus twice the estimate of σ2 times the residual degrees of freedom.

If any of the objects do not have estimated log-likelihoods, produces an error, unless eval.loglik=TRUE.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and ’s default of na.action = na.omit is used,
and anova.ergmlist will detect this with an error.

See Also

The model fitting function ergm, anova, logLik.ergm for adding the log-likelihood to an existing
ergm object.

8 approx.hotelling.diff.test

Examples

data(molecule)
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
fit0 <- ergm(molecule ~ edges)
anova(fit0)
fit1 <- ergm(molecule ~ edges + nodefactor("atomic type"))
anova(fit1)

fit2 <- ergm(molecule ~ edges + nodefactor("atomic type") + gwesp(0.5,
fixed=TRUE), eval.loglik=TRUE) # Note the eval.loglik argument.

anova(fit0, fit1)
anova(fit0, fit1, fit2)

approx.hotelling.diff.test

Approximate Hotelling T^2-Test for One Sample Means

Description

A multivariate hypothesis test for a single population mean or a difference between them. This
version attempts to adjust for multivariate autocorrelation in the samples.

Usage

approx.hotelling.diff.test(x, y = NULL, mu0 = 0,
assume.indep = FALSE, var.equal = FALSE)

Arguments

x a numeric matrix of data values with cases in rows and variables in columns.

y an optinal matrix of data values with cases in rows and variables in columns for
a 2-sample test.

mu0 an optional numeric vector: for a 1-sample test, the poulation mean under the
null hypothesis; and for a 2-sample test, the difference between population
means under the null hypothesis; defaults to a vector of 0s.

assume.indep if TRUE, performs an ordinary Hotelling’s test without attempting to account for
autocorrelation.

var.equal for a 2-sample test, perform the pooled test: assume population variance-covariance
matrices of the two variables are equal.

as.edgelist 9

Value

An object of class htest with the following information:

statistic The T 2 statistic.

parameter Degrees of freedom.

p.value P-value.

method Method specifics.

null.value Null hypothesis mean or mean difference.

alternative Always "two.sided".

estimate Sample difference.

covariance Estimated variance-covariance matrix of the estimate of the difference.

It has a print method print.htest().

Note

For mcmc.list input, the variance for this test is estimated with unpooled means. This is not strictly
correct.

References

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and W. A.
Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

See Also

t.test()

as.edgelist Convert a network object into a numeric edgelist matrix

Description

Constructs an edgelist in the format expected by ergm’s internal functions

NOTE: the as.edgelist functions have been moved to the network package, and this help file
may be removed in the future. See as.edgelist

Details

Constructs an edgelist matrix from a network, sorted tails-major order, with tails first, and, for
undirected networks, tail < head.

The as.matrix.network(nw, matrix.type="edgelist") provides similar functionality but it
does not enforce ordering..

10 as.network.numeric

Note

The as.edgelist functions have been moved to the network package. See as.edgelist

See Also

See alsoas.edgelist, as.matrix.network.edgelist

Examples

data(faux.mesa.high)
as.edgelist(faux.mesa.high)

as.network.numeric Create a Simple Random network of a Given Size

Description

as.network.numeric creates a random Bernoulli network of the given size as an object of class
network.

Usage

S3 method for class 'numeric'
as.network(x, directed = TRUE, hyper = FALSE,
loops = FALSE, multiple = FALSE, bipartite = FALSE,
ignore.eval = TRUE, names.eval = NULL, edge.check = FALSE,
density = NULL, init = NULL, numedges = NULL, ...)

Arguments

x count; the number of nodes in the network. If bipartite=TRUE, it is the number
of events in the network.

directed logical; should edges be interpreted as directed?

hyper logical; are hyperedges allowed? Currently ignored.

loops logical; should loops be allowed? Currently ignored.

multiple logical; are multiplex edges allowed? Currently ignored.

bipartite count; should the network be interpreted as bipartite? If present (i.e., non-
NULL) it is the count of the number of actors in the bipartite network. In this
case, the number of nodes is equal to the number of actors plus the number of
events (with all actors preceding all events). The edges are then interpreted as
nondirected.

ignore.eval logical; ignore edge values? Currently ignored.

names.eval optionally, the name of the attribute in which edge values should be stored. Cur-
rently ignored.

check.ErgmTerm 11

edge.check logical; perform consistency checks on new edges?

density numeric; the probability of a tie for Bernoulli networks. If neither density nor
init is given, it defaults to the number of nodes divided by the number of dyads
(so the expected number of ties is the same as the number of nodes.)

init numeric; the log-odds of a tie for Bernoulli networks. It is only used if density
is not specified.

numedges count; if present, sample the Bernoulli network conditional on this number of
edges (rather than independently with the specified probability).

... additional arguments

Details

The network will have not have vertex, edge or network attributes. These can be added with opera-
tors such as %v%, %n%, %e%.

Value

An object of class network

References

Butts, C.T. 2002. “Memory Structures for Relational Data in R: Classes and Interfaces” Working
Paper.

See Also

network

Examples

#Draw a random directed network with 25 nodes
g<-network(25)
#Draw a random undirected network with density 0.1
g<-network(25, directed=FALSE, density=0.1)
#Draw a random bipartite network with 10 events and 5 actors and density 0.1
g<-network(5, bipartite=10, density=0.1)

check.ErgmTerm Ensures an Ergm Term and its Arguments Meet Appropriate Condi-
tions

Description

Helper functions for implementing ergm() terms, to check whether the term can be used with the
specified network. For information on ergm terms, see ergm-terms. ergm.checkargs, ergm.checkbipartite,
and ergm.checkderected are helper functions for an old API and are deprecated. Use check.ErgmTerm.

12 check.ErgmTerm

Usage

check.ErgmTerm(nw, arglist, directed = NULL, bipartite = NULL,
nonnegative = FALSE, varnames = NULL, vartypes = NULL,
defaultvalues = list(), required = NULL, response = NULL,
dep.inform = rep(FALSE, length(required)), dep.warn = rep(FALSE,
length(required)))

Arguments

nw the network that term X is being checked against

arglist the list of arguments for term X

directed logical, whether term X requires a directed network; default=NULL

bipartite whether term X requires a bipartite network (T or F); default=NULL

nonnegative whether term X requires a network with only nonnegative weights; default=FALSE

varnames the vector of names of the possible arguments for term X; default=NULL

vartypes the vector of types of the possible arguments for term X; default=NULL

defaultvalues the list of default values for the possible arguments of term X; default=list()

required the logical vector of whether each possible argument is required; default=NULL

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

dep.inform, dep.warn

a list of length equal to the number of arguments the term can take; if the corre-
sponding element of the list is not FALSE, a message() or a warning() respec-
tively will be issued if the user tries to pass it; if the element is a character string,
it will be used as a suggestion for replacement.

Details

The check.ErgmTerm function ensures for the InitErgmTerm.X function that the term X:

• is applicable given the ’directed’ and ’bipartite’ attributes of the given network

• is not applied to a directed bipartite network

• has an appropiate number of arguments

• has correct argument types if arguments where provided

• has default values assigned if defaults are available

by halting execution if any of the first 3 criteria are not met.

Value

A list of the values for each possible argument of term X; user provided values are used when
given, default values otherwise. The list also has an attr(,"missing") attribute containing a
named logical vector indicating whether a particular argument had been set to its default.

control.ergm 13

control.ergm Auxiliary for Controlling ERGM Fitting

Description

Auxiliary function as user interface for fine-tuning ’ergm’ fitting.

Usage

control.ergm(drop = TRUE, init = NULL, init.method = NULL,
main.method = c("MCMLE", "Robbins-Monro", "Stochastic-Approximation",
"Stepping"), force.main = FALSE, main.hessian = TRUE,
checkpoint = NULL, resume = NULL, MPLE.max.dyad.types = 1e+06,
MPLE.samplesize = 50000, MPLE.type = c("glm", "penalized"),
MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC.interval = 1024, MCMC.burnin = MCMC.interval * 16,
MCMC.samplesize = 1024, MCMC.effectiveSize = NULL,
MCMC.effectiveSize.damp = 10, MCMC.effectiveSize.maxruns = 1000,
MCMC.effectiveSize.base = 1/2, MCMC.effectiveSize.points = 5,
MCMC.effectiveSize.order = 1, MCMC.return.stats = TRUE,
MCMC.runtime.traceplot = FALSE, MCMC.init.maxedges = 20000,
MCMC.max.maxedges = Inf, MCMC.addto.se = TRUE,
MCMC.compress = FALSE, MCMC.packagenames = c(), SAN.maxit = 4,
SAN.nsteps.times = 8, SAN.control = control.san(term.options =
term.options, SAN.maxit = SAN.maxit, SAN.prop.weights =
MCMC.prop.weights, SAN.prop.args = MCMC.prop.args, SAN.init.maxedges =
MCMC.init.maxedges, SAN.max.maxedges = MCMC.max.maxedges, SAN.nsteps =
MCMC.burnin * SAN.nsteps.times, SAN.samplesize = MCMC.samplesize,
SAN.packagenames = MCMC.packagenames, parallel = parallel, parallel.type
= parallel.type, parallel.version.check = parallel.version.check),
MCMLE.termination = c("Hummel", "Hotelling", "precision", "none"),
MCMLE.maxit = 20, MCMLE.conv.min.pval = 0.5, MCMLE.NR.maxit = 100,
MCMLE.NR.reltol = sqrt(.Machine$double.eps),
obs.MCMC.samplesize = MCMC.samplesize,
obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin,
obs.MCMC.burnin.min = obs.MCMC.burnin/10,
obs.MCMC.prop.weights = MCMC.prop.weights,
obs.MCMC.prop.args = MCMC.prop.args,
obs.MCMC.impute.min_informative = function(nw) network.size(nw)/4,
obs.MCMC.impute.default_density = function(nw) 2/network.size(nw),
MCMLE.check.degeneracy = FALSE, MCMLE.MCMC.precision = 0.005,
MCMLE.MCMC.max.ESS.frac = 0.1, MCMLE.metric = c("lognormal",
"logtaylor", "Median.Likelihood", "EF.Likelihood", "naive"),
MCMLE.method = c("BFGS", "Nelder-Mead"), MCMLE.trustregion = 20,
MCMLE.dampening = FALSE, MCMLE.dampening.min.ess = 20,
MCMLE.dampening.level = 0.1, MCMLE.steplength.margin = 0.05,
MCMLE.steplength = NVL2(MCMLE.steplength.margin, 1, 0.5),

14 control.ergm

MCMLE.adaptive.trustregion = 3, MCMLE.sequential = TRUE,
MCMLE.density.guard.min = 10000, MCMLE.density.guard = exp(3),
MCMLE.effectiveSize = NULL, MCMLE.last.boost = 4,
MCMLE.Hummel.esteq = TRUE, MCMLE.Hummel.miss.sample = 100,
MCMLE.Hummel.maxit = 25, MCMLE.steplength.min = 1e-04,
MCMLE.effectiveSize.interval_drop = 2,
MCMLE.save_intermediates = NULL, SA.phase1_n = NULL,
SA.initial_gain = NULL, SA.nsubphases = 4, SA.niterations = NULL,
SA.phase3_n = NULL, SA.trustregion = 0.5, RM.phase1n_base = 7,
RM.phase2n_base = 100, RM.phase2sub = 7, RM.init_gain = 0.5,
RM.phase3n = 500, Step.MCMC.samplesize = 100, Step.maxit = 50,
Step.gridsize = 100, CD.nsteps = 8, CD.multiplicity = 1,
CD.nsteps.obs = 128, CD.multiplicity.obs = 1, CD.maxit = 60,
CD.conv.min.pval = 0.5, CD.NR.maxit = 100,
CD.NR.reltol = sqrt(.Machine$double.eps), CD.metric = c("naive",
"lognormal", "logtaylor", "Median.Likelihood", "EF.Likelihood"),
CD.method = c("BFGS", "Nelder-Mead"), CD.trustregion = 20,
CD.dampening = FALSE, CD.dampening.min.ess = 20,
CD.dampening.level = 0.1, CD.steplength.margin = 0.5,
CD.steplength = 1, CD.adaptive.trustregion = 3,
CD.adaptive.epsilon = 0.01, CD.Hummel.esteq = TRUE,
CD.Hummel.miss.sample = 100, CD.Hummel.maxit = 25,
CD.steplength.min = 1e-04, loglik.control = control.logLik.ergm(),
term.options = NULL, seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE, ...)

Arguments

drop Logical: If TRUE, terms whose observed statistic values are at the extremes of
their possible ranges are dropped from the fit and their corresponding parameter
estimates are set to plus or minus infinity, as appropriate. This is done because
maximum likelihood estimates cannot exist when the vector of observed statistic
lies on the boundary of the convex hull of possible statistic values.

init numeric or NA vector equal in length to the number of parameters in the model
or NULL (the default); the initial values for the estimation and coefficient offset
terms. If NULL is passed, all of the initial values are computed using the method
specified by control$init.method. If a numeric vector is given, the elements
of the vector are interpreted as follows:

• Elements corresponding to terms enclosed in offset() are used as the fixed
offset coefficients. Note that offset coefficients alone can be more conve-
niently specified using ergm() argument offset.coef. If both offset.coef
and init arguments are given, values in offset.coef will take precedence.

• Elements that do not correspond to offset terms and are not NA are used as
starting values in the estimation.

• Initial values for the elements that are NA are fit using the method specified
by control$init.method.

Passing control.ergm(init=coef(prev.fit)) can be used to “resume” an
uncoverged ergm() run, but see enformulate.curved.

control.ergm 15

init.method A chatacter vector or NULL. The default method depends on the reference mea-
sure used. For the binary ("Bernoulli") ERGMs, with dyad-independent con-
straints, it’s maximum pseudo-likelihood estimation (MPLE). Other valid values
include "zeros" for a 0 vector of appropriate length and "CD" for contrastive di-
vergence. If passed explicitly, this setting overrides the reference’s limitations.
Valid initial methods for a given reference are set by the InitErgmReference.*
function.

main.method One of "MCMLE" (default),"Robbins-Monro", "Stochastic-Approximation", or
"Stepping". Chooses the estimation method used to find the MLE. MCMLE at-
tempts to maximize an approximation to the log-likelihood function. Robbins-Monro
and Stochastic-Approximation are both stochastic approximation algorithms
that try to solve the method of moments equation that yields the MLE in the case
of an exponential family model. Another alternative is a partial stepping algo-
rithm (Stepping) as in Hummel et al. (2012). The direct use of the likelihood
function has many theoretical advantages over stochastic approximation, but the
choice will depend on the model and data being fit. See Handcock (2000) and
Hunter and Handcock (2006) for details.
Note that in recent versions of ERGM, the enhancements of Stepping have been
folded into the default MCMLE, which is able to handle more modeling scenarios.

force.main Logical: If TRUE, then force MCMC-based estimation method, even if the exact
MLE can be computed via maximum pseudolikelihood estimation.

main.hessian Logical: If TRUE, then an approximate Hessian matrix is used in the MCMC-
based estimation method.

checkpoint At the start of every iteration, save the state of the optimizer in a way that will
allow it to be resumed. The name is passed through sprintf() with iteration
number as the second argument. (For example, checkpoint="step_%03d.RData"
will save to step_001.RData, step_002.RData, etc.)

resume If given a file name of an RData file produced by checkpoint, the optimizer will
attempt to resume after restoring the state. Control parameters from the saved
state will be reused, except for those whose value passed via control.ergm()
had change from the saved run. Note that if the network, the model, or some
critical settings differ between runs, the results may be undefined.

MPLE.max.dyad.types

Maximum number of unique values of change statistic vectors, which are the
predictors in a logistic regression used to calculate the MPLE. This calculation
uses a compression algorithm that allocates space based on MPLE.max.dyad.types.

MPLE.samplesize

Not currently documented; used in conditional-on-degree version of MPLE.

MPLE.type One of "glm" or "penalized". Chooses method of calculating MPLE. "glm" is
the usual formal logistic regression, whereas "penalized" uses the bias-reduced
method of Firth (1993) as originally implemented by Meinhard Ploner, Daniela
Dunkler, Harry Southworth, and Georg Heinze in the "logistf" package.

MCMC.prop.weights, obs.MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices depending on selected reference and constraints

16 control.ergm

arguments of the ergm() function, but often include "TNT" and "random", and
the "default" is to use the one with the highest priority available.
The TNT (tie / no tie) option puts roughly equal weight on selecting a dyad with
or without a tie as a candidate for toggling, whereas the random option puts equal
weight on all possible dyads, though the interpretation of random may change
according to the constraints in place. When no constraints are in place, the
default is TNT, which appears to improve Markov chain mixing particularly for
networks with a low edge density, as is typical of many realistic social networks.
obs.MCMC.prop.weights, if given separately, specifies the weights to be used
for the constrained MCMC when missing dyads are present, defaulting to the
same as MCMC.prop.weights.

MCMC.prop.args, obs.MCMC.prop.args

An alternative, direct way of specifying additional arguments to proposal. obs.MCMC.prop.args,
if given separately, specifies the weights to be used for the constrained MCMC
when missing dyads are present, defaulting to the same as MCMC.prop.args.

MCMC.interval Number of proposals between sampled statistics. Increasing interval will re-
duces the autocorrelation in the sample, and may increase the precision in esti-
mates by reducing MCMC error, at the expense of time. Set the interval higher
for larger networks.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm. Increasing
sample size may increase the precision in the estimates by reducing MCMC
error, at the expense of time. Set it higher for larger networks, or when using
parallel functionality.

MCMC.return.stats

Logical: If TRUE, return the matrix of MCMC-sampled network statistics. This
matrix should have MCMC.samplesize rows. This matrix can be used directly
by the coda package to assess MCMC convergence.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

MCMC.init.maxedges, MCMC.max.maxedges

These parameters control how much space is allocated for storing edgelists for
return at the end of MCMC sampling. Allocating more than needed wastes
memory, so MCMC.init.maxedges is the initial amount allocated, but it will be
incremented by a factor of 10 if exceeded during the simulation, up to MCMC.max.maxedges,
at which point the process will stop with an error.

MCMC.addto.se Whether to add the standard errors induced by the MCMC algorithm to the
estimates’ standard errors.

MCMC.compress Logical: If TRUE, the matrix of sample statistics returned is compressed to the
set of unique statistics with a column of frequencies post-pended.

MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to

control.ergm 17

those autodetected. This argument should not be needed outside of very strange
setups.

SAN.maxit When target.stats argument is passed to ergm(), the maximum number of
attempts to use san to obtain a network with statistics close to those specified.

SAN.nsteps.times

Multiplier for SAN.nsteps relative to MCMC.burnin. This lets one control the
amount of SAN burn-in (arguably, the most important of SAN parameters) with-
out overriding the other SAN.control defaults.

SAN.control Control arguments to san. See control.san for details.
MCMLE.termination

The criterion used for terminating MCMLE estimation:

• "Hummel" Terminate when the Hummel step length is 1 for two consecutive
iterations. For the last iteration, the sample size is boosted by a factor of
MCMLE.last.boost. See Hummel et. al. (2012).

Note that this criterion is incompatible with MCMLE.steplength 6= 1 or MCMLE.steplength.margin
= NULL.

• "Hotelling" After every MCMC sample, an autocorrelation-adjusted Hotelling’s
T^2 test for equality of MCMC-simulated network statistics to observed is
conducted, and if its P-value exceeds MCMLE.conv.min.pval, the estima-
tion is considered to have converged and finishes. This was the default
option in ergm version 3.1.

• "precision" Terminate when the estimated loss in estimating precision
due to using MCMC standard errors is below the precision bound specified
by MCMLE.MCMC.precision, and the Hummel step length is 1 for two con-
secutive iterations. See MCMLE.MCMC.precision for details. This feature is
in experimental status until we verify the coverage of the standard errors.

Note that this criterion is incompatible with MCMLE.steplength 6= 1 or MCMLE.steplength.margin =
NULL.

• "none" Stop after MCMLE.maxit iterations.

MCMLE.maxit Maximum number of times the parameter for the MCMC should be updated by
maximizing the MCMC likelihood. At each step the parameter is changed to the
values that maximizes the MCMC likelihood based on the current sample.

MCMLE.conv.min.pval

The P-value used in the Hotelling test for early termination.
MCMLE.NR.maxit, MCMLE.NR.reltol

The method, maximum number of iterations and relative tolerance to use within
the optim rountine in the MLE optimization. Note that by default, ergm uses
trust, and falls back to optim only when trust fails.

obs.MCMC.samplesize, obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.burnin.min

Sample size, burnin, and interval parameters for the MCMC sampling used when
unobserved data are present in the estimation routine.

obs.MCMC.impute.min_informative, obs.MCMC.impute.default_density

Controls for imputation of missing dyads for initializing MCMC sampling. If
numeric, obs.MCMC.impute.min_informative specifies the minimum number
dyads that need to be non-missing before sample network density is used as the

18 control.ergm

imputation density. It can also be specified as a function that returns this value.
obs.MCMC.impute.default_density similarly controls the imputation density
when number of non-missing dyads is too low.

MCMLE.check.degeneracy

Logical: If TRUE, employ a check for model degeneracy.

MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac

MCMLE.MCMC.precision is a vector of upper bounds on the standard errors in-
duced by the MCMC algorithm, expressed as a percentage of the total standard
error. The MCMLE algorithm will terminate when the MCMC standard errors
are below the precision bound, and the Hummel step length is 1 for two consec-
utive iterations. This is an experimental feature.
If effective sample size is used (see MCMC.effectiveSize), then ergm may in-
crease the target ESS to reduce the MCMC standard error.

MCMLE.metric Method to calculate the loglikelihood approximation. See Hummel et al (2010)
for an explanation of "lognormal" and "naive".

MCMLE.method Deprecated. By default, ergm uses trust, and falls back to optim with Nelder-
Mead method when trust fails.

MCMLE.trustregion

Maximum increase the algorithm will allow for the approximated likelihood at
a given iteration. See Snijders (2002) for details.
Note that not all metrics abide by it.

MCMLE.dampening

(logical) Should likelihood dampening be used?

MCMLE.dampening.min.ess

The effective sample size below which dampening is used.

MCMLE.dampening.level

The proportional distance from boundary of the convex hull move.

MCMLE.steplength.margin

The extra margin required for a Hummel step to count as being inside the convex
hull of the sample. Set this to 0 if the step length gets stuck at the same value
over several iteraions. Set it to NULL to use fixed step length. Note that this
parameter is required to be non-NULL for MCMLE termination using Hummel
or precision criteria.

MCMLE.steplength

Multiplier for step length, which may (for values less than one) make fitting
more stable at the cost of computational efficiency. Can be set to "adaptive"; see
MCMLE.adaptive.trustregion.
If MCMLE.steplength.margin is not NULL, the step length will be set using the
algorithm of Hummel et al. (2010). In that case, it will serve as the maximum
step length considered. However, setting it to anything other than 1 will preclude
using Hummel or precision as termination criteria.

MCMLE.adaptive.trustregion

Maximum increase the algorithm will allow for the approximated loglikelihood
at a given iteration when MCMLE.steplength="adaptive".

control.ergm 19

MCMLE.sequential

Logical: If TRUE, the next iteration of the fit uses the last network sampled as
the starting network. If FALSE, always use the initially passed network. The
results should be similar (stochastically), but the TRUE option may help if the
target.stats in the ergm() function are far from the initial network.

MCMLE.density.guard.min, MCMLE.density.guard

A simple heuristic to stop optimization if it finds itself in an overly dense re-
gion, which usually indicates ERGM degeneracy: if the sampler encounters a
network configuration that has more than MCMLE.density.guard.min edges
and whose number of edges is exceeds the observed network by more than
MCMLE.density.guard, the optimization process will be stopped with an error.

MCMLE.effectiveSize, MCMLE.effectiveSize.interval_drop, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.base, MCMC.effectiveSize.points, MCMC.effectiveSize.order

Set MCMLE.effectiveSize to non-NULL value to adaptively determine the
burn-in and the MCMC length needed to get the specified effective size us-
ing the method of Sahlin (2011); 50 is a reasonable value. This feature is in
experimental status until we verify the coverage of the standard errors.

MCMLE.last.boost

For the Hummel termination criterion, increase the MCMC sample size of the
last iteration by this factor.

MCMLE.Hummel.esteq

For curved ERGMs, should the estimating function values be used to compute
the Hummel step length? This allows the Hummel stepping algorithm converge
when some sufficient statistics are at 0.

MCMLE.Hummel.miss.sample

In fitting the missing data MLE, the rules for step length become more compli-
cated. In short, it is necessary for all points in the constrained sample to be in
the convex hull of the unconstrained (though they may be on the border); and it
is necessary for their centroid to be in its interior. This requires checking a large
number of points against whether they are in the convex hull, so to speed up
the procedure, a sample is taken of the points most likely to be outside it. This
parameter specifies the sample size.

MCMLE.Hummel.maxit

Maximum number of iterations in searching for the best step length.
MCMLE.steplength.min

Stops MCMLE estimation when the step length gets stuck below this minimum
value.

MCMLE.save_intermediates

Every iteration, after MCMC sampling, save the MCMC sample and some mis-
cellaneous information to a file with this name. This is mainly useful for diag-
nostics and debugging. The name is passed through sprintf() with iteration
number as the second argument. (For example, MCMLE.save_intermediates="step_%03d.RData"
will save to step_001.RData, step_002.RData, etc.)

SA.phase1_n Number of MCMC samples to draw in Phase 1 of the stochastic approximation
algorithm. Defaults to 7 plus 3 times the number of terms in the model. See
Snijders (2002) for details.

SA.initial_gain

Initial gain to Phase 2 of the stochastic approximation algorithm. See Snijders
(2002) for details.

20 control.ergm

SA.nsubphases Number of sub-phases in Phase 2 of the stochastic approximation algorithm.
Defaults to MCMLE.maxit. See Snijders (2002) for details.

SA.niterations Number of MCMC samples to draw in Phase 2 of the stochastic approximation
algorithm. Defaults to 7 plus the number of terms in the model. See Snijders
(2002) for details.

SA.phase3_n Sample size for the MCMC sample in Phase 3 of the stochastic approximation
algorithm. See Snijders (2002) for details.

SA.trustregion The trust region parameter for the likelihood functions, used in the stochastic
approximation algorithm.

RM.phase1n_base, RM.phase2n_base, RM.phase2sub, RM.init_gain, RM.phase3n

The Robbins-Monro control parameters are not yet documented.
Step.MCMC.samplesize

MCMC sample size for the preliminary steps of the "Stepping" method of opti-
mization. This is usually chosen to be smaller than the final MCMC sample size
(which equals MCMC.samplesize). See Hummel et al. (2012) for details.

Step.maxit Maximum number of iterations (steps) allowed by the "Stepping" method.

Step.gridsize Integer N such that the "Stepping" style of optimization chooses a step length
equal to the largest possible multiple of 1/N . See Hummel et al. (2012) for
details.

CD.nsteps, CD.multiplicity

Main settings for contrastive divergence to obtain initial values for the estima-
tion: respectively, the number of Metropolis–Hastings steps to take before re-
verting to the starting value and the number of tentative proposals per step. Com-
putational experiments indicate that increasing CD.multiplicity improves the
estimate faster than increasing CD.nsteps — up to a point — but it also samples
from the wrong distribution, in the sense that while as CD.nsteps→∞, the CD
estimate approaches the MLE, this is not the case for CD.multiplicity.
In practice, MPLE, when available, usually outperforms CD for even a very high
CD.nsteps (which is, in turn, not very stable), so CD is useful primarily when
MPLE is not available. This feature is to be considered experimental and in flux.
The default values have been set experimentally, providing a reasonably stable,
if not great, starting values.

CD.nsteps.obs, CD.multiplicity.obs

When there are missing dyads, CD.nsteps and CD.multiplicity must be set
to a relatively high value, as the network passed is not necessarily a good start
for CD. Therefore, these settings are in effect if there are missing dyads in the
observed network, using a higher default number of steps.

CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol,

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

CD.metric, CD.method, CD.trustregion, CD.dampening, CD.dampening.min.ess,

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

control.ergm 21

CD.dampening.level, CD.steplength.margin, CD.steplength, CD.adaptive.trustregion,

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

CD.adaptive.epsilon, CD.Hummel.esteq, CD.Hummel.miss.sample,

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

CD.Hummel.maxit, CD.steplength.min

Miscellaneous tuning parameters of the CD sampler and optimizer. These have
the same meaning as their MCMC.* counterparts.
Note that only the Hotelling’s stopping criterion is implemented for CD.

loglik.control See control.ergm.bridge

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

seed Seed value (integer) for the random number generator. See set.seed.

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the ergm() function. See the usage section in ergm()
for details.

Value

A list with arguments as components.

References

– Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random
Graph Models. Journal of Social Structure. Available from https://www.cmu.edu/
joss/content/articles/volume3/Snijders.pdf.

– Firth (1993), Bias Reduction in Maximum Likelihood Estimates. Biometrika, 80: 27-38.
– Hunter, D. R. and M. S. Handcock (2006), Inference in curved exponential family models

for networks. Journal of Computational and Graphical Statistics, 15: 565-583.
– Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-

Based Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics,
21: 920-939.

https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf

22 control.ergm.bridge

– Kristoffer Sahlin. Estimating convergence of Markov chain Monte Carlo simulations.
Master’s Thesis. Stockholm University, 2011. https://www2.math.su.se/matstat/
reports/master/2011/rep2/report.pdf

See Also

ergm(). The control.simulate function performs a similar function for simulate.ergm; control.gof
performs a similar function for gof.

control.ergm.bridge Auxiliary for Controlling ergm.bridge

Description

Auxiliary function as user interface for fine-tuning ergm.bridge algorithm, which approximates log
likelihood ratios using bridge sampling.

Usage

control.ergm.bridge(nsteps = 20, MCMC.burnin = 10000,
MCMC.interval = 100, MCMC.samplesize = 10000,
obs.MCMC.samplesize = MCMC.samplesize,
obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin,
MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC.init.maxedges = 20000, MCMC.packagenames = c(),
term.options = list(), seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a

https://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf
https://www2.math.su.se/matstat/reports/master/2011/rep2/report.pdf

control.ergm.godfather 23

dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

seed Seed value (integer) for the random number generator. See set.seed.

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the ergm.bridge.llr or ergm.bridge.dindstart.llk
functions.

Value

A list with arguments as components.

See Also

ergm.bridge.llr, ergm.bridge.dindstart.llk

control.ergm.godfather

Control parameters for ergm.godfather().

Description

Returns a list of its arguments.

24 control.gof

Usage

control.ergm.godfather(GF.init.maxedges.mul = 5, term.options = NULL)

Arguments

GF.init.maxedges.mul

How much space is allocated for the edgelist of the final network. It is used
adaptively, so should not be greater than 10.

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

control.gof Auxiliary for Controlling ERGM Goodness-of-Fit Evaluation

Description

Auxiliary function as user interface for fine-tuning ERGM Goodness-of-Fit Evaluation.

The control.gof.ergm version is intended to be used with gof.ergm() specifically and will "in-
herit" as many control parameters from ergm fit as possible().

Usage

control.gof.formula(nsim = 100, MCMC.burnin = 10000,
MCMC.interval = 1000, MCMC.prop.weights = "default",
MCMC.prop.args = list(), MCMC.init.maxedges = 20000,
MCMC.packagenames = c(), MCMC.runtime.traceplot = FALSE,
network.output = "network", seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE)

control.gof.ergm(nsim = 100, MCMC.burnin = NULL,
MCMC.interval = NULL, MCMC.prop.weights = NULL,
MCMC.prop.args = NULL, MCMC.init.maxedges = NULL,
MCMC.packagenames = NULL, MCMC.runtime.traceplot = FALSE,
network.output = "network", seed = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE)

Arguments

nsim Number of networks to be randomly drawn using Markov chain Monte Carlo.
This sample of networks provides the basis for comparing the model to the ob-
served network.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.

control.gof 25

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

seed Seed value (integer) for the random number generator. See set.seed.

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the gof function. See the usage section in gof for details.

Value

A list with arguments as components.

See Also

gof. The control.simulate function performs a similar function for simulate.ergm; control.ergm
performs a similar function for ergm.

26 control.logLik.ergm

control.logLik.ergm Auxiliary for Controlling logLik.ergm

Description

Auxiliary function as user interface for fine-tuning logLik.ergm algorithm, which approximates log
likelihood values.

Usage

control.logLik.ergm(nsteps = 20, MCMC.burnin = NULL,
MCMC.interval = NULL, MCMC.samplesize = NULL,
obs.MCMC.samplesize = MCMC.samplesize,
obs.MCMC.interval = MCMC.interval, obs.MCMC.burnin = MCMC.burnin,
MCMC.prop.weights = NULL, MCMC.prop.args = NULL, warn.dyads = NULL,
MCMC.init.maxedges = NULL, MCMC.packagenames = NULL,
term.options = NULL, seed = NULL, parallel = NULL,
parallel.type = NULL, parallel.version.check = TRUE)

Arguments

nsteps Number of geometric bridges to use.

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.samplesize

Number of network statistics, randomly drawn from a given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

obs.MCMC.burnin, obs.MCMC.interval, obs.MCMC.samplesize

The obs versions of these arguments are for the unobserved data simulation
algorithm.

MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.

control.san 27

warn.dyads Whether or not a warning should be issued when sample space constraints render
the observed number of dyads ill-defined. Now defunct: use options(ergm.logLik.warn_dyads=...)
instead.

MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

seed Seed value (integer) for the random number generator. See set.seed.
parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).

See the entry on parallel processing for details and troubleshooting.
parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".

Defaults to using the parallel package with PSOCK clusters. See ergm-parallel
parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

Details

This function is only used within a call to the logLik.ergm function.

Value

A list with arguments as components.

See Also

logLik.ergm

control.san Auxiliary for Controlling SAN

Description

Auxiliary function as user interface for fine-tuning simulated annealing algorithm.

Usage

control.san(SAN.maxit = 4, SAN.tau = 1, SAN.invcov = NULL,
SAN.invcov.diag = FALSE, SAN.nsteps.alloc = function(nsim)
2^seq_len(nsim), SAN.nsteps = 2^19, SAN.samplesize = 2^12,
SAN.init.maxedges = 20000, SAN.max.maxedges = 2^26,
SAN.prop.weights = "default", SAN.prop.args = list(),
SAN.packagenames = c(), term.options = list(), seed = NULL,
parallel = 0, parallel.type = NULL, parallel.version.check = TRUE)

28 control.san

Arguments

SAN.maxit Number of temperature levels to use.

SAN.tau Tuning parameter, specifying the temperature of the process during the penul-
timate iteration. (During the last iteration, the temperature is set to 0, resulting
in a greedy search, and during the previous iterations, the temperature is set to
SAN.tau*(iterations left after this one).

SAN.invcov Initial inverse covariance matrix used to calculate Mahalanobis distance in de-
termining how far a proposed MCMC move is from the target.stats vector. If
NULL, initially set to the identity matrix, then during subsequent runs estimated
empirically.

SAN.invcov.diag

Whether to only use the diagonal of the covariance matrix. It seems to work
better in practice.

SAN.nsteps.alloc

Either a numeric vector or a function of the number of runs giving a sequence
of relative lengths of simulated annealing runs.

SAN.nsteps Number of MCMC proposals for all the annealing runs combined.

SAN.samplesize Number of realisations’ statistics to obtain for tuning purposes.
SAN.init.maxedges

Maximum number of edges expected in network.
SAN.max.maxedges

Hard upper bound on the number of edges in the network.
SAN.prop.weights

Specifies the method to allocate probabilities of being proposed to dyads. De-
faults to "default", which picks a reasonable default for the specified con-
straint. Other possible values are "TNT", "random", and "nonobserved", though
not all values may be used with all possible constraints.

SAN.prop.args An alternative, direct way of specifying additional arguments to proposal.
SAN.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

seed Seed value (integer) for the random number generator. See set.seed.

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

control.simulate.ergm 29

Details

This function is only used within a call to the san function. See the usage section in san for details.

Value

A list with arguments as components.

See Also

san

control.simulate.ergm Auxiliary for Controlling ERGM Simulation

Description

Auxiliary function as user interface for fine-tuning ERGM simulation. control.simulate, control.simulate.formula,
and control.simulate.formula.ergm are all aliases for the same function.

While the others supply a full set of simulation settings, control.simulate.ergm when passed
as a control parameter to simulate.ergm() allows some settings to be inherited from the ERGM
stimation while overriding others.

Usage

control.simulate.formula.ergm(MCMC.burnin = 10000,
MCMC.interval = 1000, MCMC.prop.weights = "default",
MCMC.prop.args = list(), MCMC.init.maxedges = 20000,
MCMC.packagenames = c(), MCMC.runtime.traceplot = FALSE,
network.output = "network", term.options = NULL, parallel = 0,
parallel.type = NULL, parallel.version.check = TRUE, ...)

control.simulate(MCMC.burnin = 10000, MCMC.interval = 1000,
MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC.init.maxedges = 20000, MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE, network.output = "network",
term.options = NULL, parallel = 0, parallel.type = NULL,
parallel.version.check = TRUE, ...)

control.simulate.formula(MCMC.burnin = 10000, MCMC.interval = 1000,
MCMC.prop.weights = "default", MCMC.prop.args = list(),
MCMC.init.maxedges = 20000, MCMC.packagenames = c(),
MCMC.runtime.traceplot = FALSE, network.output = "network",
term.options = NULL, parallel = 0, parallel.type = NULL,
parallel.version.check = TRUE, ...)

control.simulate.ergm(MCMC.burnin = NULL, MCMC.interval = NULL,

30 control.simulate.ergm

MCMC.prop.weights = NULL, MCMC.prop.args = NULL,
MCMC.init.maxedges = NULL, MCMC.packagenames = NULL,
MCMC.runtime.traceplot = FALSE, network.output = "network",
term.options = NULL, parallel = 0, parallel.type = NULL,
parallel.version.check = TRUE, ...)

Arguments

MCMC.burnin Number of proposals before any MCMC sampling is done. It typically is set to
a fairly large number.

MCMC.interval Number of proposals between sampled statistics.
MCMC.prop.weights

Specifies the proposal distribution used in the MCMC Metropolis-Hastings al-
gorithm. Possible choices are "TNT" or "random"; the "default" is one of these
two, depending on the constraints in place (as defined by the constraints ar-
gument of the ergm function), though not all weights may be used with all con-
straints. The TNT (tie / no tie) option puts roughly equal weight on selecting a
dyad with or without a tie as a candidate for toggling, whereas the random op-
tion puts equal weight on all possible dyads, though the interpretation of random
may change according to the constraints in place. When no constraints are in
place, the default is TNT, which appears to improve Markov chain mixing par-
ticularly for networks with a low edge density, as is typical of many realistic
social networks.

MCMC.prop.args An alternative, direct way of specifying additional arguments to proposal.
MCMC.init.maxedges

Maximum number of edges expected in network.
MCMC.packagenames

Names of packages in which to look for change statistic functions in addition to
those autodetected. This argument should not be needed outside of very strange
setups.

MCMC.runtime.traceplot

Logical: If TRUE, plot traceplots of the MCMC sample after every MCMC
MLE iteration.

network.output R class with which to output networks. The options are "network" (default) and
"edgelist.compressed" (which saves space but only supports networks without
vertex attributes)

term.options A list of additional arguments to be passed to term initializers. It can also be set
globally via option(ergm.term=list(...)).

parallel Number of threads in which to run the sampling. Defaults to 0 (no parallelism).
See the entry on parallel processing for details and troubleshooting.

parallel.type API to use for parallel processing. Supported values are "MPI" and "PSOCK".
Defaults to using the parallel package with PSOCK clusters. See ergm-parallel

parallel.version.check

Logical: If TRUE, check that the version of ergm running on the slave nodes is
the same as that running on the master node.

degreedist 31

... Additional arguments, passed to other functions This argument is helpful be-
cause it collects any control parameters that have been deprecated; a warning
message is printed in case of deprecated arguments.

Details

This function is only used within a call to the simulate function. See the usage section in
simulate.ergm for details.

Value

A list with arguments as components.

See Also

simulate.ergm, simulate.formula. control.ergm performs a similar function for ergm; control.gof
performs a similar function for gof.

degreedist Computes and Returns the Degree Distribution Information for a
Given Network

Description

The degreedist generic computes and returns the degree distribution (number of vertices in the
network with each degree value) for a given network. This help page documents the function. For
help about the ERGM sample space constraint with that name, try help("degreedist-constraint").

Usage

degreedist(object, ...)

S3 method for class 'network'
degreedist(object, print = TRUE, ...)

Arguments

object a network object or some other object for which degree distribution is meaning-
ful.

... Additional arguments to functions.

print logical, whether to print the degree distribution.

Value

If directed, a matrix of the distributions of in and out degrees; this is row bound and only contains
degrees for which one of the in or out distributions has a positive count. If bipartite, a list containing
the degree distributions of b1 and b2. Otherwise, a vector of the positive values in the degree
distribution

32 ecoli

Methods (by class)

• network: Method for network objects.

Examples

data(faux.mesa.high)
degreedist(faux.mesa.high)

ecoli Two versions of an E. Coli network dataset

Description

This network data set comprises two versions of a biological network in which the nodes are operons
in Escherichia Coli and a directed edge from one node to another indicates that the first encodes the
transcription factor that regulates the second.

Usage

data(ecoli)

Details

The network object ecoli1 is directed, with 423 nodes and 519 arcs. The object ecoli2 is an
undirected version of the same network, in which all arcs are treated as edges and the five isolated
nodes (which exhibit only self-regulation in ecoli1) are removed, leaving 418 nodes.

Licenses and Citation

When publishing results obtained using this data set, the original authors (Salgado et al, 2001;
Shen-Orr et al, 2002) should be cited, along with this R package.

Source

The data set is based on the RegulonDB network (Salgado et al, 2001) and was modified by Shen-
Orr et al (2002).

References

Salgado et al (2001), Regulondb (version 3.2): Transcriptional Regulation and Operon Organization
in Escherichia Coli K-12, Nucleic Acids Research, 29(1): 72-74.

Shen-Orr et al (2002), Network Motifs in the Transcriptional Regulation Network of Escerichia
Coli, Nature Genetics, 31(1): 64-68.

edges 33

edges edges (disambiguation)

Description

edges may refer to:

• An ERGM statistic (help("edges-term"))

• An ERGM sample space constraint (help("edges-constraint"))

enformulate.curved Convert a curved ERGM into a form suitable as initial values for the
same ergm.

Description

The generic enformulate.curved converts an ergm object or formula of a model with curved terms
to the variant in which the curved parameters embedded into the formula and are removed from the
parameter vector. This is the form required by ergm calls.

Usage

enformulate.curved(object, ...)

S3 method for class 'ergm'
enformulate.curved(object, ...)

S3 method for class 'formula'
enformulate.curved(object, theta, response = NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

... Unused at this time.

theta Curved model parameter configuration.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

34 enformulate.curved

Details

Because of a current kludge in ergm, output from one run cannot be directly passed as initial values
(control.ergm(init=)) for the next run if any of the terms are curved. One workaround is to
embed the curved parameters into the formula (while keeping fixed=FALSE) and remove them
from control.ergm(init=).

This function automates this process for curved ERGM terms included with the ergm package. It
does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The formula with curved parameter estimates incorporated.

theta The coefficient vector with curved parameter estimates removed.

See Also

ergm, simulate.ergm

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(decay=.5, fixed=FALSE),

control=control.ergm(MCMC.burnin=1024, MCMC.interval=8, MCMLE.maxit=1))
Error:
gest2<-try(ergm(gest$formula,

control=control.ergm(init=coef(gest), MCMC.burnin=1024,
MCMC.interval=8, MCMLE.maxit=1)))

print(gest2)

Works:
tmp<-enformulate.curved(gest)
tmp
gest2<-try(ergm(tmp$formula,

control=control.ergm(init=tmp$theta, MCMC.burnin=1024,
MCMC.interval=8, MCMLE.maxit=1)))

summary(gest2)

ergm 35

ergm Exponential-Family Random Graph Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant
for the distribution. ergm can return a maximum pseudo-likelihood estimate, an approximate maxi-
mum likelihood estimate based on a Monte Carlo scheme, or an approximate contrastive divergence
estimate based on a similar scheme. (For an overview of the package, see ergm-package.)

Usage

ergm(formula, response = NULL, reference = ~Bernoulli,
constraints = ~., offset.coef = NULL, target.stats = NULL,
eval.loglik = getOption("ergm.eval.loglik"), estimate = c("MLE",
"MPLE", "CD"), control = control.ergm(), verbose = FALSE, ...)

is.ergm(object)

S3 method for class 'ergm'
nobs(object, ...)

S3 method for class 'ergm'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'ergm'
coef(object, ...)

S3 method for class 'ergm'
coefficients(object, ...)

S3 method for class 'ergm'
vcov(object, sources = c("all", "model", "estimation"),
...)

Arguments

formula An R formula object, of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details
on the possible <model terms>, see ergm-terms and Morris, Handcock and
Hunter (2008) for binary ERGM terms and Krivitsky (2012) for valued ERGM
terms (terms for weighted edges). To create a network object in R, use the
network() function, then add nodal attributes to it using the %v% operator if

36 ergm

necessary. Enclosing a model term in offset() fixes its value to one specified
in offset.coef.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

reference A one-sided formula specifying the reference measure (h(y)) to be used. (De-
faults to ~Bernoulli.) See help for ERGM reference measures implemented in
the ergm package.

constraints A formula specifying one or more constraints on the support of the distribution
of the networks being modeled, using syntax similar to the formula argument,
on the right-hand side. Multiple constraints may be given, separated by “+” and
“-” operators. (See ERGM constraints for the explanation of their semantics.)
Together with the model terms in the formula and the reference measure, the
constraints define the distribution of networks being modeled.
It is also possible to specify a proposal function directly either by passing a string
with the function’s name (in which case, arguments to the proposal should be
specified through the prop.args argument to control.ergm) or by giving it on
the LHS of the constraints formula, in which case it will override the one chosen
automatically.
The default is ~., for an unconstrained model.
See the ERGM constraints documentation for the constraints implemented in
the ergm package. Other packages may add their own constraints.
Note that not all possible combinations of constraints and reference measures
are supported. However, for relatively simple constraints (i.e., those that sim-
ply permit or forbid specific dyads or sets of dyads from changing), arbitrary
combinations should be possible.

offset.coef A vector of coefficients for the offset terms.

target.stats vector of "observed network statistics," if these statistics are for some reason dif-
ferent than the actual statistics of the network on the left-hand side of formula.
Equivalently, this vector is the mean-value parameter values for the model. If
this is given, the algorithm finds the natural parameter values corresponding to
these mean-value parameters. If NULL, the mean-value parameters used are the
observed statistics of the network in the formula.

eval.loglik Logical: For dyad-dependent models, if TRUE, use bridge sampling to evaluate
the log-likelihoood associated with the fit. Has no effect for dyad-independent
models. Since bridge sampling takes additional time, setting to FALSE may
speed performance if likelihood values (and likelihood-based values like AIC
and BIC) are not needed. Can be set globally via option(ergm.eval.loglik=...),
which is set to TRUE when the package is loaded.

estimate If "MPLE," then the maximum pseudolikelihood estimator is returned. If "MLE"
(the default), then an approximate maximum likelihood estimator is returned.
For certain models, the MPLE and MLE are equivalent, in which case this ar-
gument is ignored. (To force MCMC-based approximate likelihood calculation
even when the MLE and MPLE are the same, see the force.main argument
of control.ergm. If "CD" (EXPERIMENTAL), the Monte-Carlo contrastive
divergence estimate is returned.)

ergm 37

control A list of control parameters for algorithm tuning. Constructed using control.ergm.

verbose logical; if this is TRUE, the program will print out additional information, includ-
ing goodness of fit statistics.

... Additional arguments, to be passed to lower-level functions.

object an ergm object.

x, digits See print().
Automatically called when an object of class ergm is printed. Currently, sum-
marizes the size of the MCMC sample, the θ vector governing the selection of
the sample, and the Monte Carlo MLE. The optional digits argument specifies
the significant digits for coefficients

sources For the vcov method, specify whether to return the covariance matrix from the
ERGM model, the estimation process, or both combined.

Value

ergm returns an object of class ergm that is a list consisting of the following elements:

coef The Monte Carlo maximum likelihood estimate of θ, the vector of coefficients
for the model parameters.

sample The n × p matrix of network statistics, where n is the sample size and p is
the number of network statistics specified in the model, generated by the last
iteration of the MCMC-based likelihood maximization routine. These statistics
are centered with respect to the observed statistics or target.stats, unless
missing data MLE is used.

sample.obs As sample, but for the constrained sample.

iterations The number of Newton-Raphson iterations required before convergence.

MCMCtheta The value of θ used to produce the Markov chain Monte Carlo sample. As
long as the Markov chain mixes sufficiently well, sample is roughly a random
sample from the distribution of network statistics specified by the model with the
parameter equal to MCMCtheta. If estimate="MPLE" then MCMCtheta equals the
MPLE.

loglikelihood The approximate change in log-likelihood in the last iteration. The value is only
approximate because it is estimated based on the MCMC random sample.

gradient The value of the gradient vector of the approximated loglikelihood function,
evaluated at the maximizer. This vector should be very close to zero.

covar Approximate covariance matrix for the MLE, based on the inverse Hessian of
the approximated loglikelihood evaluated at the maximizer.

failure Logical: Did the MCMC estimation fail?

network Original network

newnetworks A list of the final networks at the end of the MCMC simulation, one for each
thread.

newnetwork The first (possibly only) element of netwonetworks.

coef.init The initial value of θ.

38 ergm

est.cov The covariance matrix of the model statistics in the final MCMC sample.

coef.hist, steplen.hist, stats.hist, stats.obs.hist

For the MCMLE method, the history of coefficients, Hummel step lengths, and
average model statistics for each iteration..

control The control list passed to the call.

etamap The set of functions mapping the true parameter theta to the canonical parameter
eta (irrelevant except in a curved exponential family model)

formula The original formula entered into the ergm function.

target.stats The target.stats used during estimation (passed through from the Arguments)

target.esteq Used for curved models to preserve the target mean values of the curved terms.
It is identical to target.stats for non-curved models.

constrained The list of constraints implied by the constraints used by original ergm call

constraints Constraints used during estimation (passed through from the Arguments)

reference The reference measure used during estimation (passed through from the Argu-
ments)

estimate The estimation method used (passed through from the Arguments).

offset vector of logical telling which model parameters are to be set at a fixed value
(i.e., not estimated).

drop If control$drop=TRUE, a numeric vector indicating which terms were dropped
due to to extreme values of the corresponding statistics on the observed network,
and how:

0 The term was not dropped.

-1 The term was at its minimum and the coefficient was fixed at -Inf.

+1 The term was at its maximum and the coefficient was fixed at +Inf.

estimable A logical vector indicating which terms could not be estimated due to a constraints
constraint fixing that term at a constant value.

null.lik Log-likelihood of the null model. Valid only for unconstrained models.

mle.lik The approximate log-likelihood for the MLE. The value is only approximate
because it is estimated based on the MCMC random sample.

degeneracy.value

Score calculated to assess the degree of degeneracy in the model. Only shows
when MCMLE.check.degeneracy is TRUE in control.ergm.

degeneracy.type

Supporting output for degeneracy.value. Only shows when MCMLE.check.degeneracy
is TRUE in control.ergm. Mainly for internal use.

See the method print.ergm for details on how an ergm object is printed. Note that the method
summary.ergm returns a summary of the relevant parts of the ergm object in concise summary
format.

ergm 39

Methods (by generic)

• nobs: Return the number of informative dyads of a model fit.

• print:

• coef: extracts estimated model coefficients.

• coefficients: An alias for ergm.

• vcov: extracts the variance-covariance matrix of parameter estimates.

Notes on model specification

Although each of the statistics in a given model is a summary statistic for the entire network, it
is rarely necessary to calculate statistics for an entire network in a proposed Metropolis-Hastings
step. Thus, for example, if the triangle term is included in the model, a census of all triangles in the
observed network is never taken; instead, only the change in the number of triangles is recorded for
each edge toggle.

In the implementation of ergm, the model is initialized in R, then all the model information is passed
to a C program that generates the sample of network statistics using MCMC. This sample is then
returned to R, which implements a simple Newton-Raphson algorithm to approximate the MLE. An
alternative style of maximum likelihood estimation is to use a stochastic approximation algorithm.
This can be chosen with the control.ergm(style="Robbins-Monro") option.

The mechanism for proposing new networks for the MCMC sampling scheme, which is a Metropolis-
Hastings algorithm, depends on two things: The constraints, which define the set of possible
networks that could be proposed in a particular Markov chain step, and the weights placed on these
possible steps by the proposal distribution. The former may be controlled using the constraints
argument described above. The latter may be controlled using the prop.weights argument to the
control.ergm function.

The package is designed so that the user could conceivably add additional proposal types.

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1. https://statnet.
org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
https://www.jstatsoft.org/v24/i07/.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https:
//cran.r-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). https://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (https://statnet.org). R package version 1.12.0,
https://cran.r-project.org/package=network.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). https://www.jstatsoft.org/v24/i08/.

https://statnet.org
https://statnet.org
https://www.jstatsoft.org/v24/i07/
https://cran.r-project.org/package=sna
https://cran.r-project.org/package=sna
https://www.jstatsoft.org/v24/i02/
https://cran.r-project.org/package=network
https://www.jstatsoft.org/v24/i08/

40 ergm

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper #39, Center for Statistics and the Social Sciences, University of Washington. https://www.
csss.washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, https://statnet.org.

Handcock MS and Gile KJ (2010). Modeling Social Networks from Sampled Data. Annals of
Applied Statistics, 4(1), 5-25. doi: 10.1214/08AOAS221

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools
for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, https:
//statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www.
jstatsoft.org/v24/i04/.

Snijders, T.A.B. (2002), Markov Chain Monte Carlo Estimation of Exponential Random Graph
Models. Journal of Social Structure. Available from https://www.cmu.edu/joss/content/
articles/volume3/Snijders.pdf.

See Also

network, %v%, %n%, ergm-terms, ergmMPLE, summary.ergm, print.ergm

Examples

#
load the Florentine marriage data matrix
#
data(flo)
#
attach the sociomatrix for the Florentine marriage data
This is not yet a network object.
#
flo
#

https://www.csss.washington.edu/Papers/wp39.pdf
https://www.csss.washington.edu/Papers/wp39.pdf
https://statnet.org
https://doi.org/10.1214/08-AOAS221
https://statnet.org
https://statnet.org
https://statnet.org
https://www.jstatsoft.org/v24/i03/
https://doi.org/10.1214/12-EJS696
https://www.jstatsoft.org/v24/i04/
https://www.jstatsoft.org/v24/i04/
https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf
https://www.cmu.edu/joss/content/articles/volume3/Snijders.pdf

ergm 41

Create a network object out of the adjacency matrix
#
flomarriage <- network(flo,directed=FALSE)
flomarriage
#
print out the sociomatrix for the Florentine marriage data
#
flomarriage[,]
#
create a vector indicating the wealth of each family (in thousands of lira)
and add it as a covariate to the network object
#
flomarriage %v% "wealth" <- c(10,36,27,146,55,44,20,8,42,103,48,49,10,48,32,3)
flomarriage
#
create a plot of the social network
#
plot(flomarriage)
#
now make the vertex size proportional to their wealth
#
plot(flomarriage, vertex.cex=flomarriage %v% "wealth" / 20, main="Marriage Ties")
#
Use 'data(package = "ergm")' to list the data sets in a
#
data(package="ergm")
#
Load a network object of the Florentine data
#
data(florentine)
#
Fit a model where the propensity to form ties between
families depends on the absolute difference in wealth
#
gest <- ergm(flomarriage ~ edges + absdiff("wealth"))
summary(gest)
#
add terms for the propensity to form 2-stars and triangles
of families
#
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)
summary(gest)

import synthetic network that looks like a molecule
data(molecule)
Add a attribute to it to mimic the atomic type
molecule %v% "atomic type" <- c(1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3)
#
create a plot of the social network
colored by atomic type
#
plot(molecule, vertex.col="atomic type",vertex.cex=3)

42 ergm-constraints

measure tendency to match within each atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)

compare it to differential homophily by atomic type
gest <- ergm(molecule ~ edges + kstar(2) + triangle

+ nodematch("atomic type",diff=TRUE),
control=control.ergm(MCMC.samplesize=10000))
summary(gest)

Extract parameter estimates as a numeric vector:
coef(gest)

Sources of variation in parameter estimates:
vcov(gest, sources="model")
vcov(gest, sources="estimation")
vcov(gest, sources="all") # the default

ergm-constraints Sample Space Constraints for Exponential-Family Random Graph
Models

Description

ergm is used to fit exponential-family random graph models (ERGMs), in which the probability of
a given network, y, on a set of nodes is h(y) exp{η(θ) · g(y)}/c(θ), where h(y) is the reference
measure (usually h(y) = 1), g(y) is a vector of network statistics for y, η(θ) is a natural parameter
vector of the same length (with η(θ) = θ for most terms), and c(θ) is the normalizing constant for
the distribution.

This page describes the constraints (the networks y for which h(y) > 0) that are included with the
ergm package. Other packages may add new constraints.

Constraints formula

A constraints formula is a one- or two-sided formula whose left-hand side is an optional direct
selection of the InitErgmProposal function and whose right-hand side is a series of one or more
terms separated by “+” and “-” operators, specifying the constraint.

The sample space (over and above the reference distribution) is determined by iterating over the
constraints terms from left to right, each term updating it as follows:

• If the constraint introduces complex dependence structure (e.g., constrains degree or number
of edges in the network), then this constraint always restricts the sample space. It may only
have a “+” sign.

ergm-constraints 43

• If the constraint only restricts the set of dyads that may vary in the sample space (e.g., block-
diagonal structure or fixing specific dyads at specific values) and has a “+” sign, the set of
dyads that may vary is restricted to those that may vary according to this constraint and all the
constraints to date.

• If the constraint only restricts the set of dyads that may vary in the sample space but has a
“-” sign, the set of dyads that may vary is expanded to those that may vary according to this
constraint or all the constraints up to date.

For example, a constraints formula ~a-b+c-d with all constraints dyadic will allow dyads permitted
by either ‘a‘ or ‘b‘ but only if they are also permitted by ‘c‘; as well as all dyads permitted by
‘d‘. If ‘A‘, ‘B‘, ‘C‘, and ‘D‘ were logical matrices, the matrix of variable dyads would be equal to
‘((A|B)&C)|D‘.

Terms with a positive sign can be viewed as “adding” a constraint while those with a negative sign
can be viewed as “relaxing” a constraint.

Constraints implemented in the ergm package

. or NULL (dyad-independent) A placeholder for no constraints: all networks of a particular size
and type have non-zero probability. Cannot be combined with other constraints.

bd(attribs,maxout,maxin,minout,minin) Constrain maximum and minimum vertex degree.
See “Placing Bounds on Degrees” section for more information.

blockdiag(attrname) (dyad-independent) Force a block-diagonal structure (and its bipartite
analogue) on the network. Only dyads (i, j) for which attrname(i)==attrname(j) can
have edges.
Note that the current implementation requires that blocks be contiguous for “unipartite” graphs,
and for bipartite graphs, they must be contiguous within a partition and must have the same
ordering in both partitions. (They do not, however, require that all blocks be represented in
both partitions, but those that overlap must have the same order.)

degrees and nodedegrees Preserve the degree of each vertex of the given network: only networks
whose vertex degrees are the same as those in the network passed in the model formula have
non-zero probability. If the network is directed, both indegree and outdegree are preserved.

odegrees, idegrees, b1degrees, b2degrees For directed networks, odegrees preserves the out-
degree of each vertex of the given network, while allowing indegree to vary, and conversely
for idegrees. b1degrees and b2degrees perform a similar function for bipartite networks.

degreedist Preserve the degree distribution of the given network: only networks whose degree
distributions are the same as those in the network passed in the model formula have non-zero
probability.

idegreedist and odegreedist Preserve the (respectively) indegree or outdegree distribution of
the given network.

edges Preserve the edge count of the given network: only networks having the same number of
edges as the network passed in the model formula have non-zero probability.

observed (dyad-independent) Preserve the observed dyads of the given network.

fixedas(present,absent) (dyad-independent) Preserve the edges in ’present’ and preclude the
edges in ’absent’. Both ’present’ and ’absent’ can take input object as edgelist and network,
the latter will convert to the corresponding edgelist.

44 ergm-constraints

fixallbut(free.dyads) (dyad-independent) Preserve the dyad status in all but free.dyads. free.dyads
can take input object as edgelist and network, the latter will convert to the corresponding edge-
list.
Not all combinations of the above are supported.

Placing Bounds on Degrees:

There are many times when one may wish to condition on the number of inedges or outedges
possessed by a node, either as a consequence of some intrinsic property of that node (e.g., to control
for activity or popularity processes), to account for known outliers of some kind, and thus we wish
to limit its indegree, an intrinsic property of the sampling scheme whence came our data (e.g., the
survey asked everyone to name only three friends total) or as a function of the attributes of the nodes
to which a node has edges (e.g., we specify that nodes designated “male” have a maximum number
of outdegrees to nodes designated “female”). To accomplish this we use the constraints term bd.

Let’s consider the simple cases first. Suppose you want to condition on the total number of degrees
regardless of attributes. That is, if you had a survey that asked respondents to name three alters and
no more, then you might want to limit your maximal outdegree to three without regard to any of the
alters’ attributes. The argument is then:

constraints=~bd(maxout=3)

Similar calls are used to restrict the number of indegrees (maxin), the minimum number of outde-
grees (minout), and the minimum number of indegrees (minin).

You can also set ego specific limits. For example:

constraints=bd(maxout=rep(c(3,4),c(36,35)))

limits the first 36 to 3 and the other 35 to 4 outdegrees.

Multiple restrictions can be combined. bd is very flexible. In general, the bd term can contain up to
five arguments:

bd(attribs=attribs,
maxout=maxout,
maxin=maxin,
minout=minout,
minin=minin)

Omitted arguments are unrestricted, and arguments of length 1 are replicated out to all nodes (as
above). If an individual entry in maxout,..., minin is NA then no restriction of that kind is applied to
that actor.

In general, attribs is a matrix of the attributes on which we are conditioning. The dimensions
of attribs are n_nodes rows by attrcount columns, where attrcount is the number of distinct
attribute values on which we want to condition (i.e., a separate column is required for “male” and
“female” if we want to condition on the number of ties to both “male” and “female” partners). The
value of attribs[n, i], therefore, is TRUE if node n has attribute value i, and FALSE otherwise.
(Note that, since each column represents only a single value of a single attribute, the values of this
matrix are all Boolean (TRUE or FALSE).) It is important to note that attribs is a matrix of nodal
attributes, not alter attributes.

ergm-constraints 45

So, for instance, if we wanted to construct an attribs matrix with two columns, one each for male
and female attribute values (we are conditioning on these values of the attribute “sex”), and the
attribute sex is represented in ads.sex as an n_node-long vector of 0s and 1s (men and women), then
our code would look as follows:

male column: bit vector, TRUE for males
attrsex1 <- (ads.sex == 0)
female column: bit vector, TRUE for females
attrsex2 <- (ads.sex == 1)
now create attribs matrix
attribs <- matrix(ncol=2,nrow=71, data=c(attrsex1,attrsex2))

maxout is a matrix of alter attributes, with the same dimensions as the attribs matrix. maxout
is n_nodes rows by attrcount columns. The value of maxout[n,i], therefore, is the maximum
number of outdegrees permitted from node n to nodes with the attribute i (where a NA means there
is no maximum).

For example: if we wanted to create a maxout matrix to work with our attribs matrix above, with
a maximum from every node of five outedges to males and five outedges to females, our code would
look like this:

every node has maximum of 5 outdegrees to male alters
maxoutsex1 <- c(rep(5,71))
every node has maximum of 5 outdegrees to female alters
maxoutsex2 <- c(rep(5,71))
now create maxout matrix
maxout <- cbind(maxoutsex1,maxoutsex2)

The maxin, minout, and minin matrices are constructed exactly like the maxout matrix, except
for the maximum allowed indegree, the minimum allowed outdegree, and the minimum allowed
indegree, respectively. Note that in an undirected network, we only look at the outdegree matrices;
maxin and minin will both be ignored in this case.

References

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). https://www.jstatsoft.org/v24/i08/.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www.
jstatsoft.org/v24/i04/.

https://www.jstatsoft.org/v24/i08/
https://www.jstatsoft.org/v24/i03/
https://doi.org/10.1214/12-EJS696
https://www.jstatsoft.org/v24/i04/
https://www.jstatsoft.org/v24/i04/

46 ergm-parallel

ergm-parallel Parallel Processing in the ergm Package

Description

For estimation that require MCMC, ergm can take advantage of multiple CPUs or CPU cores on
the system on which it runs, as well as computing clusters. It uses package parallel and snow
to facilitate this, and supports all cluster types that they does. The number of nodes used and the
parallel API are controlled using the parallel and parallel.type arguments passed to the control
functions, such as control.ergm.

The ergm.getCluster function is usually called internally by the ergm process (in ergm_MCMC_sample)
and will attempt to start the appropriate type of cluster indicated by the control.ergm settings. It
will also check that the same version of ergm is installed on each node.

The ergm.stopCluster shuts down a cluster, but only if ergm.getCluster was responsible for
starting it.

The ergm.restartCluster restarts and returns a cluster, but only if ergm.getCluster was re-
sponsible for starting it.

nthreads is a simple generic to obtain the number of parallel processes represented by its argument,
keeping in mind that having no cluster (e.g., NULL) represents one thread.

Usage

ergm.getCluster(control = NULL, verbose = FALSE,
stop_on_exit = parent.frame())

ergm.stopCluster(..., verbose = FALSE)

ergm.restartCluster(control = NULL, verbose = FALSE)

nthreads(clinfo = NULL, ...)

S3 method for class 'cluster'
nthreads(clinfo = NULL, ...)

S3 method for class 'NULL'
nthreads(clinfo = NULL, ...)

S3 method for class 'control.list'
nthreads(clinfo = NULL, ...)

Arguments

control a control.ergm (or similar) list of parameter values from which the parallel
settings should be read; can also be NULL, in which case an existing cluster is
used if started, or no cluster otherwise.

ergm-parallel 47

verbose logical, should detailed status info be printed to console?

stop_on_exit An environment or NULL. If an environment, defaulting to that of the calling
function, the cluster will be stopped when the calling the frame in question exits.

... not currently used

clinfo a cluster or another object.

Details

Further details on the various cluster types are included below.

PSOCK clusters

The parallel package is used with PSOCK clusters by default, to utilize multiple cores on a
system. The number of cores on a system can be determined with the detectCores function.

This method works with the base installation of R on all platforms, and does not require additional
software.

For more advanced applications, such as clusters that span multiple machines on a network, the
clusters can be initialized manually, and passed into ergm using the parallel control argument.
See the second example below.

MPI clusters

To use MPI to accelerate ERGM sampling, pass the control parameter parallel.type="MPI".
ergm requires the snow and Rmpi packages to communicate with an MPI cluster.

Using MPI clusters requires the system to have an existing MPI installation. See the MPI documen-
tation for your particular platform for instructions.

To use ergm across multiple machines in a high performance computing environment, see the sec-
tion "User initiated clusters" below.

User initiated clusters

A cluster can be passed into ergm with the parallel control parameter. ergm will detect the number
of nodes in the cluster, and use all of them for MCMC sampling. This method is flexible: it
will accept any cluster type that is compatible with snow or parallel packages. Usage examples
for a multiple-machine high performance MPI cluster can be found at the statnet wiki: https:
//statnet.csde.washington.edu/trac/wiki/ergmParallel

Examples

Uses 2 SOCK clusters for MCMLE estimation
data(faux.mesa.high)
nw <- faux.mesa.high
fauxmodel.01 <- ergm(nw ~ edges + isolates + gwesp(0.2, fixed=TRUE),

control=control.ergm(parallel=2, parallel.type="PSOCK"))
summary(fauxmodel.01)

https://statnet.csde.washington.edu/trac/wiki/ergmParallel
https://statnet.csde.washington.edu/trac/wiki/ergmParallel

48 ergm-references

ergm-references Reference Measures for Exponential-Family Random Graph Models

Description

This page describes the possible reference measures (baseline distributions) for found in the ergm
package, particularly the default (Bernoulli) reference measure for binary ERGMs.

The reference measure is specified on the RHS of a one-sided formula passed as the reference ar-
gument to ergm. See the ergm documentation for a complete description of how reference measures
are specified.

Possible reference measures to represent baseline distributions

Reference measures currently available are:

Bernoulli Bernoulli-reference ERGM: Specifies each dyad’s baseline distribution to be Bernoulli
with probability of the tie being 0.5. This is the only reference measure used in binary mode.

DiscUnif(a,b) Discrete-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to
be discrete uniform between a and b (both inclusive): h(y) = 1, with the support being
a,a+1,. . . ,b-1,b. At this time, both a and b must be finite.

Unif(a,b) Coninuous-Uniform-reference ERGM: Specifies each dyad’s baseline distribution to be
continuous uniform between a and b (both inclusive): h(y) = 1, with the support being [a,b].
At this time, both a and b must be finite.

StdNormal Standard-Normal-reference ERGM: Specifies each dyad’s baseline distribution to be
the normal distribution with mean 0 and variance 1.

References

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN (2012). Exponential-Family Random Graph Models for Valued Networks. Electronic
Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

See Also

ergm, network, %v%, %n%, sna, summary.ergm, print.ergm

https://www.jstatsoft.org/v24/i03/
https://doi.org/10.1214/12-EJS696

ergm-terms 49

ergm-terms Terms used in Exponential Family Random Graph Models

Description

The function ergm is used to fit exponential random graph models, in which the probability of a
given network, y, on a set of nodes is

h(y) exp{η(θ) · g(y)}/c(θ)

where h(y) is the reference measure (for valued network models), g(y) is a vector of network
statistics for y, η(θ) is a natural parameter vector of the same length (with η(θ) = θ for most
terms), and c(θ) is the normalizing constant for the distribution.

The network statistics g(y) are entered as terms in the function call to ergm. This page describes
the possible terms (and hence network statistics) included in ergm package.

A cross-referenced HTML version of the term documentation is available via vignette('ergm-term-crossRef')
and terms can also be searched via search.ergmTerms.

Specifying models

Terms to ergm are specified by a formula to represent the network and network statistics. This is
done via a formula, that is, an R formula object, of the form y ~ <term 1> + <term 2> ...,
where y is a network object or a matrix that can be coerced to a network object, and <term 1>,
<term 2>, etc, are each terms chosen from the list given below. To create a network object in R,
use the network function, then add nodal attributes to it using the %v% operator if necessary.

Binary and valued ERGM terms:
ergm functions such as ergm and simulate (for ERGMs) may operate in two modes: binary
and weighted/valued, with the latter activated by passing a non-NULL value as the response
argument, giving the edge attribute name to be modeled/simulated.
Binary ERGM statistics cannot be used in valued mode and vice versa. However, a substantial
number of binary ERGM statistics — particularly the ones with dyadic indepenence — have
simple generalizations to valued ERGMs, and have been adapted in ergm. They have the same
form as their binary ERGM counterparts, with an additional argument: form, which, at this time,
has two possible values: "sum" (the default) and "nonzero". The former creates a statistic of the
form

∑
i,j xi,jyi,j , where yi,j is the value of dyad (i, j) and xi,j is the term’s covariate associated

with it. The latter computes the binary version, with the edge considered to be present if its value
is not 0.
Valued version of some binary ERGM terms have an argument threshold, which sets the value
above which a dyad is conidered to have a tie. (Value less than or equal to threshold is considered
a nontie.)

Nodal attribute levels and indices:
Terms taking a categorical nodal covariate also take the levels argument. (There are analo-
gous b1levels and b2levels arguments for some terms that apply to bipartite networks, and the
levels2 argument for mixing terms.) The levels argument can be used to control the set and
the ordering of attribute levels.

50 ergm-terms

Terms that allow the selection of nodes do so with the nodes argument, which is interpreted in the
same way as the levels argument, where the categories are the relevant nodal indices themselves.
Both levels and nodes use the new level selection UI. (See Specifying Vertex Attributes and
Levels for details.)

Legacy arguments:
The legacy base and keep arguments are deprecated as of version 3.10, and replaced by the
levels UI. The levels argument provides consistent and flexible mechanisms for specifying
which attribute levels to exclude (previously handled by base) and include (previously handled
by keep). If levels or nodes argument is given, then base and keep arguments are ignored.
The legacy arguments will most likely be removed in a future version.
Note that this exact behavior is new in version 3.10, and it differs slightly from older versions:
previously if both levels and base/keep were given, levels argument was applied first and
then applied the base/keep argument. Since version 3.10, base/keep would be ignored, even if
old term behavior is invoked (as described in the next section).

Term versioning:
When a term’s behavior has changed from prior version, it is often possible to invoke the old
behavior by setting and/or passing a version term option, giving the verison (constructed by
as.package_version) desired.

Custom ergm terms:
Users and other packages may build custom terms, and package ergm.userterms provides tools
for implementing them.
The current recommendation for any package implementing additional terms is to create a help file
with a name or alias ergm-terms, so that help("ergm-terms") will list ERGM terms available
from all loaded packages.

Terms included in the ergm package

As noted above, a cross-referenced HTML version of the term documentation is available via
vignette('ergm-term-crossRef') and terms can also be searched via search.ergmTerms.

absdiff(attr, pow=1) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute), absdiff(attr, pow=1, form ="sum") (valued) (dyad-independent) (directed) (undirected) (quantitative nodal attribute)
Absolute difference: The attr argument specifies a quantitative attribute (see Specifying Ver-
tex Attributes and Levels for details). This term adds one network statistic to the model equal-
ing the sum of abs(attr[i]-attr[j])^pow for all edges (i,j) in the network.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

absdiffcat(attr, base=NULL, levels=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute), absdiffcat(attr, base=NULL, levels=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Categorical absolute difference: The attr argument specifies a quantitative attribute (see
Specifying Vertex Attributes and Levels for details). This term adds one statistic for every
possible nonzero distinct value of abs(attr[i]-attr[j]) in the network; the value of each
such statistic is the number of edges in the network with the corresponding absolute difference.
The optional argument levels specifies which nonzero differences to include in or exclude
from the model (see Specifying Vertex Attributes and Levels for details). For example, if the
possible values of abs(attr[i]-attr[j]) are 0, 0.5, 3, 3.5, and 10, then to omit 0.5 and 10
one could set levels=2:3 (we wish to retain the second and third nonzero difference, when
differences are sorted in increasing order). Note that this term should generally be used only

ergm-terms 51

when the quantitative attribute has a limited number of possible values; an example is the
"Grade" attribute of the faux.mesa.high or faux.magnolia.high datasets.
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.

altkstar(lambda, fixed=FALSE) (binary) (undirected) (curved) (categorical nodal attribute)
Alternating k-star: This term adds one network statistic to the model equal to a weighted al-
ternating sequence of k-star statistics with weight parameter lambda. This is the version given
in Snijders et al. (2006). The gwdegree and altkstar produce mathematically equivalent
models, as long as they are used together with the edges (or kstar(1)) term, yet the inter-
pretation of the gwdegree parameters is slightly more straightforward than the interpretation
of the altkstar parameters. For this reason, we recommend the use of the gwdegree instead
of altkstar. See Section 3 and especially equation (13) of Hunter (2007) for details. The
optional argument fixed indicates whether the decay parameter is fixed at the given value,
or is to be fit as a curved exponential family model (see Hunter and Handcock, 2006). The
default is FALSE, which means the scale parameter is not fixed and thus the model is a CEF
model. This term can only be used with undirected networks.

asymmetric(attr=NULL, diff=FALSE, keep=NULL, levels=NULL) (binary) (directed) (dyad-independent) (triad-related)
Asymmetric dyads: This term adds one network statistic to the model equal to the number of
pairs of actors for which exactly one of (i→j) or (j→i) exists. This term can only be used
with directed networks. The optional argument attr specifies a vertex attribute (see Specify-
ing Vertex Attributes and Levels for details). If attr is specified, only asymmetric pairs that
match on the vertex attribute attr are counted. The optional modifiers diff and levels are
used in the same way as for the nodematch term; refer to this term for details and an example.
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep.

atleast(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads
with values greater than or equal to a threshold Adds one statistic equaling to the number of
dyads whose values equal or exceed threshold.

atmost(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads with
values less than or equal to a threshold Adds one statistic equaling to the number of dyads
whose values equal or are exceeded by threshold.

b1concurrent(by=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Concurrent node count for the first mode in a bipartite (aka two-mode) network: This term
adds one network statistic to the model, equal to the number of nodes in the first mode of
the network with degree 2 or higher. The first mode of a bipartite network object is some-
times known as the "actor" mode. The optional argument by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details); it functions just like the by argu-
ment of the b1degree term. Without the optional argument, this statistic is equivalent to
b1mindegree(2). This term can only be used with undirected bipartite networks.

b1cov(attr) (binary) (undirected) (bipartite) (dyad-independent) (quantitative nodalattribute) (frequently-used), b1cov(attr, form="sum") (valued) (undirected) (bipartite) (dyad-independent) (quantitative nodal attribute) (frequently-used)
Main effect of a covariate for the first mode in a bipartite (aka two-mode) network: The attr
argument specifies one or more quantitative attributes (see Specifying Vertex Attributes and
Levels for details). This term adds a single network statistic for each quantitative attribute
or matrix column to the model equaling the total value of attr(i) for all edges (i, j) in the
network. This term may only be used with bipartite networks. For categorical attributes, see
b1factor.

52 ergm-terms

Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

b1degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (bipartite) (undirected)
Degree range for the first mode in a bipartite (a.k.a. two-mode) network: The from and to ar-
guments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors has
length 1, it is recycled to the length of the other. Otherwise, they must have the same length.
This term adds one network statistic to the model for each element of from (or to); the ith
such statistic equals the number of nodes of the first mode ("actors") in the network of degree
greater than or equal to from[i] but strictly less than to[i], i.e. with edge count in semiopen
interval [from,to). The optional argument by specifies a vertex attribute (see Specifying Ver-
tex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees
are calculated using the subnetwork consisting of only edges whose endpoints have the same
value of the by attribute. If by is specified and homophily is FALSE (the default), then separate
degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b2degrange for degrees of the
second mode ("events").

b1degree(d, by=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)
Degree for the first mode in a bipartite (aka two-mode) network: The d argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in
d; the ith such statistic equals the number of nodes of degree d[i] in the first mode of a bi-
partite network, i.e. with exactly d[i] edges. The first mode of a bipartite network object is
sometimes known as the "actor" mode. The optional argument by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details). If this is specified then each node’s
degree is tabulated only with other nodes having the same value of the by attribute.
This term can only be used with undirected bipartite networks.

b1factor(attr, base=1, levels=-1) (binary) (bipartite) (undirected) (dyad-independent) (frequently-used) (categorical nodal attribute), b1factor(attr, base=1, levels=-1, form="sum") (valued) (bipartite) (undirected) (dyad-independent) (frequently-used) (categorical nodal attribute)
Factor attribute effect for the first mode in a bipartite (aka two-mode) network: The attr ar-
gument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels
for details). This term adds multiple network statistics to the model, one for each of (a subset
of) the unique values of the attr attribute. Each of these statistics gives the number of times
a node with that attribute in the first mode of the network appears in an edge. The first mode
of a bipartite network object is sometimes known as the "actor" mode.
The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of b1factor("fruit", levels=-(2:3)),
b1factor("fruit", levels=c(1,4)), and b1factor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also
including edges. The default, levels=-1, is therefore to omit the first (in lexicographic or-
der) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or
levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.
This term can only be used with undirected bipartite networks.

ergm-terms 53

b1mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the first mode in a bipar-
tite (aka two-mode) network: The d argument is a vector of distinct integers. This term adds
one network statistic to the model for each element in d; the ith such statistic equals the num-
ber of nodes in the first mode of a bipartite network with at least degree d[i]. The first mode
of a bipartite network object is sometimes known as the "actor" mode.
This term can only be used with undirected bipartite networks.

b1nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb2attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used)
Nodal attribute-based homophily effect for the first mode in a bipartite (aka two-mode) net-
work: This term is introduced in Bomiriya et al (2014). The attr argument specifies a cat-
egorical vertex attribute (see Specifying Vertex Attributes and Levels for details). Out of the
two arguments (discount parameters) alpha and beta, both of which take values from [0,1],
only one should be set at a time. If none is set to a value other than 1, this term will simply be
a homophily based two-star statistic. This term adds one statistic to the model unless diff is
set to TRUE, in which case the term adds multiple network statistics to the model, one for each
of (a subset of) the unique values of the attr attribute. To include only the attribute values
you wish, use the levels arguments.
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep.
If an alpha discount parameter is used, each of these statistics gives the sum of the number of
common second-mode nodes raised to the power alpha for each pair of first-mode nodes with
that attribute. If a beta discount parameter is used, each of these statistics gives half the sum
of the number of two-paths with two first-mode nodes with that attribute as the two ends of
the two path raised to the power beta for each edge in the network. The byb2attr argument
specifies a second mode categorical attribute. Setting this argument will separate the orginal
statistics based on the values of the set second mode attribute— i.e. for example, if diff is
FALSE, then the sum of all the statistics for each level of this second-mode attribute will be
equal to the original b1nodematch statistic where byb2attr set to NULL. This term can only
be used with undirected bipartite networks.

b1sociality(nodes=-1) (binary) (bipartite) (undirected) (dyad-independent) , b1sociality(nodes=-1, form="sum") (valued) (bipartite) (undirected) (dyad-independent)
Degree: This term adds one network statistic for each node in the first bipartition, equal to the
number of ties of that node. By default, nodes=-1 means that the statistic for the first node
will be omitted, but this argument may be changed to control which statistics are included.
The nodes argument is interpreted using the new UI for level specification (see Specifying
Vertex Attributes and Levels for details), where both the attribute and the sorted unique values
are the vector of vertex indices 1:nb1, where nb1 is the size of the first bipartition. This term
can only be used with bipartite networks. For directed networks, see sender and receiver.
For unipartite networks, see sociality.

b1star(k, attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
k-Stars for the first mode in a bipartite (aka two-mode) network: The k argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in
k. The ith such statistic counts the number of distinct k[i]-stars whose center node is in the
first mode of the network. The first mode of a bipartite network object is sometimes known
as the "actor" mode. A k-star is defined to be a center node N and a set of k different nodes
{O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument attr
specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this
is specified then the count is over the number of k-stars (with center node in the first mode)
where all nodes have the same value of the attribute. This term can only be used for undirected
bipartite networks. Note that b1star(1) is equal to b2star(1) and to edges.

54 ergm-terms

b1starmix(k, attrname, base=NULL, diff=TRUE, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Mixing matrix for k-stars centered on the first mode of a bipartite network: Only a single value
of k is allowed. This term counts all k-stars in which the b2 nodes (called events in some con-
texts) are homophilous in the sense that they all share the same value of attrname. However,
the b1 node (in some contexts, the actor) at the center of the k-star does NOT have to have
the same value as the b2 nodes; indeed, the values taken by the b1 nodes may be completely
distinct from those of the b2 nodes, which allows for the use of this term in cases where there
are two separate nodal attributes, one for the b1 nodes and another for the b2 nodes (in this
case, however, these two attributes should be combined to form a single nodal attribute called
attrname. A different statistic is created for each value of attrname seen in a b1 node, even
if no k-stars are observed with this value. Whether a different statistic is created for each value
seen in a b2 node depends on the value of the diff argument: When diff=TRUE, the default, a
different statistic is created for each value and thus the behavior of this term is reminiscent of
the nodemix term, from which it takes its name; when diff=FALSE, all homophilous k-stars
are counted together, though these k-stars are still categorized according to the value of the
central b1 node.
The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of b1starmix("fruit", levels=-(2:3)),
b1starmix("fruit", levels=c(1,4)), and b1starmix("fruit", levels=c("apple", "pear")).
By default, all levels are included.
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.

b1twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Two-star census for central nodes centered on the first mode of a bipartite network: This term
takes two nodal attributes (see Specifying Vertex Attributes and Levels for details), one for
b1 nodes (actors in some contexts) and one for b2 nodes (events in some contexts). Only
b1attr is required; if b2attr is not passed, it is assumed to be the same as b1attr. Assum-
ing that there are n1 values of b1attr among the b1 nodes and n2 values of b2attr among
the b2 nodes, then the total number of distinct categories of two stars according to these two
attributes is n1(n2)(n2 +1)/2. By default, this model term creates a distinct statistic counting
each of these categories. The b1levels, b2levels, base, and levels2 arguments may be
used to leave some of these categories out (see Specifying Vertex Attributes and Levels for
details).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base. The argument base
is retained for backwards compatibility and may be removed in a future version. When both
base and levels2 are passed, levels2 overrides base.

b2concurrent(by=NULL) (binary) (bipartite) (undirected) (frequently-used) Concurrent node
count for the second mode in a bipartite (aka two-mode) network: This term adds one network
statistic to the model, equal to the number of nodes in the second mode of the network with
degree 2 or higher. The second mode of a bipartite network object is sometimes known as the
"event" mode. The optional argument by specifies a vertex attribute (see Specifying Vertex
Attributes and Levels for details); it functions just like the by argument of the b2degree term.
Without the optional argument, this statistic is equivalent to b2mindegree(2).
This term can only be used with undirected bipartite networks.

ergm-terms 55

b2cov(attr) (binary) (undirected) (bipartite) (dyad-independent) (quantitative nodal attribute) (frequently-used), b2cov(attr, form="sum") (valued) (undirected) (bipartite) (dyad-independent) (quantitative nodal attribute) (frequently-used)
Main effect of a covariate for the second mode in a bipartite (aka two-mode) network: The
attr argument specifies one or more quantitative attributes (see Specifying Vertex Attributes
and Levels for details). This term adds a single network statistic for each quantitative attribute
or matrix column to the model equaling the total value of attr(j) for all edges (i, j) in the
network. This term may only be used with bipartite networks. For categorical attributes, see
b2factor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

b2degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (bipartite) (undirected)
Degree range for the second mode in a bipartite (a.k.a. two-mode) network: The from and to
arguments are vectors of distinct integers (or +Inf, for to (its default)). If one of the vectors
has length 1, it is recycled to the length of the other. Otherwise, they must have the same
length. This term adds one network statistic to the model for each element of from (or to);
the ith such statistic equals the number of nodes of the second mode ("events") in the network
of degree greater than or equal to from[i] but strictly less than to[i], i.e. with edge count
in semiopen interval [from,to). The optional argument by specifies a vertex attribute (see
Specifying Vertex Attributes and Levels for details). If this is specified and homophily is
TRUE, then degrees are calculated using the subnetwork consisting of only edges whose end-
points have the same value of the by attribute. If by is specified and homophily is FALSE (the
default), then separate degree range statistics are calculated for nodes having each separate
value of the attribute.
This term can only be used with bipartite networks; for directed networks see idegrange and
odegrange. For undirected networks, see degrange, and see b1degrange for degrees of the
first mode ("actors").

b2degree(d, by=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute) (frequently-used)
Degree for the second mode in a bipartite (aka two-mode) network: The d argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in d;
the ith such statistic equals the number of nodes of degree d[i] in the second mode of a bi-
partite network, i.e. with exactly d[i] edges. The second mode of a bipartite network object
is sometimes known as the "event" mode. The optional term by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details). If this is specified then each node’s
degree is tabulated only with other nodes having the same value of the by attribute.
This term can only be used with undirected bipartite networks.

b2factor(attr, base=1, levels=-1) (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used), b2factor(attr, base=1, levels=-1, form="sum") (valued) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used)
Factor attribute effect for the second mode in a bipartite (aka two-mode) network : The attr
argument specifies a categorical vertex attribute (see Specifying Vertex Attributes and Levels
for details). This term adds multiple network statistics to the model, one for each of (a subset
of) the unique values of the attr attribute. Each of these statistics gives the number of times
a node with that attribute in the second mode of the network appears in an edge. The second
mode of a bipartite network object is sometimes known as the "event" mode.
The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of b2factor("fruit", levels=-(2:3)),
b2factor("fruit", levels=c(1,4)), and b2factor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics

56 ergm-terms

equals the number of edges and hence a linear dependency would arise in any model also
including edges. The default, levels=-1, is therefore to omit the first (in lexicographic or-
der) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or
levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.
This term can only be used with undirected bipartite networks.

b2mindegree(d) (binary) (bipartite) (undirected) Minimum degree for the second mode in a
bipartite (aka two-mode) network: The d argument is a vector of distinct integers. This term
adds one network statistic to the model for each element in d; the ith such statistic equals the
number of nodes in the second mode of a bipartite network with at least degree d[i]. The
second mode of a bipartite network object is sometimes known as the "event" mode.
This term can only be used with undirected bipartite networks.

b2nodematch(attr, diff=FALSE, keep=NULL, alpha=1, beta=1, byb1attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (dyad-independent) (categorical nodal attribute) (frequently-used)
Nodal attribute-based homophily effect for the second mode in a bipartite (aka two-mode)
network: This term is introduced in Bomiriya et al (2014). The attr argument specifies a
categorical vertex attribute (see Specifying Vertex Attributes and Levels for details). Out of
the two arguments (discount parameters) alpha and beta, both which takes values from [0,1],
only one should be set at a time. If none is set to a value other than 1, this term will simply be
a homophily based two-star statistic. This term adds one statistic to the model unless diff is
set to TRUE, in which case the term adds multiple network statistics to the model, one for each
of (a subset of) the unique values of the attr attribute. To include only the attribute values
you wish, use the levels argument.
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep.
If an alpha discount parameter is used, each of these statistics gives the sum of the number
of common first-mode nodes raised to the power alpha for each pair of second-mode nodes
with that attribute. If a beta discount parameter is used, each of these statistics gives half the
sum of the number of two-paths with two second-mode nodes with that attribute as the two
ends of the two path raised to the power beta for each edge in the network. The byb1attr
argument specifies a first mode categorical attribute. Setting this argument will separate the
orginal statistics based on the values of the set first mode attribute— i.e. for example, if diff
is FALSE, then the sum of all the statistics for each level of this first-mode attribute will be
equal to the original b2nodematch statistic where byb1attr set to NULL.
This term can only be used with undirected bipartite networks.

b2sociality(nodes=-1) (binary) (bipartite) (undirected) (dyad-independent) , b2sociality(nodes=-1, form="sum") (valued) (bipartite) (undirected) (dyad-independent)
Degree: This term adds one network statistic for each node in the second bipartition, equal
to the number of ties of that node. By default, nodes=-1 means that the statistic for the first
node (in the second bipartition) will be omitted, but this argument may be changed to control
which statistics are included. The nodes argument is interpreted using the new UI for level
specification (see Specifying Vertex Attributes and Levels for details), where both the attribute
and the sorted unique values are the vector of vertex indices (nb1 + 1):n, where nb1 is the
size of the first bipartition and n is the total number of nodes in the network. Thus nodes=120
will include only the statistic for the 120th node in the second biparition, while nodes=I(120)
will include only the statistic for the 120th node in the entire network. This term can only be
used with undirected bipartite networks. For directed networks, see sender and receiver.
For unipartite networks, see sociality.

ergm-terms 57

b2star(k, attr=NULL, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
k-Stars for the second mode in a bipartite (aka two-mode) network: The k argument is a vec-
tor of distinct integers. This term adds one network statistic to the model for each element
in k. The ith such statistic counts the number of distinct k[i]-stars whose center node is in
the second mode of the network. The second mode of a bipartite network object is sometimes
known as the "event" mode. A k-star is defined to be a center node N and a set of k different
nodes {O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument
attr specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If
this is specified then the count is over the number of k-stars (with center node in the second
mode) where all nodes have the same value of the attribute. This term can only be used for
undirected bipartite networks. Note that b2star(1) is equal to b1star(1) and to edges.

b2starmix(k, attrname, base=NULL, diff=TRUE, levels=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Mixing matrix for k-stars centered on the second mode of a bipartite network: This term is
exactly the same as b1starmix except that the roles of b1 and b2 are reversed.

b2twostar(b1attr, b2attr, base=NULL, b1levels=NULL, b2levels=NULL, levels2=NULL) (binary) (bipartite) (undirected) (categorical nodal attribute)
Two-star census for central nodes centered on the second mode of a bipartite network: This
term is exactly the same as b1twostar except that the roles of b1 and b2 are reversed.

balance (binary) (triad-related) (directed) (undirected) Balanced triads: This term adds one
network statistic to the model equal to the number of triads in the network that are balanced.
The balanced triads are those of type 102 or 300 in the categorization of Davis and Leinhardt
(1972). For details on the 16 possible triad types, see ?triad.classify in the {sna} package.
For an undirected network, the balanced triads are those with an even number of ties (i.e., 0
and 2).

coincidence(levels=NULL,active=0) (binary) (bipartite) (undirected) Coincident node count
for the second mode in a bipartite (aka two-mode) network: By default this term adds one net-
work statistic to the model for each pair of nodes of mode two. It is equal to the number
of (first mode) mutual partners of that pair. The first mode of a bipartite network object is
sometimes known as the "actor" mode and the seconds as the "event" mode. So this is the
number of actors going to both events in the pair. The optional argument levels specifies
which pairs of nodes in mode two to include (see Specifying Vertex Attributes and Levels for
details). The second optional argument, active, selects pairs for which the observed count
is at least active. If both levels and active are specified, then active is ignored. (Thus,
indices passed as levels should correspond to indices when levels = NULL and active =
0.) This term can only be used with undirected bipartite networks.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

concurrent(by=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute) Concurrent
node count: This term adds one network statistic to the model, equal to the number of nodes
in the network with degree 2 or higher. The optional argument by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details); it functions just like the by argument
of the degree term. This term can only be used with undirected networks.

concurrentties(by=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute)
Concurrent tie count: This term adds one network statistic to the model, equal to the number
of ties incident on each actor beyond the first. The optional argument by specifies a vertex
attribute (see Specifying Vertex Attributes and Levels for details); it functions just like the by
argument of the degree term. This term can only be used with undirected networks.

58 ergm-terms

ctriple(attr=NULL, diff=FALSE, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , a.k.a. ctriad (binary) (directed) (triad-related) (categorical nodal attribute)
Cyclic triples: By default, this term adds one statistic to the model, equal to the number of
cyclic triples in the network, defined as a set of edges of the form {(i→j), (j→k), (k→i)}.
Note that for all directed networks, triangle is equal to ttriple+ctriple, so at most two
of these three terms can be in a model. The optional argument attr specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details). If attr is specified and diff is
FALSE, then the statistic is the number of cyclic triples where all three nodes have the same
value of the attribute. If attr is specified and diff is TRUE, then one statistic is added to the
model for each value of attr (or each value of attr specified by levels if that argument
is passed), equal to the number of cyclic triples where all three nodes have that value of the
attribute. This term can only be used with directed networks.

cycle(k) (binary) (directed) (undirected) Cycles: The k argument is a vector of distinct inte-
gers. This term adds one network statistic to the model for each element in k; the ith such
statistic equals the number of cycles in the network with length exactly k[i]. The cycle statis-
tic applies to both directed and undirected networks. For directed networks, it counts directed
cycles of length k, as opposed to undirected cycles in the undirected case. The directed cycle
terms of lengths 2 and 3 are equivalent to mutual and ctriple (respectively). The undirected
cycle term of length 3 is equivalent to triangle, and there is no undirected cycle term of
length 2.

cyclicalties(attr=NULL, levels=NULL) (binary) (directed), cyclicalties(threshold=0) (valued) (directed) (undirected)
Cyclical ties: This term adds one statistic, equal to the number of ties i → j such that there
exists a two-path from j to i. (Related to the ttriple term.) The binary version takes a nodal
attribute attr, and, if given, all three nodes involved (i, j, and the node on the two-path) must
match on this attribute in order for i → j to be counted. The binary version of this term can
only be used with directed networks. The valued version can be used with both directed and
undirected.

cyclicalweights(twopath="min",combine="max",affect="min") (valued) (directed) (undirected)
Cyclical weights: This statistic implements the cyclical weights statistic, like that defined by
Krivitsky (2012), Equation 13, but with the focus dyad being yj,i rather than yi,j . The cur-
rently implemented options for twopath is the minimum of the constituent dyads ("min")
or their geometric mean ("geomean"); for combine, the maximum of the 2-path strengths
("max") or their sum ("sum"); and for affect, the minimum of the focus dyad and the com-
bined strength of the two paths ("min") or their geometric mean ("geomean"). For each of
these options, the first (and the default) is more stable but also more conservative, while the
second is more sensitive but more likely to induce a multimodal distribution of networks.

ddsp(d, type="OTP") (binary) (directed) Directed dyadwise shared partners: This term adds
one network statistic to the model for each element in d where the ith such statistic equals the
number of dyads in the network with exactly d[i] shared partners. This term can only be used
with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):

Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→
k → j. Also known as "transitive shared partner".

Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

ergm-terms 59

Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)
iff i→ k, j → k.

Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.

degrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (undirected) (categorical nodal attribute)
Degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to (its
default)). If one of the vectors has length 1, it is recycled to the length of the other. Otherwise,
they must have the same length. This term adds one network statistic to the model for each
element of from (or to); the ith such statistic equals the number of nodes in the network of de-
gree greater than or equal to from[i] but strictly less than to[i], i.e. with edges in semiopen
interval [from,to). The optional argument by specifies a vertex attribute (see Specifying Ver-
tex Attributes and Levels for details). If this is specified and homophily is TRUE, then degrees
are calculated using the subnetwork consisting of only edges whose endpoints have the same
value of the by attribute. If by is specified and homophily is FALSE (the default), then separate
degree range statistics are calculated for nodes having each separate value of the attribute.
This term can only be used with undirected networks; for directed networks see idegrange
and odegrange. This term can be used with bipartite networks, and will count nodes of
both first and second mode in the specified degree range. To count only nodes of the first
mode ("actors"), use b1degrange and to count only those fo the second mode ("events"), use
b2degrange.

degree(d, by=NULL, homophily=FALSE, levels=NULL) (binary) (undirected) (categorical nodal attribute) (frequently-used)
Degree: The d argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in d; the ith such statistic equals the number of nodes in the
network of degree d[i], i.e. with exactly d[i] edges. The optional argument by specifies
a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is speci-
fied and homophily is TRUE, then degrees are calculated using the subnetwork consisting of
only edges whose endpoints have the same value of the by attribute. If by is specified and
homophily is FALSE (the default), then separate degree statistics are calculated for nodes hav-
ing each separate value of the attribute. This term can only be used with undirected networks;
for directed networks see idegree and odegree.

degree1.5 (binary) (undirected) Degree to the 3/2 power: This term adds one network statistic
to the model equaling the sum over the actors of each actor’s degree taken to the 3/2 power
(or, equivalently, multiplied by its square root). This term is an undirected analog to the terms
of Snijders et al. (2010), equations (11) and (12). This term can only be used with undirected
networks.

degreepopularity (binary) (undirected) (deprecated) Degree popularity (deprecated): see degree1.5.

degcrossprod (binary) (undirected) Degree Cross-Product: This term adds one network statistic
equal to the mean of the cross-products of the degrees of all pairs of nodes in the network
which are tied. Only coded for undirected networks.

degcor (binary) (undirected) Degree Correlation: This term adds one network statistic equal to
the correlation of the degrees of all pairs of nodes in the network which are tied. Only coded
for undirected networks.

density (binary) (dyad-independent) (directed) (undirected) Density: This term adds one net-
work statistic equal to the density of the network. For undirected networks, density equals

60 ergm-terms

kstar(1) or edges divided by n(n − 1)/2; for directed networks, density equals edges or
istar(1) or ostar(1) divided by n(n− 1).

diff(attr, pow=1, dir="t-h", sign.action="identity") (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute), diff(attr, pow=1, dir="t-h", sign.action="identity", form ="sum") (valued) (dyad-independent) (directed) (undirected) (bipartite) (quantitative nodal attribute)
Difference: The attr argument specifies a quantitative vertex attribute (see Specifying Vertex
Attributes and Levels for details). For values of pow other than 0, this term adds one network
statistic to the model, equaling the sum, over directed edges (i, j), of sign.action(attr[i]-attr[j])^pow
if dir is "t-h" (the default), "tail-head", or "b1-b2" and of sign.action(attr[j]-attr[i])^pow
if "h-t", "head-tail", or "b2-b1". That is, the argument dir determines which vertex’s at-
tribute is subtracted from which, with tail being the origin of a directed edge and head being
its destination, and bipartite networks’ edges being treated as going from the first part (b1) to
the second (b2).
If pow==0, the exponentiation is replaced by the signum function: +1 if the difference is pos-
itive, 0 if there is no difference, and -1 if the difference is negative. Note that this function is
applied after the sign.action. The comparison is exact, so when using calculated values of
attr, ensure that values that you want to be considered equal are, in fact, equal.
The following sign.actions are possible:

"identity" (the default) no transformation of the difference regardless of sign
"abs" absolute value of the difference: equivalent to the absdiff term
"posonly" positive differences are kept, negative differences are replaced by 0
"negonly" negative differences are kept, positive differences are replaced by 0

Note that this term may not be meaningful for unipartite undirected networks unless sign.action=="abs".
When used on such a network, it behaves as if all edges were directed, going from the lower-
indexed vertex to the higher-indexed vertex.

desp(d, type="OTP") (binary) (directed) Directed edgewise shared partners: This term adds
one network statistic to the model for each element in d where the ith such statistic equals the
number of edges in the network with exactly d[i] shared partners. This term can only be used
with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):

Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→
k → j. Also known as "transitive shared partner".

Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)
iff i→ k, j → k.

Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.

dgwdsp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted dyadwise shared partner distribution: This term adds one network statistic to the
model equal to the geometrically weighted dyadwise shared partner distribution with decay
parameter decay parameter, which should be non-negative. (this parameter was called alpha

ergm-terms 61

prior to ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it
may be used instead as the starting value for the estimation of decay in a curved exponential
family model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006). Note that
the GWDSP statistic is equal to the sum of GWNSP plus GWESP.
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→

k → j. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →

k → i. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)

iff i→ k, j → k.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff

k → i, k → j.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying DSP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

dgwesp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted edgewise shared partner distribution: This term adds a statistic equal to the geomet-
rically weighted edgewise (not dyadwise) shared partner distribution with decay parameter
decay parameter, which should be non-negative. (this parameter was called alpha prior to
ergm 3.7). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be
used instead as the starting value for the estimation of decay in a curved exponential family
model (when fixed=FALSE, the default) (see Hunter and Handcock, 2006).
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):
Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→

k → j. Also known as "transitive shared partner".
Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →

k → i. Also known as "cyclical shared partner"
Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)

iff i→ k, j → k.
Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff

k → i, k → j.
By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying ESP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

62 ergm-terms

dgwnsp(decay=0, fixed=FALSE, cutoff=30, type="OTP") (binary) (directed) Geometrically
weighted non-edgewise shared partner distribution: This term is just like gwesp and gwdsp
except it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared partner distribution with decay parameter decay parameter,
which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The
value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as
the starting value for the estimation of decay in a curved exponential family model (when
fixed=FALSE, the default) (see Hunter and Handcock, 2006).
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):

Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→
k → j. Also known as "transitive shared partner".

Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)
iff i→ k, j → k.

Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.
The optional argument cutoff sets the number of underlying NSP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

dnsp(d, type="OTP") (binary) (directed) Directed non-edgewise shared partners: This term
adds one network statistic to the model for each element in d where the ith such statistic
equals the number of non-edges in the network with exactly d[i] shared partners. This term
can only be used with directed networks.
While there is only one shared partner configuration in the undirected case, nine distinct con-
figurations are possible for directed graphs, selected using the type argument. Currently,
terms may be defined with respect to five of these configurations; they are defined here as
follows (using terminology from Butts (2008) and the relevent package):

Outgoing Two-path ("OTP") vertex k is an OTP shared partner of ordered pair (i, j) iff i→
k → j. Also known as "transitive shared partner".

Incoming Two-path ("ITP") vertex k is an ITP shared partner of ordered pair (i, j) iff j →
k → i. Also known as "cyclical shared partner"

Outgoing Shared Partner ("OSP") vertex k is an OSP shared partner of ordered pair (i, j)
iff i→ k, j → k.

Incoming Shared Partner ("ISP") vertex k is an ISP shared partner of ordered pair (i, j) iff
k → i, k → j.

By default, outgoing two-paths ("OTP") are calculated. Note that Robins et al. (2009) define
closely related statistics to several of the above, using slightly different terminology.

dsp(d) (binary) (directed) (undirected) Dyadwise shared partners: The d argument is a vector
of distinct integers. This term adds one network statistic to the model for each element in

ergm-terms 63

d; the ith such statistic equals the number of dyads in the network with exactly d[i] shared
partners. This term can be used with directed and undirected networks. For directed networks
the count is over homogeneous shared partners only (i.e., only partners on a directed two-path
connecting the nodes in the dyad).

dyadcov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Dyadic covariate: The x argument is either a square matrix of covariates, one for each pos-
sible edge in the network, the name of a network attribute of covariates, or a network; if the
latter, optional argument attrname provides the name of the quantitative edge attribute to use
for covariate values (in this case, missing edges in x are assigned a covariate value of zero).
This term adds three statistics to the model, each equal to the sum of the covariate values for
all dyads occupying one of the three possible non-empty dyad states (mutual, upper-triangular
asymmetric, and lower-triangular asymmetric dyads, respectively), with the empty or null
state serving as a reference category. If the network is undirected, x is either a matrix of edge-
wise covariates, or a network; if the latter, optional argument attrname provides the name
of the edge attribute to use for edge values. This term adds one statistic to the model, equal
to the sum of the covariate values for each edge appearing in the network. The edgecov and
dyadcov terms are equivalent for undirected networks.

edgecov(x, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) (frequently-used) , edgecov(x, attrname=NULL, form="sum") (valued) (directed) (undirected) (dyad-independent)
Edge covariate: The x argument is either a square matrix of covariates, one for each possible
edge in the network, the name of a network attribute of covariates, or a network; if the latter,
optional argument attrname provides the name of the quantitative edge attribute to use for
covariate values (in this case, missing edges in x are assigned a covariate value of zero). This
term adds one statistic to the model, equal to the sum of the covariate values for each edge
appearing in the network. The edgecov term applies to both directed and undirected networks.
For undirected networks the covariates are also assumed to be undirected. The edgecov and
dyadcov terms are equivalent for undirected networks.

edges (binary) (valued) (dyad-independent) (directed) (undirected) (frequently-used) , a.k.a nonzero (valued) (directed) (undirected) (dyad-independent)
Edges: This term adds one network statistic equal to the number of edges (i.e. nonzero values)
in the network. For undirected networks, edges is equal to kstar(1); for directed networks,
edges is equal to both ostar(1) and istar(1).

esp(d) (binary) (directed) (undirected) Edgewise shared partners: This is just like the dsp term,
except this term adds one network statistic to the model for each element in d where the ith
such statistic equals the number of edges (rather than dyads) in the network with exactly d[i]
shared partners. This term can be used with directed and undirected networks. For directed
networks the count is over homogeneous shared partners only (i.e., only partners on a directed
two-path connecting the nodes in the edge and in the same direction).

equalto(value=0, tolerance=0) (valued) (directed) (undirected) (dyad-independent) Number
of dyads with values equal to a specific value (within tolerance): Adds one statistic equal to the
number of dyads whose values are within tolerance of value, i.e., between value-tolerance
and value+tolerance, inclusive.

greaterthan(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads
with values strictly greater than a threshold: Adds one statistic equal to the number of dyads
whose values exceed threshold.

gwb1degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (bipartite) (undirected) (curved)
Geometrically weighted degree distribution for the first mode in a bipartite (aka two-mode)
network: This term adds one network statistic to the model equal to the weighted degree dis-
tribution with decay controlled by the decay parameter, which should be non-negative, for

64 ergm-terms

nodes in the first mode of a bipartite network. The first mode of a bipartite network object is
sometimes known as the "actor" mode. The decay parameter is the same as theta_s in equation
(14) in Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or
it may be used as merely the starting value for the estimation in a curved exponential family
model (the default).
The optional argument cutoff sets the number of underlying degree terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational burden. Its
default value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate
degree statistics are calculated for nodes having each separate value of the attribute. This term
can only be used with undirected bipartite networks.

gwb2degree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (bipartite) (undirected) (curved)
Geometrically weighted degree distribution for the second mode in a bipartite (aka two-mode)
network: This term adds one network statistic to the model equal to the weighted degree dis-
tribution with decay controlled by the which should be non-negative, for nodes in the second
mode of a bipartite network. The second mode of a bipartite network object is sometimes
known as the "event" mode. The decay parameter is the same as theta_s in equation (14) in
Hunter (2007). The value supplied for this parameter may be fixed (if fixed=TRUE), or it may
be used as merely the starting value for the estimation in a curved exponential family model
(the default).
The optional argument cutoff sets the number of underlying degree terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational burden. Its
default value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate
degree statistics are calculated for nodes having each separate value of the attribute. This term
can only be used with undirected bipartite networks.

gwdegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (undirected) (curved) (frequently-used)
Geometrically weighted degree distribution: This term adds one network statistic to the model
equal to the weighted degree distribution with decay controlled by the decay parameter. The
decay parameter is the same as theta_s in equation (14) in Hunter (2007). The value supplied
for this parameter may be fixed (if fixed=TRUE), or it may be used instead as the starting
value for the estimation of decay in a curved exponential family model (when fixed=FALSE,
the default) (see Hunter and Handcock, 2006).
The optional argument cutoff sets the number of underlying degree terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational burden. Its
default value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate
degree statistics are calculated for nodes having each separate value of the attribute. This term
can only be used with undirected networks.

gwdsp(decay=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically
weighted dyadwise shared partner distribution: This term adds one network statistic to the
model equal to the geometrically weighted dyadwise shared partner distribution with decay
parameter decay parameter, which should be non-negative. The value supplied for this pa-
rameter may be fixed (if fixed=TRUE), or it may be used instead as the starting value for the

ergm-terms 65

estimation of decay in a curved exponential family model (when fixed=FALSE, the default)
(see Hunter and Handcock, 2006). For directed networks the count is over homogeneous
shared partners only (i.e., only partners on a directed two-path connecting the nodes in the
dyad).
The optional argument cutoff sets the number of underlying DSP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

gwesp(decay=0, fixed=FALSE, cutoff=30) (binary) (frequently-used) (directed) (undirected) (curved)
Geometrically weighted edgewise shared partner distribution: This term is just like gwdsp
except it adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared
partner distribution with decay parameter decay parameter, which should be non-negative.
The value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used in-
stead as the starting value for the estimation of decay in a curved exponential family model
(when fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can be used
with directed and undirected networks. For directed networks the geometric weighting is over
homogeneous shared partners only (i.e., only partners on a directed two-path connecting the
nodes in the edge and in the same direction). The optional argument cutoff
The optional argument cutoff sets the number of underlying ESP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

gwidegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (directed) (curved)
Geometrically weighted in-degree distribution: This term adds one network statistic to the
model equal to the weighted in-degree distribution with decay parameter decay parameter,
which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The
value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as
the starting value for the estimation of decay in a curved exponential family model (when
fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can only be used with
directed networks.
The optional argument cutoff sets the number of underlying degree terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational burden. Its
default value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate
degree statistics are calculated for nodes having each separate value of the attribute.

gwnsp(decay=0, fixed=FALSE, cutoff=30) (binary) (directed) (undirected) (curved) Geometrically
weighted nonedgewise shared partner distribution: This term is just like gwesp and gwdsp ex-
cept it adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared partner distribution with weight parameter decay parameter,
which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The
optional argument fixed indicates whether the decay parameter is fixed at the given value,
or is to be fit as a curved exponential-family model (see Hunter and Handcock, 2006). The
default is FALSE, which means the scale parameter is not fixed and thus the model is a CEF
model. This term can be used with directed and undirected networks. For directed networks
the geometric weighting is over homogeneous shared partners only (i.e., only partners on a
directed two-path connecting the nodes in the non-edge and in the same direction).

66 ergm-terms

The optional argument cutoff sets the number of underlying NSP terms to use in comput-
ing the statistics when fixed=FALSE, in order to reduce the computational burden. Its de-
fault value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)

gwodegree(decay, fixed=FALSE, attr=NULL, cutoff=30, levels=NULL) (binary) (directed) (curved)
Geometrically weighted out-degree distribution: This term adds one network statistic to the
model equal to the weighted out-degree distribution with decay parameter decay parameter,
which should be non-negative. (this parameter was called alpha prior to ergm 3.7). The
value supplied for this parameter may be fixed (if fixed=TRUE), or it may be used instead as
the starting value for the estimation of decay in a curved exponential family model (when
fixed=FALSE, the default) (see Hunter and Handcock, 2006). This term can only be used with
directed networks.
The optional argument cutoff sets the number of underlying degree terms to use in com-
puting the statistics when fixed=FALSE, in order to reduce the computational burden. Its
default value can also be controlled by the gw.cutoff term option control parameter. (See
control.ergm.)
If attr is specified (see Specifying Vertex Attributes and Levels for details) then separate
degree statistics are calculated for nodes having each separate value of the attribute.

hamming(x, cov, attrname=NULL) (binary) (dyad-independent) (directed) (undirected) Hamming
distance: This term adds one statistic to the model equal to the weighted or unweighted Ham-
ming distance of the network from the network specified by x. (If no argument is given, x
is taken to be the observed network, i.e., the network on the left side of the ∼ in the for-
mula that defines the ERGM.) Unweighted Hamming distance is defined as the total number
of pairs (i, j) (ordered or unordered, depending on whether the network is directed or undi-
rected) on which the two networks differ. If the optional argument cov is specified, then the
weighted Hamming distance is computed instead, where each pair (i, j) contributes a pre-
specified weight toward the distance when the two networks differ on that pair. The argument
cov is either a matrix of edgewise weights or a network; if the latter, the optional argument
attrname provides the name of the edge attribute to use for weight values.

hammingmix(attr, x, base=NULL, levels=NULL, levels2=NULL) (binary) (directed) (dyad-independent)
Hamming distance within mixing: By default, this term adds one statistic to the model for ev-
ery possible pairing of attribute values of the network for the vertex attribute specified by attr
(see Specifying Vertex Attributes and Levels). Each such statistic is the Hamming distance
(i.e., the number of differences) between the appropriate subset of dyads in the network and
the corresponding subset in x. The ordering of the attribute values is alphabetical by default,
but this may be overridden using the levels arguments. The optional arguments levels
and levels2 allow the user to control what pairings are included (see Specifying Vertex At-
tributes and Levels), and the order in which they appear. For example levels2=-2 will omit
the second statistic, making it the de facto reference category.
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels2 are passed, levels2 overrides base.
This term can only be used with directed networks.

idegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute)
In-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to
(its default)). If one of the vectors has length 1, it is recycled to the length of the other. Oth-
erwise, they must have the same length. This term adds one network statistic to the model for
each element of from (or to); the ith such statistic equals the number of nodes in the network

ergm-terms 67

of in-degree greater than or equal to from[i] but strictly less than to[i], i.e. with in-edge
count in semiopen interval [from,to). The optional argument by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is
TRUE, then degrees are calculated using the subnetwork consisting of only edges whose end-
points have the same value of the by attribute. If by is specified and homophily is FALSE (the
default), then separate degree range statistics are calculated for nodes having each separate
value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

idegree(d, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute) (frequently-used)
In-degree: The d argument is a vector of distinct integers. This term adds one network statistic
to the model for each element in d; the ith such statistic equals the number of nodes in the
network of in-degree d[i], i.e. the number of nodes with exactly d[i] in-edges. The optional
term by specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details).
If this is specified and homophily is TRUE, then degrees are calculated using the subnetwork
consisting of only edges whose endpoints have the same value of the by attribute. If by is
specified and homophily is FALSE (the default), then separate degree statistics are calculated
for nodes having each separate value of the attribute. This term can only be used with directed
networks; for undirected networks see degree.

idegree1.5 (binary) (directed) In-degree to the 3/2 power: This term adds one network statistic
to the model equaling the sum over the actors of each actor’s indegree taken to the 3/2 power
(or, equivalently, multiplied by its square root). This term is analogous to the term of Snijders
et al. (2010), equation (12). This term can only be used with directed networks.

idegreepopularity (binary) (directed) (deprecated) In-degree popularity (deprecated): see idegree1.5.

ininterval(lower=-Inf, upper=+Inf, open=c(TRUE,TRUE)) (valued) (directed) (undirected) (dyad-independent)
Number of dyads whose values are in an interval Adds one statistic equaling to the number
of dyads whose values are between lower and upper. Argument open is a logical vector of
length 2 that controls whether the interval is open (exclusive) on the lower and on the upper
end, respectively. open can also be specified as one of "[]", "(]", "[)", and "()".

intransitive (binary) (directed) (triad-related) Intransitive triads: This term adds one statistic
to the model, equal to the number of triads in the network that are intransitive. The intransitive
triads are those of type 111D, 201, 111U, 021C, or 030C in the categorization of Davis and
Leinhardt (1972). For details on the 16 possible triad types, see triad.classify in the sna
package. Note the distinction from the ctriple term. This term can only be used with directed
networks.

isolates (binary) (directed) (undirected) (frequently-used) Isolates: This term adds one statis-
tic to the model equal to the number of isolates in the network. For an undirected network, an
isolate is defined to be any node with degree zero. For a directed network, an isolate is any
node with both in-degree and out-degree equal to zero.

istar(k, attr=NULL, levels=NULL) (binary) (directed) (categorical nodal attribute) In-stars:
The k argument is a vector of distinct integers. This term adds one network statistic to the
model for each element in k. The ith such statistic counts the number of distinct k[i]-instars
in the network, where a k-instar is defined to be a node N and a set of k different nodes
{O1, . . . , Ok} such that the ties (Oj→N) exist for j = 1, . . . , k. The optional argument attr
specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is

68 ergm-terms

specified then the count is over the number of k-instars where all nodes have the same value
of the attribute. This term can only be used for directed networks; for undirected networks see
kstar. Note that istar(1) is equal to both ostar(1) and edges.

kstar(k, attr=NULL, levels=NULL) (binary) (undirected) (categorical nodal attribute) k-Stars:
The k argument is a vector of distinct integers. This term adds one network statistic to the
model for each element in k. The ith such statistic counts the number of distinct k[i]-
stars in the network, where a k-star is defined to be a node N and a set of k different nodes
{O1, . . . , Ok} such that the ties {N,Oi} exist for i = 1, . . . , k. The optional argument attr
specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is
specified then the count is over the number of k-stars where all nodes have the same value of
the attribute. This term can only be used for undirected networks; for directed networks, see
istar, ostar, twopath and m2star. Note that kstar(1) is equal to edges.

smallerthan(threshold=0) (valued) (directed) (undirected) (dyad-independent) Number of dyads
with values strictly smaller than a threshold: Adds one statistic equaling to the number of
dyads whose values exceeded by threshold.

localtriangle(x) (binary) (triad-related) (directed) (undirected) Triangles within neighbor-
hoods: This term adds one statistic to the model equal to the number of triangles in the
network between nodes “close to” each other. For an undirected network, a local triangle
is defined to be any set of three edges between nodal pairs {(i, j), (j, k), (k, i)} that are in the
same neighborhood. For a directed network, a triangle is defined as any set of three edges
(i→j), (j→k) and either (k→i) or (k←i) where again all nodes are within the same neigh-
borhood. The argument x is an undirected network or an symmetric adjacency matrix that
specifies whether the two nodes are in the same neighborhood. Note that triangle, with or
without an argument, is a special case of localtriangle.

m2star (binary) (directed) Mixed 2-stars, a.k.a 2-paths: This term adds one statistic to the model,
equal to the number of mixed 2-stars in the network, where a mixed 2-star is a pair of distinct
edges (i→j), (j→k). A mixed 2-star is sometimes called a 2-path because it is a directed
path of length 2 from i to k via j. However, in the case of a 2-path the focus is usually on
the endpoints i and k, whereas for a mixed 2-star the focus is usually on the midpoint j. This
term can only be used with directed networks; for undirected networks see kstar(2). See
also twopath.

meandeg (binary) (dyad-independent) (directed) (undirected) Mean vertex degree: This term
adds one network statistic to the model equal to the average degree of a node. Note that
this term is a constant multiple of both edges and density.

mm(attrs, levels=NULL, levels2=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute), mm(attrs, levels=NULL, levels2=NULL, form="sum") (valued) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute)
Mixing matrix cells and margins: attrs is a two-sided formula whose LHS gives the attribute
or attribute function (see Specifying Vertex Attributes and Levels) for the rows of the mixing
matrix and whose RHS gives that for its columns. A one-sided formula (e.g., ~A) is sym-
metrized (e.g., A~A). levels similarly specifies the subset of rows and columns to be used.
levels2 can then be used to filter which specific cells of the matrix to include. A two-sided
formula with a dot on one side calculates the margins of the mixing matrix, analogously to
nodefactor, with A~. calculating the row/sender/b1 margins and .~A calculating the col-
umn/receiver/b2 margins.

mutual(same=NULL, by=NULL, diff=FALSE, keep=NULL, levels=NULL) (binary) (directed) (frequently-used), mutual(form="min",threshold=0) (valued) (directed)
Mutuality: In binary ERGMs, equal to the number of pairs of actors i and j for which (i→j)
and (j→i) both exist. For valued ERGMs, equal to

∑
i<j m(yi,j , yj,i), where m is deter-

mined by form argument: "min" for min(yi,j , yj,i), "nabsdiff" for −|yi,j , yj,i|, "product"

ergm-terms 69

for yi,jyj,i, and "geometric" for √yi,j
√
yj,i. See Krivitsky (2012) for a discussion of these

statistics. form="threshold" simply computes the binary mutuality after thresholding at
threshold.
This term can only be used with directed networks. The binary version also has the following
capabilities: if the optional same argument is passed (see Specifying Vertex Attributes and
Levels for details), only mutual pairs that match on the attribute are counted; separate counts
for each unique matching value can be obtained by using diff=TRUE with same; and if by
is passed (again, see Specifying Vertex Attributes and Levels), then each node is counted
separately for each mutual pair in which it occurs and the counts are tabulated by unique
values of the attribute. This means that the sum of the mutual statistics when by is used will
equal twice the standard mutual statistic. Only one of same or by may be used, and only the
former is affected by diff; if both same and by are passed, by is ignored. Finally, if levels is
passed, this tells which statistics should be kept whenever the mutual term would ordinarily
result in multiple statistics (see Specifying Vertex Attributes and Levels).
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep.

nearsimmelian (binary) (directed) (triad-related) Near simmelian triads: This term adds one
statistic to the model equal to the number of near Simmelian triads, as defined by Krackhardt
and Handcock (2007). This is a sub-graph of size three which is exactly one tie short of being
complete. This term can only be used with directed networks.

nodecov(attr) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (quantitative nodal attribute), nodecov(attr, form="sum") (valued) (dyad-independent) (directed) (undirected) (quantitative nodal attribute), a.k.a. nodemain (binary) (directed) (undirected)
Main effect of a covariate: The attr argument specifies one or more quantitative attributes
(see Specifying Vertex Attributes and Levels for details). This term adds a single network
statistic for each quantitative attribute or matrix column to the model equaling the sum of
attr(i) and attr(j) for all edges (i, j) in the network. For categorical attributes, see
nodefactor. Note that for directed networks, nodecov equals nodeicov plus nodeocov.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

nodecovar (valued) (directed) (undirected) (quantitative nodal attribute) Uncentered covari-
ance of dyad values incident on each actor: This term adds one statistic equal to

∑
i,j,k(yi,jyi,k+

yk,jyk,j). This can be viewed as a valued analog of the kstar(2) statistic.

nodefactor(attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (undirected) (categorical nodal attribute) (frequently-used) , nodefactor(attr, base=1, levels=-1, form="sum") (dyad-independent) (valued) (directed) (undirected) (categorical nodal attribute)
Factor attribute effect: The attr argument specifies one or more categorical attributes (see
Specifying Vertex Attributes and Levels for details). This term adds multiple network statis-
tics to the model, one for each of (a subset of) the unique values of the attr attribute (or each
combination of the attributes given). Each of these statistics gives the number of times a node
with that attribute or those attributes appears in an edge in the network.
The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of nodefactor("fruit", levels=-(2:3)),
nodefactor("fruit", levels=c(1,4)), and nodefactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also
including edges. The default, levels=-1, is therefore to omit the first (in lexicographic or-
der) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or
levels=NULL (i.e., do not filter levels).

70 ergm-terms

The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.

nodeicov(attr) (binary) (directed) (quantitative nodal attribute) (frequently-used) , nodeicov(attr, form="sum") (valued) (directed) (quantitative nodal attribute)
Main effect of a covariate for in-edges: The attr argument specifies one or more quantitative
attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single
network statistic for each quantitative attribute or matrix column to the model equaling the
total value of attr(j) for all edges (i, j) in the network. This term may only be used with
directed networks. For categorical attributes, see nodeifactor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

nodeicovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of in-dyad
values incident on each actor: This term adds one statistic equal to

∑
i,j,k yk,jyk,j . This can

be viewed as a valued analog of the istar(2) statistic.

nodeifactor(attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (categorical nodal attribute) (frequently-used) , nodeifactor(attr, base=1, levels=-1, form="sum") (valued) (dyad-independent) (directed) (categorical nodal attribute)
Factor attribute effect for in-edges: The attr argument specifies one or more categorical at-
tributes (see Specifying Vertex Attributes and Levels for details). This term adds multiple
network statistics to the model, one for each of (a subset of) the unique values of the attr at-
tribute (or each combination of the attributes given). Each of these statistics gives the number
of times a node with that attribute or those attributes appears as the terminal node of a directed
tie.
The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of nodeifactor("fruit", levels=-(2:3)),
nodeifactor("fruit", levels=c(1,4)), and nodeifactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also
including edges. The default, levels=-1, is therefore to omit the first (in lexicographic or-
der) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or
levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.
For an analogous term for quantitative vertex attributes, see nodeicov.

nodeisqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered
covariance of square roots of in-dyad values incident on each actor: This term adds one
statistic equal to

∑
i,j,k

√
yi,j
√
yk,j . This can be viewed as a valued analog of the istar(2)

statistic.

nodematch(attr, diff=FALSE, keep=NULL, levels=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute) , nodematch(attr, diff=FALSE, keep=NULL, levels=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute) a.k.a. match (binary) (directed) (dyad-independent) (undirected) (categorical nodal attribute)
Uniform homophily and differential homophily: The attr argument specifies one or more at-
tributes (see Specifying Vertex Attributes and Levels for details). When diff=FALSE, this
term adds one network statistic to the model, which counts the number of edges (i, j) for
which attr(i)==attr(j). This is also called ”uniform homophily,” because each group is
assumed to have the same propensity for within-group ties. When multiple attribute names
are given, the statistic counts only ties for which all of the attributes match. When diff=TRUE,
p network statistics are added to the model, where p is the number of unique values of the
attr attribute. The kth such statistic counts the number of edges (i, j) for which attr(i) ==

ergm-terms 71

attr(j) == value(k), where value(k) is the kth smallest unique value of the attr at-
tribute. This is also called ”differential homophily,” because each group is allowed to have a
unique propensity for within-group ties. Note that a statistical test of uniform vs. differential
homophily should be conducted using the ANOVA function.
By default, matches on all levels k are counted. The optional levels argument controls which
levels of the attribute should be included and which should be excluded. (See Specifying Ver-
tex Attributes and Levels for details.) For example, if the “fruit” attribute has levels “orange”,
“apple”, “banana”, and “pear”, then to include just two levels, one for “apple” and one for
“pear”, use any of nodematch("fruit", levels=-(2:3)), nodematch("fruit", levels=c(1,4)),
and nodematch("fruit", levels=c("apple", "pear")). This works for both diff=TRUE
and diff=FALSE.
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep.

nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=NULL) (binary) (dyad-independent) (frequently-used) (directed) (undirected) (categorical nodal attribute) , nodemix(attr, base=NULL, b1levels=NULL, b2levels=NULL, levels=NULL, levels2=NULL, form="sum") (valued) (dyad-independent) (directed) (undirected) (categorical nodal attribute)
Nodal attribute mixing: The attr argument specifies one or more categorical vertex attributes
(see Specifying Vertex Attributes and Levels for details). By default, this term adds one net-
work statistic to the model for each possible pairing of attribute values. The statistic equals
the number of edges in the network in which the nodes have that pairing of values. (When
multiple attributes are specified, a statistic is added for each combination of attribute values
for those attributes.) In other words, this term produces one statistic for every entry in the
mixing matrix for the attribute(s). By default, the ordering of the attribute values is lexico-
graphic: alphabetical (for nominal categories) or numerical (for ordered categories), but this
can be overridden using the levels arguments. The optional arguments levels, levels2,
b1levels, and b2levels control what statistics are included in the model, and the order in
which they appear. levels2 apply to all networks; levels applies to unipartite networks;
b1levels and b2levels apply to bipartite networks (see Specifying Vertex Attributes and
Levels).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels2 are passed, levels2 overrides base.

nodeocov(attr) (binary) (directed) (dyad-independent)(quantitative nodal attribute) , nodeocov(attr, form="sum") (valued) (directed) (dyad-independent) (quantitative nodal attribute)
Main effect of a covariate for out-edges: The attr argument specifies one or more quantitative
attributes (see Specifying Vertex Attributes and Levels for details). This term adds a single
network statistic for each quantitative attribute or matrix column to the model equaling the
total value of attr(i) for all edges (i, j) in the network. This term may only be used with
directed networks. For categorical attributes, see nodeofactor.
Note that ergm versions 3.9.4 and earlier used different arguments for this term. See the above
section on versioning for invoking the old behavior.

nodeocovar (valued) (directed) (quantitative nodal attribute) Uncentered covariance of out-dyad
values incident on each actor: This term adds one statistic equal to

∑
i,j,k yi,jyi,k. This can

be viewed as a valued analog of the ostar(2) statistic.

nodeofactor(attr, base=1, levels=-1) (binary) (dyad-independent) (directed) (categorical nodal attribute) , nodeofactor(attr, base=1, levels=-1, form="sum") (valued) (dyad-independent) (categorical nodal attribute) (directed)
Factor attribute effect for out-edges: The attr argument specifies one or more categorical at-
tributes (see Specifying Vertex Attributes and Levels for details). This term adds multiple
network statistics to the model, one for each of (a subset of) the unique values of the attr at-
tribute (or each combination of the attributes given). Each of these statistics gives the number
of times a node with that attribute or those attributes appears as the node of origin of a directed
tie.

72 ergm-terms

The optional levels argument controls which levels of the attribute should be included and
which should be excluded. (See Specifying Vertex Attributes and Levels for details.) For
example, if the “fruit” attribute has levels “orange”, “apple”, “banana”, and “pear”, then to in-
clude just two levels, one for “apple” and one for “pear”, use any of nodeofactor("fruit", levels=-(2:3)),
nodeofactor("fruit", levels=c(1,4)), and nodeofactor("fruit", levels=c("apple", "pear")).
To include all attribute values is usually not a good idea, because the sum of all such statistics
equals the number of edges and hence a linear dependency would arise in any model also
including edges. The default, levels=-1, is therefore to omit the first (in lexicographic or-
der) attribute level. To include all levels, pass either levels=TRUE (i.e., keep all levels) or
levels=NULL (i.e., do not filter levels).
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and levels are passed, levels overrides base.
This term can only be used with directed networks.

nodeosqrtcovar (valued) (directed) (non-negative) (quantitative nodal attribute) Uncentered
covariance of square roots of out-dyad values incident on each actor: This term adds one
statistic equal to

∑
i,j,k

√
yi,j
√
yi,k. This can be viewed as a valued analog of the ostar(2)

statistic.

nodesqrtcovar(center=TRUE) (valued) (non-negative) (directed) (undirected) (quantitative nodal attribute)
Covariance of square roots of dyad values incident on each actor: This term adds one statistic
equal to

∑
i,j,k(
√
yi,j
√
yi,k +

√
yk,j
√
yk,j) if center=FALSE. This can be viewed as a val-

ued analog of the kstar(2) statistic. If center=FALSE (the default), the statistic is instead∑
i,j,k((

√
yi,j −

√̄
y)(
√
yi,k −

√̄
y) + (

√
yk,j −

√̄
y)(
√
yk,j −

√̄
y)), where

√̄
y is the mean

of the square root of dyad values.

nsp(d) (binary) (directed) (undirected) Nonedgewise shared partners: This is just like the dsp
and esp terms, except this term adds one network statistic to the model for each element in d
where the ith such statistic equals the number of non-edges (that is, dyads that do not have an
edge) in the network with exactly d[i] shared partners. This term can be used with directed
and undirected networks. For directed networks the count is over homogeneous shared part-
ners only (i.e., only partners on a directed two-path connecting the nodes in the non-edge and
in the same direction).

odegrange(from, to=+Inf, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute)
Out-degree range: The from and to arguments are vectors of distinct integers (or +Inf, for to
(its default)). If one of the vectors has length 1, it is recycled to the length of the other. Oth-
erwise, they must have the same length. This term adds one network statistic to the model for
each element of from (or to); the ith such statistic equals the number of nodes in the network
of out-degree greater than or equal to from[i] but strictly less than to[i], i.e. with out-edge
count in semiopen interval [from,to). The optional argument by specifies a vertex attribute
(see Specifying Vertex Attributes and Levels for details). If this is specified and homophily is
TRUE, then degrees are calculated using the subnetwork consisting of only edges whose end-
points have the same value of the by attribute. If by is specified and homophily is FALSE (the
default), then separate degree range statistics are calculated for nodes having each separate
value of the attribute.
This term can only be used with directed networks; for undirected networks (bipartite and
not) see degrange. For degrees of specific modes of bipartite networks, see b1degrange and
b2degrange. For in-degrees, see idegrange.

odegree(d, by=NULL, homophily=FALSE, levels=NULL) (binary) (directed) (categorical nodal attribute) (frequently-used)
Out-degree: The d argument is a vector of distinct integers. This term adds one network statis-

ergm-terms 73

tic to the model for each element in d; the ith such statistic equals the number of nodes in the
network of out-degree d[i], i.e. the number of nodes with exactly d[i] out-edges. The op-
tional argument by specifies a vertex attribute (see Specifying Vertex Attributes and Levels
for details). If this is specified and homophily is TRUE, then degrees are calculated using the
subnetwork consisting of only edges whose endpoints have the same value of the by attribute.
If by is specified and homophily is FALSE (the default), then separate degree statistics are cal-
culated for nodes having each separate value of the attribute. This term can only be used with
directed networks; for undirected networks see degree.

odegree1.5 (binary) (directed) Out-degree to the 3/2 power: This term adds one network statis-
tic to the model equaling the sum over the actors of each actor’s outdegree taken to the 3/2
power (or, equivalently, multiplied by its square root). This term is analogous to the term of
Snijders et al. (2010), equation (12). This term can only be used with directed networks.

odegreepopularity (binary) (directed) (deprecated) Out-degree popularity (deprecated): see
odegree1.5.

opentriad (binary) (undirected) (triad-related) Open triads: This term adds one statistic to the
model equal to the number of 2-stars minus three times the number of triangles in the network.
It is currently only implemented for undirected networks.

ostar(k, attr=NULL, levels=NULL) (binary) (directed) (categorical nodal attribute) k-Outstars:
The k argument is a vector of distinct integers. This term adds one network statistic to the
model for each element in k. The ith such statistic counts the number of distinct k[i]-outstars
in the network, where a k-outstar is defined to be a node N and a set of k different nodes
{O1, . . . , Ok} such that the ties (N→Oj) exist for j = 1, . . . , k. The optional argument attr
specifies a vertex attribute (see Specifying Vertex Attributes and Levels for details). If this is
specified then the count is the number of k-outstars where all nodes have the same value of
the attribute. This term can only be used with directed networks; for undirected networks see
kstar. Note that ostar(1) is equal to both istar(1) and edges.

receiver(base=1, nodes=-1) (binary) (directed) (dyad-independent) , receiver(base=1, nodes=-1, form="sum") (valued) (directed) (dyad-independent)
Receiver effect: This term adds one network statistic for each node equal to the number of in-
ties for that node. This measures the popularity of the node. The term for the first node is
omitted by default because of linear dependence that arises if this term is used together with
edges, but its coefficient can be computed as the negative of the sum of the coefficients of
all the other actors. That is, the average coefficient is zero, following the Holland-Leinhardt
parametrization of the p_1 model (Holland and Leinhardt, 1981). The base and nodes ar-
guments allow the user to determine which nodes’ statistics should be included or excluded
(see Specifying Vertex Attributes and Levels for details). The argument nodes is preferred to
base, although base carries a default value of 1 for backwards compatibility. (If both base
and nodes are supplied, then nodes overrides base.) This term can only be used with directed
networks. For undirected networks, see sociality.

sender(base=1, nodes=-1) (binary) (directed) (dyad-independent) , sender(base=1, nodes=-1, form="sum") (valued) (directed) (dyad-independent)
Sender effect: This term adds one network statistic for each node equal to the number of out-
ties for that node. This measures the activity of the node. The term for the first node is omitted
by default because of linear dependence that arises if this term is used together with edges,
but its coefficient can be computed as the negative of the sum of the coefficients of all the other
actors. That is, the average coefficient is zero, following the Holland-Leinhardt parametriza-
tion of the p_1 model (Holland and Leinhardt, 1981). The nodes arguments allow the user
to determine which nodes’ statistics should be included or excluded (see Specifying Vertex
Attributes and Levels for details).

74 ergm-terms

The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and nodes are passed, nodes overrides base.
This term can only be used with directed networks. For undirected networks, see sociality.

simmelian (binary) (directed) (triad-related) Simmelian triads: This term adds one statistic to
the model equal to the number of Simmelian triads, as defined by Krackhardt and Handcock
(2007). This is a complete sub-graph of size three. This term can only be used with directed
networks.

simmelianties (binary) (triad-related) (directed) Ties in simmelian triads: This term adds one
statistic to the model equal to the number of ties in the network that are associated with Sim-
melian triads, as defined by Krackhardt and Handcock (2007). Each Simmelian has six ties
in it but, because Simmelians can overlap in terms of nodes (and associated ties), the total
number of ties in these Simmelians is less than six times the number of Simmelians. Hence
this is a measure of the clustering of Simmelians (given the number of Simmelians). This term
can only be used with directed networks.

smalldiff(attr, cutoff) (binary) (dyad-independent) (directed) (undirected) (quantitative nodal attribute)
Number of ties between actors with similar (but not necessarily identical) attribute values:
The attr argument specifies a quantitative vertex attribute (see Specifying Vertex Attributes
and Levels for details). This term adds one statistic, having as its value the number of edges
in the network for which the incident actors’ attribute values differ less than cutoff; that is,
number of edges between i to j such that abs(attr[i]-attr[j])<cutoff.

sociality(attr=NULL, base=1, levels=NULL, nodes=-1) (binary) (undirected) (dyad-independent) (categorical nodal attribute) , sociality(attr=NULL, base=1, levels=NULL, nodes=-1, form="sum") (valued) (undirected) (dyad-independent) (categorical nodal attribute)
Undirected degree: This term adds one network statistic for each node equal to the number
of ties of that node. The optional attr argument specifies a categorical vertex attribute (see
Specifying Vertex Attributes and Levels for details). If provided, this term only counts ties be-
tween nodes with the same value of the attribute (an actor-specific version of the nodematch
term), restricted to be one of the values specified by levels if levels is not NULL. This term
can only be used with undirected networks. For directed networks, see sender and receiver.
By default, nodes=-1 means that the statistic for the first node will be omitted, but this argu-
ment may be changed to control which statistics are included just as for the nodes argument
of sender and receiver terms.
The argument base is retained for backwards compatibility and may be removed in a future
version. When both base and nodes are passed, nodes overrides base.

sum(pow=1) (valued) (directed) (undirected) Sum of dyad values (optionally taken to a power):
This term adds one statistic equal to the sum of dyad values taken to the power pow, which
defaults to 1.

threetrail(keep=NULL, levels=NULL) (binary) (directed) (undirected) (triad-related), Three-
trails: a.k.a. threepath. For an undirected network, this term adds one statistic equal to the
number of 3-trails, where a 3-trail is defined as a “trail” of length three that traverses three
distinct edges. Note that a 3-trail need not include four distinct nodes; in particular, a triangle
counts as three 3-trails. For a directed network, this term adds four statistics (or some subset
of these four specified by the levels argument), one for each of the four distinct types of
directed three-paths. If the nodes of the path are written from left to right such that the middle
edge points to the right (R), then the four types are RRR, RRL, LRR, and LRL. That is, an
RRR 3-trail is of the form i → j → k → l, and RRL 3-trail is of the form i → j → k ← l,
etc. Like in the undirected case, there is no requirement that the nodes be distinct in a directed
3-trail. However, the three edges must all be distinct. Thus, a mutual tie i↔ j does not count

ergm-terms 75

as a 3-trail of the form i→ j → i← j; however, in the subnetwork i↔ j → k, there are two
directed 3-trails, one LRR (k ← j → i← j) and one RRR (j → i→ j ← k).
The argument keep is retained for backwards compatibility and may be removed in a future
version. When both keep and levels are passed, levels overrides keep. This term used to
be (inaccurately) called threepath. That name has been deprecated and may be removed in
a future version.

transitive (binary) (directed) (triad-related) Transitive triads: This term adds one statistic to
the model, equal to the number of triads in the network that are transitive. The transitive triads
are those of type 120D, 030T, 120U, or 300 in the categorization of Davis and Leinhardt (1972).
For details on the 16 possible triad types, see triad.classify in the sna package. Note the
distinction from the ttriple term. This term can only be used with directed networks.

transitiveties(attr=NULL, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , transitiveties(threshold=0) (valued) (directed) (undirected) (triad-related)
Transitive ties: This term adds one statistic, equal to the number of ties i→ j such that there
exists a two-path from i to j. (Related to the ttriple term.) The binary version takes a nodal
attribute attr, and, if given, all three nodes involved (i, j, and the node on the two-path) must
match on this attribute in order for i → j to be counted. The binary version of this term can
only be used with directed networks. The valued version can be used with both directed and
undirected.

transitiveweights(twopath="min",combine="max",affect="min") (valued) (directed) (undirected) (non-negative) (triad-related)
Transitive weights: This statistic implements the transitive weights statistic defined by Krivit-
sky (2012), Equation 13. The currently implemented options for twopath is the minimum of
the constituent dyads ("min") or their geometric mean ("geomean"); for combine, the maxi-
mum of the 2-path strengths ("max") or their sum ("sum"); and for affect, the minimum of
the focus dyad and the combined strength of the two paths ("min") or their geometric mean
("geomean"). For each of these options, the first (and the default) is more stable but also
more conservative, while the second is more sensitive but more likely to induce a multimodal
distribution of networks.

triadcensus(levels) (binary) (triad-related) (directed) (undirected) Triad census: For a di-
rected network, this term adds one network statistic for each of an arbitrary subset of the 16
possible types of triads categorized by Davis and Leinhardt (1972) as 003, 012, 102, 021D, 021U, 021C, 111D,111U, 030T, 030C, 201, 120D, 120U, 120C, 210,
and 300. Note that at least one category should be dropped; otherwise a linear dependency
will exist among the 16 statistics, since they must sum to the total number of three-node sets.
By default, the category 003, which is the category of completely empty three-node sets, is
dropped. This is considered category zero, and the others are numbered 1 through 15 in the
order given above. By using the levels argument (see Specifying Vertex Attributes and Lev-
els for details), the user may specify a set of terms to add other than the default value of 1:15.
Each statistic is the count of the corresponding triad type in the network. For details on the
16 types, see ?triad.classify in the {sna} package, on which this code is based. For an
undirected network, the triad census is over the four types defined by the number of ties (i.e.,
0, 1, 2, and 3), and the default is to add 1:3, which is to say that the 0 is dropped; however,
this too may be controlled by changing the levels argument.

triangle(attr=NULL, diff=FALSE, levels=NULL) (binary) (frequently-used) (triad-related) (directed) (undirected) (categorical nodal attribute)
Triangles: By default, this term adds one statistic to the model equal to the number of
triangles in the network. For an undirected network, a triangle is defined to be any set
{(i, j), (j, k), (k, i)} of three edges. For a directed network, a triangle is defined as any set
of three edges (i→j) and (j→k) and either (k→i) or (k←i). The former case is called a
“transitive triple” and the latter is called a “cyclic triple”, so in the case of a directed net-

76 ergm-terms

work, triangle equals ttriple plus ctriple — thus at most two of these three terms can
be in a model. The optional argument attr specifies a vertex attribute (see Specifying Vertex
Attributes and Levels for details). If attr is specified and diff is FALSE, then the count is
restricted to those triples of nodes with equal values of the vertex attribute specified by attr.
If attr is specified and diff is TRUE, then one statistic is added for each value of attr (or
each value specified by levels if that argument is passed), equal to the number of triangles
where all three nodes have that value of the attribute.

tripercent(attr=NULL, diff=FALSE, levels=NULL) (binary) (undirected) (triad-related) (categorical nodal attribute)
Triangle percentage: By default, this term adds one statistic to the model equal to 100 times
the ratio of the number of triangles in the network to the sum of the number of triangles and
the number of 2-stars not in triangles (the latter is considered a potential but incomplete trian-
gle). In case the denominator equals zero, the statistic is defined to be zero. For the definition
of triangle, see triangle. The optional argument attr specifies a vertex attribute (see Spec-
ifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, the
counts (both numerator and denominator) are restricted to those triples of nodes with equal
values of the vertex attribute specified by attr. If attr is specified and diff is TRUE, then one
statistic is added for each value of attr (or each value specified by levels if that argument is
passed), where the counts (both numerator and denominator) are restricted to those triples of
nodes with that value of the vertex attribute specified by attr. This is often called the mean
correlation coefficient. This term can only be used with undirected networks; for directed net-
works, it is difficult to define the numerator and denominator in a consistent and meaningful
way.

ttriple(attr=NULL, diff=FALSE, levels=NULL) (binary) (directed) (triad-related) (categorical nodal attribute) , a.k.a. ttriad (binary) (directed) (triad-related) (categorical nodal attribute)
Transitive triples: By default, this term adds one statistic to the model, equal to the number
of transitive triples in the network, defined as a set of edges {(i→j), (j→k), (i→k)}. Note
that triangle equals ttriple+ctriple for a directed network, so at most two of the three
terms can be in a model. The optional argument attr specifies a vertex attribute (see Spec-
ifying Vertex Attributes and Levels for details). If attr is specified and diff is FALSE, then
the count is over the number of transitive triples where all three nodes have the same value of
the attribute. If attr is specified and diff is TRUE, then one statistic is added for each value
of attr (or each value of attr specified by levels if that argument is passed), equal to the
number of transitive triples where all three nodes have that value of attr. This term can only
be used with directed networks.

twopath (binary) (directed) (undirected) 2-Paths: This term adds one statistic to the model, equal
to the number of 2-paths in the network. For a directed network this is defined as a pair of
edges (i→j), (j→k), where i and j must be distinct. That is, it is a directed path of length 2
from i to k via j. For directed networks a 2-path is also a mixed 2-star but the interpretation is
usually different; see m2star. For undirected networks a twopath is defined as a pair of edges
{i, j}, {j, k}. That is, it is an undirected path of length 2 from i to k via j, also known as a
2-star.

References

• Bomiriya, R. P, Bansal, S., and Hunter, D. R. (2014). Modeling Homophily in ERGMs for
Bipartite Networks. Submitted.

• Butts, CT. (2008). “A Relational Event Framework for Social Action.” Sociological Method-
ology, 38(1).

ergm-terms 77

• Davis, J.A. and Leinhardt, S. (1972). The Structure of Positive Interpersonal Relations in
Small Groups. In J. Berger (Ed.), Sociological Theories in Progress, Volume 2, 218–251.
Boston: Houghton Mifflin.

• Holland, P. W. and S. Leinhardt (1981). An exponential family of probability distributions for
directed graphs. Journal of the American Statistical Association, 76: 33–50.

• Hunter, D. R. and M. S. Handcock (2006). Inference in curved exponential family models for
networks. Journal of Computational and Graphical Statistics, 15: 565–583.

• Hunter, D. R. (2007). Curved exponential family models for social networks. Social Networks,
29: 216–230.

• Krackhardt, D. and Handcock, M. S. (2007). Heider versus Simmel: Emergent Features in
Dynamic Structures. Lecture Notes in Computer Science, 4503, 14–27.

• Krivitsky P. N. (2012). Exponential-Family Random Graph Models for Valued Networks.
Electronic Journal of Statistics, 2012, 6, 1100-1128. doi: 10.1214/12EJS696

• Robins, G; Pattison, P; and Wang, P. (2009). “Closure, Connectivity, and Degree Distribu-
tions: Exponential Random Graph (p*) Models for Directed Social Networks.” Social Net-
works, 31:105-117.

• Snijders T. A. B., G. G. van de Bunt, and C. E. G. Steglich. Introduction to Stochastic Actor-
Based Models for Network Dynamics. Social Networks, 2010, 32(1), 44-60. doi: 10.1016/
j.socnet.2009.02.004

• Morris M, Handcock MS, and Hunter DR. Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 2008, 24(4), 1-24.
https://www.jstatsoft.org/v24/i04

• Snijders, T. A. B., P. E. Pattison, G. L. Robins, and M. S. Handcock (2006). New specifications
for exponential random graph models, Sociological Methodology, 36(1): 99-153.

See Also

ergm package, search.ergmTerms, ergm, network, %v%, %n%

Examples

Not run:
ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle)

ergm(molecule ~ edges + kstar(2:3) + triangle
+ nodematch("atomic type",diff=TRUE)
+ triangle + absdiff("atomic type"))

End(Not run)

https://doi.org/10.1214/12-EJS696
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1016/j.socnet.2009.02.004
https://www.jstatsoft.org/v24/i04

78 ergm.allstats

ergm.allstats Calculate all possible vectors of statistics on a network for an ERGM

Description

ergm.allstats produces a matrix of network statistics for an arbitrary statnet exponential-family
random graph model. One possible use for this function is to calculate the exact loglikelihood
function for a small network via the ergm.exact function.

Usage

ergm.allstats(formula, zeroobs = TRUE, force = FALSE,
maxNumChangeStatVectors = 2^16, ...)

Arguments

formula an formula object of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in , use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.

zeroobs Logical: Should the vectors be centered so that the network passed in the formula
has the zero vector as its statistics?

force Logical: Should the algorithm be run even if it is determined that the problem
may be very large, thus bypassing the warning message that normally terminates
the function in such cases?

maxNumChangeStatVectors

Maximum possible number of distinct values of the vector of statistics. It’s good
to use a power of 2 for this.

... further arguments; not currently used.

Details

The mechanism for doing this is a recursive algorithm, where the number of levels of recursion
is equal to the number of possible dyads that can be changed from 0 to 1 and back again. The
algorithm starts with the network passed in formula, then recursively toggles each edge twice so
that every possible network is visited.

ergm.allstats should only be used for small networks, since the number of possible networks
grows extremely fast with the number of nodes. An error results if it is used on a directed network
of more than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override
this error.

ergm.bounddeg 79

Value

Returns a list object with these two elements:

weights integer of counts, one for each row of statmat telling how many networks share
the corresponding vector of statistics.

statmat matrix in which each row is a unique vector of statistics.

See Also

ergm.exact

Examples

Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
system.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat),a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

Simple ergm.exact outpuf for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.bounddeg Initializes the parameters to bound degree during sampling

Description

Not normally called directly by user, ergm.bounddeg initializes the list of parameters used to bound
the degree during the Metropolis Hastings sampling process, and issues warnings if the original
network doesn’t meet the constraints specified by ’bounddeg’.

Usage

ergm.bounddeg(bounddeg, nw)

80 ergm.bounddeg

Arguments

bounddeg a list of parameters which may contain the following for a network of size n
nodes:

• attribs: an nxp matrix, where entry ij is TRUE if node i has attribute j, and
FALSE otherwise; default=an nx1 matrix of 1’s

• maxout : an nxp matrix, where entry ij is the maximum number of out
degrees for node i to nodes with attribute j; default=an nxp matrix of the
value (n-1)

• maxin : defined similarly to maxout, but ignored for undirected networks;
default=an nxp matrix of the value (n-1)

• minout : defined similarly to maxout; default=an nxp matrix of 0’s
• minin : defined similarly to maxout, but ignored for undirected networks;

default=an nxp matrix of 0’s
nw the orginal network specified to ergm in ’formula’

Details

In some modeling situations, the degree of certain nodes are constrained to lie in a certain range
(rather than their theoretically possible range of 0 to n-1). Such sample space constraints may be
incorporated into the ergm modeling process, and if so then the MCMC routine is prevented from
visiting network states that violate any of these bounds.

In case there are categories of nodes and degree bounds for each set of categories, such constraints
may be incorporated as well. For instance, if the nodes are girls and boys, and there is a maximum
of 5 out-ties to boys and a maximum of 5 out-ties to girls for each node, we would define p to be 2,
and the nxp matrix attribs would have TRUE in the first column (say) for exactly those nodes that
are boys and TRUE in the second column for only the girls. The maxout matrix would consist of
all 5s in this case, and the other arguments would be left as their default values.

Since the observed network is generally the beginning of the Markov chain, it must satisfy all of the
degree constraints itself; thus, this function returns an error message if any bound is violated by the
observed network.

Value

a list of parameters used to bound degree during sampling

condAllDegExact

always FALSE
attribs as defined above
maxout as defined above
maxin as defined above
minout as defined above
minin as defined above

See Also

ergm-proposals

ergm.bridge.llr 81

ergm.bridge.llr Bridge sampling to evaluate ERGM log-likelihoods and log-likelihood
ratios

Description

ergm.bridge.llr uses bridge sampling with geometric spacing to estimate the difference between
the log-likelihoods of two parameter vectors for an ERGM via repeated calls to simulate.formula.ergm.

ergm.bridge.0.llk is a convenience wrapper that returns the log-likelihood of configuration θ
relative to the reference measure. That is, the configuration with θ = 0 is defined as having log-
likelihood of 0.

ergm.bridge.dindstart.llk is a wrapper that uses a dyad-independent ERGM as a starting point
for bridge sampling to estimate the log-likelihood for a given dyad-dependent model and parameter
configuration. Note that it only handles binary ERGMs (response=NULL) and with constraints
(constraints=) that that do not induce dyadic dependence.

Usage

ergm.bridge.llr(object, response = NULL, constraints = ~., from, to,
basis = NULL, verbose = FALSE, ..., llronly = FALSE,
control = control.ergm.bridge())

ergm.bridge.0.llk(object, response = response, constraints = ~., coef,
..., llkonly = TRUE, control = control.ergm.bridge())

ergm.bridge.dindstart.llk(object, response = NULL, constraints = ~.,
coef, dind = NULL, coef.dind = NULL, basis = NULL, ...,
llkonly = TRUE, control = control.ergm.bridge())

Arguments

object A model formula. See ergm for details.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm for more information.

from, to The initial and final parameter vectors.

basis An optional network object to start the Markov chain. If omitted, the default is
the left-hand-side of the object.

verbose Logical: If TRUE, print detailed information.

... Further arguments to ergm.bridge.llr and simulate.formula.ergm.

llronly Logical: If TRUE, only the estiamted log-ratio will be returned by ergm.bridge.llr.

82 ergm.bridge.llr

control Control arguments. See control.ergm.bridge for details.

coef A vector of coefficients for the configuration of interest.

llkonly Whether only the estiamted log-likelihood should be returned by the ergm.bridge.0.llk
and ergm.bridge.dindstart.llk. (Defaults to TRUE.)

dind A one-sided formula with the dyad-independent model to use as a starting point.
Defaults to the dyad-independent terms found in the formula object with an
overal density term (edges) added if not redundant.

coef.dind Parameter configuration for the dyad-independent starting point. Defaults to the
MLE of dind.

Value

If llronly=TRUE or llkonly=TRUE, these functions return the scalar log-likelihood-ratio or the
log-likelihood. Otherwise, they return a list with the following components:

llr The estimated log-ratio.

llrs The estimated log-ratios for each of the nsteps bridges.

path A numeric matrix with nsteps rows, with each row being the respective bridge’s
parameter configuration.

stats A numeric matrix with nsteps rows, with each row being the respective bridge’s
vector of simulated statistics.

Dtheta.Du The gradient vector of the parameter values with respect to position of the
bridge.

ergm.bridge.0.llk result list also includes an llk element, with the log-likelihood itself (with
the reference distribution assumed to have likelihood 0).

ergm.bridge.dindstart.llk result list also includes an llk element, with the log-likelihood itself
and an llk.dind element, with the log-likelihood of the nearest dyad-independent model.

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

simulate.formula.ergm

ergm.degeneracy 83

ergm.degeneracy Checks an ergm Object for Degeneracy

Description

The ergm.degeneracy function checks a given ergm object for degeneracy by computing and re-
turning the instability value of the model and the value of the log-likelihood function at the maxi-
mized theta values

Usage

ergm.degeneracy(object, control = object$control, fast = TRUE,
test.only = FALSE, verbose = FALSE)

Arguments

object an ergm object

control the list of control parameters as returned by control.ergm; default=control.ergm()

fast whether the degeneracy check should be "fast", i.e to sample changeobs(?) when
there are > 100, rather than use all changeobs; default=TRUE

test.only whether to silence printing of the model instability calculation (T or F); this
parameter is ignored if the instability > 1; default=FALSE

verbose whether to print a notification when ’object’ is deemed degenerate (T or F);
default=FALSE

Value

returns the original ergm object with 2 additional components:

degeneracy.value

the instability of the model

degeneracy.type

a 2-element vector containing

loglikelihood the value of the log-likelihood function corresponding to ’theta’;
if degenerate, this is a vector of Inf

theta the vector of theta values found through maximixing the log- likelihood;
if degenerate, this is ’guess’

84 ergm.exact

ergm.exact Calculate the exact loglikelihood for an ERGM

Description

ergm.exact calculates the exact loglikelihood, evaluated at eta, for the statnet exponential-
family random graph model represented by formula.

Usage

ergm.exact(eta, formula, statmat = NULL, weights = NULL, ...)

Arguments

eta vector of canonical parameter values at which the loglikelihood should be eval-
uated.

formula an link{formula} object of the form y ~ <model terms>, where y is a network
object or a matrix that can be coerced to a network object. For the details on the
possible <model terms>, see ergm-terms. To create a network object in , use
the network() function, then add nodal attributes to it using the %v% operator if
necessary.

statmat if NULL, call ergm.allstats to generate all possible graph statistics for the
networks in this model.

weights In case statmat is not NULL, this should be the vector of counts corresponding
to the rows of statmat. If statmat is NULL, this is generated by the call to
ergm.allstats.

... further arguments; not currently used.

Details

ergm.exact should only be used for small networks, since the number of possible networks grows
extremely fast with the number of nodes. An error results if it is used on a directed network of more
than 6 nodes or an undirected network of more than 8 nodes; use force=TRUE to override this error.

In case this function is to be called repeatedly, for instance by an optimization routine, it is prefer-
able to call ergm.allstats first, then pass statmat and weights explicitly to avoid repeatedly
calculating these objects.

Value

Returns the value of the exact loglikelihood, evaluated at eta, for the statnet exponential-family
random graph model represented by formula.

See Also

ergm.allstats

ergm.geodistdist 85

Examples

Count by brute force all the edge statistics possible for a 7-node
undirected network
mynw <- network(matrix(0,7,7),dir=FALSE)
system.time(a <- ergm.allstats(mynw~edges))

Summarize results
rbind(t(a$statmat),a$weights)

Each value of a$weights is equal to 21-choose-k,
where k is the corresponding statistic (and 21 is
the number of dyads in an 7-node undirected network).
Here's a check of that fact:
as.vector(a$weights - choose(21, t(a$statmat)))

Simple ergm.exact outpuf for this network.
We know that the loglikelihood for my empty 7-node network
should simply be -21*log(1+exp(eta)), so we may check that
the following two values agree:
-21*log(1+exp(.1234))
ergm.exact(.1234, mynw~edges, statmat=a$statmat, weights=a$weights)

ergm.geodistdist Calculate geodesic distance distribution for a network or edgelist

Description

ergm.geodistdist calculates geodesic distance distribution for a given network and returns it as
a vector.

ergm.geodistn calculates geodesic deistance distribution based on an input edgelist, and has very
little error checking so should not normally be called by users. The C code requires the edgelist to
be directed and sorted correctly.

Usage

ergm.geodistdist(nw, directed = is.directed(nw))

ergm.geodistn(edgelist, n = max(edgelist), directed = FALSE)

Arguments

nw network object over which distances should be calculated

directed logical, should the network be treated as directed

edgelist an edgelist representation of a network as an mx2 matrix

n integer, size of the network

86 ergm.getnetwork

Details

ergm.geodistdist is a network wrapper for ergm.geodistn, which calculates and returns the
geodesic distance distribution for a given network via full_geodesic_distribution.C

Value

a vector ans with length equal to the size of the network where

• ans[i], i=1, ..., n-1 is the number of pairs of geodesic length i

• ans[n] is the number of pairs of geodesic length infinity.

See Also

See also the sna package geodist function

Examples

data(faux.mesa.high)
ergm.geodistdist(faux.mesa.high)

ergm.getnetwork Acquire and verify the network from the LHS of an ergm formula and
verify that it is a valid network.

Description

The function function ensures that the network in a given formula is valid; if so, the network is
returned; if not, execution is halted with warnings.

Usage

ergm.getnetwork(formula, loopswarning = TRUE)

Arguments

formula a two-sided formula whose LHS is a network, an object that can be coerced to
a network, or an expression that evaluates to one.

loopswarning whether warnings about loops should be printed (TRUE or FALSE); defaults to
TRUE.

Value

A network object constructed by evaluating the LHS of the model formula in the formula’s envi-
ronment.

ergm.godfather 87

ergm.godfather A function to apply a given series of changes to a network.

Description

Gives the network a series of proposals it can’t refuse. Returns the statistics of the network, and,
optionally, the final network.

Usage

ergm.godfather(formula, changes = NULL, response = NULL,
end.network = FALSE, stats.start = FALSE, changes.only = FALSE,
verbose = FALSE, control = control.ergm.godfather())

Arguments

formula An ergm-style formula, with a network on its LHS.

changes Either a matrix with three columns: tail, head, and new value, describing the
changes to be made; or a list of such matrices to apply these changes in a se-
quence. For binary network models, the third column may be omitted. In that
case, the changes are treated as toggles. Note that if a list is passed, it must
either be all of changes or all of toggles.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

end.network Whether to return a network that results. Defaults to FALSE.

stats.start Whether to return the network statistics at start (before any changes are ap-
plied) as the first row of the statistics matrix. Defaults to FALSE, to produce
output similar to that of simulate for ERGMs when output="stats", where
initial network’s statistics are not returned.

changes.only Whether to return network statistics or only their changes relative to the initial
network.

verbose Whether to print progress messages.

control A control list generated by control.ergm.godfather.

Value

If end.network==FALSE (the default), an mcmc object with the requested network statistics associed
with the network series produced by applying the specified changes. Its mcmc attributes encode the
timing information: so start(out) gives the time point associated with the first row returned, and
end(out) out the last. The "thinning interval" is always 1.

If end.network==TRUE, return a network object, representing the final network, with a matrix of
statistics described in the previous paragraph attached to it as an attr-style attribute "stats".

88 ergmMPLE

See Also

tergm::tergm.godfather(), simulate.ergm(), simulate.formula()

Examples

data(florentine)
ergm.godfather(flomarriage~edges+absdiff("wealth")+triangles,

changes=list(cbind(1:2,2:3),
cbind(3,5),
cbind(3,5),
cbind(1:2,2:3)),

stats.start=TRUE)

ergmMPLE ERGM Predictors and response for logistic regression calculation of
MPLE

Description

Return the predictor matrix, response vector, and vector of weights that can be used to calculate the
MPLE for an ERGM.

Usage

ergmMPLE(formula, fitmodel = FALSE, output = c("matrix", "array",
"fit"), as.initialfit = TRUE, control = control.ergm(),
verbose = FALSE, ...)

Arguments

formula An ERGM formula. See ergm.

fitmodel Deprecated. Use output="fit" instead.

output Character, partially matched. See Value.

as.initialfit Logical. Specifies whether terms are initialized with argument initialfit==TRUE
(the default). Generally, if TRUE, all curved ERGM terms will be treated as hav-
ing their curved parameters fixed. See Example.

control A list of control parameters for tuning the fitting of an ERGM. Most of these
parameters are irrelevant in this context. See control.ergm for details about all
of the control parameters.

verbose Logical; if TRUE, the program will print out some additional information.

... Additional arguments, to be passed to lower-level functions.

ergmMPLE 89

Details

The MPLE for an ERGM is calculated by first finding the matrix of change statistics. Each row
of this matrix is associated with a particular pair (ordered or unordered, depending on whether the
network is directed or undirected) of nodes, and the row equals the change in the vector of network
statistics (as defined in formula) when that pair is toggled from a 0 (no edge) to a 1 (edge), holding
all the rest of the network fixed. The MPLE results if we perform a logistic regression in which the
predictor matrix is the matrix of change statistics and the response vector is the observed network
(i.e., each entry is either 0 or 1, depending on whether the corresponding edge exists or not).

Using output="matrix", note that the result of the fit may be obtained from the glm function, as
shown in the examples below.

When output="array", the MPLE.max.dyad.types control parameter must be greater than network.dyadcount(.)
of the response network, or not all elements of the array that ought to be filled in will be.

Value

If output=="matrix" (the default), then only the response, predictor, and weights are returned;
thus, the MPLE may be found by hand or the vector of change statistics may be used in some
other way. To save space, the algorithm will automatically search for any duplicated rows in the
predictor matrix (and corresponding response values). ergmMPLE function will return a list with
three elements, response, predictor, and weights, respectively the response vector, the predictor
matrix, and a vector of weights, which are really counts that tell how many times each corresponding
response, predictor pair is repeated.

If output=="array", a list with similarly named three elements is returned, but response is for-
matted into a sociomatrix; predictor is a 3-dimensional array of with cell predictor[t,h,k]
containing the change score of term k for dyad (t,h); and weights is also formatted into a socioma-
trix, with an element being 1 if it is to be added into the pseudolikelihood and 0 if it is not.

In particular, for a unipartite network, cells corresponding to self-loops, i.e., predictor[i,i,k]
will be NA and weights[i,i] will be 0; and for a unipartite undirected network, lower triangle of
each predictor[,,k] matrix will be set to NA, with the lower triangle of weights being set to 0.

If output=="fit", then ergmMPLE simply calls the ergm function with the estimate="MPLE" op-
tion set, returning an object of class ergm that gives the fitted pseudolikelihood model.

See Also

ergm, glm

Examples

data(faux.mesa.high)
formula <- faux.mesa.high ~ edges + nodematch("Sex") + nodefactor("Grade")
mplesetup <- ergmMPLE(formula)

Obtain MPLE coefficients "by hand":
glm(mplesetup$response ~ . - 1, data = data.frame(mplesetup$predictor),

weights = mplesetup$weights, family="binomial")$coefficients

Check that the coefficients agree with the output of the ergm function:

90 ergm_MCMC_sample

ergmMPLE(formula, output="fit")$coef

We can also format the predictor matrix into an array:
mplearray <- ergmMPLE(formula, output="array")

The resulting matrices are big, so only print the first 5 actors:
mplearray$response[1:5,1:5]
mplearray$predictor[1:5,1:5,]
mplearray$weights[1:5,1:5]

formula2 <- faux.mesa.high ~ gwesp(0.5,fix=FALSE)

The term is treated as fixed: only the gwesp term is returned:
colnames(ergmMPLE(formula2, as.initialfit=TRUE)$predictor)

The term is treated as curved: individual esp# terms are returned:
colnames(ergmMPLE(formula2, as.initialfit=FALSE)$predictor)

ergm_MCMC_sample Internal Function to Sample Networks and Network Statistics

Description

This is an internal function, not normally called directly by the user. The ergm_MCMC_sample
function samples networks and network statistics using an MCMC algorithm via MCMC_wrapper
and is caple of running in multiple threads using ergm_MCMC_slave.

The ergm_MCMC_slave function calls the actual C routine and does minimal preprocessing.

Usage

ergm_MCMC_sample(nw, model, proposal, control, theta = NULL,
response = NULL, update.nws = TRUE, verbose = FALSE, ...,
eta = ergm.eta(theta, model$etamap))

ergm_MCMC_slave(Clist, proposal, eta, control, verbose, ...,
prev.run = NULL, burnin = NULL, samplesize = NULL,
interval = NULL, maxedges = NULL)

Arguments

nw a network (or pending_update_network) object representing the sampler state.

model an ergm_model to be sampled from, as returned by ergm_model().

proposal a list of the parameters needed for Metropolis-Hastings proposals and the result
of calling ergm_proposal().

control list of MCMC tuning parameters; see control.ergm().

theta the (possibly curved) parameters of the model.

ergm_MCMC_sample 91

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

update.nws whether to actually update the network state or to return an object "promising"
to update the network.

verbose verbosity level.

... additional arugments.

eta the natural parameters of the model; by default constructed from theta.

Clist the list of parameters returned by ergm.Cprepare

prev.run a summary of the state of the sampler allowing a run to be resumed quickly by
ergm_MCMC_slave.

burnin, samplesize, interval, maxedges

MCMC paramters that can be used to temporarily override those in the control
list.

Details

Note that the returned stats will be relative to the original network, i.e., the calling function must
shift the statistics if required. The calling function must also attach column names to the statistics
matrix if required.

Value

ergm_MCMC_sample returns a list containing:

stats an mcmc.list with sampled statistics.

networks a list of final sampled networks, one for each thread.

status status code, propagated from ergm.mcmcslave.

final.interval adaptively determined MCMC interval.

If update.nws==FALSE, rather than returning the updated networks, the function will return a
pending_update_network.

ergm_MCMC_slave returns the MCMC sample as a list of the following:

s the matrix of statistics.

newnwtails the vector of tails for the new network.

newnwheads the vector of heads for the new network.

newnwweights the vector of weights for the new network (if applicable)

status success or failure code: 0 is success, 1 for too many edges, and 2 for a Metropolis-
Hastings proposal failing.

maxedges maximum allowed edges at the time of return.

92 eut-upgrade

Note

ergm_MCMC_sample and ergm_MCMC_slave replace ergm.getMCMCsample and ergm.mcmcslave
respectively. They differ slightly in their argument names and in their return formats. For example,
ergm_MCMC_sample expects proposal rather than MHproposal and theta or eta rather than eta0;
and it does not return statsmatrix or newnetwork elements. Rather, if parallel processing is not
in effect, stats is an mcmc.list with one chain and networks is a list with one element.

ergm_plot.mcmc.list Plot MCMC list using lattice package graphics

Description

Plot MCMC list using lattice package graphics

Usage

ergm_plot.mcmc.list(x, main = NULL, vars.per.page = 3, ...)

Arguments

x an mcmc.list object containing the mcmc diagnostic samples.

main character, main plot heading title.

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

... additional arguments, currently unused.

Note

This is not a method at this time.

eut-upgrade Updating ergm.userterms prior to 3.1

Description

Explanation and instructions for updating custom ERGM terms developed prior to the release of
ergm version 3.1 (including 3.0–999 preview release) to be used with versions 3.1 or later.

faux.desert.high 93

Explanation

ergm.userterms — Statnet’s mechanism enabling users to write their own ERGM terms — comes
in a form of an R package containing files for the user to put their own statistics into (i.e., changestats.user.h,
changestats.user.c, and InitErgmTerm.user.R), as well as some boilerplate to support them
(e.g., edgetree.h, edgetree.c, changestat.h, changestat.c, etc.).

Although the ergm.userterms API is stable, recent developments in ergm have necessitated the
boilerplate files in ergm.userterms to be updated. To reiterate, the user-written statistic source code
(changestats.user.h, changestats.user.c, and InitErgmTerm.user.R) can be used without
modification, but other files that came with the package need to be changed.

To make things easier in the future, we have implemented a mechanism (using R’s LinkingTo API,
in case you are wondering) that will keep things in sync in releases after the upcoming one. How-
ever, for the upcoming release, we need to transition to this new mechanism.

Instructions

The transition entails the following steps. They only need to be done once for a package. Future
releases will keep up to date automatically.

1. Download the up-to-date ergm.userterms source from CRAN using, e.g., download.packages
and unpack it.

2. Copy the R and C files defining the user-written terms (usually changestats.user.h, changestats.user.c,
and InitErgmTerm.user.R) and only those files from the old ergm.userterms source code
to the new. Do not copy the boilerplate files that you did not modify.

3. If you have customized the package DESCRIPTION file (e.g., to change the package name) or
zzz.R (e.g., to change the startup message), modify them as needed in the updated ergm.userterms,
but do not simply overwrite them with their old versions.

4. Make sure that your ergm installation is up to date, and rebuild ergm.userterms.

faux.desert.high Faux desert High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.desert.high.

Usage

data(faux.desert.high)

94 faux.desert.high

Format

faux.desert.high is a network object with 107 vertices (students, in this case) and 439 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.desert.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: https://www.cpc.unc.
edu/projects/addhealth/codebooks/wave1/structur.zip.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that
registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm model was fit to the original data:

desert.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)

Then the faux.desert.high dataset was created by simulating a single network from the above model
fit:

faux.desert.high <- simulate(desert.fit, nsim=1, burnin=1e+8,
constraint = "edges")

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org
https://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip
https://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip

faux.dixon.high 95

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high

faux.dixon.high Faux dixon High School as a network object

Description

This data set represents a simulation of a directed in-school friendship network. The network is
named faux.dixon.high.

Usage

data(faux.dixon.high)

Format

faux.dixon.high is a network object with 248 vertices (students, in this case) and 1197 di-
rected edges (friendship nominations). To obtain additional summary information about it, type
summary(faux.dixon.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org

96 faux.magnolia.high

Source

The data set is simulation based upon an ergm model fit to data from one school community from
the AddHealth Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The school in question (a single school with 7th through 12th grades) was selected from the Add
Health "structure files." Documentation on these files can be found here: https://www.cpc.unc.
edu/projects/addhealth/codebooks/wave1/structur.zip.

The stucture file contains directed out-ties representing each instance of a student who named an-
other student as a friend. Students could nominate up to 5 male and 5 female friends. Note that
registered students who did not take the AddHealth survey or who were not listed by name on the
schools’ student roster are not included in the stucture files. In addition, we removed any students
with missing values for race, grade or sex.

The following ergm model was fit to the original data:

dixon.fit <- ergm(original.net ~ edges + mutual +
absdiff("grade") + nodefactor("race", base=5) + nodefactor("grade", base=3)
+ nodefactor("sex") + nodematch("race", diff = TRUE) + nodematch("grade",
diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1)
+ gwesp(0.1,fixed=T), constraints = ~bd(maxout=10), control =
control.ergm(MCMLE.steplength = .25, MCMC.burnin = 100000, MCMC.interval =
10000, MCMC.samplesize = 2500, MCMLE.maxit = 100), verbose=T)

Then the faux.dixon.high dataset was created by simulating a single network from the above model
fit:

faux.dixon.high <- simulate(dixon.fit, nsim=1, burnin=1e+8,
constraint = "edges")

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.desert.high, faux.mesa.high, faux.magnolia.high

faux.magnolia.high Goodreau’s Faux Magnolia High School as a network object

Description

This data set represents a simulation of an in-school friendship network. The network is named
faux.magnolia.high because the school commnunities on which it is based are large and located in
the southern US.

https://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip
https://www.cpc.unc.edu/projects/addhealth/codebooks/wave1/structur.zip

faux.magnolia.high 97

Usage

data(faux.magnolia.high)

Format

faux.magnolia.high is a network object with 1461 vertices (students, in this case) and 974
undirected edges (mutual friendships). To obtain additional summary information about it, type
summary(faux.magnolia.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

Source

The data set is based upon a model fit to data from two school communities from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

The two schools in question (a junior and senior high school in the same community) were com-
bined into a single network dataset. Students who did not take the AddHealth survey or who were
not listed on the schools’ student rosters were eliminated, then an undirected link was established
between any two individuals who both named each other as a friend. All missing race, grade, and
sex values were replaced by a random draw with weights determined by the size of the attribute
classes in the school.

The following ergm model was fit to the original data:

magnolia.fit <- ergm (magnolia ~ edges +
nodematch("Grade",diff=T) + nodematch("Race",diff=T) +
nodematch("Sex",diff=F) + absdiff("Grade") + gwesp(0.25,fixed=T),
burnin=10000, interval=1000, MCMCsamplesize=2500, maxit=25,
control=control.ergm(steplength=0.25))

Then the faux.magnolia.high dataset was created by simulating a single network from the above
model fit:

faux.magnolia.high <- simulate (magnolia.fit, nsim=1,
burnin=100000000, constraint = "edges")

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org

98 faux.mesa.high

References

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.mesa.high

faux.mesa.high Goodreau’s Faux Mesa High School as a network object

Description

This data set (formerly called “fauxhigh”) represents a simulation of an in-school friendship net-
work. The network is named faux.mesa.high because the school commnunity on which it is based
is in the rural western US, with a student body that is largely Hispanic and Native American.

Usage

data(faux.mesa.high)

Format

faux.mesa.high is a network object with 205 vertices (students, in this case) and 203 undirected
edges (mutual friendships). To obtain additional summary information about it, type summary(faux.mesa.high).

The vertex attributes are Grade, Sex, and Race. The Grade attribute has values 7 through 12, indi-
cating each student’s grade in school. The Race attribute is based on the answers to two questions,
one on Hispanic identity and one on race, and takes six possible values: White (non-Hisp.), Black
(non-Hisp.), Hispanic, Asian (non-Hisp.), Native American, and Other (non-Hisp.)

Licenses and Citation

If the source of the data set does not specified otherwise, this data set is protected by the Creative
Commons License https://creativecommons.org/licenses/by-nc-nd/2.5/.

When publishing results obtained using this data set, the original authors (Resnick et al, 1997)
should be cited. In addition this package should be cited as:

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 statnet: Software tools for the Statistical Modeling of Network Data
https://statnet.org.

https://creativecommons.org/licenses/by-nc-nd/2.5/
https://statnet.org

fix.curved 99

Source

The data set is based upon a model fit to data from one school community from the AddHealth
Study, Wave I (Resnick et al., 1997). It was constructed as follows:

A vector representing the sex of each student in the school was randomly re-ordered. The same was
done with the students’ response to questions on race and grade. These three attribute vectors were
permuted independently. Missing values for each were randomly assigned with weights determined
by the size of the attribute classes in the school.

The following ergm formula was used to fit a model to the original data:

~ edges + nodefactor("Grade") + nodefactor("Race") +
nodefactor("Sex") + nodematch("Grade",diff=TRUE) +
nodematch("Race",diff=TRUE) + nodematch("Sex",diff=FALSE) +
gwdegree(1.0,fixed=TRUE) + gwesp(1.0,fixed=TRUE) + gwdsp(1.0,fixed=TRUE)

The resulting model fit was then applied to a network with actors possessing the permuted attributes
and with the same number of edges as in the original data.

The processes for handling missing data and defining the race attribute are described in Hunter,
Goodreau & Handcock (2008).

References

Hunter D.R., Goodreau S.M. and Handcock M.S. (2008). Goodness of Fit of Social Network Mod-
els, Journal of the American Statistical Association.

Resnick M.D., Bearman, P.S., Blum R.W. et al. (1997). Protecting adolescents from harm. Find-
ings from the National Longitudinal Study on Adolescent Health, Journal of the American Medical
Association, 278: 823-32.

See Also

network, plot.network, ergm, faux.magnolia.high

fix.curved Convert a curved ERGM into a corresponding "fixed" ERGM.

Description

The generic fix.curved converts an ergm object or formula of a model with curved terms to the
variant in which the curved parameters are fixed. Note that each term has to be treated as a special
case.

100 fix.curved

Usage

fix.curved(object, ...)

S3 method for class 'ergm'
fix.curved(object, ...)

S3 method for class 'formula'
fix.curved(object, theta, response = NULL, ...)

Arguments

object An ergm object or an ERGM formula. The curved terms of the given formula
(or the formula used in the fit) must have all of their arguments passed by name.

... Unused at this time.

theta Curved model parameter configuration.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

Details

Some ERGM terms such as gwesp and gwdegree have two forms: a curved form, for which their de-
cay or similar parameters are to be estimated, and whose canonical statistics is a vector of the term’s
components (esp(1), esp(2), . . . and degree(1), degree(2), . . . , respectively) and a "fixed" form
where the decay or similar parameters are fixed, and whose canonical statistic is just the term itself.
It is often desirable to fit a model estimating the curved parameters but simulate the "fixed" statistic.

This function thus takes in a fit or a formula and performs this mapping, returning a "fixed" model
and parameter specification. It only works for curved ERGM terms included with the ergm package.
It does not work with curved terms not included in ergm.

Value

A list with the following components:

formula The "fixed" formula.

theta The "fixed" parameter vector.

See Also

ergm, simulate.ergm

Examples

data(sampson)
gest<-ergm(samplike~edges+gwesp(decay=.5,fixed=FALSE),

florentine 101

control=control.ergm(MCMLE.maxit=3, MCMC.burnin=1024, MCMC.interval=128))
summary(gest)
A statistic for esp(1),...,esp(16)
simulate(gest,output="stats")

tmp<-fix.curved(gest)
tmp
A gwesp() statistic only
simulate(tmp$formula, coef=tmp$theta, output="stats")

florentine Florentine Family Marriage and Business Ties Data as a "network"
object

Description

This is a data set of marriage and business ties among Renaissance Florentine families. The data is
originally from Padgett (1994) via UCINET and stored as a network object.

Usage

data(florentine)

Details

Breiger & Pattison (1986), in their discussion of local role analysis, use a subset of data on the so-
cial relations among Renaissance Florentine families (person aggregates) collected by John Padgett
from historical documents. The two relations are business ties (flobusiness - specifically, recorded
financial ties such as loans, credits and joint partnerships) and marriage alliances (flomarriage).

As Breiger & Pattison point out, the original data are symmetrically coded. This is acceptable
perhaps for marital ties, but is unfortunate for the financial ties (which are almost certainly directed).
To remedy this, the financial ties can be recoded as directed relations using some external measure
of power - for instance, a measure of wealth. Both graphs provide vertex information on (1) wealth
each family’s net wealth in 1427 (in thousands of lira); (2) priorates the number of priorates (seats
on the civic council) held between 1282- 1344; and (3) totalties the total number of business or
marriage ties in the total dataset of 116 families (see Breiger & Pattison (1986), p 239).

Substantively, the data include families who were locked in a struggle for political control of the
city of Florence around 1430. Two factions were dominant in this struggle: one revolved around
the infamous Medicis (9), the other around the powerful Strozzis (15).

Source

Padgett, John F. 1994. Marriage and Elite Structure in Renaissance Florence, 1282-1500. Paper
delivered to the Social Science History Association.

102 g4

References

Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, England.

Breiger R. and Pattison P. (1986). Cumulated social roles: The duality of persons and their alge-
bras, Social Networks, 8, 215-256.

See Also

flo, network, plot.network, ergm

g4 Goodreau’s four node network as a "network" object

Description

This is an example thought of by Steve Goodreau. It is a directed network of four nodes and five
ties stored as a network object.

Usage

data(g4)

Details

It is interesting because the maximum likelihood estimator of the model with out degree 3 in it
exists, but the maximum psuedolikelihood estimator does not.

Source

Steve Goodreau

See Also

florentine, network, plot.network, ergm

Examples

data(g4)
summary(ergm(g4 ~ odegree(3), estimate="MPLE"))
summary(ergm(g4 ~ odegree(3), control=control.ergm(init=0)))

Getting.Started 103

Getting.Started Getting Started with "ergm": Fit, simulate and diagnose exponential-
family models for networks

Description

ergm is a collection of functions to plot, fit, diagnose, and simulate from random graph models. For
a list of functions type: help(package=’ergm’)

For a complete list of the functions, use library(help="ergm") or read the rest of the manual. For
a simple demonstration, use demo(packages="ergm").

When publishing results obtained using this package the original authors are to be cited as given in
citation("ergm"):

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2003 ergm: Fit, simulate and diagnose exponential-family models for networks
https://statnet.org.

All published work derived from this package must cite it. For complete citation information, use
citation(package="ergm").

Details

Recent advances in the statistical modeling of random networks have had an impact on the empirical
study of social networks. Statistical exponential family models (Strauss and Ikeda 1990) are a gen-
eralization of the Markov random network models introduced by Frank and Strauss (1986), which
in turn derived from developments in spatial statistics (Besag, 1974). These models recognize the
complex dependencies within relational data structures. To date, the use of stochastic network mod-
els for networks has been limited by three interrelated factors: the complexity of realistic models,
the lack of simulation tools for inference and validation, and a poor understanding of the inferential
properties of nontrivial models.

This manual introduces software tools for the representation, visualization, and analysis of network
data that address each of these previous shortcomings. The package relies on the network package
which allows networks to be represented in R. The ergm package allows maximum likelihood es-
timates of exponential random network models to be calculated using Markov Chain Monte Carlo.
The package also provides tools for plotting networks, simulating networks and assessing model
goodness-of-fit.

For detailed information on how to download and install the software, go to the ergm website:
https://statnet.org. A tutorial, support newsgroup, references and links to further resources
are provided there.

Author(s)

Mark S. Handcock <handcock@stat.ucla.edu>,
David R. Hunter <dhunter@stat.psu.edu>,
Carter T. Butts <buttsc@uci.edu>,
Steven M. Goodreau <goodreau@u.washington.edu>,

https://statnet.org
https://statnet.org

104 Getting.Started

Pavel N. Krivitsky <krivitsky@stat.psu.edu>, and
Martina Morris <morrism@u.washington.edu>

Maintainer: David R. Hunter <dhunter@stat.psu.edu>

References

Admiraal R, Handcock MS (2007). networksis: Simulate bipartite graphs with fixed marginals
through sequential importance sampling. Statnet Project, Seattle, WA. Version 1, https://statnet.
org.

Bender-deMoll S, Morris M, Moody J (2008). Prototype Packages for Managing and Animating
Longitudinal Network Data: dynamicnetwork and rSoNIA. Journal of Statistical Software, 24(7).
https://www.jstatsoft.org/v24/i07/.

Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion),
Journal of the Royal Statistical Society, B, 36, 192-236.

Boer P, Huisman M, Snijders T, Zeggelink E (2003). StOCNET: an open software system for the
advanced statistical analysis of social networks. Groningen: ProGAMMA / ICS, version 1.4 edition.

Butts CT (2007). sna: Tools for Social Network Analysis. R package version 2.3-2. https:
//cran.r-project.org/package=sna.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). https://www.jstatsoft.org/v24/i02/.

Butts C (2015). network: The Statnet Project (https://statnet.org). R package version 1.12.0,
https://cran.r-project.org/package=network.

Frank, O., and Strauss, D.(1986). Markov graphs. Journal of the American Statistical Association,
81, 832-842.

Goodreau SM, Handcock MS, Hunter DR, Butts CT, Morris M (2008a). A statnet Tutorial. Journal
of Statistical Software, 24(8). https://www.jstatsoft.org/v24/i08/.

Goodreau SM, Kitts J, Morris M (2008b). Birds of a Feather, or Friend of a Friend? Using Ex-
ponential Random Graph Models to Investigate Adolescent Social Networks. Demography, 45, in
press.

Handcock, M. S. (2003) Assessing Degeneracy in Statistical Models of Social Networks, Working
Paper \#39, Center for Statistics and the Social Sciences, University of Washington. https://www.
csss.washington.edu/Papers/wp39.pdf

Handcock MS (2003b). degreenet: Models for Skewed Count Distributions Relevant to Networks.
Statnet Project, Seattle, WA. Version 1.0, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003a). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Statnet Project, Seattle, WA.
Version 2, https://statnet.org.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003b). statnet: Software Tools
for the Statistical Modeling of Network Data. Statnet Project, Seattle, WA. Version 2, https:
//statnet.org.

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics, 15: 565-583.

https://statnet.org
https://statnet.org
https://www.jstatsoft.org/v24/i07/
https://cran.r-project.org/package=sna
https://cran.r-project.org/package=sna
https://www.jstatsoft.org/v24/i02/
https://cran.r-project.org/package=network
https://www.jstatsoft.org/v24/i08/
https://www.csss.washington.edu/Papers/wp39.pdf
https://www.csss.washington.edu/Papers/wp39.pdf
https://statnet.org
https://statnet.org
https://statnet.org
https://statnet.org

geweke.diag.mv 105

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). https://www.jstatsoft.org/v24/i03/.

Krivitsky PN, Handcock MS (2007). latentnet: Latent position and cluster models for statistical
networks. Seattle, WA. Version 2, https://statnet.org.

Morris M, Handcock MS, Hunter DR (2008). Specification of Exponential-Family Random Graph
Models: Terms and Computational Aspects. Journal of Statistical Software, 24(4). https://www.
jstatsoft.org/v24/i04/.

Strauss, D., and Ikeda, M.(1990). Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association, 85, 204-212.

geweke.diag.mv Multivariate version of coda’s coda::geweke.diag().

Description

Rather than comparing each mean independently, compares them jointly. Note that it returns an
htest object, not a geweke.diag object.

Usage

geweke.diag.mv(x, frac1 = 0.1, frac2 = 0.5, split.mcmc.list = FALSE)

Arguments

x an mcmc, mcmc.list, or just a matrix with observations in rows and variables in
columns.

frac1, frac2 the fraction at the start and, respectively, at the end of the sample to compare.
split.mcmc.list

when given an mcmc.list, whether to test each chain individually.

Value

An object of class htest, inheriting from that returned by approx.hotelling.diff.test(), but
with p-value considered to be 0 on insufficient sample size.

Note

If approx.hotelling.diff.test() returns an error, then assume that burn-in is insufficient.

See Also

coda::geweke.diag(), approx.hotelling.diff.test()

https://www.jstatsoft.org/v24/i03/
https://statnet.org
https://www.jstatsoft.org/v24/i04/
https://www.jstatsoft.org/v24/i04/

106 gof

gof Conduct Goodness-of-Fit Diagnostics on a Exponential Family Ran-
dom Graph Model

Description

gof calculates p-values for geodesic distance, degree, and reachability summaries to diagnose the
goodness-of-fit of exponential family random graph models. See ergm for more information on
these models.

Usage

gof(object, ...)

S3 method for class 'ergm'
gof(object, ..., coef = NULL, GOF = NULL,
constraints = NULL, control = control.gof.ergm(), verbose = FALSE)

S3 method for class 'formula'
gof(object, ..., coef = NULL, GOF = NULL,
constraints = ~., control = NULL, unconditional = TRUE,
verbose = FALSE)

S3 method for class 'gof'
print(x, ...)

S3 method for class 'gof'
plot(x, ..., cex.axis = 0.7, plotlogodds = FALSE,
main = "Goodness-of-fit diagnostics", normalize.reachability = FALSE,
verbose = FALSE)

Arguments

object Either a formula or an ergm object. See documentation for ergm.

... Additional arguments, to be passed to lower-level functions.

coef When given either a formula or an object of class ergm, coef are the parameters
from which the sample is drawn. By default set to a vector of 0.

GOF formula; an formula object, of the form ~ <model terms> specifying the statis-
tics to use to diagnosis the goodness-of-fit of the model. They do not need to be
in the model formula specified in formula, and typically are not. Currently sup-
ported terms are the degree distribution (“degree” for undirected graphs, or “ide-
gree” and/or “odegree” for directed graphs), geodesic distances (“distance”),
shared partner distributions (“espartners” and “dspartners”), the triad census
(“triadcensus”), and the terms of the original model (“model”). The default for-
mula for undirected networks is ~ degree + espartners + distance + model,
and the default formula for directed networks is ~ idegree + odegree + espartners + distance +

gof 107

model. By default a “model” term is added to the formula. It is a very useful
overall validity check and a reminder of the statistical variation in the estimates
of the mean value parameters. To omit the “model” term, add “- model” to the
formula.

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being modeled. See the help for similarly-named
argument in ergm for more information. For gof.formula, defaults to uncon-
strained. For gof.ergm, defaults to the constraints with which object was fit-
ted.

control A list to control parameters, constructed using control.gof.formula or control.gof.ergm
(which have different defaults).

verbose Provide verbose information on the progress of the simulation.

unconditional logical; if TRUE, the simulation is unconditional on the observed dyads. if not
TRUE, the simulation is conditional on the observed dyads. This is primarily used
internally when the network has missing data and a conditional GoF is produced.

x an object of class gof for printing or plotting.

cex.axis Character expansion of the axis labels relative to that for the plot.

plotlogodds Plot the odds of a dyad having given characteristics (e.g., reachability, minimum
geodesic distance, shared partners). This is an alternative to the probability of a
dyad having the same property.

main Title for the goodness-of-fit plots.
normalize.reachability

Should the reachability proportion be normalized to make it more comparable
with the other geodesic distance proportions.

Details

A sample of graphs is randomly drawn from the specified model. The first argument is typically the
output of a call to ergm and the model used for that call is the one fit.

For GOF = ~model, the model’s observed sufficient statistics are plotted as quantiles of the simulated
sample. In a good fit, the observed statistics should be near the sample median (0.5).

Value

gof, gof.ergm, and gof.formula return an object of class gof.ergm, which inherits from class
gof. This is a list of the tables of statistics and p-values. This is typically plotted using plot.gof.

Methods (by class)

• ergm: Perform simulation to evaluate goodness-of-fit for a specific ergm() fit.

• formula: Perform simulation to evaluate goodness-of-fit for a model configuration specified
by a formula, coefficient, constraints, and other settings.

• gof: print.gof summaries the diagnostics such as the degree distribution, geodesic distances,
shared partner distributions, and reachability for the goodness-of-fit of exponential family
random graph models. See ergm for more information on these models. (summary.gof is a
deprecated alias that may be repurposed in the future.)

108 hamming

• gof: plot.gof plots diagnostics such as the degree distribution, geodesic distances, shared
partner distributions, and reachability for the goodness-of-fit of exponential family random
graph models. See ergm for more information on these models.

Note

For gof.ergm and gof.formula, default behavior depends on the directedness of the network in-
volved; if undirected then degree, espartners, and distance are used as default properties to examine.
If the network in question is directed, “degree” in the above is replaced by idegree and odegree.

See Also

ergm(), network(), simulate.ergm(), summary.ergm()

Examples

data(florentine)
gest <- ergm(flomarriage ~ edges + kstar(2))
gest
summary(gest)

test the gof.ergm function
gofflo <- gof(gest)
gofflo

Plot all three on the same page
with nice margins
par(mfrow=c(1,3))
par(oma=c(0.5,2,1,0.5))
plot(gofflo)

And now the log-odds
plot(gofflo, plotlogodds=TRUE)

Use the formula version of gof
gofflo2 <-gof(flomarriage ~ edges + kstar(2), coef=c(-1.6339, 0.0049))
plot(gofflo2)

hamming hamming (disambiguation)

Description

hamming may refer to:

• An ERGM statistic (help("hamming-term"))
• A ERGM sample space constraint (help("hamming-constraint"))

is.curved 109

is.curved Testing for curved exponential family

Description

These functions test whether an ERGM fit, formula, or some other object represents a curved expo-
nential family.

The method for NULL always returns FALSE by convention.

Usage

is.curved(object, ...)

S3 method for class 'NULL'
is.curved(object, ...)

S3 method for class 'formula'
is.curved(object, response = NULL, basis = NULL, ...)

S3 method for class 'ergm'
is.curved(object, ...)

Arguments

object An ergm object or an ERGM formula.

... Arguments passed on to lower-level functions.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

basis See ergm().

Details

Curvature is checked by testing if all model parameters are canonical.

Value

TRUE if the object represents a curved exponential family; FALSE otherwise.

110 is.durational

is.durational Testing for durational dependent models

Description

These functions test whether an ERGM model or formula is durational dependent or not. If the
formula or model does not include any terms that need information about the duration of existing
ties, the ergm proceass can use more efficient internal data structures.

The method for NULL always returns FALSE by convention.

The method for character always returns FALSE by convention.

Usage

is.durational(object, ...)

S3 method for class 'NULL'
is.durational(object, ...)

S3 method for class 'character'
is.durational(object, ...)

S3 method for class 'formula'
is.durational(object, response = NULL, basis = NULL,
...)

Arguments

object An ergm object or an ERGM formula, or some characters, e.g., object="all" for
monitoring purpose.

... Unused at this time.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

basis See ergm().

Value

TRUE if the ERGM terms in the formula or model are durational dependent ; FALSE otherwise.

is.dyad.independent 111

is.dyad.independent Testing for dyad-independence

Description

These functions test whether an ERGM fit, a formula, or some other object represents a dyad-
independent model.

The method for NULL always returns FALSE by convention.

Usage

is.dyad.independent(object, ...)

S3 method for class 'NULL'
is.dyad.independent(object, ...)

S3 method for class 'formula'
is.dyad.independent(object, response = NULL,
basis = NULL, ...)

S3 method for class 'ergm_conlist'
is.dyad.independent(object, object.obs = NULL,
...)

S3 method for class 'ergm'
is.dyad.independent(object, ...)

Arguments

object The object to be tested for dyadic independence.

... Unused at this time.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

basis See ergm.

object.obs For the ergm_conlist method, the observed data constraint.

Details

Dyad independence is determined by checking if all of the constituent parts of the object (formula,
ergm terms, constraints, etc.) are flagged as dyad-independent.

Value

TRUE if the model implied by the object is dyad-independent; FALSE otherwise.

112 is.inCH

is.inCH Determine whether a vector is in the closure of the convex hull of some
sample of vectors

Description

is.inCH returns TRUE if and only if p is contained in the convex hull of the points given as the rows
of M. If p is a matrix, each row is tested individually, and TRUE is returned if all rows are in the
convex hull.

Usage

is.inCH(p, M, verbose = FALSE, ...)

Arguments

p A d-dimensional vector or a matrix with d columns

M An r by d matrix. Each row of M is a d-dimensional vector.

verbose A logical vector indicating whether to print progress

... arguments passed directly to linear program solver

Details

The d-vector p is in the convex hull of the d-vectors forming the rows of M if and only if there exists
no separating hyperplane between p and the rows of M. This condition may be reworded as follows:

Letting q = (1p′)′ and L = (1M), if the maximum value of z′q for all z such that z′L ≤ 0
equals zero (the maximum must be at least zero since z=0 gives zero), then there is no separating
hyperplane and so p is contained in the convex hull of the rows of M. So the question of interest
becomes a constrained optimization problem.

Solving this problem relies on the package lpSolve to solve a linear program. We may put the
program in "standard form" by writing z = a − b, where a and b are nonnegative vectors. If we
write x = (a′b′)′, we obtain the linear program given by:

Minimize (−q′q′)x subject to x′(L − L) ≤ 0 and x ≥ 0. One additional constraint arises because
whenever any strictly negative value of (−q′q′)x may be achieved, doubling x arbitrarily many
times makes this value arbitrarily large in the negative direction, so no minimizer exists. Therefore,
we add the constraint (q′ − q′)x ≤ 1.

This function is used in the "stepping" algorithm of Hummel et al (2012).

Value

Logical, telling whether p is (or all rows of p are) in the closed convex hull of the points in M.

kapferer 113

References

• https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html

• Hummel, R. M., Hunter, D. R., and Handcock, M. S. (2012), Improving Simulation-Based
Algorithms for Fitting ERGMs, Journal of Computational and Graphical Statistics, 21: 920-
939.

kapferer Kapferer’s tailor shop data

Description

This well-known social network dataset, collected by Bruce Kapferer in Zambia from June 1965 to
August 1965, involves interactions among workers in a tailor shop as observed by Kapferer himself.

Usage

data(kapferer)

Format

Two network objects, kapferer and kapferer2. The kapferer dataset contains only the 39 indi-
viduals who were present at both data-collection time periods. However, these data only reflect data
collected during the first period. The individuals’ names are included as a nodal covariate called
names.

Details

An interaction is defined by Kapferer as "continuous uninterrupted social activity involving the
participation of at least two persons"; only transactions that were relatively frequent are recorded.
All of the interactions in this particular dataset are "sociational", as opposed to "instrumental".
Kapferer explains the difference (p. 164) as follows:

"I have classed as transactions which were sociational in content those where the activity was
markedly convivial such as general conversation, the sharing of gossip and the enjoyment of a drink
together. Examples of instrumental transactions are the lending or giving of money, assistance at
times of personal crisis and help at work."

Kapferer also observed and recorded instrumental transactions, many of which are unilateral (di-
rected) rather than reciprocal (undirected), though those transactions are not recorded here. In
addition, there was a second period of data collection, from September 1965 to January 1966, but
these data are also not recorded here. All data are given in Kapferer’s 1972 book on pp. 176-179.

During the first time period, there were 43 individuals working in this particular tailor shop; how-
ever, the better-known dataset includes only those 39 individuals who were present during both time
collection periods. (Missing are the workers named Lenard, Peter, Lazarus, and Laurent.) Thus,
we give two separate network datasets here: kapferer is the well-known 39-individual dataset,
whereas kapferer2 is the full 43-individual dataset.

https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node22.html

114 logLik.ergm

Source

Original source: Kapferer, Bruce (1972), Strategy and Transaction in an African Factory, Manch-
ester University Press.

logLik.ergm A logLik method for ergm fits.

Description

A function to return the log-likelihood associated with an ergm fit, evaluating it if necessary. If the
log-likelihood was not computed for object, produces an error unless eval.loglik=TRUE.

Usage

S3 method for class 'ergm'
logLik(object, add = FALSE, force.reeval = FALSE,
eval.loglik = add || force.reeval, control = control.logLik.ergm(),
...)

Arguments

object An ergm fit, returned by ergm.

add Logical: If TRUE, instead of returning the log-likelihood, return object with
log-likelihood value set.

force.reeval Logical: If TRUE, reestimate the log-likelihood even if object already has an
estiamte.

eval.loglik Logical: If TRUE, evaluate the log-likelihood if not set on object.

control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

... Other arguments to the likelihood functions.

Value

The form of the output of logLik.ergm depends on add: add=FALSE (the default), a logLik object.
If add=TRUE (the default), an ergm object with the log-likelihood set.

As of version 3.1, all likelihoods for which logLikNull is not implemented are computed relative
to the reference measure. (I.e., a null model, with no terms, is defined to have likelihood of 0, and
all other models are defined relative to that.)

References

Hunter, D. R. and Handcock, M. S. (2006) Inference in curved exponential family models for net-
works, Journal of Computational and Graphical Statistics.

See Also

logLik, logLikNull, ergm.bridge.llr, ergm.bridge.dindstart.llk

logLikNull 115

Examples

See help(ergm) for a description of this model. The likelihood will
not be evaluated.
data(florentine)
Not run:
The default maximum number of iterations is currently 20. We'll only
use 2 here for speed's sake.
gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE)

gest <- ergm(flomarriage ~ kstar(1:2) + absdiff("wealth") + triangle, eval.loglik=FALSE,
control=control.ergm(MCMLE.maxit=2))

Log-likelihood is not evaluated, so no deviance, AIC, or BIC:
summary(gest)
Evaluate the log-likelihood and attach it to the object.

The default number of bridges is currently 20. We'll only use 3 here
for speed's sake.
gest.logLik <- logLik(gest, add=TRUE)

gest.logLik <- logLik(gest, add=TRUE, control=control.logLik.ergm(nsteps=3))
Deviances, AIC, and BIC are now shown:
summary(gest.logLik)
Null model likelihood can also be evaluated, but not for all constraints:
logLikNull(gest) # == network.dyadcount(flomarriage)*log(1/2)

End(Not run)

logLikNull Calculate the null model likelihood

Description

Calculate the null model likelihood

Usage

logLikNull(object, ...)

S3 method for class 'ergm'
logLikNull(object, control = control.logLik.ergm(), ...)

Arguments

object a fitted model.
... further arguments to lower-level functions.

logLikNull computes, when possible the log-probability of the data under the
null model (reference distribution).

control A list of control parameters for algorithm tuning. Constructed using control.logLik.ergm.

116 mcmc.diagnostics

Value

logLikNull returns an object of type logLik if it is able to compute the null model probability, and
NA otherwise.

Methods (by class)

• ergm: A method for ergm fits; currently only implemented for binary ERGMs with dyad-
independent sample-space constraints.

mcmc.diagnostics Conduct MCMC diagnostics on a model fit

Description

This function prints diagnistic information and creates simple diagnostic plots for MCMC sampled
statistics produced from a fit.

Usage

mcmc.diagnostics(object, ...)

S3 method for class 'ergm'
mcmc.diagnostics(object, center = TRUE, esteq = TRUE,
vars.per.page = 3, ...)

Arguments

object A model fit object to be diagnosed.

... Additional arguments, to be passed to plotting functions.

center Logical: If TRUE, center the samples on the observed statistics.

esteq Logical: If TRUE, for statistics corresponding to curved ERGM terms, summa-
rize the curved statistics by their estimating equation values (evaluated at the
MLE of any curved parameters) (i.e., η′I(θ̂) · gI(y) for I being indices of the
canonical parameters in question), rather than the canonical (sufficient) vectors
of the curved statistics (gI(y)).

vars.per.page Number of rows (one variable per row) per plotting page. Ignored if latticeExtra
package is not installed.

Details

A pair of plots are produced for each statistic:a trace of the sampled output statistic values on the
left and density estimate for each variable in the MCMC chain on the right. Diagnostics printed to
the console include correlations and convergence diagnostics.

For ergm() specifically, recent changes in the estimation algorithm mean that these plots can no
longer be used to ensure that the mean statistics from the model match the observed network statis-
tics. For that functionality, please use the GOF command: gof(object, GOF=~model).

mcmc.diagnostics 117

In fact, an ergm output object contains the matrix of statistics from the MCMC run as component
$sample. This matrix is actually an object of class mcmc and can be used directly in the coda
package to assess MCMC convergence. Hence all MCMC diagnostic methods available in coda are
available directly. See the examples and https://www.mrc-bsu.cam.ac.uk/software/bugs/
the-bugs-project-winbugs/coda-readme/.

More information can be found by looking at the documentation of ergm.

Value

mcmc.diagnostics.ergm returns some degeneracy information, if it is included in the original
object. The function is mainly used for its side effect, which is to produce plots and summary
output based on those plots.

Methods (by class)

• ergm:

References

Markov University of Washington, run with diagnostics: Implementation strategies for Markov
chain Monte Carlo. Statistical Science, 7, 493-497.

Raftery, A.E. and Lewis, S.M. (1995). The number of iterations, convergence diagnostics and
generic Metropolis algorithms. In Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegel-
halter and S. Richardson, eds.). London, U.K.: Chapman and Hall.

This function is based on the coda package It is based on the the R function raftery.diag in
coda. raftery.diag, in turn, is based on the FORTRAN program gibbsit written by Steven
Lewis which is available from the Statlib archive.

See Also

ergm, network package, coda package, summary.ergm

Examples

Not run:
#
data(florentine)
#
test the mcmc.diagnostics function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)

#
Plot the probabilities first
#
mcmc.diagnostics(gest)
#
Use coda directly

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/
https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/coda-readme/

118 network.list

#
library(coda)
#
plot(gest$sample, ask=FALSE)
#
A full range of diagnostics is available
using codamenu()
#

End(Not run)

molecule Synthetic network with 20 nodes and 28 edges

Description

This is a synthetic network of 20 nodes that is used as an example within the ergm documentation.
It has an interesting elongated shape

• reminencent of a chemical molecule. It is stored as a network object.

Usage

data(molecule)

See Also

florentine, sampson, network, plot.network, ergm

network.list A convenience container for a list of network objects, output by
simulate.ergm among others.

Description

A convenience container for a list of network objects, output by simulate.ergm among others.

Usage

network.list(object, ...)

S3 method for class 'network.list'
print(x, stats.print = FALSE, ...)

S3 method for class 'network.list'
summary(object, stats.print = TRUE,
net.print = FALSE, net.summary = FALSE, ...)

node-attr 119

Arguments

object, x a list of networks or a network.list object.

... for network.list, additional attributes to be set on the network list; for others,
arguments passed down to lower-level functions.

stats.print Logical: If TRUE, print network statistics.

net.print Logical: If TRUE, print network overviews.

net.summary Logical: If TRUE, print network summaries.

Methods (by generic)

• print: A print() method for network lists.

• summary: A summary() method for network lists.

See Also

simulate.ergm

Examples

Draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16, density=0.1, directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a model with edges and 2-star terms
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8, 0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=100000,
MCMC.interval=1000))

print(g.sim)
summary(g.sim)

node-attr Specifying nodal attributes and their levels

Description

This document describes the ways to specify nodal attributes or functions of nodal attributes and
which levels for categorical factors to include. For the helper functions to facilitate this, see
node-attr-api.

120 node-attr

Details

Term nodal attribute arguments, typically called attr, attrs, by, or on are interpreted as follows:

a character string Extract the vertex attribute with this name.

a character vector of length > 1 Extract the vertex attributes and paste them together, separated
by dots if the term expects categorical attributes and (typically) combine into a covariate ma-
trix if it expects quantitative attributes.

a function The function is called on the LHS network, expected to return a vector or matrix of
appropriate dimension. (Shorter vectors and matrix columns will be recycled as needed.)

a formula The expression on the RHS of the formula is evaluated in an environment of the ver-
tex attributes of the network, expected to return a vector or matrix of appropriate dimension.
(Shorter vectors and matrix columns will be recycled as needed.) Within this expression, the
network itself accessible as either . or .nw. For example, nodecov(~abs(Grade-mean(Grade))/network.size(.))
would return the absolute difference of each actor’s "Grade" attribute from its network-wide
mean, divided by the network size.

For categorical attributes, to select which levels are of interest and their ordering, use the argument
levels. Selection of nodes (from the appropriate vector of nodal indices) is likewise handled as the
selection of levels, using the argument nodes. These arguments are interpreted as follows:

an expression wrapped in I() Use the given list of levels as is.

a numeric or logical vector Used for indexing of a list of all possible levels (typically, unique val-
ues of the attribute) in default older (typically lexicographic), i.e., sort(unique(attr))[levels].
In particular, levels=TRUE will retain all levels. Negative values exclude. To specify numeric
or logical levels literally, wrap in I().

NULL Retain all possible levels; usually equivalent to passing TRUE.

a character vector Use as is.

a function The function is called on the list of unique values of the attribute, the values of the at-
tribute themselves, and the network itself, depending on its arity. Its return value is interpreted
as above.

a formula The expression on the RHS of the formula is evaluated in an environment in which the
network itself is accessible as .nw, the list of unique values of the attribute as . or as .levels,
and the attribute vector itself as .attr. Its return value is interpreted as above.

Note that levels or nodes often has a default that is sensible for the term in question.

Examples

data(faux.mesa.high)

Activity by grade with a baseline grade excluded:
summary(faux.mesa.high~nodefactor(~Grade))
Retain all levels:
summary(faux.mesa.high~nodefactor(~Grade, levels=TRUE)) # or levels=NULL

Mixing between lower and upper grades:
summary(faux.mesa.high~mm(~Grade>=10))

nparam 121

Mixing between grades 7 and 8 only:
summary(faux.mesa.high~mm("Grade", levels=I(c(7,8))))
or
summary(faux.mesa.high~mm("Grade", levels=1:2))
or using levels2 (see ? mm) to filter the combinations of levels,
summary(faux.mesa.high~mm("Grade",

levels2=~sapply(.levels,
function(l)

l[[1]]%in%c(7,8) && l[[2]]%in%c(7,8))))

nparam Length of the parameter vector associated with an object or with its
terms.

Description

This is a generic that returns the number of parameters associated with a model or a model fit.

Usage

nparam(object, ...)

Default S3 method:
nparam(object, ...)

S3 method for class 'ergm'
nparam(object, offset = NA, ...)

Arguments

object An object for which number of parameters is defined.

... Additional arguments to methods.

offset If NA (the default), all model terms are counted; if TRUE, only offset terms are
counted; and if FALSE, offset terms are skipped.

Methods (by class)

• default: By default, the length of the coef() vector is returned.

• ergm: A method to return the number of parameters of an ergm fit.

122 print.summary.ergm

param_names Names of the parameters associated with an object.

Description

This is a generic that returns a vector giving the names of the parameters associated with a model
or a model fit.

Usage

param_names(object, ...)

Default S3 method:
param_names(object, ...)

Arguments

object An object for which parameter names are defined.

... Additional arguments to methods.

Methods (by class)

• default: By default, the names of the coef() vector is returned.

print.summary.ergm Summarizing ERGM Model Fits

Description

summary method for ergm fits.

Usage

S3 method for class 'summary.ergm'
print(x, digits = max(3, getOption("digits") - 3),
correlation = FALSE, covariance = FALSE,
signif.stars = getOption("show.signif.stars"), eps.Pvalue = 1e-04,
print.header = TRUE, print.formula = TRUE, print.fitinfo = TRUE,
print.coefmat = TRUE, print.message = TRUE, print.deviances = TRUE,
print.drop = TRUE, print.offset = TRUE, print.degeneracy = TRUE,
...)

S3 method for class 'ergm'
summary(object, ..., correlation = FALSE,
covariance = FALSE, total.variation = TRUE)

print.summary.ergm 123

Arguments

x object of class summary.ergm returned by summary.ergm().

digits Significant digits for coefficients

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

covariance logical; if TRUE, the covariance matrix of the estimated parameters is returned
and printed.

signif.stars whether to print dots and stars to signify statistical significance. See print.summary.lm().

eps.Pvalue p-values below this level will be printed as "<eps.Pvalue".
print.header, print.formula, print.fitinfo, print.coefmat, print.message, print.deviances, print.drop, print.offset, print.degeneracy

which components of the fit summary to print.

... Arguments to logLik.ergm

object an object of class "ergm", usually, a result of a call to ergm.
total.variation

logical; if TRUE, the standard errors reported in the Std. Error column are
based on the sum of the likelihood variation and the MCMC variation. If FALSE
only the likelihood varuation is used. The p-values are based on this source of
variation.

Details

summary.ergm tries to be smart about formatting the coefficients, standard errors, etc.

Value

The function summary.ergm computes and returns a list of summary statistics of the fitted ergm
model given in object. Note that for backwards compatibility, it returns two coefficient tables:
$coefs which does not contain the z-statistics and $coefficeints which does (and is therefore
more similar to those returned by summary.lm()).

See Also

network, ergm, print.ergm. The model fitting function ergm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

data(florentine)

x <- ergm(flomarriage ~ density)
summary(x)

124 samplk

samplk Longitudinal networks of positive affection within a monastery as a
"network" object

Description

Three network objects containing the "liking" nominations of Sampson’s (1969) monks at the three
time points.

Usage

data(samplk)

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident
as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the
expulsion of four monks– namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the
leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but
one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark.
Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother
Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original
group.

Of particular interest are the data on positive affect relations ("liking," using the terminology later
adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each
of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on
"liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B
among these top choices.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort had entered the monastery near
the end of the study but before the major conflict began. These three time points are labeled T2,
T3, and T4 in Tables D5 through D16 in the appendices of Sampson’s 1969 dissertation. and the
corresponding network data sets are named samplk1, samplk2, and samplk3, respectively.

See also the data set sampson containing the time-aggregated graph samplike.

samplk3 is a data set of Hoff, Raftery and Handcock (2002).

The data sets are stored as network objects with three vertex attributes:

group Groups of novices as classified by Sampson, that is, "Loyal", "Outcasts", and "Turks", but
with a fourth group called the "Waverers" by White et al. (1975) that comprises two of the
original Loyal opposition and one of the original Outcasts. See the samplike data set for the
original classifications of these three waverers.

cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to
the monastery.

vertex.names The given names of the novices. NB: These names have been corrected as of ergm
version 3.6.1.

sampson 125

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and
Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small
piece of the data collected by Sampson.

This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original
vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm versions 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2,
and samplk3 networks reflected the original Sampson (1969) ordering of the names even though the
vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version
3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables
D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold,
Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the
dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the
order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter,
Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias,
Simplicius.

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

sampson, florentine, network, plot.network, ergm

sampson Cumulative network of positive affection within a monastery as a "net-
work" object

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

126 sampson

Description

A network object containing the cumulative "liking" nominations of Sampson’s (1969) monks over
the three time points.

Usage

data(sampson)

Details

Sampson (1969) recorded the social interactions among a group of monks while he was a resident
as an experimenter at the cloister. During his stay, a political "crisis in the cloister" resulted in the
expulsion of four monks– namely, the three "outcasts," Brothers Elias, Simplicius, Basil, and the
leader of the "young Turks," Brother Gregory. Not long after Brother Gregory departed, all but
one of the "young Turks" left voluntarily: Brothers John Bosco, Albert, Boniface, Hugh, and Mark.
Then, all three of the "waverers" also left: First, Brothers Amand and Victor, then later Brother
Romuald. Eventually, Brother Peter and Brother Winfrid also left, leaving only four of the original
group.

Of particular interest are the data on positive affect relations ("liking," using the terminology later
adopted by White et al. (1976)), in which each monk was asked if he had positive relations to each
of the other monks. Each monk ranked only his top three choices (or four, in the case of ties) on
"liking". Here, we consider a directed edge from monk A to monk B to exist if A nominated B
among these top choices.

The data were gathered at three times to capture changes in group sentiment over time. They
represent three time points in the period during which a new cohort had entered the monastery near
the end of the study but before the major conflict began. These three time points are labeled T2, T3,
and T4 in Tables D5 through D16 in the appendices of Sampson’s 1969 dissertation. The samplike
data set is the time-aggregated network. Thus, a tie from monk A to monk B exists if A nominated
B as one of his three (or four, in case of ties) best friends at any of the three time points.

See also the data sets samplk1, samplk2, and samplk3, containing the networks at each of the three
individual time points.

The data set is stored as a network object with three vertex attributes:

group Groups of novices as classified by Sampson: "Loyal", "Outcasts", and "Turks".

cloisterville An indicator of attendance in the minor seminary of "Cloisterville" before coming to
the monastery.

vertex.names The given names of the novices. NB: These names have been corrected as of ergm
version 3.6.1; see details below.

In addition, the data set has an edge attribute, nominations, giving the number of times (out of 3)
that monk A nominated monk B.

This data set is standard in the social network analysis literature, having been modeled by Holland
and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), Fienberg, Meyer, and
Wasserman (1981), and Hoff, Raftery, and Handcock (2002), among others. This is only a small
piece of the data collected by Sampson.

This data set was updated for version 2.5 (March 2012) to add the cloisterville variable and
refine the names. This information is from de Nooy, Mrvar, and Batagelj (2005). The original

san 127

vertex names were: Romul_10, Bonaven_5, Ambrose_9, Berth_6, Peter_4, Louis_11, Victor_8,
Winf_12, John_1, Greg_2, Hugh_14, Boni_15, Mark_7, Albert_16, Amand_13, Basil_3, Elias_17,
Simp_18. The numbers indicate the ordering used in the original dissertation of Sampson (1969).

Mislabeling in Versions Prior to 3.6.1

In ergm version 3.6.0 and earlier, The adjacency matrices of the samplike, samplk1, samplk2, and
samplk3 networks reflected the original Sampson (1969) ordering of the names even though the
vertex labels used the name order of de Nooy, Mrvar, and Batagelj (2005). That is, in ergm version
3.6.0 and earlier, the vertices were mislabeled. The correct order is the same one given in Tables
D5, D9, and D13 of Sampson (1969): John Bosco, Gregory, Basil, Peter, Bonaventure, Berthold,
Mark, Victor, Ambrose, Romauld (Sampson uses both spellings "Romauld" and "Ramauld" in the
dissertation), Louis, Winfrid, Amand, Hugh, Boniface, Albert, Elias, Simplicius. By contrast, the
order given in ergm version 3.6.0 and earlier is: Ramuald, Bonaventure, Ambrose, Berthold, Peter,
Louis, Victor, Winfrid, John Bosco, Gregory, Hugh, Boniface, Mark, Albert, Amand, Basil, Elias,
Simplicius.

Source

Sampson, S.~F. (1968), A novitiate in a period of change: An experimental and case study of
relationships, Unpublished Ph.D. dissertation, Department of Sociology, Cornell University.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

References

White, H.C., Boorman, S.A. and Breiger, R.L. (1976). Social structure from multiple networks. I.
Blockmodels of roles and positions. American Journal of Sociology, 81(4), 730-780.

Wouter de Nooy, Andrej Mrvar, Vladimir Batagelj (2005) Exploratory Social Network Analysis
with Pajek, Cambridge: Cambridge University Press

See Also

florentine, network, plot.network, ergm

san Use Simulated Annealing to attempt to match a network to a vector of
mean statistics

Description

This function attempts to find a network or networks whose statistics match those passed in via the
target.stats vector.

http://vlado.fmf.uni-lj.si/pub/networks/data/esna/sampson.htm

128 san

Usage

san(object, ...)

S3 method for class 'formula'
san(object, response = NULL, reference = ~Bernoulli,
constraints = ~., target.stats = NULL, nsim = NULL, basis = NULL,
output = c("network", "edgelist", "pending_update_network"),
only.last = TRUE, control = control.san(), verbose = FALSE, ...)

S3 method for class 'ergm_model'
san(object, response = NULL,
reference = ~Bernoulli, constraints = ~., target.stats = NULL,
nsim = NULL, basis = NULL, output = c("network", "edgelist",
"pending_update_network"), only.last = TRUE, control = control.san(),
verbose = FALSE, ...)

S3 method for class 'ergm'
san(object, formula = object$formula,
constraints = object$constraints, target.stats = object$target.stats,
nsim = NULL, basis = NULL, output = c("network", "edgelist",
"pending_update_network"), only.last = TRUE,
control = object$control$SAN.control, verbose = FALSE, ...)

Arguments

object Either a formula or an ergm object. The formula should be of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network object.
For the details on the possible <model terms>, see ergm-terms. To create a
network object in , use the network() function, then add nodal attributes to it
using the %v% operator if necessary.

... Further arguments passed to other functions.

response Name of the edge attribute whose value is to be modeled. Defaults to NULL for
simple presence or absence.

reference One-sided formula whose RHS gives the reference measure to be used. (De-
faults to ~Bernoulli.)

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

target.stats A vector of the same length as the number of terms implied by the formula,
which is either object itself in the case of san.formula or object$formula in
the case of san.ergm.

nsim Number of networks to generate. Deprecated: just use replicate().

basis If not NULL, a network object used to start the Markov chain. If NULL, this is
taken to be the network named in the formula.

san 129

output Character, one of "network" (default), "edgelist", or "pending_update_network":
determines the output format. Partial matching is performed.

only.last if TRUE, only return the last network generated; otherwise, return a network.list
with nsim networks.

control A list of control parameters for algorithm tuning; see control.san.

verbose Logical or numeric giving the level of verbosity. Higher values produce more
verbose output.

formula (By default, the formula is taken from the ergm object. If a different formula
object is wanted, specify it here.

Value

A network or list of networks that hopefully have network statistics close to the target.stats
vector.

Methods (by class)

• formula: Sufficient statistics are specified by a formula.

• ergm_model: A lower-level function that expects a pre-initialized ergm_model.

• ergm: Sufficient statistics and other settings are inherited from the ergm fit unless overridden.

Examples

initialize x to a random undirected network with 50 nodes and a density of 0.1
x <- network(50, density = 0.05, directed = FALSE)

try to find a network on 50 nodes with 300 edges, 150 triangles,
and 1250 4-cycles, starting from the network x
y <- san(x ~ edges + triangles + cycle(4), target.stats = c(300, 150, 1250))

check results
summary(y ~ edges + triangles + cycle(4))

initialize x to a random directed network with 50 nodes
x <- network(50)

add vertex attributes
x %v% 'give' <- runif(50, 0, 1)
x %v% 'take' <- runif(50, 0, 1)

try to find a set of 100 directed edges making the outward sum of
'give' and the inward sum of 'take' both equal to 62.5, so in
edges (i,j) the node i tends to have above average 'give' and j
tends to have above average 'take'
y <- san(x ~ edges + nodeocov('give') + nodeicov('take'), target.stats = c(100, 62.5, 62.5))

check results
summary(y ~ edges + nodeocov('give') + nodeicov('take'))

130 search.ergmTerms

initialize x to a random undirected network with 50 nodes
x <- network(50, directed = FALSE)

add a vertex attribute
x %v% 'popularity' <- runif(50, 0, 1)

try to find a set of 100 edges making the total sum of
popularity(i) and popularity(j) over all edges (i,j) equal to
125, so nodes with higher popularity are more likely to be
connected to other nodes
y <- san(x ~ edges + nodecov('popularity'), target.stats = c(100, 125))

check results
summary(y ~ edges + nodecov('popularity'))

creates a network with denser "core" spreading out to sparser
"periphery"
plot(y)

search.ergmTerms Search the ergm-terms documentation for appropriate terms

Description

Searches through the ergm.terms help page and prints out a list of terms appropriate for the spec-
ified network’s structural constraints, optionally restricting by additional categories and keyword
matches.

Usage

search.ergmTerms(keyword, net, categories, name)

Arguments

keyword optional character keyword to search for in the text of the term descriptions.
Only matching terms will be returned. Matching is case insensitive.

net a network object that the term would be applied to, used as template to determine
directedness, bipartite, etc

categories optional character vector of category tags to use to restrict the results (i.e. ’curved’,
’triad-related’)

name optional character name of a specific term to return

Details

Uses grep internally to match keywords against the term description, so keywords is currently
matched as a single phrase. Category tags will only return a match if all of the specified tags are
included in the term.

simulate.ergm 131

Value

prints out the name and short description of matching terms, and invisibly returns them as a list. If
name is specified, prints out the full definition for the named term.

Author(s)

skyebend@uw.edu

See Also

See also ergm.terms for the complete documentation

Examples

find all of the terms that mention triangles
search.ergmTerms('triangle')

two ways to search for bipartite terms:

search using a bipartite net as a template
myNet<-network.initialize(5,bipartite=3)
search.ergmTerms(net=myNet)

or request the bipartite category
search.ergmTerms(categories='bipartite')

search on multiple categories
search.ergmTerms(categories=c('bipartite','dyad-independent'))

print out the content for a specific term
search.ergmTerms(name='b2factor')

simulate.ergm Draw from the distribution of an Exponential Family Random Graph
Model

Description

simulate is used to draw from exponential family random network models. See ergm for more
information on these models.

The method for ergm objects inherits the model, the coefficients, the response attribute, the ref-
erence, the constraints, and most simulation parameters from the model fit, unless overridden by
passing them explicitly. Unless overridden, the simulation is initialized with a random draw from
the fitted model, saved by ergm().

132 simulate.ergm

Usage

S3 method for class 'formula'
simulate(object, nsim = 1, seed = NULL, coef,
response = NULL, reference = ~Bernoulli, constraints = ~.,
monitor = NULL, basis = NULL, statsonly = FALSE, esteq = FALSE,
output = c("network", "stats", "edgelist", "pending_update_network"),
simplify = TRUE, sequential = TRUE,
control = control.simulate.formula(), verbose = FALSE, ...,
do.sim = TRUE)

S3 method for class 'ergm_model'
simulate(object, nsim = 1, seed = NULL, coef,
response = NULL, reference = ~Bernoulli, constraints = ~.,
monitor = NULL, basis = NULL, esteq = FALSE,
output = c("network", "stats", "edgelist", "pending_update_network"),
simplify = TRUE, sequential = TRUE,
control = control.simulate.formula(), verbose = FALSE, ...)

S3 method for class 'ergm'
simulate(object, nsim = 1, seed = NULL,
coef = object$coef, response = object$response,
reference = object$reference, constraints = object$constraints,
monitor = NULL, basis = object$newnetwork, statsonly = FALSE,
esteq = FALSE, output = c("network", "stats", "edgelist",
"pending_update_network"), simplify = TRUE, sequential = TRUE,
control = control.simulate.ergm(), verbose = FALSE, ...)

Arguments

object Either a formula or an ergm object. The formula should be of the form y ~ <model terms>,
where y is a network object or a matrix that can be coerced to a network object.
For the details on the possible <model terms>, see ergm-terms. To create a
network object in , use the network() function, then add nodal attributes to it
using the %v% operator if necessary.

nsim Number of networks to be randomly drawn from the given distribution on the
set of all networks, returned by the Metropolis-Hastings algorithm.

seed Seed value (integer) for the random number generator. See set.seed.

coef Vector of parameter values for the model from which the sample is to be drawn.
If object is of class ergm, the default value is the vector of estimated coeffi-
cients.

response Name of the edge attribute whose value is to be modeled in the valued ERGM
framework. Defaults to NULL for simple presence or absence, modeled via a
binary ERGM.

reference A one-sided formula specifying the reference measure (h(y)) to be used. (De-
faults to ~Bernoulli.) See help for ERGM reference measures implemented in
the ergm package.

simulate.ergm 133

constraints A one-sided formula specifying one or more constraints on the support of the
distribution of the networks being simulated. See the documentation for a simi-
lar argument for ergm and see list of implemented constraints for more informa-
tion. For simulate.formula, defaults to no constraints. For simulate.ergm,
defaults to using the same constraints as those with which object was fitted.

monitor A one-sided formula specifying one or more terms whose value is to be moni-
tored. These terms are appeneded to the model, along with a coefficient of 0, so
their statistics are returned. An ergm_model objectcan be passed as well.

basis An optional network object to start the Markov chain. If omitted, the default
is the left-hand-side of the formula. If neither a left-hand-side nor a basis is
present, an error results because the characteristics of the network (e.g., size and
directedness) must be specified.

statsonly Logical: If TRUE, return only the network statistics, not the network(s) them-
selves. Deprecated in favor of output=.

esteq Logical: If TRUE, compute the sample estimating equations of an ERGM: if
the model is non-curved, all non-offset statistics are returned either way, but if
the model is curved, the score estimating function values (3.1) by Hunter and
Handcock (2006) are returned instead.

output Character, one of "network" (default), "stats", "edgelist", or "pending_update_network":
determines the output format. Partial matching is performed.

simplify Logical: If TRUE the output is "simplified": sampled networks are returned in a
single list, statistics from multiple parallel chains are stacked, etc.. This makes
it consistent with behavior prior to ergm 3.10.

sequential Logical: If FALSE, each of the nsim simulated Markov chains begins at the
initial network. If TRUE, the end of one simulation is used as the start of the
next. Irrelevant when nsim=1.

control A list of control parameters for algorithm tuning. Constructed using control.simulate.ergm
or control.simulate.formula, which have different defaults.

verbose Logical: If TRUE, extra information is printed as the Markov chain progresses.
... Further arguments passed to or used by methods.
do.sim Logical: If FALSE, do not proceed to the simulation but rather return a list of

arguments that would have been passed to simulate.ergm_model(). This can
be useful if, for example, one wants to run several simulations with varying
coefficients and did not want to reinitialize the model and the proposal ever
time.

Details

A sample of networks is randomly drawn from the specified model. The model is specified by the
first argument of the function. If the first argument is a formula then this defines the model. If the
first argument is the output of a call to ergm then the model used for that call is the one fit – and
unless coef is specified, the sample is from the MLE of the parameters. If neither of those are given
as the first argument then a Bernoulli network is generated with the probability of ties defined by
prob or coef.

Note that the first network is sampled after burnin steps, and any subsequent networks are sampled
each interval steps after the first.

134 simulate.ergm

More information can be found by looking at the documentation of ergm.

Value

If output=="stats" an mcmc object containing the simulated network statistics. If control$parallel>0,
an mcmc.list object. If simplify=TRUE (the default), these would then be "stacked" and converted
to a standard matrix. A logical vector indicating whether or not the term had come from the
monitor= formula is stored in attr()-style attribute "monitored".

Otherwise, a representation of the simulated network is returned, in the form specified by output. In
addition to a network representation or a list thereof, they have the following attr-style attributes:

formula The formula used to generate the sample.

stats An mcmc or mcmc.list object as above.

control Control parameters used to generate the sample.

constraints Constraints used to generate the sample.

reference The reference measure for the sample.

monitor The monitoring formula.

response The edge attribute used as a response.

The following are the permitted network formats:

"network" If nsim==1, an object of class network. If nsim>1, it returns an object of class network.list
(a list of networks) with the above-listed additional attributes.

"edgelist" An edgelist representation of the network, or a list thereof, depending on nsim.

"pending_update_network" A semi-internal representation of a network consisting of a network
object emptied of edges, with an attached edgelist matrix, or a list thereof, depending on nsim.

If simplify==FALSE, the networks are returned as a nested list, with outer list being the parallel
chain (including 1 for no parallelism) and inner list being the samples within that chains (including
1, if one network per chain). If TRUE, they are concatenated, and if a total of one network had been
simulated, the network itself will be returned.

Note

simulate.ergm_model() is a lower-level interface, providing a simulate() method for ergm_model
class. The basis argument is required; monitor, if passed, must be an ergm_model as well; and
constraints can be an ergm_proposal object instead.

See Also

ergm, network

simulate.ergm 135

Examples

#
Let's draw from a Bernoulli model with 16 nodes
and density 0.5 (i.e., coef = c(0,0))
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0, 0))
#
What are the statistics like?
#
summary(g.sim ~ edges + mutual)
#
Now simulate a network with higher mutuality
#
g.sim <- simulate(network(16) ~ edges + mutual, coef=c(0,2))
#
How do the statistics look?
#
summary(g.sim ~ edges + mutual)
#
Let's draw from a Bernoulli model with 16 nodes
and tie probability 0.1
#
g.use <- network(16,density=0.1,directed=FALSE)
#
Starting from this network let's draw 3 realizations
of a edges and 2-star network
#
g.sim <- simulate(~edges+kstar(2), nsim=3, coef=c(-1.8,0.03),

basis=g.use, control=control.simulate(
MCMC.burnin=1000,
MCMC.interval=100))

g.sim
summary(g.sim)
#
attach the Florentine Marriage data
#
data(florentine)
#
fit an edges and 2-star model using the ergm function
#
gest <- ergm(flomarriage ~ edges + kstar(2))
summary(gest)
#
Draw from the fitted model (statistics only), and observe the number
of triangles as well.
#
g.sim <- simulate(gest, nsim=10,

monitor=~triangles, output="stats",
control=control.simulate.ergm(MCMC.burnin=1000, MCMC.interval=100))

g.sim

136 summary.formula

spectrum0.mvar Multivariate version of coda’s spectrum0.ar().

Description

Its return value, divided by nrow(cbind(x)), is the estimated variance-covariance matrix of the
sampling distribution of the mean of x if x is a multivatriate time series with AR(p) structure, with
p determined by AIC.

Usage

spectrum0.mvar(x, order.max = NULL, aic = is.null(order.max),
tol = .Machine$double.eps^0.5, ...)

Arguments

x a matrix with observations in rows and variables in columns.

order.max maximum (or fixed) order for the AR model.

aic use AIC to select the order (up to order.max).

tol drop components until the reciprocal condition number of the transformed variance-
covariance matrix is greater than this.

... additional arguments to ar().

Note

ar() fails if crossprod(x) is singular, which is remedied by mapping the variables onto the prin-
cipal components of x, dropping redundant dimentions.

summary.formula Calculation of network or graph statistics or other attributes specified
on a formula

Description

Most generally, this function computes those summaries of the object on the LHS of the formula
that are specified by its RHS. In particular, if given a network as its LHS and ergm-terms on its
RHS, it computes the sufficient statistics associated with those terms.

Usage

S3 method for class 'formula'
summary(object, ...)

update.network 137

Arguments

object A formula having as its LHS a network object or a matrix that can be coerced
to a network object, a network.list, or other types to be summarized using a
formula. (See ‘methods(’summary_formula’) for the possible LHS types.

... further arguments passed to or used by methods.

Details

In practice, summary.formula() is a thin wrapper around the summary_formula() generic, which
dispatches methods based on the class of the LHS of the formula.

summary.formula for networks understands the lasttoggle "API".

Value

A vector of statistics specified in RHS of the formula.

See Also

ergm(), network(), ergm-terms

Examples

#
Lets look at the Florentine marriage data
#
data(florentine)
#
test the summary_formula function
#
summary(flomarriage ~ edges + kstar(2))
m <- as.matrix(flomarriage)
summary(m ~ edges) # twice as large as it should be
summary(m ~ edges, directed=FALSE) # Now it's correct

update.network Update the edges in a network based on a matrix

Description

Replaces the edges in a network object with the edges corresponding to the sociomatrix or edge list
specified by new.

138 update.network

Usage

S3 method for class 'network'
update(object, new, matrix.type = NULL,
attrname = NULL, ..., ignore.nattr = c("bipartite", "directed",
"hyper", "loops", "mnext", "multiple", "n"), ignore.vattr = c())

Arguments

object a network object.

new Either an adjacency matrix (a matrix of values indicating the presence and/or the
value of a tie from i to j) or an edge list (a two-column matrix listing origin and
destination node numbers for each edge, with an optional third column for the
value of the edge).

matrix.type One of "adjacency" or "edgelist" telling which type of matrix new is. Default
is to use the which.matrix.type function.

attrname For a network with edge weights gives the name of the edge attribute whose
names to set.

... Additional arguments; currently unused.

ignore.nattr Character vector of the names of network-level attributes to ignore when updat-
ing network objects (defaults to standard network properties).

ignore.vattr Character vector of the names of vertex-level attributes to ignore when updating
network objects.

Value

A new network object with the edges specified by new and network and vertex attributes copied
from the input network object. Input network is not modified.

See Also

ergm(), network

Examples

#
data(florentine)
#
test the network.update function
#
Create a Bernoulli network
rand.net <- network(network.size(flomarriage))
store the sociomatrix
rand.mat <- rand.net[,]
Update the network
update(flomarriage, rand.mat, matrix.type="adjacency")
Try this with an edgelist
rand.mat <- as.matrix.network.edgelist(flomarriage)[1:5,]

wtd.median 139

update(flomarriage, rand.mat, matrix.type="edgelist")

wtd.median Weighted Median

Description

Compute weighted median.

Usage

wtd.median(x, na.rm = FALSE, weight = FALSE)

Arguments

x Vector of data, same length as weight

na.rm Logical: Should NAs be stripped before computation proceeds?

weight Vector of weights

Details

Uses a simple algorithm based on sorting.

Value

Returns an empirical .5 quantile from a weighted sample.

Index

∗Topic classes
as.network.numeric, 10

∗Topic datasets
ecoli, 32
faux.desert.high, 93
faux.dixon.high, 95
faux.magnolia.high, 96
faux.mesa.high, 98
florentine, 101
g4, 102
kapferer, 113
molecule, 118
samplk, 124
sampson, 125

∗Topic graphs
as.network.numeric, 10
gof, 106

∗Topic models
anova.ergm, 6
control.ergm, 13
control.ergm.bridge, 22
control.logLik.ergm, 26
control.san, 27
control.simulate.ergm, 29
ergm, 35
ergm-constraints, 42
ergm-package, 4
ergm-references, 48
ergm-terms, 49
ergm.allstats, 78
ergm.exact, 84
ergmMPLE, 88
Getting.Started, 103
gof, 106
logLik.ergm, 114
mcmc.diagnostics, 116
print.summary.ergm, 122
san, 127
simulate.ergm, 131

summary.formula, 136
update.network, 137

∗Topic model
enformulate.curved, 33
ergm.bridge.llr, 81
fix.curved, 99
is.curved, 109
is.durational, 110
is.dyad.independent, 111

∗Topic package
ergm-package, 4
Getting.Started, 103

∗Topic regression
anova.ergm, 6
ergmMPLE, 88
print.summary.ergm, 122

∗Topic robust
wtd.median, 139

%n%, 77
%v%, 77

A ERGM sample space constraint, 108
absdiff (ergm-terms), 49
absdiffcat (ergm-terms), 49
altkstar (ergm-terms), 49
An ERGM sample space constraint, 33
An ERGM statistic, 33, 108
anova, 7
anova.ergm, 6
anova.ergmlist, 7
anova.ergmlist (anova.ergm), 6
approx.hotelling.diff.test, 8
approx.hotelling.diff.test(), 105
ar(), 136
as.edgelist, 9, 9, 10
as.matrix.network, 9
as.matrix.network.edgelist, 10
as.network.numeric, 10, 10
as.package_version, 50
asymmetric (ergm-terms), 49

140

INDEX 141

atleast (ergm-terms), 49
atmost (ergm-terms), 49
attr, 134
attr(), 134
attrname (node-attr), 119
attrs (node-attr), 119

b1concurrent (ergm-terms), 49
b1cov (ergm-terms), 49
b1degrange (ergm-terms), 49
b1degree (ergm-terms), 49
b1degrees (ergm-constraints), 42
b1factor (ergm-terms), 49
b1mindegree (ergm-terms), 49
b1nodematch (ergm-terms), 49
b1sociality (ergm-terms), 49
b1star (ergm-terms), 49
b1starmix (ergm-terms), 49
b1twostar (ergm-terms), 49
b2concurrent (ergm-terms), 49
b2cov (ergm-terms), 49
b2degrange (ergm-terms), 49
b2degree (ergm-terms), 49
b2degrees (ergm-constraints), 42
b2factor (ergm-terms), 49
b2mindegree (ergm-terms), 49
b2nodematch (ergm-terms), 49
b2sociality (ergm-terms), 49
b2star (ergm-terms), 49
b2starmix (ergm-terms), 49
b2twostar (ergm-terms), 49
balance (ergm-terms), 49
bd (ergm-constraints), 42
Bernoulli (ergm-references), 48
blockdiag (ergm-constraints), 42
by (node-attr), 119

check.ErgmTerm, 11
cluster, 47
coda::geweke.diag(), 105
coef, 123
coef(), 121, 122
coef.ergm (ergm), 35
coefficients.ergm (ergm), 35
coincidence (ergm-terms), 49
concurrent (ergm-terms), 49
concurrentties (ergm-terms), 49
constraints-ergm (ergm-constraints), 42
constraints.ergm (ergm-constraints), 42

control.ergm, 13, 25, 31, 36, 37, 39, 46, 61,
62, 64–66, 88

control.ergm(), 90
control.ergm.bridge, 21, 22, 82
control.ergm.godfather, 23, 87
control.gof, 22, 24, 31
control.gof.ergm, 107
control.gof.formula, 107
control.logLik.ergm, 26, 114, 115
control.san, 17, 27, 129
control.simulate, 22, 25
control.simulate

(control.simulate.ergm), 29
control.simulate.ergm, 29, 133
control.simulate.formula, 133
control$drop, 38
control$init.method, 14
ctriad (ergm-terms), 49
ctriple (ergm-terms), 49
cycle (ergm-terms), 49
cyclicalties (ergm-terms), 49
cyclicalweights (ergm-terms), 49

ddsp (ergm-terms), 49
degcor (ergm-terms), 49
degcrossprod (ergm-terms), 49
degrange (ergm-terms), 49
degree, 100
degree (ergm-terms), 49
degree1.5 (ergm-terms), 49
degreedist, 31
degreedist-constraint

(ergm-constraints), 42
degreepopularity (ergm-terms), 49
degrees (ergm-constraints), 42
density (ergm-terms), 49
desp (ergm-terms), 49
dgwdsp (ergm-terms), 49
dgwesp (ergm-terms), 49
dgwnsp (ergm-terms), 49
diff (ergm-terms), 49
DiscUnif (ergm-references), 48
dnsp (ergm-terms), 49
download.packages, 93
dsp (ergm-terms), 49
dyadcov (ergm-terms), 49

ecoli, 32
ecoli1 (ecoli), 32

142 INDEX

ecoli2 (ecoli), 32
edgecov (ergm-terms), 49
edgelist, 134
edges, 33
edges-constraint (ergm-constraints), 42
edges-term (ergm-terms), 49
end, 87
enformulate.curved, 14, 33
environment, 47
equalto (ergm-terms), 49
ergm, 4, 5, 7, 21–28, 30, 31, 33–35, 35, 36–39,

42, 43, 46–50, 77, 81, 83, 87–89,
92–100, 103, 106–111, 114,
116–118, 121–123, 128, 129,
131–134

ERGM constraints, 36
ERGM reference measures, 36, 132
ergm(), 11, 14, 16, 17, 19, 21, 22, 107–110,

116, 131, 137, 138
ergm-constraints, 42
ergm-package, 4
ergm-parallel, 46
ergm-references, 48
ergm-terms, 11, 49, 137
ergm.allstats, 78, 84
ergm.bounddeg, 79
ergm.bridge.0.llk (ergm.bridge.llr), 81
ergm.bridge.dindstart.llk, 23, 114
ergm.bridge.dindstart.llk

(ergm.bridge.llr), 81
ergm.bridge.llr, 23, 81, 114
ergm.constraints (ergm-constraints), 42
ergm.count, 5
ergm.Cprepare, 91
ergm.degeneracy, 83
ergm.exact, 78, 79, 84
ergm.geodesicmatrix (ergm.geodistdist),

85
ergm.geodistdist, 85
ergm.geodistn (ergm.geodistdist), 85
ergm.getCluster (ergm-parallel), 46
ergm.getnetwork, 86
ergm.godfather, 87
ergm.godfather(), 23
ergm.nodegeodesics (ergm.geodistdist),

85
ergm.pairgeodesic (ergm.geodistdist), 85
ergm.parallel (ergm-parallel), 46

ergm.references (ergm-references), 48
ergm.restartCluster (ergm-parallel), 46
ergm.stopCluster (ergm-parallel), 46
ergm.terms, 130, 131
ergm.terms (ergm-terms), 49
ergm.userterms, 5, 50, 92, 93
ergm_conlist, 111
ergm_MCMC_sample, 46, 90
ergm_MCMC_slave (ergm_MCMC_sample), 90
ergm_model, 90, 129, 133, 134
ergm_model(), 90
ergm_plot.mcmc.list, 92
ergm_proposal, 134
ergm_proposal(), 90
ergmMPLE, 40, 88
esp, 100
esp (ergm-terms), 49
eut-upgrade, 92

faux.desert.high, 93, 95, 96
faux.dixon.high, 95
faux.magnolia.high, 51, 95, 96, 96, 99
faux.mesa.high, 51, 95, 96, 98, 98
fauxhigh (faux.mesa.high), 98
fix.curved, 99
fixallbut (ergm-constraints), 42
fixedas (ergm-constraints), 42
flobusiness (florentine), 101
flomarriage (florentine), 101
florentine, 101
formula, 35, 38, 78, 107, 128, 129, 132–134

g4, 102
geodist, 86
Getting.Started, 103
geweke.diag.mv, 105
glm, 89
gof, 22, 25, 31, 106, 106, 107
gof.ergm, 5, 107
gof.ergm(), 24
gof.formula, 107
greaterthan (ergm-terms), 49
grep, 130
gwb1degree (ergm-terms), 49
gwb2degree (ergm-terms), 49
gwdegree, 100
gwdegree (ergm-terms), 49
gwdsp (ergm-terms), 49
gwesp, 100

INDEX 143

gwesp (ergm-terms), 49
gwidegree (ergm-terms), 49
gwnsp (ergm-terms), 49
gwodegree (ergm-terms), 49

hamming, 108
hamming-constraint (ergm-constraints),

42
hamming-term (ergm-terms), 49
hammingmix (ergm-terms), 49

I(), 120
idegrange (ergm-terms), 49
idegree (ergm-terms), 49
idegree1.5 (ergm-terms), 49
idegreedist (ergm-constraints), 42
idegreepopularity (ergm-terms), 49
idegrees (ergm-constraints), 42
ininterval (ergm-terms), 49
InitErgmTerm, 12
InitErgmTerm (ergm-terms), 49
intransitive (ergm-terms), 49
is.curved, 109
is.durational, 110
is.dyad.independent, 111
is.ergm (ergm), 35
is.inCH, 112
isolates (ergm-terms), 49
istar (ergm-terms), 49
istar(2), 70

kapferer, 113
kapferer2 (kapferer), 113
kstar (ergm-terms), 49
kstar(2), 69, 72

lasttoggle, 137
list of implemented constraints, 128,

133
localtriangle (ergm-terms), 49
logLik, 114, 116
logLik.ergm, 7, 27, 114, 123
logLikNull, 114, 115

m2star (ergm-terms), 49
match (ergm-terms), 49
matrix, 134
mcmc, 87, 105, 134
mcmc.diagnostics, 5, 116

mcmc.diagnostics.ergm, 117
mcmc.list, 9, 91, 92, 105, 134
meandeg (ergm-terms), 49
message(), 12
mm (ergm-terms), 49
molecule, 118
mutual (ergm-terms), 49

nearsimmelian (ergm-terms), 49
network, 5, 10, 11, 32, 35, 49, 77, 78, 81,

84–87, 90, 94–99, 101–103, 118,
124, 126, 128, 132–134, 137, 138

network(), 108, 137
network.list, 118, 129, 134, 137
nobs.ergm (ergm), 35
node-attr, 119
nodecov (ergm-terms), 49
nodecovar (ergm-terms), 49
nodedegrees (ergm-constraints), 42
nodefactor (ergm-terms), 49
nodeicov (ergm-terms), 49
nodeicovar (ergm-terms), 49
nodeifactor (ergm-terms), 49
nodeisqrtcovar (ergm-terms), 49
nodemain (ergm-terms), 49
nodematch (ergm-terms), 49
nodemix (ergm-terms), 49
nodeocov (ergm-terms), 49
nodeocovar (ergm-terms), 49
nodeofactor (ergm-terms), 49
nodeosqrtcovar (ergm-terms), 49
nodesqrtcovar (ergm-terms), 49
nonzero (ergm-terms), 49
nparam, 121
nsp (ergm-terms), 49
nthreads (ergm-parallel), 46
NULL, 46, 120

observed (ergm-constraints), 42
odegrange (ergm-terms), 49
odegree (ergm-terms), 49
odegree1.5 (ergm-terms), 49
odegreedist (ergm-constraints), 42
odegreepopularity (ergm-terms), 49
odegrees (ergm-constraints), 42
on (node-attr), 119
opentriad (ergm-terms), 49
ostar (ergm-terms), 49
ostar(2), 71, 72

144 INDEX

parallel (ergm-parallel), 46
parallel processing, 21, 23, 25, 27, 28, 30
parallel-ergm (ergm-parallel), 46
parallel.ergm (ergm-parallel), 46
param_names, 122
pending_update_network, 90, 91
plot.gof, 107, 108
plot.gof (gof), 106
plot.network, 95, 96, 98, 99
print(), 37, 119
print.ergm, 38, 40
print.ergm (ergm), 35
print.gof, 107
print.gof (gof), 106
print.htest(), 9
print.network.list (network.list), 118
print.summary.ergm, 122
print.summary.lm(), 123

receiver (ergm-terms), 49
references-ergm (ergm-references), 48
references.ergm (ergm-references), 48
replicate(), 128

samplike, 124, 125, 127
samplike (sampson), 125
samplk, 124
samplk1, 125–127
samplk1 (samplk), 124
samplk2, 125–127
samplk2 (samplk), 124
samplk3, 125–127
samplk3 (samplk), 124
sampson, 124, 125
san, 17, 29, 127
search.ergmTerms, 49, 50, 77, 130
sender (ergm-terms), 49
set.seed, 21, 23, 25, 27, 28, 132
simmelian (ergm-terms), 49
simmelianties (ergm-terms), 49
simulate, 31, 49, 87, 131
simulate(), 134
simulate.ergm, 5, 22, 25, 31, 34, 100, 118,

119, 131
simulate.ergm(), 29, 88, 108
simulate.ergm_model (simulate.ergm), 131
simulate.ergm_model(), 133, 134
simulate.formula, 31
simulate.formula (simulate.ergm), 131

simulate.formula(), 88
simulate.formula.ergm, 81, 82
smalldiff (ergm-terms), 49
smallerthan (ergm-terms), 49
sna, 67, 75
sociality (ergm-terms), 49
Specifying Vertex Attributes and

Levels, 50–60, 64–76
spectrum0.ar(), 136
spectrum0.mvar, 136
sprintf(), 15, 19
start, 87
StdNormal (ergm-references), 48
sum (ergm-terms), 49
summary, 122, 123
summary (summary.formula), 136
summary(), 119
summary.ergm, 38, 40, 117, 123
summary.ergm (print.summary.ergm), 122
summary.ergm(), 108, 123
summary.formula, 136
summary.formula(), 137
summary.lm(), 123
summary.network.list (network.list), 118
summary_formula(), 137

t.test(), 9
tailor (kapferer), 113
tergm, 5
tergm::tergm.godfather(), 88
terms-ergm (ergm-terms), 49
terms.ergm (ergm-terms), 49
the ERGM sample space constraint with

that name, 31
threepath (ergm-terms), 49
threetrail (ergm-terms), 49
transitive (ergm-terms), 49
transitiveties (ergm-terms), 49
transitiveweights (ergm-terms), 49
triad.classify, 67, 75
triadcensus (ergm-terms), 49
triangle (ergm-terms), 49
triangles (ergm-terms), 49
tripercent (ergm-terms), 49
ttriad (ergm-terms), 49
ttriple (ergm-terms), 49
twopath (ergm-terms), 49

Unif (ergm-references), 48

INDEX 145

update.network, 137

vcov.ergm (ergm), 35

warning(), 12
which.matrix.type, 138
wtd.median, 139

	ergm-package
	anova.ergm
	approx.hotelling.diff.test
	as.edgelist
	as.network.numeric
	check.ErgmTerm
	control.ergm
	control.ergm.bridge
	control.ergm.godfather
	control.gof
	control.logLik.ergm
	control.san
	control.simulate.ergm
	degreedist
	ecoli
	edges
	enformulate.curved
	ergm
	ergm-constraints
	ergm-parallel
	ergm-references
	ergm-terms
	ergm.allstats
	ergm.bounddeg
	ergm.bridge.llr
	ergm.degeneracy
	ergm.exact
	ergm.geodistdist
	ergm.getnetwork
	ergm.godfather
	ergmMPLE
	ergm_MCMC_sample
	ergm_plot.mcmc.list
	eut-upgrade
	faux.desert.high
	faux.dixon.high
	faux.magnolia.high
	faux.mesa.high
	fix.curved
	florentine
	g4
	Getting.Started
	geweke.diag.mv
	gof
	hamming
	is.curved
	is.durational
	is.dyad.independent
	is.inCH
	kapferer
	logLik.ergm
	logLikNull
	mcmc.diagnostics
	molecule
	network.list
	node-attr
	nparam
	param_names
	print.summary.ergm
	samplk
	sampson
	san
	search.ergmTerms
	simulate.ergm
	spectrum0.mvar
	summary.formula
	update.network
	wtd.median
	Index

