Package 'episensr’

March 6, 2020
Type Package
Title Basic Sensitivity Analysis of Epidemiological Results
Version 0.9.6
Imports triangle, trapezoid, actuar, plyr, ggplot2, grid, gridExtra, reshape, boot, magrittr
Date 2020-03-05
BugReports https://github.com/dhaine/episensr/issues
Description Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. It follows the bias analysis methods and examples from the book by Lash T.L, Fox M.P, and Fink A.K.
"Applying Quantitative Bias Analysis to Epidemiologic Data", ('Springer', 2009).
Depends R (>=3.5.0)
License GPL-2
Suggests testthat, knitr, rmarkdown, aplore3, covr
RoxygenNote 7.0.2
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation no
Author Denis Haine [aut, cre] (https://orcid.org/0000-0002-6691-7335)
Maintainer Denis Haine denis.haine@gmail.com
Repository CRAN
Date/Publication 2020-03-06 09:20:16 UTC

R topics documented:

episensr-package 2
boot.bias 3
confounders 4
confounders.array 5
confounders.emm 7
confounders.evalue 9
confounders.ext 10
confounders.limit 11
confounders.poly 13
mbias 14
misclassification 16
misclassification_cov 17
multidimBias 19
multiple.bias 20
plot.episensr.booted 21
plot.mbias 22
print.episensr 23
print.episensr.booted 24
print.mbias 24
probsens 25
probsens.conf 27
probsens.irr 29
probsens.irr.conf 31
probsens.sel 33
selection 35
\%>\% 36
Index 37
episensr-package episensr: Basic sensitivity analysis of epidemiological results

Description

'episensr' provides basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both.

Author(s)

Maintainer: Denis Haine denis.haine@gmail.com

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, Springer.

See Also

Useful links:

- https://github.com/dhaine/episensr
- Report bugs at https://github.com/dhaine/episensr/issues

Description

Generate R bootstrap replicates of either selection or misclassification bias functions. It then generates a confidence interval of the parameter, by first order normal approximation or the bootstrap percentile interval. Replicates giving negative cell(s) in the adjusted 2-by-2 table are silently ignored.

Usage

boot.bias(bias_model, R = 1000, conf = 0.95, ci_type = c("norm", "perc"))

Arguments

bias_model An object of class "episensr.boot", i.e. either selection bias function or misclassification bias function.

R The number of bootstrap replicates.
conf Confidence level.
ci_type A character string giving the type of interval required. Values can be either "norm" or "perc", default to "norm".

Value

A list with elements:

model	Model ran.
boot_mod	Bootstrap resampled object, of class boot.
nrep	Number of replicates used.
bias_ciRR	Bootstrap confidence interval object for relative risk.
bias_ciOR	Bootstrap confidence interval object for odds ratio.
ci	Confidence intervals for the bias adjusted association measures.
conf	Confidence interval.

See Also

```
boot,selection,misclassification
```


Examples

```
misclass_eval <- misclassification(matrix(c(215, 1449, 668, 4296),
dimnames = list(c("Breast cancer+", "Breast cancer-"),
c("Smoker+", "Smoker-")),
nrow = 2, byrow = TRUE),
type = "exposure",
bias_parms = c(.78, .78, .99, .99))
set.seed(123)
boot.bias(misclass_eval)
```


confounders
 Sensitivity analysis to correct for unknown or unmeasured confound-

 ing without effect modification
Description

Simple sensitivity analysis to correct for unknown or unmeasured confounding without effect modification. Implementation for ratio measures (relative risk $-R R$, or odds ratio - OR) and difference measures (risk difference - RD).

Usage

```
confounders(
    case,
    exposed,
    type = c("RR", "OR", "RD"),
    bias_parms = NULL,
    alpha = 0.05
)
```


Arguments

case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
type Choice of implementation, with no effect measure modification for ratio measures (relative risk - RR; odds ratio - OR) or difference measures (risk difference - RD).
bias_parms Numeric vector defining the 3 necessary bias parameters. This vector has 3 elements, in the following order:

1. the association between the confounder and the outcome among those who were not exposed (RR, OR, or RD according to choice of implementation),
2. the prevalence of the confounder among the exposed (between 0 and 1), and
3. the prevalence of the confounder among the unexposed (between 0 and 1).
alpha Significance level.

Value

A list with elements:

obs.data	The analyzed 2×2 table from the observed data.
cfder.data	The same table for Confounder.+
nocfder. data	The same table for Confounder.-
obs.measures	A table of relative risk with confidence intervals; for Total, Confounder + , and Confounder.-
adj.measures	A table of Standardized Morbidity Ratio and Mantel-Haenszel estimates. bias.parms
Input bias parameters.	

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.59-78, Springer.

Examples

```
# The data for this example come from:
# Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O.
# et al.
# Increased risk of infection with human immunodeficiency virus type 1 among
# uncircumcised men presenting with genital ulcer disease in Kenya.
# Clin Infect Dis 1996;23:449-53.
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias_parms = c(.63, . 8, .05))
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias_parms = c(.63, .8, .05))
confounders(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias_parms = c(-.37, .8, .05))
```


Description

Sensitivity analysis to explore effect of residual confounding using simple algebraic transformation (array approach). It indicates the strength of an unmeasured confounder and the necessary imbalance among exposure categories to affect the observed (crude) relative risk.

```
Usage
    confounders.array(
        crude.risk,
        type = c("binary", "continuous", "RD"),
        bias_parms = NULL,
        dec = 2,
        print = TRUE
    )
```


Arguments

crude.risk Crude (apparent or observed) relative risk between the exposure and the outcome. If type 'RD', this is the crude (observed) risk difference.
type Choice of implementation, for binary covariates, continuous covariates, or on risk difference scale.
bias_parms Numeric vector defining the necessary bias parameters. This vector has 3 elements, in the following order:

1. the association between the confounder and the outcome (RR, relative risk),
2. the prevalence of the confounder among the exposed (between 0 and 1 , if type 'binary'), or mean value of the confounder among the exposed (if type 'continuous' or 'RD'), and
3. the prevalence of the confounder among the unexposed (between 0 and 1 , if type 'binary'), or mean value of the confounder among the unexposed (if type 'continuous' or 'RD').
dec Number of decimals in the printout.
print A logical scalar. Should the results be printed?

Value

A vector with elements:
crude.risk The crude relative risk or risk difference.
RR_CD The association between the confounder and the outcome.
P_C1 The prevalence of the confounder among the exposed, or mean value of the confounder among the exposed.

P_C0 The prevalence of the confounder among the unexposed, or mean value of the confounder among the unexposed.
risk_adj The adjusted exposure relative risk or risk difference.
bias_perc The bias as a percentage: (crude.RR - risk_adj)/risk_adj * 100 .

References

Schneeweiss, S., 2006. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Safety 15: 291-303.

Examples

```
\# Example from Schneeweiss, S. Sensitivity analysis and external adjustment for
\# unmeasured confounders in epidemiologic database studies of therapeutics.
\# Pharmacoepidemiol Drug Safety 2006; 15: 291-303.
confounders.array(crude.risk = 1.5, type = "binary",
bias_parms \(=c(5.5,0.5,0.1))\)
\# Examples from Patorno E., Gopalakrishnan, C., Franklin, J.M., Brodovicz, K.G.,
\# Masso-Gonzalez, E., Bartels, D.B., Liu, J., and Schneeweiss, S. Claims-based
\# studies of oral glucose-lowering medications can achieve balance in critical
\# clinical variables only observed in electronic health records 2017; 20(4): 974-
\# 984.
confounders.array(crude.risk = 1.5, type = "binary",
bias_parms \(=c(3.25,0.333,0.384))\)
confounders.array (crude.risk = 1.5, type = "continuous",
bias_parms = c(1.009, 7.8, 7.9))
confounders.array (crude.risk \(=0.05\), type \(=" R D "\), bias_parms \(=c(0.009,8.5,8)\),
\(\mathrm{dec}=4\) )
```

confounders.emm Sensitivity analysis to correct for unknown or unmeasured confound-
ing in the presence of effect modification

Description

Simple sensitivity analysis to correct for unknown or unmeasured confounding in the presence of effect modification. Implementation for ratio measures (relative risk - RR, or odds ratio - OR) and difference measures (risk difference - RD).

Usage

```
confounders.emm(
    case,
    exposed,
    type = c("RR", "OR", "RD"),
    bias_parms = NULL,
    alpha = 0.05
)
```


Arguments

case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
type Choice of implementation, with no effect measure modification for ratio measures (relative risk - RR; odds ratio - OR) or difference measures (risk difference - RD).
bias_parms Numeric vector defining the 4 necessary bias parameters. This vector has 4 elements, in the following order:

1. the association between the confounder and the outcome among those who were exposed,
2. the association between the confounder and the outcome among those who were not exposed,
3. the prevalence of the confounder among the exposed (between 0 and 1), and
4. the prevalence of the confounder among the unexposed (between 0 and 1).
alpha Significance level.

Value

A list with elements:

obs.data	The analyzed 2×2 table from the observed data.
cfder.data	The same table for Confounder.+
nocfder. data	The same table for Confounder.-
obs.measures	A table of relative risk with confidence intervals; Total, for Confounder + , and for Confounder.-
adj.measures	A table of Standardized Morbidity Ratio and Mantel-Haenszel estimates.
bias. parms	Input bias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.59-78, Springer.

Examples

```
# The data for this example come from:
# Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O.
# et al.
# Increased risk of infection with human immunodeficiency virus type 1 among
# uncircumcised men presenting with genital ulcer disease in Kenya.
# Clin Infect Dis 1996;23:449-53.
confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias_parms = c(.4, .7, .8, .05))
confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias_parms = c(.4, .7, .8, .05))
confounders.emm(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias_parms = c(-.6, -.3, .8, .05))
```


Description

Help to quantify the evidence strength for causality in presence of unmeasured confounding. The Evalue is the minimum strength of association that an unmeasured counfounder would need to have with both the exposure and the outcome, conditional on the measured covariates, to fully explain away a specific exposure-outcome association.

Usage

```
    confounders.evalue(
        est,
        lower_ci = NULL,
        upper_ci = NULL,
        sd = NA,
        type = c("RR", "ORc", "HRc", "diff_RR", "diff_OR"),
        true_est = 1
    )
```


Arguments

est Point estimate for the effect measure. For difference in continuous outcomes, it is the standardized effect size (i.e. mean of the outcome divided by its standard deviation).
lower_ci Lower limit of the confidence interval for the association (relative risk, odds ratio, hazard ratio, incidence rate ratio, risk differece).
upper_ci Upper limit of the confidence interval for the association (relative risk, odds ratio, hazard ratio, incidence rate ratio, risk differece).
sd For difference in continuous outcomes, the standard error of the outcome divided by its standard deviation.
type Choice of effect measure (relative risk, and odds ratio or hazard ratio for rare outcomes i.e. <15 outcome - ORc; hazard ratio for common outcome i.e. >15 difference in continuous outcomes, RR approximation - diff_RR; difference in continuous outcomes, OR approximation - diff_OR).
true_est True estimate to assess E-value for. Default to 1 on risk scale to assess against null value. Set to a different value to assess for non-null hypotheses.

Value

A matrix with the observed point estimate and closest confidence interval to the null hypothesis, expressed as a relative risk, and their corresponding E-value.

References

VanderWeele T.J and Ding P. Sensitivity analysis in observational research: Introducing the E-value. Annals of Internal Medicine 2017;167:268-274.

Examples

```
# The data for this example come from:
# Victoria C.G., Smith P.G., Vaughan J.P., Nobre L.C., Lombardi C., Teixeira A.M.
# et al.
# Evidence for protection by breast-feeding against infant deaths from infectious
# diseases in Brazil.
# Lancet 1987;2:319-22.
confounders.evalue(est = 3.9, type = "RR")
# The data for this example come from:
# Oddy W.H, Smith G.J., Jacony P.
# A possible strategy for developing a model to account for attrition bias in a
# longitudinal cohort to investigate associations between exclusive breastfeeding and
# overweight and obesity at 20 years.
# Annals of Nutrition and Metabolism 2014;65:234-235.
confounders.evalue(est = 1.47, lower_ci = 1.12, upper_ci = 1.93, type = "ORc")
# The data for this example come from:
# Reinisch J., Sanders S., Mortensen E., Rubin D.B.
# In-utero exposure to phenobarbital and intelligence deficits in adult men.
# Journal of the American Medical Association 1995;274:1518-1525
confounders.evalue(est = -0.42, sd = 0.14, type = "diff_RR")
```

confounders.ext | Sensitivity analysisfor unmeasured confounders based on external ad- |
| :--- |
| justment |

Description

Sensitivity analysis to explore effect of residual confounding using simple algebraic transformation. It provides the relative risk adjusted for unmeasured confounders based on available external information (i.e. from the literature) on the relation between confounders and outcome.

Usage

confounders.ext(RR, bias_parms = NULL, dec = 2, print = TRUE)

Arguments

RR
bias_parms
"True" or fully adjusted exposure relative risk.
Numeric vector defining the necessary bias parameters. This vector has 4 elements, in the following order:

1. the association between the confounder and the outcome (RR, relative risk),
2. the association between exposure category and the confounder (OR, odds ratio),
3. the prevalence of the confounder (between 0 and 1), and
4. the prevalence of the exposure (between 0 and 1).
dec \quad Number of decimals in the printout.
print A logical scalar. Should the results be printed?

Value
A vector with elements:
RR True (adjusted) exposure relative risk.
RR_CD The association between the confounder and the outcome.
OR_EC The association betwen exposure category and the confounder.
P_C The prevalence of the confounder.
P_E The prevalence of the exposure.
crude.RR Crude (observed) exposure relative risk.
bias_perc The bias as a percentage: (crude.RR - RR)/RR * 100 .

References

Schneeweiss, S., 2006. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Safety 15: 291-303.

Examples

\# Schneeweiss, S, Glynn, R.J., Tsai, E.H., Avorn, J., Solomon, D.H. Adjusting for
\# unmeasured confounders in pharmacoepidemiologic claims data using external
\# information. Epidemiology 2005; 16: 17-24.
confounders.ext(RR $=1$, bias_parms $=c(0.1,0.9,0.1,0.4))$
confounders.limit Bounding the bias limits of unmeasured confounding.

Description

Function to elicit the limits on measures of effect corrected for an unmeasured confounder when only some of the bias parameters are known.

```
Usage
    confounders.limit(
        \(p=N A\),
        \(R R=N A\),
        OR = NA,
        crude. RR = NULL,
        dec = 4,
        print = TRUE
    )
```


Arguments

p Proportion with the confounder among the unexposed group.
RR Relative risk between the confounder and the outcome.
OR Odds ratio between the confounder and the outcome.
crude.RR Crude relative risk between the exposure and the outcome.
dec \quad Number of decimals in the printout.
print A logical scalar. Should the results be printed?

Value

A list with elements:
conf.limits Limits on confounding.
bias. parms Input bias parameters p, RR, OR, and crude RR.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.59-78, Springer.

Flanders, W. Dana, Khoury, Muin J., 1990. Indirect Assessment of Confounding: Graphic Description and Limits on Effect of Adjusting for Covariates. Epidemiology 1(3): 239-246.

Examples

```
confounders.limit(OR = 1.65, crude.RR = 1.5)
```


Description

Simple sensitivity analysis to correct for unknown or unmeasured polychotomous (3-level) confounding without effect modification. Implementation for ratio measures (relative risk $-R R$, or odds ratio - OR) and difference measures (risk difference - RD).

Usage

confounders.poly(
case, exposed, type = c("RR", "OR", "RD"), bias_parms = NULL, alpha $=0.05$
)

Arguments

case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
type Choice of implementation, with no effect measure modification for ratio measures (relative risk - RR; odds ratio - OR) or difference measures (risk difference - RD).
bias_parms Numeric vector defining the bias parameters. This vector has 6 elements, in the following order:

1. the association between the highest level confounder and the outcome,
2. the association between the mid-level confounder and the outcome,
3. the prevalence of the highest level confounder among the exposed (between 0 and 1),
4. the prevalence of the highest level confounder among the unexposed (between 0 and 1),
5. the prevalence of the mid-level confounder among the exposed (between 0 and 1), and
6. the prevalence of the mid-level confounder among the unexposed (between 0 and 1).
alpha Significance level.

Value

A list with elements:

obs.data	The analyzed 2×2 table from the observed data.
cfder1.data	The same table for Mid-level Confounder.+
cfder2.data	The same table for Highest-level Confounder.+
nocfder.data	The same table for Confounder.-
obs.measures	A table of relative risk with confidence intervals; Total and by confounders.
adj.measures	A table of Standardized Morbidity Ratio and Mantel-Haenszel estimates.
bias.parms	Input bias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.59-78, Springer.

Examples

```
# The data for this example come from:
# Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.0.
# et al.
# Increased risk of infection with human immunodeficiency virus type 1 among
# uncircumcised men presenting with genital ulcer disease in Kenya.
# Clin Infect Dis 1996;23:449-53.
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RR",
bias_parms = c(.4, .8, .6, .05, .2, .2))
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "OR",
bias_parms = c(.4, .8, .6, .05, .2, .2))
confounders.poly(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "RD",
bias_parms = c(-.4, -.2, .6, .05, .2, .2))
```

mbias

Sensitivity analysis to correct for selection bias caused by M bias.

Description

Simple sensitivity analysis to correct for selection bias caused by M bias using estimates of the odds ratios relating the variables.
mbias

Usage

mbias(or, var)

Arguments

or
Vector defining the input bias parameters, in the following order:

1. Odds ratio between A and the exposure E ,
2. Odds ratio between A and the collider C ,
3. Odds ratio between B and the collider C,
4. Odds ratio between B and the outcome D ,
5. Odds ratio observed between the exposure E and the outcome D.
var Vector defining variable names, in the following order:
6. Outcome,
7. Exposure,
8. A,
9. B,
10. Collider.

Value

A list with elements:
mbias.parms Maximum bias parameters.
adj.measures Selection bias corrected measures.
bias.parms Input bias parameters.

References

Greenland S. Quantifying biases in causal models: classical confounding vs. collider-stratification bias. Epidemiology 2003;14:300-6.

Examples

```
mbias(or = c(2, 5.4, 2.5, 1.5, 1),
var = c("HIV", "Circumcision", "Muslim", "Low CD4", "Participation"))
```

```
misclassification Sensitivity analysis for disease or exposure misclassification.
```


Description

Simple sensitivity analysis for disease or exposure misclassification. Confidence interval for odds ratio is computed as in Chu et al. (2006), for exposure misclassification.

```
Usage
    misclassification(
        case,
        exposed,
        type = c("exposure", "outcome"),
        bias_parms = NULL,
        alpha = 0.05
    )
```


Arguments

case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
type Choice of misclassification:

1. exposure: bias analysis for exposure misclassification; corrections using sensitivity and specificity: nondifferential and independent errors,
2. outcome: bias analysis for outcome misclassification.
bias_parms Vector defining the bias parameters. This vector has 4 elements between 0 and 1 , in the following order:
3. Sensitivity of exposure (when type = "exposure") or outcome (when type $=$ "outcome") classification among those with the outcome (when type $=$ "exposure") or exposure (when type = "outcome"),
4. Sensitivity of exposure (or outcome) classification among those without the outcome (or exposure),
5. Specificity of exposure (or outcome) classification among those with the outcome (or exposure), and
6. Specificity of exposure (or outcome) classification among those without the outcome (or exposure).
alpha Significance level.

Value
A list with elements:

obs.data	The analyzed 2×2 table from the observed data.
corr.data	The expected observed data given the true data assuming misclassification.

obs.measures A table of observed relative risk and odds ratio with confidence intervals.
adj.measures A table of adjusted relative risk and odds ratio with confidence interval for odds ratio.
bias. parms Input bias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.79-108, Springer.

Chu, H., Zhaojie, W., Cole, S.R., Greenland, S., Sensitivity analysis of misclassification: A graphical and a Bayesian approach, Annals of Epidemiology 2006;16:834-841.

Examples

```
\# The data for this example come from:
\# Fink, A.K., Lash, T.L. A null association between smoking during pregnancy
\# and breast cancer using Massachusetts registry data (United States).
\# Cancer Causes Control 2003;14:497-503.
misclassification(matrix(c(215, 1449, 668, 4296),
dimnames = list(c("Breast cancer+", "Breast cancer-"),
c("Smoker+", "Smoker-")),
nrow \(=2\), byrow = TRUE),
type = "exposure",
bias_parms \(=c(.78, .78, .99, .99)\) )
misclassification(matrix(c(4558, 3428, 46305, 46085),
dimnames \(=\) list(c("AMI death+", "AMI death-"),
c("Male+", "Male-")),
nrow \(=2\), byrow \(=\) TRUE),
type = "outcome",
bias_parms = c(.53, . \(53, .99, .99)\) )
\# The following example comes from Chu et al. Sensitivity analysis of
\# misclassification: A graphical and a Bayesian approach.
\# Annals of Epidemiology 2006;16:834-841.
misclassification(matrix(c(126, 92, 71, 224),
dimnames = list(c("Case", "Control"), c("Smoker +", "Smoker -")),
nrow \(=2\), byrow = TRUE),
type = "exposure",
bias_parms \(=c(.94, .94, .97, .97))\)
```

misclassification_cov Sensitivity analysis for covariate misclassification.

Description

Simple sensitivity analysis to correct for a misclassified covariate (a potential confounder or effect measure modifier).

Usage

```
misclassification_cov(
        case,
        exposed,
        covariate,
        bias_parms = NULL,
        alpha = 0.05
    )
```


Arguments

case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
covariate Covariate to stratify on.
bias_parms Vector defining the bias parameters. This vector has 4 elements between 0 and 1 , in the following order:

1. Sensitivity of confounder classification among those with the outcome,
2. Sensitivity of confounder classification among those without the outcome,
3. Specificity of confounder classification among those with the outcome, and
4. Specificity of confounder classification among those without the outcome.
alpha Significance level.

Value

A list with elements:

obs.data	The analyzed stratified 2×2 tables from the observed data.
corr. data	The expected stratified observed data given the true data assuming misclassifi- cation.
obs.measures	A table of observed relative risk and odds ratio with confidence intervals.
adj.measures	A table of adjusted relative risk and odds ratio.
bias.parms	Input bias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.79-108, Springer.

Examples

```
# The data for this example come from:
# Berry, R.J., Kihlberg, R., and Devine, O. Impact of misclassification of in vitro
# fertilisation in studies of folic acid and twinning: modelling using population
# based Swedish vital records.
# BMJ, doi:10.1136/bmj.38369.437789.82 (published 17 March 2004)
misclassification_cov(array(c(1319, 38054, 5641, 405546,
```

565, 3583, 781, 21958,
754, 34471, 4860, 383588),
dimnames $=$ list(c("Twins+", "Twins-"),
c("Folic acid+", "Folic acid-"), c("Total", "IVF+", "IVF-")),
$\operatorname{dim}=c(2,2,3))$,
bias_parms $=c(.6, .6, .95, .95))$

```
multidimBias Multidimensional sensitivity analysis for different sources of bias
```


Description

Multidimensional sensitivity analysis for different sources of bias

Usage

```
multidimBias(
    case,
    exposed,
    type = c("exposure", "outcome", "confounder", "selection"),
    se = NULL,
    sp = NULL,
    bias_parms = NULL,
    OR.sel = NULL,
    alpha = 0.05,
    dec = 4,
    print = TRUE
)
```


Arguments

case	Outcome variable. If a variable, this variable is tabulated against.
exposed	Exposure variable.
type	Implement analysis for exposure misclassification, outcome misclassification, unmeasured confounder, or selection bias.
se	Numeric vector of sensitivities.
sp	Numeric vector of specificities.
bias_parms	List of bias parameters. The list is made of 3 vectors of the same length: 1. Prevalence of Confounder in Exposure+ population, 2. Prevalence of Confounder in Exposure- population, and 3. Relative risk between Confounder and Outcome.
OR.sel	Selection odds ratios, for selection bias implementation.
alpha	Significance level.
dec	Number of decimals in the printout.
print	A logical scalar. Should the results be printed?

Value

A list with elements:

obs. data	The analyzed 2×2 table from the observed data.
obs.measures	A table of odds ratios and relative risk with confidence intervals.
adj.measures	Multidimensional corrected relative risk and/or odds ratio data.
bias.parms	Bias parameters.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.109-116, Springer.

Examples

```
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "exposure",
se = c(1, 1, 1, . 9, .9, . 9, . 8, . 8, . 8),
sp = c(1, .9, . 8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(45, 94, 257, 945),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "outcome",
se = c(1, 1, 1, .9, .9, .9, .8, . 8, .8),
sp = c(1, .9, .8, 1, .9, .8, 1, .9, .8))
multidimBias(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")),
nrow = 2, byrow = TRUE),
type = "confounder",
bias_parms = list(seq(.72, .92, by = .02),
seq(.01, .11, by = .01), seq(.13, 1.13, by = .1)))
multidimBias(matrix(c(136, 107, 297, 165),
dimnames = list(c("Uveal Melanoma+", "Uveal Melanoma-"),
c("Mobile Use+", "Mobile Use -")),
nrow = 2, byrow = TRUE),
type = "selection",
OR.sel = seq(1.5, 6.5, by = .5))
```

multiple.bias

Description

Extract the adjusted 2-by-2 table from an episensr function, so that it can be re-used into an other episensr function when performing multiple (combined) bias analysis. Allowed functions are: 'selection', 'misclassification', 'confounders', 'probsens', 'probsens.sel', and 'probsens.conf'.

Usage

```
multiple.bias(
        x ,
        bias_function = c("selection", "misclassification", "confounders", "probsens.sel",
            "probsens.conf", "probsens"),
    )
```


Arguments

$x \quad$ An object of class 'episensr' or 'episensr.probsens'.
bias_function Bias function to be called. Choices between 'selection', 'misclassification', 'confounders', 'probsens', 'probsens.sel', 'probsens.conf'.
.. Additional arguments passed on to methods.

Value

A list with the elements corresponding to the bias function called.

See Also

selection, misclassification, confounders, probsens, probsens.sel, probsens.conf

Examples

```
dat <- matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE)
dat %>%
misclassification(., type = "exposure", bias_parms = c(.56, .58, .99, .97)) %>%
multiple.bias(., bias_function = "selection", bias_parms = c(.73, .61, .82, .76))
```

```
plot.episensr.booted Plot of bootstrap simulation output for selection and misclassification
    bias
```


Description

This takes an episensr bootstrap object and produces the pot of bootstrap replicates for selection or misclassification bias of the variable of interest, either relative risk or odds ratio.

Usage

```
## S3 method for class 'episensr.booted'
```

plot(x, association = c("rr", "or"), ...)

Arguments

x
An object of class "episensr.booted" returned from the episensr bootstrap generation function.
association Choice between bias adjusted relative risk and odds ratio.
... Other unused arguments.

See Also

boot.bias, boot, selection, misclassification

Examples

```
misclass_eval <- misclassification(matrix(c(215, 1449, 668, 4296),
dimnames = list(c("Breast cancer+", "Breast cancer-"),
c("Smoker+", "Smoker-")),
nrow = 2, byrow = TRUE),
type = "exposure",
bias_parms = c(.78, . 78, .99, .99))
set.seed(123)
misclass_boot <- boot.bias(misclass_eval)
plot(misclass_boot, association = "rr")
```

```
plot.mbias

\section*{Description}

Create two DAGs, before and after conditioning on the collider C, for selection bias caused by M bias, using ggplot2.
```

Usage
\#\# S3 method for class 'mbias'
plot(
x,
title1 = "DAG before conditioning on C",
title2 = "DAG after conditioning on C",
title.size = 6,
size = 6,
dec = 2,
layout = c("landscape", "portrait"),
)

```

\section*{Arguments}
\begin{tabular}{ll}
x & 'mbias' object to plot. \\
title1 & Title of DAG graph before conditioning on C. \\
title2 & Title of DAG graph after conditioning on C. \\
title.size & Title size. \\
size & Text size. \\
dec & Number of digits displayed. \\
layout & Side-by-side graphs in landscape or portrait layout. \\
\(\ldots\) & Other unused arguments.
\end{tabular}

\section*{Value}

Two DAGs for selection bias caused by M bias.

\section*{See Also}
mbias

\section*{Examples}
plot(mbias(or \(=c(2,5.4,2.5,1.5,1)\),
var = c("HIV", "Circumcision", "Muslim", "Low CD4", "Participation")))
```

print.episensr Print associations for episensr class

```

\section*{Description}

Print associations for episensr objects.

\section*{Usage}
\#\# S3 method for class 'episensr'
print(x, digits = getOption("digits"), ...)

\section*{Arguments}
x
An object of class 'episensr'.
digits Minimal number of _significant_ digits, see 'print.default'.
Other unused arguments.

\section*{Value}

Print the observed and adjusted measures of association.
print.episensr.booted Print bootstrapped confidence intervals

\section*{Description}

Print bootstrap-ed confidence intervals for selection and misclassification bias functions.

\section*{Usage}
\#\# S3 method for class 'episensr.booted'
print(x, digits = getOption("digits"), ...)

\section*{Arguments}
\begin{tabular}{ll}
x & An object of class 'episensr.booted'. \\
digits & Minimal number of _significant_digits, see 'print.default'. \\
\(\ldots\). & Other unused arguments.
\end{tabular}

\section*{Value}

Print the confidence interval of the adjusted measures of association.
```

print.mbias Print association corrected for M bias

```

\section*{Description}

Print association corrected for M bias.

\section*{Usage}
\#\# S3 method for class 'mbias' print(x, ...)

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & An object of class 'mbias'. \\
\(\ldots\) & Other unused arguments.
\end{tabular}

\section*{Value}

Print the observed and adjusted measures of association.

\section*{Description}

Probabilistic sensitivity analysis to correct for exposure misclassification or outcome misclassification and random error. Non-differential misclassification is assumed when only the two bias parameters seca. parms and spca. parms are provided. Adding the 2 parameters seexp. parms and spexp. parms (i.e. providing the 4 bias parameters) evaluates a differential misclassification.

\section*{Usage}
probsens(
case,
exposed,
type = c("exposure", "outcome"),
reps = 1000,
seca. parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
        seexp. parms = NULL,
        spca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
            "logit-logistic", "logit-normal"), parms = NULL),
        spexp. parms \(=\) NULL,
        corr.se \(=\) NULL,
        corr.sp = NULL,
        discard = TRUE,
        alpha \(=0.05\)
    )

\section*{Arguments}
\begin{tabular}{ll} 
case & Outcome variable. If a variable, this variable is tabulated against. \\
exposed & Exposure variable. \\
type & Choice of correction for exposure or outcome misclassification. \\
reps & Number of replications to run. \\
seca.parms & List defining:
\end{tabular}
1. The sensitivity of exposure classification among those with the outcome (when type = "exposure"), or
2. The sensitivity of outcome classification among those with the exposure (when type = "outcome").

The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.
1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max,
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,
6. Logit-normal: location, scale, lower bound shift, upper bound shift.
seexp.parms List defining:
1. The sensitivity of exposure classification among those without the outcome (when type = "exposure"), or
2. The sensitivity of outcome classification among those without the exposure (when type = "outcome").
spca.parms List as above for seca. parms but for specificity.
spexp.parms List as above for seexp. parms but for specificity.
corr.se Correlation between case and non-case sensitivities.
corr.sp Correlation between case and non-case specificities.
discard A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.
alpha Significance level.

\section*{Value}

A list with elements:
\begin{tabular}{ll} 
obs.data & The analyzed \(2 \times 2\) table from the observed data. \\
obs.measures & A table of observed relative risk and odds ratio with confidence intervals. \\
adj.measures & A table of corrected relative risks and odds ratios. \\
sim.df & Data frame of random parameters and computed values. \\
reps & Number of replications.
\end{tabular}

\section*{References}

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117-150, Springer.

\section*{Examples}
```


The data for this example come from:

Greenland S., Salvan A., Wegman D.H., Hallock M.F., Smith T.J.

A case-control study of cancer mortality at a transformer-assembly facility.

Int Arch Occup Environ Health 1994; 66(1):49-54.

set.seed(123)

Exposure misclassification, non-differential

probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,

```
```

seca.parms = list("trapezoidal", c(.75, . 85, . 95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))

Exposure misclassification, differential

probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, . 85, .95, 1)),
seexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
corr.se = .8,
corr.sp = .8)

Disease misclassification

probsens(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.8, 1)),
spca.parms = list("uniform", c(.8, 1)))

```
probsens.conf Probabilistic sensitivity analysis for unmeasured confounding.

\section*{Description}

Probabilistic sensitivity analysis to correct for unknown or unmeasured confounding and random error simultaneously.

\section*{Usage}
```

probsens.conf(

```
    case,
    exposed,
    reps \(=1000\),
    prev.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
        "logit-logistic", "logit-normal"), parms = NULL),
    prev.nexp \(=\) list(dist = c("constant", "uniform", "triangular", "trapezoidal",
        "logit-logistic", "logit-normal"), parms = NULL),
    risk = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
            "log-logistic", "log-normal"), parms = NULL),
    corr.p = NULL,
    discard = TRUE,
    alpha \(=0.05\)
)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline case & Outcome variable. If a variable, this variable is tabulated against. \\
\hline exposed & Exposure variable. \\
\hline reps & Number of replications to run. \\
\hline \multirow[t]{5}{*}{prev.exp} & List defining the prevalence of exposure among the exposed. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired. \\
\hline & \begin{tabular}{l}
1. Constant: constant value, \\
2. Uniform: min, max,
\end{tabular} \\
\hline & 3. Triangular: lower limit, upper limit, mode, \\
\hline & 4. Trapezoidal: min, lower mode, upper mode, max. \\
\hline & \begin{tabular}{l}
5. Logit-logistic: location, scale, lower bound shift, upper bound shift, \\
6. Logit-normal: location, scale, lower bound shift, upper bound shift.
\end{tabular} \\
\hline prev.nexp & List defining the prevalence of exposure among the unexposed. \\
\hline \multirow[t]{7}{*}{risk} & List defining the confounder-disease relative risk or the confounder-exposure odds ratio. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic, or log-normal) and the second its parameters as a vector: \\
\hline & 1. Constant: constant value, \\
\hline & 2. Uniform: min, max, \\
\hline & 3. Triangular: lower limit, upper limit, mode, \\
\hline & 4. Trapezoidal: min, lower mode, upper mode, max. \\
\hline & 5. Log-logistic: shape, rate. Must be strictly positive, \\
\hline & 6. Log-normal: meanlog, sdlog. This is the mean and standard deviation on the \(\log\) scale. \\
\hline corr.p & Correlation between the exposure-specific confounder prevalences. \\
\hline discard & A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero. \\
\hline alpha & Significance level. \\
\hline
\end{tabular}

\section*{Value}

A list with elements:
\begin{tabular}{ll} 
obs.data & The analyzed \(2 \times 2\) table from the observed data. \\
obs.measures & A table of observed relative risk and odds ratio with confidence intervals. \\
adj.measures & A table of corrected relative risks and odds ratios. \\
sim.df & Data frame of random parameters and computed values. \\
reps & Number of replications.
\end{tabular}

\section*{References}

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117-150, Springer.

\section*{Examples}
```


The data for this example come from:

Tyndall M.W., Ronald A.R., Agoki E., Malisa W., Bwayo J.J., Ndinya-Achola J.O. et al.

Increased risk of infection with human immunodeficiency virus type 1 among

uncircumcised men presenting with genital ulcer disease in Kenya.

Clin Infect Dis 1996;23:449-53.

set.seed(123)
probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("triangular", c(.7, .9, .8)),
prev.nexp = list("trapezoidal", c(.03, .04, .05, .06)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = . 8)

```
probsens.irr

Probabilistic sensitivity analysis for exposure misclassification of person-time data and random error.

\section*{Description}

Probabilistic sensitivity analysis to correct for exposure misclassification when person-time data has been collected. Non-differential misclassification is assumed when only the two bias parameters seca.parms and spca.parms are provided. Adding the 2 parameters seexp.parms and spexp. parms (i.e. providing the 4 bias parameters) evaluates a differential misclassification.

\section*{Usage}
```

probsens.irr(
counts,
pt = NULL,
reps = 1000,
seca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
seexp.parms = NULL,
spca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
spexp.parms = NULL,
corr.se = NULL,
corr.sp = NULL,
discard = TRUE,
alpha = 0.05
)

```

\section*{Arguments}
counts
pt A numeric vector of person-time at risk. If provided, counts must be a numeric vector of disease counts.
reps Number of replications to run.
seca. parms List defining the sensitivity of exposure classification among those with the outcome. The first argument provides the probability distribution function (uniform, triangular, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.
1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max,
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,
6. Logit-normal: location, scale, lower bound shift, upper bound shift.
seexp.parms List defining the sensitivity of exposure classification among those without the outcome.
spca.parms List defining the specificity of exposure classification among those with the outcome.
spexp.parms List defining the specificity of exposure classification among those without the outcome.
corr.se Correlation between case and non-case sensitivities.
corr.sp Correlation between case and non-case specificities.
discard A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.
alpha Significance level.

\section*{Value}

A list with elements:
\begin{tabular}{ll} 
obs.data & The analyzed \(2 \times 2\) table from the observed data. \\
obs.measures & A table of observed incidence rate ratio with exact confidence interval. \\
adj.measures & A table of corrected incidence rate ratios. \\
sim.df & Data frame of random parameters and computed values.
\end{tabular}

\section*{References}

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117-150, Springer.

\section*{Examples}
```

set.seed(123)

Exposure misclassification, non-differential

probsens.irr(matrix(c(2, 67232, 58, 10539000),
dimnames = list(c("GBS+", "Person-time"), c("HPV+", "HPV-")), ncol = 2),
reps = 20000,
seca.parms = list("trapezoidal", c(.4, .45, .55, .6)),
spca.parms = list("constant", 1))

```
```

probsens.irr.conf

```

Probabilistic sensitivity analysis for unmeasured confounding of person-time data and random error.

\section*{Description}

Probabilistic sensitivity analysis to correct for unmeasured confounding when person-time data has been collected.

\section*{Usage}
```

 probsens.irr.conf(
 counts,
 pt = NULL,
 reps = 1000,
 prev.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
 "logit-logistic", "logit-normal"), parms = NULL),
 prev.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
 "logit-logistic", "logit-normal"), parms = NULL),
 risk = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
 "log-logistic", "log-normal"), parms = NULL),
 corr.p = NULL,
 alpha = 0.05
)
    ```

\section*{Arguments}
counts
A table or matrix where first row contains disease counts and second row contains person-time at risk, and first and second columns are exposed and unexposed observations, as:
\begin{tabular}{lll} 
& Exposed & Unexposed \\
Cases & a & b \\
Person-time & N1 & N0
\end{tabular}
\begin{tabular}{ll} 
pt & \begin{tabular}{l} 
A numeric vector of person-time at risk. If provided, counts must be a numeric \\
vector of disease counts.
\end{tabular} \\
reps & Number of replications to run. \\
prev.exp & \begin{tabular}{l} 
List defining the prevalence of exposure among the exposed. The first argu- \\
ment provides the probability distribution function (constant, uniform, triangu- \\
lar, trapezoidal, logit-logistic, or logit-normal) and the second its parameters as \\
a vector. Logit-logistic and logit-normal distributions can be shifted by pro- \\
viding lower and upper bounds. Avoid providing these values if a non-shifted \\
distribution is desired.
\end{tabular} \\
1. Constant; value, \\
2. Uniform: min, max, \\
3. Triangular: lower limit, upper limit, mode, \\
4. Trapezoidal: min, lower mode, upper mode, max. \\
2. Logit-logistic: location, scale, lower bound shift, upper bound shift, \\
rev.nexp & 6. Logit-normal: location, scale, lower bound shift, upper bound shift. \\
List defining the prevalence of exposure among the unexposed. \\
List defining the confounder-disease relative risk or the confounder-exposure \\
odds ratio. The first argument provides the probability distribution function \\
(constant,uniform, triangular, trapezoidal, log-logistic, or log-normal) and the
\end{tabular}

\section*{Value}

A list with elements:
\begin{tabular}{ll} 
obs.data & The analyzed \(2 \times 2\) table from the observed data. \\
obs.measures & A table of observed incidence rate ratio with exact confidence interval. \\
adj.measures & A table of corrected incidence rate ratios. \\
sim.df & Data frame of random parameters and computed values.
\end{tabular}

\section*{References}

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117-150, Springer.

\section*{Examples}
```

 set.seed(123)
 # Unmeasured confounding
 probsens.irr.conf(matrix(c(77, 10000, 87, 10000),
 dimnames = list(c("D+", "Person-time"), c("E+", "E-")), ncol = 2),
 reps = 20000,
 prev.exp = list("trapezoidal", c(.01, .2, .3, .51)),
 prev.nexp = list("trapezoidal", c(.09, .27, .35, .59)),
 risk = list("trapezoidal", c(2, 2.5, 3.5, 4.5)),
 corr.p = .8)
    ```
probsens.sel Probabilistic sensitivity analysis for selection bias.

\section*{Description}

Probabilistic sensitivity analysis to correct for selection bias.

\section*{Usage}
```

probsens.sel(
case,
exposed,
reps = 1000,
or.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"log-logistic", "log-normal"), parms = NULL),
case.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
case.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
ncase.exp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
ncase.nexp = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
"logit-logistic", "logit-normal"), parms = NULL),
alpha = 0.05
)

```

\section*{Arguments}
case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
reps Number of replications to run.
or .parms List defining the selection bias odds. The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, log-logistic or log-normal) and the second its parameters as a vector:
1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max.
5. Log-logistic: shape, rate. Must be strictly positive,
6. Log-normal: meanlog, sdlog. This is the mean and standard deviation on the log scale.
case.exp If or.parms not provided, defines the selection probability among case exposed. The first argument provides the probability distribution function and the second its parameters as a vector:
1. Constant: constant value,
2. Uniform: min, max,
3. Triangular: lower limit, upper limit, mode,
4. Trapezoidal: min, lower mode, upper mode, max.
5. Logit-logistic: location, scale, lower bound shift, upper bound shift,
6. Logit-normal: location, scale, lower bound shift, upper bound shift.
case.nexp Same among cases non-exposed.
ncase.exp Same among non-cases exposed.
ncase. nexp Same among non-cases non-exposed.
alpha Significance level.

\section*{Value}

A list with elements:
\begin{tabular}{ll} 
obs. data & The analyzed \(2 \times 2\) table from the observed data. \\
obs.measures & A table of observed odds ratio with confidence intervals. \\
adj.measures & A table of corrected odds ratios. \\
sim.df & Data frame of random parameters and computed values. \\
reps & Number of replications.
\end{tabular}

\section*{References}

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117-150, Springer.

\section*{Examples}
```


The data for this example come from:

Stang A., Schmidt-Pokrzywniak A., Lehnert M., Parkin D.M., Ferlay J., Bornfeld N. et al.

Population-based incidence estimates of uveal melanoma in Germany.

Supplementing cancer registry data by case-control data.

Eur J Cancer Prev 2006;15:165-70.

set.seed(123)
probsens.sel(matrix(c(136, 107, 297, 165),
dimnames = list(c("Melanoma+", "Melanoma-"), c("Mobile+", "Mobile-")), nrow = 2, byrow = TRUE),
reps = 20000,
or.parms = list("triangular", c(.35, 1.1, .43)))

```
```

selection Sensitivity analysis to correct for selection bias.

```

\section*{Description}

Simple sensitivity analysis to correct for selection bias using estimates of the selection proportions.

\section*{Usage}
selection(case, exposed, bias_parms = NULL, alpha = 0.05)

\section*{Arguments}
case Outcome variable. If a variable, this variable is tabulated against.
exposed Exposure variable.
bias_parms Selection probabilities. Either a vector of 4 elements between 0 and 1 defining the following probabilities in this order can be provided:
1. Selection probability among cases exposed (1),
2. Selection probability among cases unexposed (2),
3. Selection probability among noncases exposed (3), and
4. Selection probability among noncases unexposed (4).
or a single positive selection-bias factor which is the ratio of the exposed versus unexposed selection probabilities comparing cases and noncases \([(1 * 4) /(2 * 3)\) from above].
alpha Significance level.

\section*{Value}

A list with elements:
obs. data The analyzed \(2 \times 2\) table from the observed data.
corr.data The same table corrected for selection proportions.
obs.measures A table of odds ratios and relative risk with confidence intervals.
adj.measures Selection bias corrected measures of outcome-exposure relationship.
bias.parms Input bias parameters: selection probabilities.
selbias.or Selection bias odds ratio based on the bias parameters chosen.

\section*{Examples}

\footnotetext{
\# The data for this example come from:
\# Stang A., Schmidt-Pokrzywniak A., Lehnert M., Parkin D.M., Ferlay J., Bornfeld N.
\# et al.
\# Population-based incidence estimates of uveal melanoma in Germany. Supplementing
\# cancer registry data by case-control data.
\# Eur J Cancer Prev 2006;15:165-70.
}
```

selection(matrix(c(136, 107, 297, 165),
dimnames = list(c("UM+", "UM-"), c("Mobile+", "Mobile-")),
nrow = 2, byrow = TRUE),
bias_parms = c(.94, . 85, .64, .25))
selection(matrix(c(136, 107, 297, 165),
dimnames = list(c("UM+", "UM-"), c("Mobile+", "Mobile-")),
nrow = 2, byrow = TRUE),
bias_parms = 0.43)

```

\section*{Description}
episensr also uses the pipe function, \% \(>\%\) to turn function composition into a series of imperative statements.

\section*{Arguments}
lhs, rhs Data or bias function and a function to apply to it

\section*{Examples}
```


Instead of

misclassification(matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE),
type = "exposure", bias_parms = c(.56, .58, .99, .97))

you can write

dat <- matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE)
dat %>% misclassification(., type = "exposure", bias_parms = c(.56, .58, .99, .97))

also for multiple bias:

dat %>%
misclassification(., type = "exposure", bias_parms = c(.56, .58, .99, .97)) %>%
multiple.bias(., bias_function = "selection", bias_parms = c(.73, .61, .82, .76))

```

\section*{Index}
```

%>%,36
boot, 3, 22
boot.bias, 3, 22
confounders, 4, 21
confounders.array, 5
confounders.emm,7
confounders.evalue, }
confounders.ext,10
confounders.limit, 11
confounders.poly,13
episensr (episensr-package), 2
episensr-package, 2
mbias, 14, 23
misclassification, 3, 16, 21, 22
misclassification_cov, 17
multidimBias,19
multiple.bias,20
plot.episensr.booted,21
plot.mbias, 22
print.episensr, 23
print.episensr.booted, 24
print.mbias, 24
probsens,21,25
probsens.conf,21,27
probsens.irr, 29
probsens.irr.conf,31
probsens.sel, 21,33
selection, 3, 21, 22, 35

```
```

