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epi.2by2 Summary measures for count data presented in a 2 by 2 table

Description

Computes summary measures of risk and a chi-squared test for difference in the observed propor-
tions from count data presented in a 2 by 2 table. With multiple strata the function returns crude
and Mantel-Haenszel adjusted measures of association and chi-squared tests of homogeneity.

Usage

epi.2by2(dat, method = "cohort.count”, conf.level = 0.95, units = 100,
outcome = "as.columns")

## S3 method for class 'epi.2by2'

print(x, ...)

## S3 method for class 'epi.2by2'

summary (object,

Arguments

dat

method

conf.level

units

D)

an object of class table containing the individual cell frequencies. See the
examples, below, for details.

a character string indicating the study design on which the tabular data has been

based. Options are cohort.count, cohort. time, case.control, orcross.sectional.
Based on the study design specified by the user, appropriate measures of associ-

ation, measures of effect in the exposed and measures of effect in the population

are returned by the function.

magnitude of the returned confidence intervals. Must be a single number be-
tween O and 1.

multiplier for prevalence and incidence (risk or rate) estimates.
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outcome a character string indicating how the outcome variable is represented in the con-
tingency table. Options are as.columns (outcome as columns) or as. rows (out-
come as rows).

X, object an object of class epi.2by2.

Ignored.

Details

Where method is cohort. count, case.control, or cross.sectional and outcome = as.columns
the required 2 by 2 table format is:

Disease + Disease - Total

Expose + a b a+b
Expose- ¢ d c+d
Total a+c b+d a+b+c+d

Where method is cohort.time and outcome = as.columns the required 2 by 2 table format is:

Disease + Time at risk

Expose+ a b
Expose - ¢ d
Total a+c b+d

A summary of the methods used for each of the confidence interval calculations in this function is
as follows:

Value

An object of class epi.2by2 comprised of:

method character string returning the study design specified by the user.

n.strata number of strata.

conf.level magnitude of the returned confidence intervals.

massoc a list comprised of the computed measures of association, measures of effect in

the exposed and measures of effect in the population. See below for details.

tab a data frame comprised of of the contingency table data.



epi.2by2

When method equals cohort.count the following measures of association, measures of effect in
the exposed and measures of effect in the population are returned:

RR

OR

ARisk

PARisk

AFRisk

PAFRisk

chisqg.strata

chisq.crude

chisqg.mh

RR.homog

OR.homog

Wald, Taylor and score confidence intervals for the incidence risk ratios for each
strata. Wald, Taylort and score confidence intervals for the crude incidence risk
ratio. Wald confidence interval for the Mantel-Haenszel adjusted incidence risk
ratio.

Wald, score, Cornfield and maximum likelihood confidence intervals for the
odds ratios for each strata. Wald, score, Cornfield and maximum likelihood
confidence intervals for the crude odds ratio. Wald confidence interval for the
Mantel-Haenszel adjusted odds ratio.

Wald and score confidence intervals for the attributable risk (risk difference) for
each strata. Wald and score confidence intervals for the crude attributable risk.
Wald, Sato and Greenland-Robins confidence intervals for the Mantel-Haenszel
adjusted attributable risk.

Wald and Pirikahu confidence intervals for the population attributable risk for
each strata. Wald and Pirikahu confidence intervals for the crude population
attributable risk. The Pirikahu confidence intervals are calculated using the delta
method.

Wald confidence intervals for the attributable fraction for each strata. Wald con-
fidence intervals for the crude attributable fraction.

Wald confidence intervals for the population attributable fraction for each strata.
Wald confidence intervals for the crude population attributable fraction.

chi-squared test for difference in exposed and non-exposed proportions for each
strata.

chi-squared test for difference in exposed and non-exposed proportions across
all strata.

Mantel-Haenszel chi-squared test that the combined odds ratio estimate is equal
to 1.

Mantel-Haenszel (Woolf) test of homogeneity of the individual strata incidence
risk ratios.

Mantel-Haenszel (Woolf) test of homogeneity of the individual strata odds ra-
tios.

When method equals cohort. time the following measures of association and effect are returned:

IRR

ARate

PARate

AFRate

‘Wald confidence interval for the incidence rate ratios for each strata. Wald con-
fidence interval for the crude incidence rate ratio. Wald confidence interval for
the Mantel-Haenszel adjusted incidence rate ratio.

Wald confidence interval for the attributable rate for each strata. Wald confi-
dence interval for the crude attributable rate. Wald confidence interval for the
Mantel-Haenszel adjusted attributable rate.

Wald confidence interval for the population attributable rate for each strata.
Wald confidence intervals for the crude population attributable rate.

Wald confidence interval for the attributable fraction for each strata. Wald con-
fidence interval for the crude attributable fraction.
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chisg.strata

chisq.crude

chisqg.mh

epi.2by2

Wald confidence interval for the population attributable fraction for each strata.
Wald confidence interval for the crude poulation attributable fraction.

chi-squared test for difference in exposed and non-exposed proportions for each
strata.

chi-squared test for difference in exposed and non-exposed proportions across
all strata.

Mantel-Haenszel chi-squared test that the combined odds ratio estimate is equal
to 1.

When method equals case. control the following measures of association and effect are returned:

OR

ARisk

PARisk

AFest

PAFest

chisqg.strata

chisg.crude

chisg.mh

OR.homog

Wald, score, Cornfield and maximum likelihood confidence intervals for the
odds ratios for each strata. Wald, score, Cornfield and maximum likelihood
confidence intervals for the crude odds ratio. Wald confidence interval for the
Mantel-Haenszel adjusted odds ratio.

Wald and score confidence intervals for the attributable risk for each strata.
Wald and score confidence intervals for the crude attributable risk. Wald, Sato
and Greenland-Robins confidence intervals for the Mantel-Haenszel adjusted
attributable risk.

Wald and Pirikahu confidence intervals for the population attributable risk for
each strata. Wald and Pirikahu confidence intervals for the crude population
attributable risk.

Wald confidence intervals for the estimated attributable fraction for each strata.
‘Wald confidence intervals for the crude estimated attributable fraction.

Wald confidence intervals for the population estimated attributable fraction for
each strata. Wald confidence intervals for the crude population estimated at-
tributable fraction.

chi-squared test for difference in exposed and non-exposed proportions for each
strata.

chi-squared test for difference in exposed and non-exposed proportions across
all strata.

Mantel-Haenszel chi-squared test that the combined odds ratio estimate is equal
to 1.

Mantel-Haenszel (Woolf) test of homogeneity of the individual strata odds ra-
tios.

When method equals cross.sectional the following measures of association and effect are re-

turned:

PR

OR

Wald, Taylor and score confidence intervals for the prevalence ratios for each
strata. Wald, Taylor and score confidence intervals for the crude prevalence
ratio. Wald confidence interval for the Mantel-Haenszel adjusted prevalence
ratio.

Wald, score, Cornfield and maximum likelihood confidence intervals for the
odds ratios for each strata. Wald, score, Cornfield and maximum likelihood
confidence intervals for the crude odds ratio. Wald confidence interval for the
Mantel-Haenszel adjusted odds ratio.
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ARisk Wald and score confidence intervals for the attributable risk for each strata.
Wald and score confidence intervals for the crude attributable risk. Wald, Sato
and Greenland-Robins confidence intervals for the Mantel-Haenszel adjusted
attributable risk.

PARisk Wald and Pirikahu confidence intervals for the population attributable risk for
each strata. Wald and Pirikahu confidence intervals for the crude population
attributable risk.

AFRisk ‘Wald confidence intervals for the attributable fraction for each strata. Wald con-
fidence intervals for the crude attributable fraction.

PAFRisk Wald confidence intervals for the population attributable fraction for each strata.
Wald confidence intervals for the crude population attributable fraction.

chisq.strata  chi-squared test for difference in exposed and non-exposed proportions for each
strata.

chisq.crude chi-squared test for difference in exposed and non-exposed proportions across
all strata.

chisq.mh Mantel-Haenszel chi-squared test that the combined odds ratio estimate is equal
to 1.

PR.homog Mantel-Haenszel (Woolf) test of homogeneity of the individual strata prevalence
ratios.

OR.homog Mantel-Haenszel (Woolf) test of homogeneity of the individual strata odds ra-
tios.

The point estimates of the wald, score and cfield odds ratios are calculated using the cross product
method. Method mle computes the conditional maximum likelihood estimate of the odds ratio.

Confidence intervals for the Cornfield (cfield) odds ratios are computed using the hypergeometric
distribution and computation times are extremely slow when the cell frequencies are large. For this
reason, Cornfield confidence intervals are only calculated if the total number of event frequencies
is less than 500.

The Mantel-Haenszel chi-squared test that the combined odds ratio estimate is equal to 1 uses a
two-sided test without continuity correction.

Note

Measures of association include the prevalence ratio, the incidence risk ratio, the incidence rate
ratio and the odds ratio. The incidence risk ratio is the ratio of the incidence risk of disease in
the exposed group to the incidence risk of disease in the unexposed group. The odds ratio (also
known as the cross-product ratio) is an estimate of the incidence risk ratio. When the incidence of
an outcome in the study population is low (say, less than 5%) the odds ratio will provide a reliable
estimate of the incidence risk ratio. The more frequent the outcome becomes, the more the odds
ratio will overestimate the incidence risk ratio when it is greater than than 1 or understimate the
incidence risk ratio when it is less than 1.

Measures of effect in the exposed include the attributable risk (or prevalence) and the attributable
fraction. The attributable risk is the risk of disease in the exposed group minus the risk of disease in
the unexposed group. The attributable risk provides a measure of the absolute increase or decrease
in risk associated with exposure. The attributable fraction is the proportion of study outcomes in
the exposed group that is attributable to exposure.
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Measures of effect in the population include the population attributable risk (or prevalence) and the
population attributable fraction (also known as the aetiologic fraction). The population attributable
risk is the risk of the study outcome in the population that may be attributed to exposure. The
population attributable fraction is the proportion of the study outcomes in the population that is
attributable to exposure.

Point estimates and confidence intervals for the prevalence ratio and incidence risk ratio are calcu-
lated using Wald (Wald 1943) and score methods (Miettinen and Nurminen 1985). Point estimates
and confidence intervals for the incidence rate ratio are calculated using the exact method described
by Kirkwood and Sterne (2003) and Juul (2004). Point estimates and confidence intervals the odds
ratio are calculated using Wald (Wald 1943), score (Miettinen and Nurminen 1985) and maximum
likelihood methods (Fleiss et al. 2003). Point estimates and confidence intervals for the population
attributable risk are calculated using formulae provided by Rothman and Greenland (1998, p 271)
and Pirikahu (2014). Point estimates and confidence intervals for the population attributable fraction
are calculated using formulae provided by Jewell (2004, p 84 - 85). Point estimates and confidence
intervals for the Mantel-Haenszel adjusted attributable risk are calculated using formulae provided
by Klingenberg (2014).

Wald confidence intervals are provided in the summary table simply because they are widely used
and would be familiar to most users.

The Mantel-Haenszel adjusted measures of association are valid when the measures of association
across the different strata are similar (homogenous), that is when the test of homogeneity of the
odds (risk) ratios is not significant.

The Mantel-Haenszel (Woolf) test of homogeneity of the odds ratio are based on Jewell (2004, p
152 - 158). Thanks to Jim Robison-Cox for sharing his implementation of these functions.

Author(s)

Mark Stevenson (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,

Australia), Cord Heuer (EpiCentre, IVABS, Massey University, Palmerston North, New Zealand),

Jim Robison-Cox (Department of Math Sciences, Montana State University, Montana, USA), Kazuki
Yoshida (Brigham and Women’s Hospital, Boston Massachusetts, USA) and Simon Firestone (Fac-

ulty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia). Thanks to

Tan Dohoo for numerous helpful suggestions to improve the documentation for this function.
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Examples

## EXAMPLE 1:

## A cross sectional study investigating the relationship between dry cat
## food (DCF) and feline urologic syndrome (FUS) was conducted (Willeberg
## 1977). Counts of individuals in each group were as follows:

## DCF-exposed cats (cases, non-cases) 13, 2163
## Non DCF-exposed cats (cases, non-cases) 5, 3349

## Outcome variable (FUS) as columns:
dat <- matrix(c(13,2163,5,3349), nrow = 2, byrow = TRUE)
rownames (dat) <- c("DF+", "DF-"); colnames(dat) <- c("FUS+", "FUS-"); dat

epi.2by2(dat = as.table(dat), method = "cross.sectional”,
conf.level = 0.95, units = 100, outcome = "as.columns")

## Outcome variable (FUS) as rows:
dat <- matrix(c(13,5,2163,3349), nrow = 2, byrow = TRUE)
rownames(dat) <- c("FUS+", "FUS-"); colnames(dat) <- c("DF+", "DF-"); dat

epi.2by2(dat = as.table(dat), method = "cross.sectional”,
conf.level = 0.95, units = 100, outcome = "as.rows")

## Prevalence ratio:
## The prevalence of FUS in DCF exposed cats is 4.01 (95% CI 1.43 to 11.23)
## times greater than the prevalence of FUS in non-DCF exposed cats.

## Attributable fraction in the exposed:
## In DCF exposed cats, 75% of FUS is attributable to DCF (95% CI 30% to
## 91%) .

## Attributable fraction in the population:
## Fifty-four percent of FUS cases in the cat population are attributable
## to DCF (95% CI 4% to 78%).

## EXAMPLE 2:
## This example shows how the table function can be used to pass data to
## epi.2by2. Here we use the birthwgt data from the MASS package.

library(MASS)
dat1 <- birthwt; head(dat1)

## Generate a table of cell frequencies. First set the levels of the outcome
## and the exposure so the frequencies in the 2 by 2 table come out in the
## conventional format:

dat1$low <- factor(dati$low, levels = c(1,0))

dat1$smoke <- factor(dat1$smoke, levels = c(1,0))

dati$race <- factor(dati$race, levels = c(1,2,3))

## Generate the 2 by 2 table. Exposure (rows) = smoke. Outcome (columns) = low.
tabl <- table(dati$smoke, dati1$low, dnn = c("Smoke"”, "Low BW"))
print(tab1)
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## Compute the incidence risk ratio and other measures of association:
epi.2by2(dat = tab1, method = "cohort.count”,
conf.level = 0.95, units = 100, outcome = "as.columns")

## O0dds ratio:

## The odds of having a low birth weight child for smokers is 2.02

## (95% CI 1.08 to 3.78) times greater than the odds of having a low birth
## weight child for non-smokers.

## Now stratify by race:

tab2 <- table(dat1$smoke, dati$low, dati$race,
dnn = c("Smoke"”, "Low BW", "Race"))

print(tab2)

## Compute the crude odds ratio, the Mantel-Haenszel adjusted odds ratio
## and other measures of association:
rval <- epi.2by2(dat = tab2, method = "cohort.count”,
conf.level = 0.95, units = 100, outcome = "as.columns")
print(rval)

## The Mantel-Haenszel test of homogeneity of the strata odds ratios is not
## significant (chi square test statistic 2.800; df 2; p-value = 0.25).

## We accept the null hypothesis and conclude that the odds ratios for

## each strata of race are the same.

## After accounting for the confounding effect of race, the odds of
## having a low birth weight child for smokers is 3.09 (95% CI 1.49 to 6.39)
## times that of non-smokers.

## Compare the Greenland-Robins confidence intervals for the Mantel-Haenszel
## adjusted attributable risk with the Wald confidence intervals for the
## Mantel-Haenszel adjusted attributable risk:

rval$massoc$ARisk.mh.green
rval$massoc$ARisk.mh.wald

## Now turn tab2 into a data frame where the frequencies of individuals in
## each exposure-outcome category are provided. Often your data will be
## presented in this summary format:

dat2 <- data.frame(tab2)

print(dat2)

## Re-format dat2 (a summary count data frame) into tabular format using the
## xtabs function:

tab3 <- xtabs(Freq ~ Smoke + Low.BW + Race, data = dat2)

print(tab3)

# tab3 can now be passed to epi.2by2:

rval <- epi.2by2(dat = tab3, method = "cohort.count”,
conf.level = 0.95, units = 100, outcome = "as.columns")

print(rval)
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## The Mantel-Haenszel adjusted odds ratio is 3.09 (95% CI 1.49 to 6.39). The
## ratio of the crude odds ratio to the Mantel-Haensel adjusted odds ratio is
#i# 0.66.

## What are the Cornfield confidence limits, the maximum likelihood

## confidence limits and the score confidence limits for the crude odds ratio?
rval$massoc$OR.crude.cfield

rval$massoc$OR.crude.mle

rval$massoc$OR. crude.score

## Cornfield: 2.02 (95% CI 1.07 to 3.79)
## Maximum likelihood: 2.01 (1.03 to 3.96)
# Score: 2.02 (95% CI 1.08 to 3.77)

## Plot the individual strata-level odds ratios and compare them with the
## Mantel-Haenszel adjusted odds ratio.

## Not run:
library(ggplot2); library(scales)

nstrata <- 1:dim(tab3)[3]

strata.lab <- paste("Strata ", nstrata, sep = "")
y.at <- c(nstrata, max(nstrata) + 1)

y.lab <- c("M-H", strata.lab)

x.at <- ¢(0.25, 0.5, 1, 2, 4, 8, 16, 32)

or.1l <- c(rval$massoc$OR.mh$lower, rval$massoc$OR.strata.cfield$lower)
or.u <- c(rval$massoc$0R.mh$upper, rval$massoc$OR.strata.cfield$upper)
or.p <- c(rval$massoc$0R.mh$est, rval$massoc$OR.strata.cfield$est)

dat <- data.frame(y.at, y.lab, or.p, or.l, or.u)

ggplot(dat, aes(or.p, y.at)) +
geom_point() +
geom_errorbarh(aes(xmax = or.1l, xmin = or.u, height = 0.2)) +
labs(x = "0Odds ratio”, y = "Strata") +
scale_x_continuous(trans = log2_trans(), breaks = x.at,
limits = c(0.25,32)) + scale_y_continuous(breaks = y.at, labels = y.lab) +
geom_vline(xintercept = 1, lwd = 1) + coord_fixed(ratio = .75 / 1) +
theme(axis.title.y = element_text(vjust = 0))

## End(Not run)

## EXAMPLE 3:

## A study was conducted by Feychting et al (1998) comparing cancer occurrence
## among the blind with occurrence among those who were not blind but had

## severe visual impairment. From these data we calculate a cancer rate of

## 136/22050 person-years among the blind compared with 1709/127650 person-

## years among those who were visually impaired but not blind.

## Not run:

dat <- as.table(matrix(c(136,22050,1709,127650), nrow = 2, byrow = TRUE))

rval <- epi.2by2(dat = dat, method = "cohort.time", conf.level = 0.95,
units = 1000, outcome = "as.columns")
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summary(rval)$ARate.strata.wald

## The incidence rate of cancer was 7.22 cases per 1000 person-years less in the
## blind, compared with those who were not blind but had severe visual impairment
## (90% CI 6.00 to 8.43 cases per 1000 person-years).

round(summary(rval)$IRR.strata.wald, digits = 2)
## End(Not run)

## The incidence rate of cancer in the blind group was less than half that of the
## comparison group (incidence rate ratio 0.46, 90% CI 0.38 to 0.55).

## EXAMPLE 4:

## A study has been conducted to assess the effect of a new treatment for

## mastitis in dairy cows. Eight herds took part in the study. The following
## data were obtained. The vectors ai, bi, ci and di list (for each herd) the
## number of cows in the E+D+, E+D-, E-D+ and E-D- groups, respectively.

## Not run:

hid <- 1:8

ai <- c¢(23,10,20,5,14,6,10,3)

bi <- c¢(190,2,1,2,2,2,3,0)

ci <-¢(3,2,3,2,1,3,3,2)

di <- c¢(6,4,3,2,6,3,1,1)

dat <- data.frame(hid, ai, bi, ci, di)
print(dat)

## Re-format data frame dat into a format suitable for epi.2by2:
hid <- rep(1:8, times = 4)

exp <- factor(rep(c(1,1,0,0), each = 8), levels = c(1,0))

out <- factor(rep(c(1,0,1,0), each = 8), levels = c(1,0))

dat <- data.frame(hid, exp, out, n = c(ai,bi,ci,di))

dat <- xtabs(n ~ exp + out + hid, data = dat)

print(dat)

epi.2by2(dat = dat, method = "cohort.count”, outcome= "as.columns")

## The Mantel-Haenszel test of homogeneity of the strata odds ratios is not
## significant (chi square test statistic 5.276; df 7; p-value = 0.63).

## We accept the null hypothesis and conclude that the odds ratios for each

## strata of herd are the same.

## After adjusting for the effect of herd, compared to untreated cows, treatment
## increased the odds of recovery by a factor of 5.97 (95% CI 2.72 to 13.13).

## End(Not run)

epi.about The library epiR: summary information
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Description

epi.about

Tools for the analysis of epidemiological data.

Usage

epi.about()

Details

The most recent version of the epiR package can be obtained from: https://fvas.unimelb.edu.
au/research/groups/veterinary-epidemiology-melbourne

FUNCTIONS AND DATASETS

The following is a summary of the main functions and datasets in the epiR package. An alphabetical
list of all functions and datasets is available by typing library(help = epiR).

For further information on any of these functions, type help(name) or ?name where name is the
name of the function or dataset.

For details on how to use epR for routine epidemiological work start R, type help.start() to open
the help browser and navigate to Packages > epiR > Vignettes.

CONTENTS:

The functions in epiR can be categorised as follows:

I. DESCRIPTIVE STATISTICS

epi.conf Confidence intervals.
epi.descriptives Descriptive statistics.

II. MEASURES OF HEALTH AND MEASURES OF ASSOCIATION

epi.directadj

epi
epi

epi.
epi.
epi.

.edr
.empbayes

indirectadj
insthaz
2by?2

Directly adjusted incidence rate estimates.

Compute estimated dissemination ratios from outbreak event data.
Empirical Bayes estimates of observed event counts.

Indirectly adjusted incidence risk estimates.

Instantaneous hazard estimates based on Kaplan-Meier survival estimates.
Measures of association from data presented in a 2 by 2 table.

III. DIAGNOSTIC TESTS


https://fvas.unimelb.edu.au/research/groups/veterinary-epidemiology-melbourne
https://fvas.unimelb.edu.au/research/groups/veterinary-epidemiology-melbourne
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epi.herdtest  Estimate the characteristics of diagnostic tests applied at the herd (group) level.
epi.nomogram Compute the post-test probability of disease given characteristics of a diagnostic test.

epi.pooled Estimate herd test characteristics when samples are pooled.
epi.prev Compute the true prevalence of a disease in a population on the basis of an imperfect test.
epi.tests Sensitivity, specificity and predictive value of a diagnostic test.

IV. META-ANALYSIS

epi.dsl  Mixed-effects meta-analysis of binary outcome data using the DerSimonian and Laird method.

epi.iv  Fixed-effects meta-analysis of binary outcome data using the inverse variance method.

epi.mh  Fixed-effects meta-analysis of binary outcome data using the Mantel-Haenszel method.

epi.smd Fixed-effects meta-analysis of continuous outcome data using the standardised mean difference method.

V. REGRESSION ANALYSIS TOOLS
epi.cp Extract unique covariate patterns from a data set.

epi.cpresids Compute covariate pattern residuals from a logistic regression model.
epi.interaction Relative excess risk due to interaction in a case-control study.

VI. DATA MANIPULATION TOOLS

epi.asc Write matrix to an ASCII raster file.

epi.betabuster AnR version of Wes Johnson and Chun-Lung Su’s Betabuster.

epi.convgrid Convert British National Grid georeferences to easting and northing coordinates.
epi.dms Convert decimal degrees to degrees, minutes and seconds and vice versa.

epi.ltd Calculate lactation to date and standard lactation (that is, 305 or 270 day) milk yields.
epi.offset Create an offset vector based on a list suitable for WinBUGS.

epi.RtoBUGS Write data from an R list to a text file in WinBUGS-compatible format.

VII. SAMPLE SIZE CALCULATIONS

The general naming convention for the sample size functions in epiR is: epi.ss (sample size)
+ an abbreviation to represent the sampling design (e.g. simple, strata, clusl, clus2) + an
abbreviation of the objectives of the study (est when you want to estimate a population parameter
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or comp when you want to compare two groups) + a single letter defining the outcome variable type
(b for binary, c for continuous and s for survival data).

epi.sssimpleestb

epi.

epi

epi

epi

epi

epi.
epi.
epi.

epi

epi

epi

epi.

epi

sssimpleestc

.ssstrataestb
epi.

ssstrataestc

.sscluslestb
epi.

sscluslestc

.ssclus2estb
epi.

ssclus2estc

.ssxsectn
epi.
epi.
epi.

sscohortc
sscohortt
sscc

sscompb
sscompc
sscomps

.ssequb
epi.

ssequc

.Sssupb
epi.

sssupc

.ssninfb

ssninfc

.ssdetect

VIII. DATA SETS

epi.epidural

epi.incin
epi.SClip

Sample size to estimate a binary outcome using simple random sampling.
Sample size to estimate a continous outcome using simple random sampling.

Sample size to estimate a binary outcome using stratified random sampling.
Sample size to estimate a continous outcome using stratified random sampling.

Sample size to estimate a binary outcome using one-stage cluster sampling.
Sample size to estimate a continuous outcome using one-stage cluster sampling.

Sample size to estimate a binary outcome using two-stage cluster sampling.
Sample size to estimate a continuous outcome using two-stage cluster sampling.

Sample size, power or detectable prevalence ratio for a cross-sectional study.
Sample size, power or detectable risk ratio for a cohort study using count data.
Sample size, power or detectable risk ratio for a cohort study using time at risk data.
Sample size, power or detectable odds ratio for case-control studies.

Sample size, power and detectable risk ratio when comparing binary outcomes.
Sample size, power and detectable risk ratio when comparing continuous outcomes.
Sample size, power and detectable hazard when comparing time to event.

Sample size for a parallel equivalence trial, binary outcome.
Sample size for a parallel equivalence trial, continuous outcome.

Sample size for a parallel superiority trial, binary outcome.
Sample size for a parallel superiority trial, continuous outcome.

Sample size for a non-inferiority trial, binary outcome.
Sample size for a non-inferiority trial, continuous outcome.

Sample size to detect an event.

Rates of use of epidural anaesthesia in trials of caregiver support.
Laryngeal and lung cancer cases in Lancashire 1974 - 1983.
Lip cancer in Scotland 1975 - 1980.
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Author(s)
Mark Stevenson (<mark.stevensonl@unimelb.edu.au>), Faculty of Veterinary and Agricultural
Sciences, University of Melbourne, Parkville Victoria 3010, Australia.

Simon Firestone, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville
Victoria 3010, Australia.

Telmo Nunes, UISEE/DETSA, Faculdade de Medicina Veterinaria — UTL, Rua Prof. Cid dos
Santos, 1300 - 477 Lisboa Portugal.

Javier Sanchez, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown
Prince Edward Island, C1A 4P3, Canada.

Ron Thornton, Ministry for Primary Industries New Zealand, PO Box 2526 Wellington, New
Zealand.

epi.asc Write matrix to an ASCII raster file

Description

Writes a data frame to an ASCII raster file, suitable for display in a Geographic Information System.

Usage
epi.asc(dat, file, xllcorner, yllcorner, cellsize, na = -9999)
Arguments
dat a matrix with data suitable for plotting using the image function.
file character string specifying the name and path of the ASCII raster output file.
x1lcorner the easting coordinate corresponding to the lower left hand corner of the matrix.
yllcorner the northing coordinate corresponding to the lower left hand corner of the ma-
trix.
cellsize number, defining the size of each matrix cell.
na scalar, defines null values in the matrix. NAs are converted to this value.
Value

Writes an ASCII raster file (typically with *. asc extension), suitable for display in a Geographic
Information System.
Note

The image function in R rotates tabular data counter clockwise by 90 degrees for display. A matrix
of the form:
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is displayed (using image) as:

It is recommended that the source data for this function is a matrix. Replacement of NAs in a data
frame extends processing time for this function.

epi.betabuster An R version of Wes Johnson and Chun-Lung Su’s Betabuster

Description

A function to return shapel and shape2 parameters for a beta distribution, based on expert elicita-

tion.
Usage
epi.betabuster(mode, conf, greaterthan, x, conf.level = 0.95, max.shapel = 100,
step = 0.001)
Arguments
mode scalar, the mode of the variable of interest. Must be a number between 0 and 1.
conf level of confidence (expressed on a 0 to 1 scale) that the true value of the variable

of interest is greater or less than argument x.

greaterthan logical, if TRUE you are making the statement that you are conf confident that the
true value of the variable of interest is greater than x. If FALSE you are making
the statement that you are conf confident that the true value of the variable of
interest is less than x.

X scalar, value of the variable of interest (see above).
conf.level magnitude of the returned confidence interval for the estimated beta distribution.
Must be a single number between 0 and 1.
max . shapeT scalar, maximum value of the shapel parameter for the beta distribution.
step scalar, step value for the shapel parameter. See details.
Details

The beta distribution has two parameters: shapel and shape2, corresponding to a and b in the
original verion of BetaBuster. If r equals the number of times an event has occurred after n trials,
shapel = (r + 1) and shape2 = (n -r + 1).

BetaBuster can be downloaded from http://www.ics.uci.edu/~wjohnson/BIDA/betabuster.
zip.


http://www.ics.uci.edu/~wjohnson/BIDA/betabuster.zip
http://www.ics.uci.edu/~wjohnson/BIDA/betabuster.zip
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Value

A list containing the following:

shape1 the shape1 parameter for the estimated beta distribution.
shape2 the shape2 parameter for the estimated beta distribution.
mode the mode of the estimated beta distribution.
mean the mean of the estimated beta distribution.
median the median of the estimated beta distribution.
lower the lower bound of the confidence interval of the estimated beta distribution.
upper the upper bound of the confidence interval of the estimated beta distribution.
variance the variance of the estimated beta distribution.
Author(s)

Simon Firestone (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,
Australia) with acknowledgements to Wes Johnson and Chun-Lung Su for the original standalone
software.

References

Christensen R, Johnson W, Branscum A, Hanson TE (2010). Bayesian Ideas and Data Analysis:
An Introduction for Scientists and Statisticians. Chapman and Hall, Boca Raton.

Examples

## EXAMPLE 1:

## If a scientist is asked for their best guess for the diagnostic sensitivity
## of a particular test and the answer is 0.90, and if they are also willing
## to assert that they are 80% certain that the sensitivity is greater than

## 0.75, what are the shapel and shape2 parameters for a beta distribution

## satisfying these constraints?

rval <- epi.betabuster(mode = 0.90, conf = 0.80, greaterthan = TRUE,
X = 0.75, conf.level = 0.95, max.shapel = 100, step = 0.001)
rval$shapel; rval$shape2

## The shapel and shape2 parameters for the beta distribution that satisfy the
## constraints listed above are 9.875 and 1.986, respectively.

## This beta distribution reflects the probability distribution
## obtained if there were 9 successes, r:
r <- rval$shapel - 1; r

## from 10 trials, n:
n <- rval$shape2 + rval$shapel - 2; n

dat <- data.frame(x = seq(from = @, to = 1, by = 0.001),
y = dbeta(x = seq(from = @, to = 1,by = 0.001),
shapel = rval$shapel, shape2 = rval$shape2))
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## Density plot of the estimated beta distribution:

## Not run:
library(ggplot2)

windows(); ggplot(data = dat, aes(x = x, y = y)) +
geom_line() +
xlab("Test sensitivity”) +
ylab("Density")

## End(Not run)

epi.bohning Bohning’s test for overdispersion of Poisson data

Description

A test for overdispersion of Poisson data.

Usage

epi.bohning(obs, exp, alpha = 0.05)

Arguments
obs the observed number of cases in each area.
exp the expected number of cases in each area.
alpha alpha level to be used for the test of significance. Must be a single number
between 0 and 1.
Value

A data frame with two elements: test.statistic, Bohning’s test statistic and p.value the asso-
ciated P-value.

References

Bohning D (2000). Computer-assisted Analysis of Mixtures and Applications. Chapman and Hall,
Boca Raton.

Ugarte MD, Ibanez B, Militino AF (2006). Modelling risks in disease mapping. Statistical Methods
in Medical Research 15: 21 - 35.
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Examples

data(epi.SClip)

obs <- epi.SClip$cases

pop <- epi.SClip$population

exp <- (sum(obs) / sum(pop)) * pop

epi.bohning(obs, exp, alpha = 0.05)

epi.ccc Concordance correlation coefficient

Description

Calculates Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous

measure.
Usage
epi.ccc(x, y, ci = "z-transform”, conf.level = 0.95, rep.measure = FALSE,
subjectid)
Arguments
X a vector, representing the first set of measurements.
y a vector, representing the second set of measurements.
ci a character string, indicating the method to be used. Options are z-transform
or asymptotic.
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
rep.measure logical. If TRUE there are repeated observations across subject.
subjectid a factor providing details of the observer identifier if rep.measure == TRUE.
Details

Computes Lin’s (1989, 2000) concordance correlation coefficient for agreement on a continuous
measure obtained by two methods. The concordance correlation coefficient combines measures of
both precision and accuracy to determine how far the observed data deviate from the line of perfect
concordance (that is, the line at 45 degrees on a square scatter plot). Lin’s coefficient increases in
value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance
(the accuracy of the data) and of the tightness of the data about its reduced major axis (the precision
of the data).

Both x and y values need to be present for a measurement pair to be included in the analysis. If either
or both values are missing (i.e. coded NA) then the measurement pair is deleted before analysis.



22

Value

epi.ccc
A list containing the following:
rho.c the concordance correlation coefficient.
s.shift the scale shift.
1.shift the location shift.
C.b a bias correction factor that measures how far the best-fit line deviates from a

line at 45 degrees. No deviation from the 45 degree line occurs when C.b = 1.
See Lin (1989, page 258).

blalt a data frame with two columns: mean the mean of each pair of measurements,
delta vector y minus vector X.

sblalt a data frame listing the average difference between the two sets of measure-
ments, the standard deviation of the difference between the two sets of measure-
ments and the lower and upper confidence limits of the difference between the
two sets of measurements. If rep.measure == TRUE the confidence interval of
the difference is adjusted to account for repeated observations across individual
subjects.

nmissing a count of the number of measurement pairs ignored due to missingness.

References

Bland J, Altman D (1986). Statistical methods for assessing agreement between two methods of
clinical measurement. The Lancet 327: 307 - 310.

Bland J, Altman D (1999). Measuring agreement in method comparison studies. Statistical Methods
in Medical Research 8: 135 - 160.

Bland J, Altman D (2007). Agreement between methods of measurement with multiple observations
per individual. Journal of Biopharmaceutical Statistics 17: 571 - 582. (Corrects the formula quoted
in the 1999 paper).

Bradley E, Blackwood L (1989). Comparing paired data: a simultaneous test for means and vari-
ances. American Statistician 43: 234 - 235.

Burdick RK, Graybill FA (1992). Confidence Intervals on Variance Components. New York:
Dekker.

Dunn G (2004). Statistical Evaluation of Measurement Errors: Design and Analysis of Reliability
Studies. London: Arnold.

Euser AM, Dekker FW, le Cessie S (2008). A practical approach to Bland-Altman plots and varia-
tion coefficients for log transformed variables. Journal of Clinical Epidemiology 61: 978 - 982.

Hsu C (1940). On samples from a normal bivariate population. Annals of Mathematical Statistics
11: 410 - 426.

Krippendorff K (1970). Bivariate agreement coefficients for reliability of data. In: Borgatta E,
Bohrnstedt G (eds) Sociological Methodology. San Francisco: Jossey-Bass, pp. 139 - 150.

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255
- 268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics 56: 324 - 325.
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Pitman E (1939). A note on normal correlation. Biometrika 31: 9 - 12.

Reynolds M, Gregoire T (1991). Comment on Bradley and Blackwood. American Statistician 45:
163 - 164.

Snedecor G, Cochran W (1989). Statistical Methods. Ames: Iowa State University Press.

See Also

epi.occc

Examples

## EXAMPLE 1:

set.seed(seed = 1234)

method1 <- rnorm(n = 100, mean = @, sd = 1)

method2 <- methodl + runif(n = 100, min = -0.25, max = 0.25)

## Add some missing values:
method1[50] <- NA
method2[75] <- NA

tmp <- data.frame(methodl, method2)
tmp.ccc <- epi.ccc(methodl, method2, ci = "z-transform”, conf.level = 0.95,
rep.measure = FALSE)

tmp.lab <- data.frame(lab = paste("CCC: ",
round(tmp.ccc$rho.c[,1], digits = 2), " (95% CI ",
round(tmp.ccc$rho.c[,2], digits = 2), " - ",
round(tmp.ccc$rho.cl,3], digits = 2), ")", sep = ""))

z <- Im(method2 ~ method1)

alpha <- summary(z)$coefficients[1,1]
beta <- summary(z)$coefficients[2,1]
tmp.1lm <- data.frame(alpha, beta)

## Concordance correlation plot:
## Not run:
library(ggplot2)

ggplot(tmp, aes(x = methodl, y = method2)) +

geom_point() +

geom_abline(intercept = @, slope = 1) +

geom_abline(data = tmp.1lm, aes(intercept = alpha, slope = beta),
linetype = "dashed”) +

xlim(Q, 3) +

ylim(o, 3) +

xlab("Method 1") +

ylab("Method 2") +

geom_text(data = tmp.lab, x = 0.5, y = 2.95, label = tmp.lab$lab) +

coord_fixed(ratio =1/ 1)

## In this plot the dashed line represents the line of perfect concordance.
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## The solid line represents the reduced major axis.

## End(Not run)

## EXAMPLE 2:

## Bland and Altman plot (Figure 2 from Bland and Altman 1986):

X <- c(494,395,516,434,476,557,413,442,650,433,417,656,267,
478,178,423,427)

y <- c(512,430,520,428,500, 600,364,380, 658,445,432,626,260,
477,259,350,451)

tmp.ccc <- epi.ccc(x, y, ci = "z-transform”, conf.level = 0.95,
rep.measure = FALSE)
tmp <- data.frame(mean = tmp.ccc$blalt[,1], delta = tmp.ccc$blalt[,2])

## Not run:
library(ggplot2)

ggplot(tmp.ccc$blalt, aes(x = mean, y = delta)) +
geom_point() +
geom_hline(data = tmp.ccc$sblalt, aes(yintercept = lower), linetype = 2) +
geom_hline(data = tmp.ccc$sblalt, aes(yintercept = upper), linetype = 2) +
geom_hline(data = tmp.ccc$sblalt, aes(yintercept = est), linetype = 1) +
xlab("Average PEFR by two meters (L/min)") +
ylab("Difference in PEFR (L/min)") +
x1im(0,800) +
ylim(-150,150)

## End(Not run)

## EXAMPLE 3:

## Setting limits of agreement when your data are skewed. See Euser et al.

## (2008) for details.

x <- c(0,210,15,90,0,0,15,0,0,0,15,0,15,0,0,0,0,15,0,0,15,135,0,0,15,
120,30,15,30,0,0,5235,780,1275,10515,1635,1905,1830,720,450,225,420,
300,15,285,0,225,525,675,5280,465,270,0,1485,15,420,0,60,0,0,0,750,
570,0)

y <- c¢(0,70,0,0,0,0,35,0,0,0,0,0,0,35,0,0,0,0,0,0,35,35,70,0,0,140, 35,
105,0,0,0,1190,385,1190,6930,560,1260,700,840,0,105,385,245,35,105,
0,140,350,350,3640,385,350,0,1505,0,630,70,0,0,140,0,420,490,0)

crude.ccc <- epi.ccc(x, y, ci = "z-transform”,
conf.level = 0.95, rep.measure = FALSE)

## Not run:
library(ggplot2)

ggplot(crude.ccc$blalt, aes(x = mean, y = delta)) +
geom_point() +
geom_hline(data = crude.ccc$sblalt, aes(yintercept = lower), linetype = 2) +
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geom_hline(data = crude.ccc$sblalt, aes(yintercept = upper), linetype = 2) +
geom_hline(data = crude.ccc$sblalt, aes(yintercept = est), linetype = 1) +
xlab("Average of the two measurements”) +

ylab("Difference in the two measurements”) +

x1im(@,8000) +

ylim(-8000,8000)

## End(Not run)

## In the above plot the spread of the differences increases with increasing
## mean of the observations. The Bland Altman limits of agreement should be
## calculated on a log scale.

logx <- log(x + 50, base = 10)
logy <- log(y + 50, base = 10)
log1@.ccc <- epi.ccc(x = logx, y = logy, ci = "z-transform”,

conf.level = 0.95, rep.measure = FALSE)

## Transform the limits of agreement back to the original scale by taking
## anti-logs. If the limits of agreement for Z = logl@(x) are between -a

## and +a, with a = 1.96 * s, the ratio between two measures on the original
## scale is between 10”-a and 10%a. See page 979 of Euser et al. (2008).

a <- 1.96 x logl@.ccc$sblalt$delta.sd

## For a given value for the mean Xbar, it can be shown that x - y is between
## -2Xbar(10%a - 1) / (10%a + 1) and +2Xbar(10*a - 1) / (10*a + 1):

Xbar = seq(from = @, to = 8000, by = 100)

Xbar.low <- (-2 x Xbar * (10*a - 1)) / (10%a + 1)

Xbar.upp <- (+2 x Xbar * (10%a - 1)) / (10%a + 1)

limits <- data.frame(mean = Xbar, lower = Xbar.low, upper = Xbar.upp)

## Not run:
library(ggplot2)

ggplot(crude.ccc$blalt, aes(x = mean, y = delta)) +
geom_point() +
geom_line(data = limits, aes(x = mean, y = lower), linetype
geom_line(data = limits, aes(x = mean, y = upper), linetype
geom_line(data = limits, aes(x = mean, y = @), linetype = 1) +
xlab("Average of the two measurements”) +
ylab("Difference in the two measurements”) +
x1im(0,8000) +
ylim(-8000,8000)

2) +
2) +

## End(Not run)
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epi.conf Confidence intervals for means, proportions, incidence, and standard-
ised mortality ratios

Description

Computes confidence intervals for means, proportions, incidence, and standardised mortality ratios.

Usage

epi.conf(dat, ctype = "mean.single”, method, N, design = 1,
conf.level = 0.95)

Arguments
dat the data, either a vector or a matrix depending on the method chosen.
ctype a character string indicating the type of confidence interval to calculate. Options
are mean.single, mean.unpaired, mean.paired, prop.single, prop.unpaired,
prop.paired, prevalence, inc.risk, inc.rate, odds, ratio and smr.
method a character string indicating the method to use. Where ctype = "inc.risk"” or
ctype = "prevalence” options are exact, wilson, fleiss, agresti, clopper-pearson
and jeffreys. Where ctype = "inc.rate" options are exact and byar.
N scalar, representing the population size.
design scalar, representing the design effect.
conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
Details

Method mean.single requires a vector as input. Method mean.unpaired requires a two-column
data frame; the first column defining the groups must be a factor. Method mean.paired requires a
two-column data frame; one column for each group. Method prop.single requires a two-column
matrix; the first column specifies the number of positives, the second column specifies the number
of negatives. Methods prop.unpaired and prop.paired require a four-column matrix; columns
1 and 2 specify the number of positives and negatives for the first group, columns 3 and 4 specify
the number of positives and negatives for the second group. Method prevalence and inc.risk
require a two-column matrix; the first column specifies the number of positives, the second column
specifies the total number tested. Method inc.rate requires a two-column matrix; the first column
specifies the number of positives, the second column specifies individual time at risk. Method odds
requires a two-column matrix; the first column specifies the number of positives, the second column
specifies the number of negatives. Method ratio requires a two-column matrix; the first column
specifies the numerator, the second column specifies the denominator. Method smr requires a two-
colum matrix; the first column specifies the total number of positives, the second column specifies
the total number tested.

The methodology implemented here follows Altman, Machin, Bryant, and Gardner (2000). Where
method is inc.risk or prevalence if the numerator equals zero the lower bound of the confidence
interval estimate is set to zero. Where method is smr the method of Dobson et al. (1991) is used. A
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summary of the methods used for each of the confidence interval calculations in this function is as

follows:

ctype-method

Reference

mean.single
mean.unpaired
mean.paired
prop.single
prop.unpaired
prop.paired
inc.risk, exact
inc.risk, wilson
inc.risk, fleiss
inc.risk, agresti
inc.risk, clopper-pearson
inc.risk, jeffreys
prevalence, exact
prevalence, wilson
prevalence, fleiss
prevalence, agresti
prevalence, clopper-pearson
prevalence, jeffreys
inc.rate, exact
inc.rate, byar

odds

ratio

smr

Altman et al. (2000)
Altman et al. (2000)
Altman et al. (2000)
Altman et al. (2000)
Altman et al. (2000)
Altman et al. (2000)
Collett (1999)
Rothman (2002)

Fleiss (1981)
REFERENCE (YYYY)
REFERENCE (YYYY)
REFERENCE (YYYY)
Collett (1999)

Rothman (2002)

Fleiss (1981)
REFERENCE (YYYY)
REFERENCE (YYYY)
REFERENCE (YYYY)
Ulm (1990)

Rothman (2002)
Ederer and Mantel (1974)
Ederer and Mantel (1974)
Dobson et al. (1991)

The design effect is used to adjust the confidence interval around a prevalence or incidence risk
estimate in the presence of clustering. The design effect is a measure of the variability between
clusters and is calculated as the ratio of the variance calculated assuming a complex sample design
divided by the variance calculated assuming simple random sampling. Adjustment for the effect of
clustering can only be done on those prevalence and incidence risk methods that return a standard
error (i.e. method = "wilson" or method = "fleiss").

References
Altman DG, Machin D, Bryant TN, and Gardner MJ (2000). Statistics with Confidence, second
edition. British Medical Journal, London, pp. 28 - 29 and pp. 45 - 56.
Collett D (1999). Modelling Binary Data. Chapman & Hall/CRC, Boca Raton Florida, pp. 24.

Dobson AJ, Kuulasmaa K, Eberle E, and Scherer J (1991). Confidence intervals for weighted sums
of Poisson parameters. Statistics in Medicine 10: 457 - 462.

Ederer F, and Mantel N (1974). Confidence limits on the ratio of two Poisson variables. American
Journal of Epidemiology 100: 165 - 167
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Fleiss JL (1981). Statistical Methods for Rates and Proportions. 2nd edition. John Wiley & Sons,
New York.

Killip S, Mahfoud Z, Pearce K (2004). What is an intracluster correlation coefficient? Crucial
concepts for primary care researchers. Annals of Family Medicine 2: 204 - 208.

Otte J, Gumm I (1997). Intra-cluster correlation coefficients of 20 infections calculated from the
results of cluster-sample surveys. Preventive Veterinary Medicine 31: 147 - 150.

Rothman KJ (2002). Epidemiology An Introduction. Oxford University Press, London, pp. 130 -
143.

Ulm K (1990). A simple method to calculate the confidence interval of a standardized mortality
ratio. American Journal of Epidemiology 131: 373 - 375.

Examples

## EXAMPLE 1:
dat <- rnorm(n = 100, mean = @, sd = 1)
epi.conf(dat, ctype = "mean.single")

## EXAMPLE 2:

group <- c(rep("A", times = 5), rep("B", times = 5))

val = round(c(rnorm(n = 5, mean = 10, sd = 5),
rnorm(n = 5, mean = 7, sd = 5)), digits = 0)

dat <- data.frame(group = group, val = val)

epi.conf(dat, ctype = "mean.unpaired”)

## EXAMPLE 3:

## Two paired samples (Altman et al. 2000, page 31):

## Systolic blood pressure levels were measured in 16 middle-aged men

## before and after a standard exercise test. The mean rise in systolic

## blood pressure was 6.6 mmHg. The standard deviation of the difference
## was 6.0 mm Hg. The standard error of the mean difference was 1.49 mm Hg.

before <- c(148,142,136,134,138,140,132,144,128,170,162,150,138,154,126,116)
after <- c(152,152,134,148,144,136,144,150,146,174,162,162,146,156,132,126)
dat <- data.frame(before, after)

dat <- data.frame(cbind(before, after))

epi.conf(dat, ctype = "mean.paired”, conf.level = 0.95)

## The 95% confidence interval for the population value of the mean
## systolic blood pressure increase after standard exercise was 3.4 to 9.8
## mm Hg.

## EXAMPLE 4:

## Single sample (Altman et al. 2000, page 47):

## Out of 263 giving their views on the use of personal computers in
## general practice, 81 thought that the privacy of their medical file
## had been reduced.

pos <- 81

neg <- (263 - 81)

dat <- as.matrix(cbind(pos, neg))

round(epi.conf(dat, ctype = "prop.single"), digits = 3)
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## The 95% confidence interval for the population value of the proportion
## of patients thinking their privacy was reduced was from 0.255 to 0.366.

## EXAMPLE 5:

## Two samples, unpaired (Altman et al. 2000, page 49):

## Goodfield et al. report adverse effects in 85 patients receiving either
## terbinafine or placebo treatment for dermatophyte onchomychois.

## Out of 56 patients receiving terbinafine, 5 patients experienced

## adverse effects. Out of 29 patients receiving a placebo, none experienced
## adverse effects.

grpl <- matrix(cbind(5, 51), ncol = 2)

grp2 <- matrix(cbind(@, 29), ncol = 2)

dat <- as.matrix(cbind(grpl, grp2))

round(epi.conf(dat, ctype = "prop.unpaired”), digits = 3)

## The 95% confidence interval for the difference between the two groups is
## from -0.038 to +0.193.

## EXAMPLE 6:

## Two samples, paired (Altman et al. 2000, page 53):

## In a reliability exercise, 41 patients were randomly selected from those
## who had undergone a thalium-201 stress test. The 41 sets of images were
## classified as normal or not by the core thalium laboratory and,

## independently, by clinical investigators from different centres.

## Of the 19 samples identified as ischaemic by clinical investigators

## 5 were identified as ischaemic by the laboratory. Of the 22 samples

## identified as normal by clinical investigators @ were identified as

## ischaemic by the laboratory.

## Clinic | Laboratory | |

## | Ischaemic | Normal | Total

#H# -
## Ischaemic | 14 | 5 | 19

## Normal | @ | 22 | 22

#H# -
## Total | 14 | 27 | 41

### -

dat <- as.matrix(cbind(14, 5, 0, 22))
round(epi.conf(dat, ctype = "prop.paired”, conf.level = 0.95), digits = 3)

## The 95% confidence interval for the population difference in
## proportions is 0.011 to 0.226 or approximately +1% to +23%.

## EXAMPLE 7:

## A herd of 1000 cattle were tested for brucellosis. Four samples out of 200
## test returned a positive result. Assuming 100% test sensitivity and

## specificity, what is the estimated prevalence of brucellosis in this

## group of animals?

pos <- 4; pop <- 200
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dat <- as.matrix(cbind(pos, pop))
epi.conf(dat, ctype = "prevalence”, method = "exact”, N = 1000,
design = 1, conf.level = 0.95) * 100

## The estimated prevalence of brucellosis in this herd is 2 cases
## per 100 cattle (95% CI 0.54 -- 5.0 cases per 100 cattle).

## EXAMPLE 8:

## The observed disease counts and population size in four areas are provided
## below. What are the the standardised morbidity ratios of disease for each
## area and their 95% confidence intervals?

obs <- c(5, 10, 12, 18); pop <- c(234, 189, 432, 812)
dat <- as.matrix(cbind(obs, pop))
round(epi.conf(dat, ctype = "smr"), digits = 2)

## EXAMPLE 9:

## A survey has been conducted to determine the proportion of broilers

## protected from a given disease following vaccination. We assume that

## the intra-cluster correlation coefficient for protection (also known as the
## rate of homogeneity, rho) is 0.4 and the average number of birds per

## flock is 30. A total of 5898 birds from a total of 10363 were identified
## as protected. What proportion of birds are protected and what is the 95%
## confidence interval for this estimate?

## Calculate the design effect, given rho = (design - 1) / (nbar - 1), where
## nbar equals the average number of individuals sampled per cluster:

D<-0.4% (30 -1) +1

## The design effect is 12.6. Now calculate the proportion protected:
dat <- as.matrix(cbind(5898, 10363))

epi.conf(dat, ctype = "prevalence”, method = "fleiss”, N = 1000000,

design = D, conf.level = 0.95)

## The estimated proportion of the population protected is 0.57 (95% CI
## 0.53 -- 0.60). If we had mistakenly assumed that data were a simple random

## sample the confidence interval would have been ©.56 -- 0.58.
epi.convgrid Convert British National Grid georeferences to easting and northing
coordinates
Description

Convert British National Grid georeferences to easting and northing coordinates.

Usage

epi.convgrid(os.refs)
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Arguments
os.refs a vector of character strings listing the British National Grid georeferences to be
converted.
Note

If an invalid georeference is encountered in the vector os. ref the method returns a NA.

Examples

os.refs <- c("SJ505585","SJ488573","SJ652636")
epi.convgrid(os.refs)

epi.cp Extract unique covariate patterns from a data set

Description

Extract the set of unique patterns from a set of covariates.

Usage
epi.cp(dat)

Arguments
dat an i row by j column data frame where the i rows represent individual observa-
tions and the m columns represent a set of m covariates. The function permits
one or more covariates for each observation.
Details

This function extracts the k unique covariate patterns in a data set comprised of i observations,
labelling them from 1 to k. The frequency of occurrence of each covariate pattern is listed. A vector
of length i is also returned, listing the 1:k covariate pattern identifier for each observation.

Value

A list containing the following:

cov.pattern a data frame with columns: id the unique covariate pattern identifier (labelled 1
to k), n the number of occasions each of the listed covariate pattern appears in
the data, and the unique covariate combinations.

id a vector of length i listing the 1:k covariate pattern identifier for each observa-
tion.
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Author(s)

Thanks to Johann Popp and Mathew Jay for providing code and suggestions to enhance the utility
of this function.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada.

Examples

## Generate a set of covariates:

set.seed(seed = 1234)

obs <- round(runif(n = 100, min = @, max = 1), digits = @)
vl <= round(runif(n = 100, min = @, max = 4), digits = @)
v2 <= round(runif(n = 100, min = @, max = 4), digits = @)
dat <- data.frame(obs, v1, v2)

dat.glm <- glm(obs ~ v1 + v2, family = binomial, data = dat)
dat.mf <- model.frame(dat.glm)

## Covariate pattern:
epi.cp(dat.mf[-1])

## There are 25 covariate patterns in this data set. Subject 100 has
## covariate pattern 21.

epi.cpresids Covariate pattern residuals from a logistic regression model

Description

Returns covariate pattern residuals and delta betas from a logistic regression model.

Usage

epi.cpresids(obs, fit, covpattern)

Arguments
obs a vector of observed values (i.e. counts of ‘successes’) for each covariate pat-
tern).
fit a vector defining the predicted (i.e. fitted) probability of success for each covari-

ate pattern.

covpattern a epi.cp object.
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Value

A data frame with 13 elements: cpid the covariate pattern identifier, n the number of subjects in
this covariate pattern, obs the observed number of successes, pred the predicted number of suc-
cesses, raw the raw residuals, sraw the standardised raw residuals, pearson the Pearson residuals,
spearson the standardised Pearson residuals, deviance the deviance residuals, leverage lever-
age, deltabeta the delta-betas, sdeltabeta the standardised delta-betas, and deltachi delta chi
statistics.

References
Hosmer DW, Lemeshow S (1989). Applied Logistic Regression. John Wiley & Sons, New York,
USA, pp. 137 - 138.

See Also

epi.cp

Examples

infert.glm <- glm(case ~ spontaneous + induced, data = infert,
family = binomial())

infert.mf <- model.frame(infert.glm)
infert.cp <- epi.cp(infert.mf[-1])

infert.obs <- as.vector(by(infert$case, as.factor(infert.cp$id),

FUN = sum))
infert.fit <- as.vector(by(fitted(infert.glm), as.factor(infert.cp$id),
FUN = min))

infert.res <- epi.cpresids(obs = infert.obs, fit = infert.fit,
covpattern = infert.cp)

epi.descriptives Descriptive statistics

Description

Computes descriptive statistics from a vector of numbers.

Usage

epi.descriptives(dat, conf.level = 0.95)

Arguments
dat vector for which descriptive statistics will be calculated.
conf.level magnitude of the returned confidence intervals. Must be a single number be-

tween 0 and 1.
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Value
A list containing the following:

arithmetic n number of observations, mean arithmetic mean, sd arithmetic standard de-
viation, 25 25th quantile, g50 50th quantile, q75 75th quantile, lower lower
bound of the confidence interval, upper upper bound of the confidence interval,
min minimum value, max maximum value, and na number of missing values.

geometric n number of observations, mean geometric mean, sd geometric standard de-
viation, 25 25th quantile, g50 50th quantile, q75 75th quantile, lower lower
bound of the confidence interval, upper upper bound of the confidence interval,
min minimum value, max maximum value, and na number of missing values.

symmetry skewness and kurtosis.

Examples

id <- 1:1000

tmp <- rnorm(1000, mean = @, sd = 1)
id <- sample(id, size = 20)

tmp[id] <- NA

epi.descriptives(tmp, conf.level = 0.95)

epi.dgamma Estimate the precision of a [structured] heterogeneity term

Description
Returns the precision of a [structured] heterogeneity term after one has specified the amount of
variation a priori.

Usage
epi.dgamma(rr, quantiles = c(0.05, 0.95))

Arguments
rr the lower and upper limits of relative risk, estimated a priori.
quantiles a vector of length two defining the quantiles of the lower and upper relative risk
estimates.
Value

Returns the precision (the inverse variance) of the heterogeneity term.

References

Best, NG. WinBUGS 1.3.1 Short Course, Brisbane, November 2000.
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Examples

## Suppose we are expecting the lower 5% and upper 95% confidence interval
## of relative risk in a data set to be 0.5 and 3.0, respectively.
## A prior guess at the precision of the heterogeneity term would be:

tau <- epi.dgamma(rr = c(0.5, 3.0), quantiles = c(0.05, 0.95))
tau

## This can be translated into a gamma distribution. We set the mean of the
## distribution as tau and specify a large variance (that is, we are not
## certain about tau).

mean <- tau

var <- 1000

shape <- mean*2 / var
inv.scale <- mean / var

## In WinBUGS the precision of the heterogeneity term may be parameterised
## as tau ~ dgamma(shape, inv.scale). Plot the probability density function
## of tau:

z <- seq(0.01, 10, by = 0.01)
fz <- dgamma(z, shape = shape, scale = 1/inv.scale)
plot(z, fz, type = "1", ylab = "Probability density of tau”)

epi.directadj Directly adjusted incidence rate estimates

Description

Compute directly adjusted incidence rates.

Usage

epi.directadj(obs, tar, std, units = 1, conf.level = 0.95)

Arguments

obs a matrix representing the observed number of events. Rows represent strata
(e.g. region); columns represent the covariates to be adjusted for (e.g. age class,
gender). The sum of each row will equal the total number of events for each
stratum. The rows of the obs matrix must be named with the appropriate strata
names. The columns of obs must be named with the appropriate level identifiers
for the covariate. See the example, below.
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tar

std

units

conf.level

Details

epi.directadj

a matrix representing population time at risk. Rows represent strata (e.g. re-
gion); columns represent the covariates to be adjusted for (e.g. age class, gen-
der). The sum of each row will equal the total population time at risk within
each stratum. The rows of the pop matrix must be named with the appropriate
strata names. The columns of pop must be named with the appropriate level
identifiers for the covariate. See the example, below.

a matrix representing the standard population size for the different levels of the
covariate to be adjusted for. The columns of std must be named with the appro-
priate level identifiers for the covariate(s).

multiplier for the incidence rate estimates.

magnitude of the returned confidence interval. Must be a single number between
Oand 1.

This function returns unadjusted (crude) and directly adjusted incidence rate estimates for each of
the specified population strata. The term ‘covariate’ is used here to refer to the factors we want to
control (i.e. adjust) for when calculating the directly adjusted incidence rate estimates.

When the outcome of interest is rare, the confidence intervals for the adjusted incidence rates re-
turned by this function (based on Fay and Feuer, 1997) will be appropriate for incidence risk data.
In this situation the argument tar is assumed to represent the size of the population at risk (in-
stead of population time at risk). Example 3 (below) provides an approach if you are working with
incidence risk data and the outcome of interest is not rare.

Value

A list containing the following:

crude
crude.strata

adj.strata

Author(s)

the crude incidence rate estimates for each stratum-covariate combination.
the crude incidence rate estimates for each stratum.

the directly adjusted incidence rate estimates for each stratum.

Thanks to Karl Ove Hufthammer for helpful suggestions to improve the execution and documenta-
tion of this function.

References

Fay M, Feuer E (1997). Confidence intervals for directly standardized rates: A method based on
the gamma distribution. Statistics in Medicine 16: 791 - 801.

Fleiss JL (1981). Statistical Methods for Rates and Proportions, Wiley, New York, USA, pp. 240.

Frome E, Checkoway H (1985). Use of Poisson regression models in estimating incidence rates and
ratios. American Journal of Epidemiology 121: 309 - 323.

Greenland S, Rothman KJ. Introduction to stratified analysis. In: Rothman KJ, Greenland S (1998).
Modern Epidemiology. Lippincott Williams, & Wilkins, Philadelphia, pp. 260 - 265.

Thrusfield M (2007). Veterinary Epidemiology, Blackwell Publishing, London, UK, pp. 63 - 64.
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Wilcosky T, Chambless L (1985). A comparison of direct adjustment and regression adjustment of
epidemiologic measures. Journal of Chronic Diseases 38: 849 - 956.

See Also

epi.indirectadj

Examples

## EXAMPLE 1 (from Thrusfield 2007 pp. 63 - 64):

## A study was conducted to estimate the seroprevalence of leptospirosis
## in dogs in Glasgow and Edinburgh, Scotland. For the matrix titled pop
## the numbers represent dog-years at risk. The following data were

## obtained for male and female dogs:

dat <- data.frame(obs = c(15,46,53,16), tar = c(48,212,180,71),
sex = c("M","F”,"M" "F"), city = c("ED","ED","GL","GL"))

obs <- matrix(dat$obs, nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), c("M","F")))

tar <- matrix(dat$tar, nrow = 2, byrow = TRUE,
dimnames = list(c("ED","GL"), c("M","F")))

std <- matrix(data = c(250,250), nrow = 1, byrow = TRUE,
dimnames = list("", c("M","F")))

## Compute directly adjusted seroprevalence estimates, using a standard
## population with equal numbers of male and female dogs:

std <- matrix(data = c(250,250), nrow = 1, byrow = TRUE,
dimnames = list("", c("M","F")))

epi.directadj(obs, tar, std, units = 1, conf.level = 0.95)

## > $crude

#H > strata cov est lower upper
##H > 1 ED M 0.3125000 0.1749039 0.5154212
##H > 2 GL M 0.2944444 0.2205591 0.3851406
##t > 3 ED F 0.2169811 0.1588575 0.2894224
##H > 4 GL F 0.2253521 0.1288082 0.3659577
## > $crude.strata

## > strata est lower upper

##H > 1 ED 0.2346154 0.1794622 0.3013733

##t > 2 GL ©0.2749004 ©.2138889 0.3479040

## > $adj.strata

#H > strata est lower upper

## > 1 ED 0.2647406 0.1866047 0.3692766

##t > 2 GL 0.2598983 0.1964162 0.3406224

## The confounding effect of gender has been removed by the adjusted
## incidence rate estimates.
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## The adjusted incidence rate of leptospirosis in Glasgow dogs is 26 (95%
## CI 20 to 34) cases per 100 dog-years at risk.

## EXAMPLE 2 --- A more flexible approach for calculating adjusted incidence
## rate estimates using Poisson regression. See Frome and Checkoway (1985) for
## details.

dat.glm@1 <- glm(obs ~ city, offset = log(tar), family = poisson, data = dat)
summary (dat.glme1)

## If you want to obtain adjusted incidence rate estimates, use the predict
## method on a new data set with the time at risk (tar) variable set to 1
## (which means log(tar) = 0). This will return the predicted number of

## cases per one unit of individual time, i.e. the incidence rate.

dat.pred@l <- predict(object = dat.glm@1, newdata =
data.frame(city = c("ED","GL"), tar = c(1,1)),
type = "link”, se = TRUE)

conf.level <- 0.95
critval <- gnorm(p = 1 - ((1 - conf.level) / 2), mean = @, sd = 1)
est <- dat.glm@1$family$linkinv(dat.predo1$fit)
lower <- dat.glm@1$family$linkinv(dat.pred@1$fit -
(critval % dat.predoi$se.fit))
upper <- dat.glm@1$family$linkinv(dat.pred@1$fit +
(critval * dat.pred@i$se.fit))
round(data.frame(est, lower, upper), 3)

## est lower upper

## 0.235 0.183 0.302

## 0.275 0.217 0.348

## Results identical to the crude incidence rate estimates from
## epi.directadj.

## We now adjust for the effect of gender and city and report the adjusted
## incidence rate estimates for each city:
dat.glm@2 <- dat.glm@2 <- glm(obs ~ city + sex, offset = log(tar),
family = poisson, data = dat)
dat.pred@2 <- predict(object = dat.glm@2, newdata =
data.frame(sex = c("F","F"), city = c("ED","GL"), tar = c(1,1)),
type = "link”, se.fit = TRUE)

conf.level <- 0.95
critval <- gnorm(p = 1 - ((1 - conf.level) / 2), mean = @, sd = 1)
est <- dat.glm@2$family$linkinv(dat.pred02$fit)
lower <- dat.glm@2$family$linkinv(dat.pred@2$fit -
(critval * dat.pred@2$se.fit))
upper <- dat.glm@2$family$linkinv(dat.pred@2$fit +
(critval * dat.pred@2$se.fit))
round(data.frame(est, lower, upper), 3)

## est lower upper
## 0.220 0.168 0.287
## 0.217 0.146 0.323
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## Using Poisson regression the gender adjusted incidence rate of leptospirosis
## in Glasgow dogs was 22 (95% CI 15 to 32) cases per 100 dog-years at risk.

## These results won't be the same as those using direct adjustment because

## for direct adjustment we use a contrived standard population.

## EXAMPLE 3 --- Logistic regression to return adjusted incidence risk
## estimates:

## Say, for argument's sake, that we are now working with incidence risk data.
## Here we'll re-label the variable 'tar' (time at risk) as 'pop'

## (population size). We adjust for the effect of gender and city and

## report the adjusted incidence risk of canine leptospirosis estimates for
## each city:

dat$pop <- dat$tar

dat.glm@3 <- glm(cbind(obs, pop - obs) ~ city + sex,
family = "binomial”, data = dat)

dat.pred@3 <- predict(object = dat.glm@3, newdata =
data.frame(sex = c("F","F"), city = c("ED","GL")),
type = "link”, se.fit = TRUE)

conf.level <- 0.95
critval <- gnorm(p =1 - ((1 - conf.level) / 2), mean = @, sd = 1)
est <- dat.glm@3$family$linkinv(dat.pred@3s$fit)
lower <- dat.glm@3$family$linkinv(dat.pred@3$fit -
(critval * dat.pred@3s$se.fit))
upper <- dat.glm@3$family$linkinv(dat.pred@3$fit +
(critval * dat.pred@3s$se.fit))
round(data.frame(est, lower, upper), 3)

##  est lower upper
## 0.220 0.172 0.276
## 0.217 0.150 0.304

## The adjusted incidence risk of leptospirosis in Glasgow dogs is 22 (95%
## CI 15 to 30) cases per 100 dogs at risk.

epi.dms Decimal degrees and degrees, minutes and seconds conversion

Description
Converts decimal degrees to degrees, minutes and seconds. Converts degrees, minutes and seconds
to decimal degrees.

Usage
epi.dms(dat)
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Arguments
dat the data. A one-column matrix is assumed when converting decimal degrees to
degrees, minutes, and seconds. A two-column matrix is assumed when convert-
ing degrees and decimal minutes to decimal degrees. A three-column matrix is
assumed when converting degrees, minutes and seconds to decimal degrees.
Examples

## EXAMPLE 1:

## Degrees, minutes, seconds to decimal degrees:

dat <- matrix(c(41, 38, 7.836, -40, 40, 27.921),
byrow = TRUE, nrow = 2)

epi.dms(dat)

## EXAMPLE 2:
## Decimal degrees to degrees, minutes, seconds:
dat <- matrix(c(41.63551, -40.67442), nrow = 2)
epi.dms(dat)

epi.dsl Mixed-effects meta-analysis of binary outcomes using the DerSimo-
nian and Laird method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the DerSimonian and Laird method. Performs a test of heterogeneity among
trials. Performs a test for the overall difference between groups (that is, after pooling the studies,
do treated groups differ significantly from controls?).

Usage

epi.dsl(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio”,

alternative = c("two.sided”, "less"”, "greater"”), conf.level = 0.95)

Arguments

ev.trt observed number of events in the treatment group.

n.trt number in the treatment group.

ev.ctrl observed number of events in the control group.

n.ctrl number in the control group.

names character string identifying each trial.

method a character string indicating the method to be used. Options are odds.ratio or

risk.ratio.



epi.dsl 41

alternative a character string specifying the alternative hypothesis, must be one of two. sided,
greater or less.

conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.

Details

alternative = "greater” tests the hypothesis that the DerSimonian and Laird summary measure
of association is greater than 1.

Value

A list containing the following:
OR the odds ratio for each trial and the lower and upper bounds of the confidence
interval of the odds ratio for each trial.

RR the risk ratio for each trial and the lower and upper bounds of the confidence
interval of the risk ratio for each trial.

OR. summary the DerSimonian and Laird summary odds ratio and the lower and upper bounds
of the confidence interval of the DerSimonian and Laird summary odds ratio.

RR.summary the DerSimonian and Laird summary risk ratio and the lower and upper bounds
of the confidence interval of the DerSimonian and Laird summary risk ratio.

weights the inverse variance and DerSimonian and Laird weights for each trial.

heterogeneity a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Hsq the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.
Isq the percentage of total variation in study estimates that is due to heterogeneity

rather than chance.
tau.sq the variance of the treatment effect among trials.

effect a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.

Note

Under the random-effects model, the assumption of a common treatment effect is relaxed, and the
effect sizes are assumed to have a normal distribution with variance tau. sq.

Using this method, the DerSimonian and Laird weights are used to compute the pooled odds ratio.

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.
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References
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D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Controlled Clinical Trials 7: 177
- 188.

Higgins J, Thompson S (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine
21: 1539 - 1558.

See Also

epi.iv, epi.mh, epi.smd

Examples

data(epi.epidural)
epi.dsl(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,
ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,

names = as.character(epi.epidural$trial), method = "odds.ratio”,
alternative = "two.sided"”, conf.level = 0.95)
epi.edr Estimated dissemination ratio
Description

Computes estimated dissemination ratios on the basis of a vector of count data (usually incident
cases identified on each day of an epidemic).

Usage
epi.edr(dat, n = 4, conf.level = 0.95, nsim = 99, na.zero = TRUE)

Arguments

dat a numeric vector listing the number of incident cases for each day of an epi-
demic.

n scalar, defining the number of days to be used when computing the estimated
dissemination ratio.

conf.level magnitude of the returned confidence interval. Must be a single number between
O and 1.

nsim scalar, defining the number of simulations to be used for the confidence interval
calculations.

na.zero logical, replace NaN or Inf values with zeros?
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Details

In infectious disease epidemics the n-day estimated dissemination ratio (EDR) at day i equals the
total number of incident cases between day i and day [i -(n -1)] (inclusive) divided by the total
number of incident cases between day (i -n) and day (i -2n) + 1 (inclusive). EDR values are
often calculated for each day of an epidemic and presented as a time series analysis. If the EDR is
consistently less than unity, the epidemic is said to be “‘under control’.

A simulation approach is used to calculate confidence intervals around each daily EDR estimate.
The numerator and denominator of the EDR estimate for each day is taken in turn and a random
number drawn from a Poisson distribution, using the calculated numerator and denominator value
as the mean. EDR is then calculated for these simulated values and the process repeated nsim times.
Confidence intervals are then derived from the vector of simulated values for each day.

Value

Returns the point estimate of the EDR and the lower and upper bounds of the confidence interval of
the EDR.

References

Miller W (1976). A state-transition model of epidemic foot-and-mouth disease. In: Proceedings of
an International Symposium: New Techniques in Veterinary Epidemiology and Economics, Uni-
versity of Reading, Reading, pp. 56 - 72.

Morris R, Sanson R, Stern M, Stevenson M, Wilesmith J (2002). Decision-support tools for foot-
and-mouth disease control. Revue Scientifique et Technique de I’ Office International des Epizooties
21, 557 - 567.

Examples

set.seed(123)

dat <- rpois(n = 50, lambda = 2)

edr.04 <- epi.edr(dat, n = 4, conf.level = 0.95, nsim = 99, na.zero = TRUE)
sdate <- as.Date(x = "31/12/2015", format = "%d/%m/%Y")

dat.04 <- data.frame(idate = sdate + 1:50, est = edr.0@4%est,
low = edr.04%$lower, upp = edr.0@4$upper)

## Line plot of EDR (and its 95% confidence interval) as a function of
## calendar time:

## Not run:
library(ggplot2)

ggplot(dat.04, aes(x = as.integer(idate), y = est)) +

geom_line() +

geom_line(dat = dat.@4, aes(x = as.integer(idate), y = upp),
1ty = 3, size = 0.5) +

geom_line(dat = dat.@4, aes(x = as.integer(idate), y = low),
1ty = 3, size = 0.5) +

scale_x_continuous(name = "Date",
breaks = seq(from = min(as.integer(dat.04%$idate)),
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to = max(as.integer(dat.04$idate)), by = 7),
labels = seq(from = min(dat.04$idate),
to = max(dat.@4$idate), by = 7),
limits = c(min(as.integer(dat.04%$idate)),
max(as.integer(dat.04%$idate)))) +
scale_y_continuous(name = "Estimated disemination ratio (EDR)",
limits = c(0,10)) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, size = 10)) +
geom_hline(yintercept = 1, 1ty = 2)

## End(Not run)

epi.empbayes Empirical Bayes estimates of observed event counts

Description

Computes empirical Bayes estimates of observed event counts using the method of moments.

Usage

epi.empbayes(obs, pop)

Arguments
obs a vector representing the observed event counts in each unit of interest.
pop a vector representing the population count in each unit of interest.
Details

The gamma distribution is parameterised in terms of shape («) and scale (v) parameters. The mean
of a given gamma distribution equals v//«. The variance equals v/a?. The empirical Bayes estimate
of event risk in each unit of interest equals (obs + v/)/(pop + «).

This technique performs poorly when your data contains large numbers of zero event counts. In this
situation a Bayesian approach for estimating o and v would be advised.

Value

A data frame with four elements: gamma the mean event risk across all units, phi the variance of
event risk across all units, alpha the estimated shape parameter of the gamma distribution, and nu
the estimated scale parameter of the gamma distribution.
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References

Bailey TC, Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Technical.
London, pp. 303 - 308.

Langford IH (1994). Using empirical Bayes estimates in the geographical analysis of disease risk.
Area 26: 142 - 149.

Meza J (2003). Empirical Bayes estimation smoothing of relative risks in disease mapping. Journal
of Statistical Planning and Inference 112: 43 - 62.

Examples

data(epi.SClip)
obs <- epi.SClip$cases; pop <- epi.SClip$population

est <- epi.empbayes(obs, pop)
crude.p <- ((obs) / (pop)) * 100000
crude.r <- rank(crude.p)
ebay.p <- ((obs + est[4]) / (pop + est[3])) * 100000
dat <- data.frame(rank = c(crude.r, crude.r),
Method = c(rep("Crude”, times = length(crude.r)),
rep("Empirical Bayes"”, times = length(crude.r))),
est = c(crude.p, ebay.p))

## Scatter plot showing the crude and empirical Bayes adjusted lip cancer
## incidence rates as a function of district rank for the crude lip
## cancer incidence rates:

## Not run:
library(ggplot2)

ggplot(dat, aes(x = rank, y = est, colour = Method)) +
geom_point() +
ylab("Lip cancer incidence rates (cases per 100,000 person years)"”) +
scale_x_continuous(name = "District rank",
breaks = seq(from = @, to = 60, by = 10),
labels = seq(from = @, to = 60, by = 10),
limits = c(0,60))
ylim(@,30)

+

## End(Not run)

epi.epidural Rates of use of epidural anaesthesia in trials of caregiver support

Description

This data set provides results of six trials investigating rates of use of epidural anaesthesia during
childbirth. Each trial is made up of a group where a caregiver (midwife, nurse) provided support
intervention and a group where standard care was provided. The objective was to determine if there
were higher rates of epidural use when a caregiver was present at birth.
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Usage

data(epi.epidural)

Format
A data frame with 6 observations on the following 5 variables.

trial the name and year of the trial.

ev.trt number of births in the caregiver group where an epidural was used.
n.trt number of births in the caregiver group.

ev.ctrl number of births in the standard care group where an epidural was used.

n.ctrl number of births in the standard care group.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, pp. 291 - 299.

epi.herdtest Estimate the characteristics of diagnostic tests applied at the herd
(group) level

Description

When tests are applied to individuals within a group we may wish to designate the group as being
either diseased or non-diseased on the basis of the individual test results. This function estimates
sensitivity and specificity of this testing regime at the group (or herd) level.

Usage

epi.herdtest(se, sp, P, N, n, k)

Arguments
se a vector of length one defining the sensitivity of the individual test used.
sp a vector of length one defining the specificity of the individual test used.
P scalar, defining the estimated true prevalence.
N scalar, defining the herd size.
n scalar, defining the number of individuals to be tested per group (or herd).
k scalar, defining the critical number of individuals testing positive that will denote

the group as test positive.



epi.incin 47

Value

A data frame with four elements: APpos the probability of obtaining a positive test, APneg the
probability of obtaining a negative test, HSe the estimated group (herd) sensitivity, and HSp the
estimated group (herd) specificity.

Note

The method implemented in this function is based on the hypergeometric distribution.

Author(s)
Ron Thornton, MAF New Zealand, PO Box 2526 Wellington, New Zealand.

References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 113 - 115.

Examples

## EXAMPLE 1:

## We wish to estimate the herd-level sensitivity and specificity of

## a testing regime using an individual animal test of sensitivity 0.391
## and specificity 0.964. The estimated true prevalence of disease is 0.12.
## Assume that 60 individuals will be tested per herd and we have

## specified that two or more positive test results identify the herd

## as positive.

epi.herdtest(se = ©0.391, sp = 0.964, P = 0.12, N = 1E@06, n = 60, k = 2)

## This testing regime gives a herd sensitivity of ©.95 and a herd

## specificity of 0.36. With a herd sensitivity of ©.95 we can be

## confident that we will declare a herd infected if it is infected.
## With a herd specficity of only 0.36, we will declare 0.64 of disease
## negative herds as infected, so false positives are a problem.

epi.incin Laryngeal and lung cancer cases in Lancashire 1974 - 1983

Description

Between 1972 and 1980 an industrial waste incinerator operated at a site about 2 kilometres south-
west of the town of Coppull in Lancashire, England. Addressing community concerns that there
were greater than expected numbers of laryngeal cancer cases in close proximity to the incinerator
Diggle et al. (1990) conducted a study investigating risks for laryngeal cancer, using recorded cases
of lung cancer as controls. The study area is 20 km x 20 km in size and includes location of resi-
dence of patients diagnosed with each cancer type from 1974 to 1983. The site of the incinerator
was at easting 354500 and northing 413600.
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Usage

data(epi.incin)

Format
A data frame with 974 observations on the following 3 variables.

xcoord easting coordinate (in metres) of each residence.
ycoord northin coordinate (in metres) of each residence.

status disease status: 0 = lung cancer, 1 = laryngeal cancer.

Source

Bailey TC and Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Tech-
nical. London.

References

Diggle P, Gatrell A, and Lovett A (1990). Modelling the prevalence of cancer of the larynx in
Lancashire: A new method for spatial epidemiology. In: Thomas R (Editor), Spatial Epidemiology.
Pion Limited, London, pp. 35 - 47.

Diggle P (1990). A point process modelling approach to raised incidence of a rare phenomenon in
the viscinity of a prespecified point. Journal of the Royal Statistical Society A 153: 349 - 362.

Diggle P, Rowlingson B (1994). A conditional approach to point process modelling of elevated risk.
Journal of the Royal Statistical Society A 157: 433 - 440.

epi.indirectadj Indirectly adjusted incidence risk estimates

Description

Compute indirectly adjusted incidence risks and standardised mortality (incidence) ratios.

Usage

epi.indirectadj(obs, pop, std, units, conf.level = 0.95)

Arguments
obs a one column matrix representing the number of observed number of events in
each strata. The dimensions of obs must be named (see the examples, below).
pop a matrix representing population size. Rows represent strata (e.g. region);

columns represent the levels of the covariate to be adjusted for (e.g. age class,
gender). The sum of each row will equal the total population size within each
stratum. If there are no covariates pop will be a one column matrix. The dimen-
sions of the pop matrix must be named (see the examples, below).
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std a one row matrix specifying the standard incidence risks to be applied to each
level of the covariate to be adjusted for. The length of std should be one plus
the number of covariates to be adjusted for (the additional value represents the
incidence risk in the entire population). If there are no covariates to adjust for
std is a single number representing the incidence risk in the entire population.

units multiplier for the incidence risk estimates.
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
Details

Indirect standardisation can be performed whenever the stratum-specific incidence risk estimatesare
either unknown or unreliable. If the stratum-specific incidence risk estimates are known, direct
standardisation is preferred.

Confidence intervals for the standardised mortality ratio estimates are based on the Poisson distri-
bution (see Breslow and Day 1987, p 69 - 71 for details).

Value
A list containing the following:

crude.strata the crude incidence risk estimates for each stratum.

adj.strata the indirectly adjusted incidence risk estimates for each stratum.
smr the standardised mortality (incidence) ratios for each stratum.
Author(s)

Thanks to Dr. Telmo Nunes (UISEE/DETSA, Faculdade de Medicina Veterinaria - UTL, Rua Prof.
Cid dos Santos, 1300-477 Lisboa Portugal) for details and code for the confidence interval calcula-
tions.

References
Breslow NE, Day NE (1987). Statistical Methods in Cancer Reasearch: Volume II - The Design
and Analysis of Cohort Studies. Lyon: International Agency for Cancer Research.

Dohoo I, Martin W, Stryhn H (2009). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 85 - §9.

Rothman KJ, Greenland S (1998). Modern Epidemiology, second edition. Lippincott Williams &
Wilkins, Philadelphia.

Sahai H, Khurshid A (1993). Confidence intervals for the mean of a Poisson distribution: A review.
Biometrical Journal 35: 857 - 867.

Sahai H, Khurshid A (1996). Statistics in Epidemiology. Methods, Techniques and Applications.
CRC Press, Baton Roca.

See Also

epi.directadj
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Examples

## EXAMPLE 1 (without covariates):

## Adapted from Dohoo, Martin and Stryhn (2009). In this example the freque
## of tuberculosis is expressed as incidence risk (i.e. the number of

## tuberculosis positive herds divided by the size of the herd population a
## risk). In their text, Dohoo et al. present the data as incidence rate (t
## number of tuberculosis positive herds per herd-year at risk).

## Data have been collected on the incidence of tuberculosis in two

## areas ("A" and "B"). Provided are the counts of (new) incident cases and
## counts of the herd population at risk. The standard incidence risk for
## the total population is 0.060 (6 cases per 100 herds at risk):

obs <- matrix(data = c(58, 130), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), ""))

pop <- matrix(data = c(1000, 2000), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), ""))

std <- 0.060

epi.indirectadj(obs = obs, pop = pop, std = std, units = 100,
conf.level = 0.95)

## EXAMPLE 2 (with covariates):

## We now have, for each area, data stratified by herd type (dairy, beef).
## The standard incidence risks for beef herds, dairy herds, and the total
## population are 0.025, 0.085, and 0.060 cases per herd, respectively:

obs <- matrix(data = c(58, 130), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), ""))

pop <- matrix(data = c(550, 450, 500, 1500), nrow = 2, byrow = TRUE,
dimnames = list(c("A", "B"), c("Beef”, "Dairy")))

std <- matrix(data = c(0.025, 0.085, 0.060), nrow = 1, byrow = TRUE,
dimnames = list("", c("Beef”, "Dairy", "Total")))

epi.indirectadj(obs = obs, pop = pop, std = std, units = 100,
conf.level = 0.95)

## > $crude.strata

## > est lower upper
## > A 5.8 4.404183 7.497845
## > B 6.5 5.430733 7.718222

## > $adj.strata

#i# > est lower upper

## > A 6.692308 5.076923 8.423077

## > B 5.571429 4.628571 6.557143

## > $smr.strata

## > obs exp est lower upper
## > A 58 52 1.1153846 0.8461538 1.403846
## > B 130 140 0.9285714 0.7714286 1.092857

epi.indirectadj

ncy

t
he
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## The crude incidence risk of tuberculosis in area A was 5.8

## (95% CI 4.0 to 7.5) cases per 100 herds at risk. The crude incidence
## risk of tuberculosis in area B was 6.5 (95% CI 5.4 to 7.7) cases

## per 100 herds at risk.

## The indirectly adjusted incidence risk of tuberculosis in area A was 6.7
## (95% CI 5.1 to 8.4) cases per 100 herds at risk. The indirectly

## adjusted incidence risk of tuberculosis in area B was 5.6

## (95% CI 4.6 to 6.6) cases per 100 herds at risk.

epi.insthaz Event instantaneous hazard based on Kaplan-Meier survival estimates

Description

Compute event instantaneous hazard on the basis of a Kaplan-Meier survival function.

Usage

epi.insthaz(survfit.obj, conf.level = 0.95)

Arguments
survfit.obj a survfit object, computed using the survival package.
conf.level magnitude of the returned confidence interval. Must be a single number between
O and 1.
Details

Computes the instantaneous hazard of the event of interest, equivalent to the proportion of the
population failing per unit time.

Value

A data frame with three or four elements: strata the strata identifier, time the observed failure
times, est the proportion of the population experiencing the event of interest per unit time, lower
the lower bound of the confidence interval of the proportion of the population experiencing the event
of interest per unit time, and upper the upper bound of the confidence interval of the proportion of
the population experiencing the event of interest per unit time.

References

Venables W, Ripley B (2002). Modern Applied Statistics with S, fourth edition. Springer, New
York, pp. 353 - 385.

Singer J, Willett J (2003). Applied Longitudinal Data Analysis Modeling Change and Event Oc-
currence. Oxford University Press, London, pp. 348.
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Examples
library(survival)
dat <- lung

dat$status <- ifelse(dat$status == 1, 0, dat$status)
dat$status <- ifelse(dat$status == 2, 1, dat$status)
dat$sex <- factor(dat$sex, levels = c(1,2), labels = c("Male"”,"Female"))

lung.km@1 <- survfit(Surv(time = time, event = status) ~ 1, data = dat)
lung.haz0@1 <- epi.insthaz(lung.km@1, conf.level = @.95)

lung.shaz@1 <- data.frame(

time = lowess(lung.haz@1$time, lung.haz@1$lower, f = 0.20)3%x,
est = lowess(lung.haz@1$time, lung.haz@l$est, f = 0.20)$y,

low = lowess(lung.haz@1$time, lung.haz@1$lower, f = 0.20)3%y,
upp = lowess(lung.haz@1$time, lung.haz@1$upper, f = 0.20)3%y)

plot(x = lung.haz@1$time, y = lung.haz@1$est, xlab = "Time (days)",
ylab = "Daily probability of event”, type = "s",
col = "grey", ylim = c(0, 0.05))
lines(x = lung.shaz@1$time, y = lung.shaz@1$est,
1ty =1, lwd = 2, col = "black")
lines(x = lung.shaz@1$time, y = lung.shaz@1$low,
1ty = 2, 1lwd = 1, col = "black")
lines(x = lung.shaz@1$time, y = lung.shaz@1$upp,

1ty = 2, 1lwd = 1, col "black™)
## Not run:
library(ggplot2)
ggplot() +
theme_bw() +
geom_step(data = lung.haz@1, aes(x = time, y = est), colour = "grey"”) +
geom_smooth(data = lung.haz@1, aes(x = time, y = est), method = "loess"”,
colour = "black”, size = 0.75, linetype = "solid",
se = FALSE, span = 0.20) +
geom_smooth(data = lung.haz@1, aes(x = time, y = lower), method = "loess",

colour = "black”, size = 0.5, linetype = "dashed”,
se = FALSE, span = 0.20) +
geom_smooth(data = lung.haz@1, aes(x = time, y = upper), method = "loess",
colour = "black”, size = 0.5, linetype = "dashed”,
se = FALSE, span = 0.20) +
scale_x_continuous(limits = c(0,1000), name = "Time (days)") +
scale_y_continuous(limits = c(0,0.05), name = "Daily probability of event")

## End(Not run)
## Stratify by gender:

lung.km@2 <- survfit(Surv(time = time, event = status) ~ sex, data = dat)
lung.haz02 <- epi.insthaz(lung.km@2, conf.level = 0.95)
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## Not run:
library(ggplot2)

ggplot() +

theme_bw() +

geom_step(data = lung.haz02, aes(x = time, y = est), colour = "grey") +

facet_grid(strata ~ .) +

geom_smooth(data = lung.haz@2, aes(x = time, y = est), method = "loess”,
colour = "black”, size = 0.75, linetype = "solid",
se = FALSE, span = 0.20) +

geom_smooth(data = lung.haz@2, aes(x = time, y = lower), method = "loess”,
colour = "black”, size = 0.5, linetype = "dashed”,
se = FALSE, span = 0.20) +

geom_smooth(data = lung.haz@2, aes(x = time, y = upper), method = "loess",
colour = "black”, size = 0.5, linetype = "dashed”,
se = FALSE, span = 0.20) +

scale_x_continuous(limits = c(0,1000), name = "Time (days)") +

scale_y_continuous(limits = ¢(0,0.05), name = "Daily probability of event")

## End(Not run)

epi.interaction Relative excess risk due to interaction in a case-control study

Description

For two binary explanatory variables included in a logistic regression as an interaction term, com-
putes the relative excess risk due to interaction, the proportion of outcomes among those with both
exposures attributable to interaction, and the synergy index. Confidence interval calculations are
based on the delta method described by Hosmer and Lemeshow (1992).

Usage

epi.interaction(model, coef, param = c("product”, "dummy"),
type = c("RERI", "APAB", "S"), conf.level = 0.95)

Arguments
model an object of class glm, clogit or coxph.
coef a vector listing the positions of the coefficients of the interaction terms in the
model. What row numbers of the regression table summary list the coefficients
for the interaction terms included in the model?
param character stringing specifying the type of coding used for the variables included

in the interaction term. Options are product where two risk factors and one
product term are used to represent the interaction and dummy where the two risk
factors are combined into a single variable with four levels. See the examples,
below, for details.
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type character string specifying the type of analysis to be run. Options are RERI
the relative excess risk due to interaction, APAB the proportion of disease among
those with both exposures that is attributable to interaction of the two exposures,
and S the synergy index.

conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.

Details

Interaction on an additive scale means that the combined effect of two exposures is greater (or less)
than the sum of the individual effects of two exposures. Interaction on a multiplicative scale means
that the combined effect of the two exposures is greater (or less) than the product of the individual
effects of the two exposures.

This function calculates three indices to assess the presence of additive interaction, as defined by
Rothman (1998): (1) the relative excess risk due to interaction (RERI, sometimes called the interac-
tion contrast ratio), (2) the proportion of disease among those with both exposures that is attributable
to their interaction (AP[AB]), and (3) the synergy index (S).

A RERI of one means no iteraction or exactly additivity. A RERI of greater than one means positive
interaction or more than additivity. A RERI of less than one means negative interaction or less than
additivity. RERI ranges from zero to infinity.

An AP[AB] of zero means no interaction or exactly additivity. An AP[AB] greater than zero means
positive interaction or more than additivity. An AP[AB] of less than zero means negative interaction
or less than additivity. AP[AB] ranges from -1 to +1.

The synergy index is the ratio of the combined effects and the individual effects. An S of one means
no interaction or exactly additivity. An S of greater than one means positive interaction or more
than additivity. An S of less than one means negative interaction or less than additivity. S ranges
from zero to infinity.

In the absence of interaction AP[AB] =0 and RERI and S = 1.

Skrondal (2003) advocates for use of the synergy index as a summary measure of additive interac-
tion, showing that when regression models adjust for the effect of confounding variables (as in the
majority of cases) RERI and AP may be biased, while S remains unbiased.

This function uses the delta method to calculate the confidence intervals for each of the interaction
measures, as described by Hosmer and Lemeshow (1992). An error will be returned if the point
estimate of the synergy index is less than one. In this situation a warning is issued advising the user
to re-parameterise their model as a linear odds model. See Skrondal (2003) for details.

A measure of multiplicative interaction is RR11/(RR10 * RRO1). If RR11 / (RR10 * RRO1) equals
one means no multiplicative interaction. If RR11/(RR10 * RRO01) is greater than one multiplicative
interaction is said to be positive. If RR11/(RR10 * RRO1) is less than one multiplicative interaction
is said to be negative.

Value

A data frame listing:

est the point estimate of the requested additive interaction measure.
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lower the lower bound of the confidence interval of the requested additive interaction
measure.
upper the upper bound of the confidence interval of the requested additive interaction
measure.
References

Chen S-C, Wong R-H, Shiu L-J, Chiou M-C, Lee H (2008). Exposure to mosquito coil smoke may
be a risk factor for lung cancer in Taiwan. Journal of Epidemiology 18: 19 - 25.

Hosmer DW, Lemeshow S (1992). Confidence interval estimation of interaction. Epidemiology 3:
452 - 456.

Kalilani L, Atashili J (2006). Measuring additive interaction using odds ratios. Epidemiologic
Perspectives & Innovations doi:10.1186/1742-5573-3-5.

Knol MJ, VanderWeele TJ (2012). Recommendations for presenting analyses of effect modification
and interaction. International Journal of Epidemiology 41: 514 - 520.

Rothman K, Greenland S (1998). Modern Epidemiology. Lippincott - Raven Philadelphia, USA.

Rothman K, Keller AZ (1972). The effect of joint exposure to alcohol and tabacco on risk of cancer
of the mouth and pharynx. Journal of Chronic Diseases 23: 711 - 716.

Skrondal A (2003). Interaction as departure from additivity in case-control studies: A cautionary
note. American Journal of Epidemiology 158: 251 - 258.

VanderWeele TJ, Knol MJ (2014). A tutorial on interaction. Epidemiologic Methods 3: 33 - 72.

Examples

## Data from Rothman and Keller (1972) evaluating the effect of joint exposure
## to alcohol and tabacco on risk of cancer of the mouth and pharynx (cited in
## Hosmer and Lemeshow, 1992):

178), rep(1, times = 11),

can <- c(rep(1, times = 231), rep(@, times
rep(@, times = 38))

smk <- c(rep(1, times = 225), rep(@, times = 6), rep(1, times = 166),
rep(@, times = 12), rep(1, times = 8), rep(@, times = 3), rep(1, times = 18),
rep(@, times = 20))

alc <- c(rep(1, times = 409), rep(@, times = 49))

dat <- data.frame(alc, smk, can)

## Table 2 of Hosmer and Lemeshow (1992):
dat.glm@l <- glm(can ~ alc + smk + alc:smk, family = binomial, data = dat)
summary (dat.glmo1)

## What is the measure of effect modification on the additive scale?
epi.interaction(model = dat.glm@1, param = "product”, coef = c(2,3,4),
type = "RERI", conf.level = 0.95)

## Measure of interaction on the additive scale: RERI 3.73
## (95% CI -1.84 -- 9.32), page 453 of Hosmer and Lemeshow (1992).
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## Rothman defines an alternative coding scheme to be employed for

## parameterising an interaction term. Using this approach, instead of using
## two risk factors and one product term to represent the interaction (as

## above) the risk factors are combined into one variable with (in this case)
## four levels:

## a.neg b.neg: 0 0 @
## a.pos b.neg: 1 0 @
## a.neg b.pos: 01 0
## a.pos b.pos: 0 0 1

dat$d <- rep(NA, times = nrow(dat))
dat$d[dat$alc == @ & dat$smk == @] <- @
dat$d[dat$alc == 1 & dat$smk == 0] <- 1
dat$d[dat$alc == 0 & dat$smk == 1] <- 2
dat$d[dat$alc == 1 & dat$smk == 1] <- 3
dat$d <- factor(dat$d)

## Table 3 of Hosmer and Lemeshow (1992):
dat.glm@2 <- glm(can ~ d, family = binomial, data = dat)
summary(dat.glme2)

## What is the measure of effect modification on the additive scale?
epi.interaction(model = dat.glm@2, param = "dummy”, coef = c(2,3,4),
type = "RERI", conf.level = 0.95)

## Measure of interaction on the additive scale: RERI 3.73
## (95% CI -1.84 -- 9.32), page 455 of Hosmer and Lemeshow (1992).

## What is the measure of effect modification on the multiplicative scale?
## See VanderWeele and Knol (2014) page 36 and Knol and Vanderweele (2012)
## for details.

betal <- as.numeric(dat.glm@1$coefficients[2])

beta2 <- as.numeric(dat.glm@1$coefficients[3])

beta3 <- as.numeric(dat.glm@1$coefficients[4])

exp(beta3) / (exp(betal) * exp(beta2))

## Measure of interaction on the multiplicative scale: 0.093.

epi.iv Fixed-effects meta-analysis of binary outcomes using the inverse vari-
ance method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the inverse variance method. Performs a test of heterogeneity among trials.
Performs a test for the overall difference between groups (that is, after pooling the studies, do treated
groups differ significantly from controls?).
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Usage
epi.iv(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio”,
alternative = c("two.sided”, "less”, "greater"), conf.level = 0.95)
Arguments
ev.trt observed number of events in the treatment group.
n.trt number in the treatment group.
ev.ctrl observed number of events in the control group.
n.ctrl number in the control group.
names character string identifying each trial.
method a character string indicating the method to be used. Options are odds.ratio or
risk.ratio.
alternative a character string specifying the alternative hypothesis, must be one of two. sided,
greater or less.
conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
Details

Using this method, the inverse variance weights are used to compute the pooled odds ratios and risk
ratios. The inverse variance weights should be used to indicate the weight each trial contributes to

the meta-analysis.

alternative = "greater” tests the hypothesis that the inverse variance summary measure of as-
sociation is greater than 1.

Value
A list containing:

OR
RR
OR. summary
RR. summary

weights

heterogeneity
Hsq

Isqg

the odds ratio for each trial and the lower and upper bounds of the confidence
interval of the odds ratio for each trial.

the risk ratio for each trial and the lower and upper bounds of the confidence
interval of the risk ratio for each trial.

the inverse variance summary odds ratio and the lower and upper bounds of the
confidence interval of the inverse variance summary odds ratio.

the inverse variance summary risk ratio and the lower and upper bounds of the
confidence interval of the inverse variance summary risk ratio.

the raw and inverse variance weights assigned to each trial.

a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.

the percentage of total variation in study estimates that is due to heterogeneity
rather than chance.
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effect a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.

Note

The inverse variance method performs poorly when data are sparse, both in terms of event rates
being low and trials being small. The Mantel-Haenszel method (epi.mh) is more robust when data
are sparse.

Using this method, the inverse variance weights are used to compute the pooled odds ratios and risk
ratios.

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in
Medicine 21: 1539 - 1558.

See Also

epi.dsl, epi.mh, epi.smd

Examples

data(epi.epidural)
epi.iv(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,
ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,

names = as.character(epi.epidural$trial), method = "odds.ratio”,
alternative = "two.sided"”, conf.level = 0.95)
epi.kappa Kappa statistic
Description

Computes the kappa statistic and its confidence interval.

Usage

epi.kappa(dat, method = "fleiss”, alternative = c("two.sided”, "less”,
"greater”), conf.level = 0.95)
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Arguments
dat an object of class table comprised of 2 rows and 2 columns listing the individual
cell frequencies.
method a character string indicating the method to use. Options are fleiss, watson or
altman.
alternative a character string specifying the alternative hypothesis, must be one of two. sided,
greater or less.
conf.level magnitude of the returned confidence interval. Must be a single number between
0 and 1.
Details

Kappa is a measure of agreement beyond the level of agreement expected by chance alone. The
observed agreement is the proportion of samples for which both methods (or observers) agree.

The bias and prevalence adjusted kappa (Byrt et al. 1993) provides a measure of observed agree-
ment, an index of the bias between observers, and an index of the differences between the overall
proportion of ‘yes’ and ‘no’ assessments.

Common interpretations for the kappa statistic are as follows: < 0.2 slight agreement, 0.2 - 0.4
fair agreement, 0.4 - 0.6 moderate agreement, 0.6 - 0.8 substantial agreement, > 0.8 almost perfect
agreement.

The argument alternative = "greater” tests the hypothesis that kappa is greater than 0.

Value

A list containing the following:

prop.agree a data frame with obs the observed proportion of agreement and exp the ex-
pected proportion of agreement.

pindex a data frame with the prevalence index, the standard error of the prevalence index
and the lower and upper bounds of the confidence interval for the prevalence
index.

bindex a data frame with the bias index, the standard error of the bias index and the

lower and upper bounds of the confidence interval for the bias index.

pabak a data frame with the prevalence and bias corrected kappa statistic and the lower
and upper bounds of the confidence interval for the prevalence and bias corrected
kappa statistic.

kappa a data frame with the kappa statistic, the standard error of the kappa statistic and
the lower and upper bounds of the confidence interval for the kappa statistic.

z a data frame containing the z test statistic for kappa and its associated P-value.

mcnemar a data frame containing the McNemar test statistic for kappa and its associated

P-value.
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Note

Obsl + Obsl - Total
Obs 2 + a b ath
Obs 2 - c d c+d
Total atc b+d atb+c+d=N

The kappa coefficient is influenced by the prevalence of the condition being assessed. A prevalence
effect exists when the proportion of agreements on the positive classification differs from that of the
negative classification. If the prevalence index is high (that is, the prevalence of a positive rating is
very high or very low) chance agreement is also high and the value of kappa is reduced accordingly.
The effect of prevalence on kappa is greater for large values of kappa than for small values (Byrt
et al. 1993). Using the notation above, the prevalence index is calculated as ((a/N) -(d/N)).
Confidence intervals for the prevalence index are based on methods used for a difference in two
proportions. See Rothman (2002, p 135 equation 7-2) for details.

Bias is the extent to which raters disagree on the proportion of positive (or negative) cases. Bias
affects interpretation of the kappa coefficient. When there is a large amount of bias, kappa is higher
than when bias is low or absent. In contrast to prevalence, the effect of bias is greater when kappa is
small than when it is large (Byrt et al. 1993). Using the notation above, the bias index is calculated
as ((a+b)/N-(a+c)/N). Confidence intervals for the bias index are based on methods used for
a difference in two proportions. See Rothman (2002, p 135 equation 7-2) for details.

The McNemar test is used to test for the presence of bias. A statistically significant McNemar test
(generally if P < 0.05) shows that there is evidence of a systematic difference between the proportion
of ‘positive’ responses from the two methods. If one method provides the ‘true values’ (i.e. it is
regarded as the gold standard method) the absence of a systematic difference implies that there is
no bias. However, a non-significant result indicates only that there is no evidence of a systematic
effect. A systematic effect may be present, but the power of the test may be inadequate to determine
its presence.

References

Altman DG, Machin D, Bryant TN, Gardner MJ (2000). Statistics with Confidence, second edition.
British Medical Journal, London, pp. 116 - 118.

Byrt T, Bishop J, Carlin JB (1993). Bias, prevalence and kappa. Journal of Clinical Epidemiology
46: 423 - 429.

Dohoo I, Martin W, Stryhn H (2010). Veterinary Epidemiologic Research, second edition. AVC
Inc, Charlottetown, Prince Edward Island, Canada, pp. 98 - 99.

Fleiss JL, Levin B, Paik MC (2003). Statistical Methods for Rates and Proportions, third edition.
John Wiley & Sons, London, 598 - 626.

Rothman KJ (2002). Epidemiology An Introduction. Oxford University Press, London, pp. 130 -
143.
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Silva E, Sterry RA, Kolb D, Mathialagan N, McGrath MF, Ballam JM, Fricke PM (2007) Accuracy
of a pregnancy-associated glycoprotein ELISA to determine pregnancy status of lactating dairy
cows twenty-seven days after timed artificial insemination. Journal of Dairy Science 90: 4612 -
4622.

Sim J, Wright CC (2005) The kappa statistic in reliability studies: Use, interpretation, and sample
size requirements. Physical Therapy 85: 257 - 268.

Watson PF, Petrie A (2010) Method agreement analysis: A review of correct methodology. Theri-
ogenology 73: 1167 - 1179.

Examples
## EXAMPLE 1:
## Kidney samples from 291 salmon were split with one half of the
## samples sent to each of two laboratories where an IFAT test
## was run on each sample. The following results were obtained:
## Lab 1 positive, lab 2 positive: 19
## Lab 1 positive, lab 2 negative: 10
## Lab 1 negative, lab 2 positive: 6
## Lab 1 negative, lab 2 negative: 256

dat <- as.table(matrix(c(19,10,6,256), nrow = 2, byrow = TRUE))
colnames(dat) <- c("L1-pos”,"L1-neg")
rownames(dat) <- c("L2-pos”,"L2-neg")

epi.kappa(dat, method = "fleiss"”, alternative = "greater”, conf.level = 0.95)

#i#
#it

#it
#it
#it
#it

#it
#it
#it
#it
#it
#it

#i#
#it
#it
#it

dat <- as.table(matrix(c(596,61,29,987), nrow

The z test statistic is 11.53 (P < 0.01). We accept the alternative
hypothesis that the kappa statistic is greater than zero.

The proportion of agreements after chance has been excluded is
0.67 (95% CI 0.56 to ©.79). We conclude that, on the basis of
this sample, that there is substantial agreement between the two
laboratories.

EXAMPLE 2 (from Watson and Petrie 2010, page 1170):

Silva et al. (2007) compared an early pregnancy enzyme-linked immunosorbent
assay test for pregnancy associated glycoprotein on blood samples collected

from lactating dairy cows at day 27 after artificial insemination with
transrectal ultrasound (US) diagnosis of pregnhancy at the same stage.
The results were as follows:

ELISA positive, US positive: 596
ELISA positive, US negative: 61
ELISA negative, US positive: 29
ELISA negative, Ul negative: 987

2, byrow = TRUE))

colnames(dat) <- c("US-pos”,"US-neg")
rownames(dat) <- c("ELISA-pos”,"ELISA-neg")

epi.kappa(dat, method = "watson”, alternative = "greater”, conf.level = 0.95)
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## The proportion of agreements after chance has been excluded is
## 0.89 (95% CI 0.86 to 0.91). We conclude that that there is substantial
## agreement between the two pregnancy diagnostic methods.

epi.ltd Lactation to date and standard lactation milk yields

Description

Calculate lactation to date and standard lactation (that is, 305 or 270 day) milk yields.

Usage
epi.ltd(dat, std = "305")

Arguments
dat an eight column data frame listing (in order) cow identifier, herd test identifier,
lactation number, herd test days in milk, lactation length (NA if lactation incom-
plete), herd test milk yield (litres), herd test fat (percent), and herd test protein
(percent).
std std = "305" returns 305-day milk volume, fat, and protein yield. std = "270"
returns 270-day milk volume, fat, and protein yield.
Details

Lactation to date yields will only be calculated if there are four or more herd test events.

Value

A data frame with nine elements: ckey cow identifier, lact lactation number, 11en lactation length,
v1td milk volume (litres) to last herd test or dry off date (computed on the basis of lactation length,
fltd fat yield (kilograms) to last herd test or dry off date (computed on the basis of lactation length,
pltd protein yield (kilograms) to last herd test or dry off date (computed on the basis of lactation
length, vstd 305-day or 270-day milk volume yield (litres), fstd 305-day or 270-day milk fat yield
(kilograms), and pstd 305-day or 270-day milk protein yield (kilograms).

Author(s)

Nicolas Lopez-Villalobos (IVABS, Massey University, Palmerston North New Zealand) and Mark
Stevenson (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Aus-
tralia).

References

Kirkpatrick M, Lofsvold D, Bulmer M (1990). Analysis of the inheritance, selection and evolution
of growth trajectories. Genetics 124: 979 - 993.
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Examples

## Generate some herd test data:

ckey <- rep(1, times = 12)

pkey <- 1:12

lact <- rep(1:2, each = 6)

dim <- c(25, 68, 105, 145, 200, 240, 30, 65, 90, 130, 190, 220)

1len <- c(280, 280, 280, 280, 280, 280, NA, NA, NA, NA, NA, NA)

vol <- c(18, 30, 25, 22, 18, 12, 20, 32, 27, 24, 20, 14)

fat <- c(4.8, 4.3, 4.5, 4.7, 4.8, 4.9, 4.8, 4.3, 4.5, 4.7, 4.8, 4.9)/100
pro <- c(3.7, 3.5, 3.6, 3.7, 3.8, 3.9, 3.7, 3.5, 3.6, 3.7, 3.8, 3.9)/100
dat <- data.frame(ckey, pkey, lact, dim, llen, vol, fat, pro)

## Lactation to date and 305-day milk, fat, and protein yield:
epi.ltd(dat, std = "305")

## Lactation to date and 270-day milk, fat, and protein yield:
epi.ltd(dat, std = "270")

epi.mh Fixed-effects meta-analysis of binary outcomes using the Mantel-
Haenszel method

Description

Computes individual study odds or risk ratios for binary outcome data. Computes the summary
odds or risk ratio using the Mantel-Haenszel method. Performs a test of heterogeneity among trials.
Performs a test for the overall difference between groups (that is, after pooling the studies, do treated
groups differ significantly from controls?).

Usage
epi.mh(ev.trt, n.trt, ev.ctrl, n.ctrl, names, method = "odds.ratio”,
alternative = c("two.sided”, "less"”, "greater"”), conf.level = 0.95)
Arguments
ev.trt observed number of events in the treatment group.
n.trt number in the treatment group.
ev.ctrl observed number of events in the control group.
n.ctrl number in the control group.
names character string identifying each trial.
method a character string indicating the method to be used. Options are odds.ratio or
risk.ratio.
alternative a character string specifying the alternative hypothesis, must be one of two. sided,
greater or less.
conf.level magnitude of the returned confidence interval. Must be a single number between

Oand 1.
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Details

epi.mh

alternative = "greater” tests the hypothesis that the Mantel-Haenszel summary measure of as-
sociation is greater than 1.

Value

A list containing the following:

OR

RR

OR. summary

RR. summary

weights

heterogeneity

Hsq

Isq

effect

Note

the odds ratio for each trial and the lower and upper bounds of the confidence
interval of the odds ratio for each trial.

the risk ratio for each trial and the lower and upper bounds of the confidence
interval of the risk ratio for each trial.

the Mantel-Haenszel summary odds ratio and the lower and upper bounds of the
confidence interval of the Mantel-Haenszel summary odds ratio.

the Mantel-Haenszel summary risk ratio and the lower and upper bounds of the
confidence interval of the Mantel-Haenszel summary risk ratio.

the raw and inverse variance weights assigned to each trial.

a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

the relative excess of the heterogeneity test statistic Q over the degrees of free-
dom df.

the percentage of total variation in study estimates that is due to heterogeneity
rather than chance.

a vector containing z the test statistic for overall treatment effect and its associ-
ated P-value.

Using this method, the pooled odds and risk ratios are computed using the raw individual study
weights. The methodology for computing the Mantel-Haenszel summary odds ratio follows the
approach decribed in Deeks, Altman and Bradburn MJ (2001, pp 291 - 299).

The function checks each strata for cells with zero frequencies. If a zero frequency is found in any
cell, 0.5 is added to all cells within the strata.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, 2001, pp. 291 - 299.

Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in
Medicine 21: 1539 - 1558.

See Also

epi.dsl,epi.iv,epi.smd



epi.nomogram 65

Examples

data(epi.epidural)
epi.mh(ev.trt = epi.epidural$ev.trt, n.trt = epi.epidural$n.trt,
ev.ctrl = epi.epidural$ev.ctrl, n.ctrl = epi.epidural$n.ctrl,

names = as.character(epi.epidural$trial), method = "odds.ratio"”,
alternative = "two.sided"”, conf.level = 0.95)
epi.nomogram Post-test probability of disease given sensitivity and specificity of a test
Description

Compute the post-test probability of disease given sensitivity and specificity of a test.

Usage

epi.nomogram(se, sp, lr, pre.pos, verbose = FALSE)

Arguments

se test sensitivity (0 - 1).

sp test specificity (0 - 1).

1r a vector of length 2 listing the positive and negative likelihood ratio (respec-

tively) of the test. Ignored if se and sp are not null.

pre.pos the pre-test probability of the outcome.

verbose logical, indicating whether detailed or summary results are to be returned.
Value

A list containing the following:

1r the likelihood ratio of a positive and negative test.
prob the post-test probability of the outcome given a positive and negative test.
References

Caraguel C, Vanderstichel R (2013). The two-step Fagan’s nomogram: ad hoc interpretation of a
diagnostic test result without calculation. Evidence Based Medicine 18: 125 - 128.

Hunink M, Glasziou P (2001). Decision Making in Health and Medicine - Integrating Evidence and
Values. Cambridge University Press, pp. 128 - 156.
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Examples

#it
#it
#i#
#it
#it

#it
#it
#it
#it
#it
#it

EXAMPLE 1:

You are presented with a dog with lethargy, exercise intolerance,
weight gain and bilaterally symmetric truncal alopecia. You are
suspicious of hypothyroidism and take a blood sample to measure
basal serum thyroxine (T4).

You believe that around 5% of dogs presented to your clinic with

a signalment of general debility have hypothyroidism. The serum T4
has a sensitivity of 0.89 and specificity of 0.85 for diagnosing
hypothyroidism in the dog. The laboratory reports a serum T4
concentration of 22.0 nmol/L (reference range 19.0 to 58.0 nmol/L).
What is the post-test probability that this dog is hypothyroid?

epi.nomogram(se = 0.89, sp = 0.85, 1lr = NA, pre.pos = 0.05, verbose = FALSE)

#it
#it

#it
#it

#it
##
#it
#it
##
#it
#it

Given a positive test result, the post-test probability of being
disease positive is 0.24.

Given a negative test result, the post-test probability of being
disease negative is 0.0068.

EXAMPLE 2:

A dog is presented to you with severe pruritis. You suspect sarcoptic

mange and decide to take a skin scraping (LR+ 9000; LR- ©.1). The scrape
returns a negative result (no mites are seen). What is the post-test
probability that your patient has sarcoptic mange? You recall that you
diagnose around 3 cases of sarcoptic mange per year in a clinic that

sees approximately 2 -- 3 dogs per week presented with pruritic skin disease.

pre.pos <- 3 / (3 * 52)
epi.nomogram(se = NA, sp = NA, 1lr = c(9000, 0.1), pre.pos = pre.pos,

#it
##

verbose = FALSE)

If the skin scraping is negative the post-test probability that this dog
has sarcoptic mange is 0.002.

epi.occc Overall concordance correlation coefficient (OCCC)

Description

Overall concordance correlation coefficient (OCCC) for agreement on a continuous measure based
on Lin (1989, 2000) and Barnhart et al. (2002).

Usage

epi.occc(dat, na.rm = FALSE, pairs = FALSE)



epi.occc 67

## S3 method for class 'epi.occc'
print(x, ...)

## S3 method for class 'epi.occc'

summary (object, ...)
Arguments
dat a matrix, or a matrix like object. Rows correspond to cases/observations, columns

corresponds to raters/variables.

na.rm logical. Should missing values (including NaN) be removed?
pairs logical. Should the return object contain pairwise statistics? See Details.
x, object an object of class epi.occc.

further arguments passed to print methods.

Details

The index proposed by Barnhart et al. (2002) is the same as the index suggested by Lin (1989) in
the section of future studies with a correction of a typographical error in Lin (2000).

Value

An object of class epi. occc with the following list elements (notation follows Barnhart et al. 2002):

* occc: the value of the overall concordance correlation coefficient (p5),
* oprec: overall precision (p),
* oaccu: overall accuracy (x?),

* pairs: a list with following elements (only if pairs = TRUE, otherwise NULL; column indices
for the pairs (j,k) follow lower-triangle column-major rule based on a ncol (x) times ncol (x)
matrix),

— ccc: pairwise CCC values (o),

— prec: pairwise precision values (p;1),
— accu: pairwise accuracy values (xj),
— ksi: pairwise weights (),

— scale: pairwise scale values (v;,),

— location: pairwise location values (u;y),

* data.name: name of the input data dat.

Author(s)

Peter Solymos, solymos@ualberta.ca.
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References

Barnhart H X, Haber M, Song J (2002). Overall concordance correlation coefficient for evaluating
agreement among multiple observers. Biometrics 58: 1020 - 1027.

Lin L (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45: 255
- 268.

Lin L (2000). A note on the concordance correlation coefficient. Biometrics 56: 324 - 325.

See Also

epi.ccc

Examples

## Generate some artificial ratings data:
set.seed(1234)

p <- runif(10, 0, 1)

x <- replicate(n = 5, expr = rbinom(10, 4, p) + 1)

rval <- epi.occc(dat = x, pairs = TRUE)
print(rval); summary(rval)

epi.offset Create offset vector

Description

Creates an offset vector based on a list.

Usage

epi.offset(id.names)

Arguments

id.names a list identifying the [location] of each case. This must be a factor.

Details

This function is useful for supplying spatial data to WinBUGS.

Value

A vector of length (1 + length of id). The first element of the offset vector is 1, corresponding to
the position at which data for the first factor appears in id. The second element of the offset vector
corresponds to the position at which the second factor appears in id and so on. The last element of
the offset vector corresponds to the length of the id list.
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References

Bailey TC, Gatrell AC (1995). Interactive Spatial Data Analysis. Longman Scientific & Technical.
London.

Langford IH (1994). Using empirical Bayes estimates in the geographical analysis of disease risk.
Area 26: 142 - 149.

Examples

dat <- c(1,1,1,2,2,2,2,3,3,3)
dat <- as.factor(dat)

offset <- epi.offset(dat)
offset
## [1]1 1 4 8 10

epi.pooled Estimate herd test characteristics when pooled sampling is used

Description

We may wish to designate a group of individuals (e.g. a herd) as being either diseased or non-
diseased on the basis of pooled samples. This function estimates sensitivity and specificity of this
testing regime at the group (or herd) level.

Usage

epi.pooled(se, sp, P, m, r)

Arguments
se a vector of length one defining the sensitivity of the individual test used.
sp a vector of length one defining the specificity of the individual test used.
P scalar, defining the estimated true prevalence.
m scalar, defining the number of individual samples to make up a pooled sample.
r scalar, defining the number of pooled samples per group (or herd).
Value

A list containing the following:

HAPneg the apparent prevalence in a disease negative herd.
HSe the estimated group (herd) level sensitivity.

HSp the estimated group (herd) level specificity.
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References

Dohoo I, Martin W, Stryhn H (2003). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 115 - 117 .

Christensen J, Gardner IA (2000). Herd-level interpretation of test results for epidemiologic studies
of animal diseases. Preventive Veterinary Medicine 45: 83 - 106.

Examples

## We want to test dairy herds for Johne's disease using faecal culture

## which has a sensitivity and specificity of 0.647 and 0.981, respectively.
## Suppose we pool faecal samples from five cows together and use six pooled
## samples per herd. What is the herd level sensitivity and specificity

## based on this approach (assuming homogenous mixing)?

epi.pooled(se = 0.647, sp = 0.981, P=0.12, m =5, r = 6)
## Herd level sensitivity is 0.927, herd level specificity is 0.562.

## Sensitivity at the herd level is increased using the pooled sampling
## approach; herd level specificity is decreased.

epi.popsize Estimate population size

Description

Estimates population size on the basis of capture-recapture sampling.

Usage

epi.popsize(T1, T2, T12, conf.level = 0.95, verbose = FALSE)

Arguments
T1 an integer representing the number of individuals tested in the first round.
T2 an integer representing the number of individuals tested in the second round.
T12 an integer representing the number of individuals tested in both the first and
second round.
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
verbose logical indicating whether detailed or summary results are to be returned.
Value

Returns the estimated population size and an estimate of the numbers of individuals that remain
untested.



epi.prcc 71

References

Cannon RM, Roe RT (1982). Livestock Disease Surveys A Field Manual for Veterinarians. Aus-
tralian Government Publishing Service, Canberra, pp. 34.

Examples

## In a field survey 400 feral pigs are captured, marked and then released.

## On a second occassion 40 of the orignal capture are found when another 400
## pigs are captured. Estimate the size of this feral pig population. Estimate
## the number of feral pigs that have not been tested.

epi.popsize(T1 = 400, T2 = 400, T12 = 40, conf.level = 0.95, verbose = FALSE)

## Estimated population size: 4000 (95% CI 3125 - 5557)
## Estimated number of untested pigs: 3240 (95% CI 2365 - 4797)

epi.prcc Fartial rank correlation coefficients

Description

Compute partial rank correlation coefficients.

Usage

epi.prcc(dat, sided.test = 2)

Arguments
dat a data frame comprised of K + 1 columns and N rows, where K represents the
number of model parameters being evaluated and N represents the number of
replications of the model. The last column of the data frame (i.e. column K + 1)
provides the model output.
sided.test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the partial rank correlation coefficient is greater than or less than zero. Use
a one-sided test to evaluate whether or not the partial rank correlation coefficient
is greater than zero.
Details
If the number of parameters K is greater than the number of model replications N an error will be
returned.
Value

A data frame with three elements: gamma the partial rank corellation coefficient between each input
parameter and the outcome, test.statistic the test statistic used to determine the significance of
non-zero values of gamma, and p.value the associated P-value.
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Author(s)

Jonathon Marshall, J.C.Marshall @massey.ac.nz.

References

epi.prev

Blower S, Dowlatabladi H (1994). Sensitivity and uncertainty analysis of complex models of dis-
ease transmission: an HIV model, as an example. International Statistical Review 62: 229 - 243.

Sanchez M, Blower S (1997) Uncertainty and sensitivity analysis of the basic reproductive rate.
American Journal of Epidemiology 145: 1127 - 1137.

Examples

## Create a matrix of simulation results:

x1 <- data.frame(rnorm(n
x2 <- data.frame(rnorm(n
x3 <- data.frame(rnorm(n
y <=2+ (0.5 x x1) + (0.

dat <- data.frame(cbind(X1 = x1, X2 = x2, X3 = x3, Y =y))

epi.prcc(dat, sided.test

7

10, mean = 120, sd = 10))
10, mean = 80, sd = 5))
10, mean = 40, sd = 20))
* x2) + (0.2 * x3)

2)

epi.prev

Estimate true prevalence

Description

Compute the true prevalence of a disease in a population on the basis of an imperfect test.

Usage

epi.prev(pos, tested, se, sp, method = "wilson”, units

100, conf.level = 0.95)

Arguments

pos a vector listing the count of positive test results for each population.

tested a vector listing the count of subjects tested for each population.

se test sensitivity (0 - 1). se can either be a single number or a vector of the same
length as pos. See the examples, below, for details.

sp test specificity (0 - 1). sp can either be a single number or a vector of the same
length as pos. See the examples, below, for details.

method a character string indicating the confidence interval calculation method to use.
Options are "c-p" (Cloppper-Pearson), "sterne” (Sterne), "blaker” (Blaker)
and "wilson” (Wilson).

units multiplier for the prevalence estimates.

conf.level magnitude of the returned confidence interval. Must be a single number between

Oand 1.
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Details

Appropriate confidence intervals for the adjusted prevalence estimate are provided, accounting for
the change in variance that arises from imperfect test sensitivity and specificity (see Reiczigel et al
2010 for details).

The Clopper-Pearson method is known to be too conservative for two-sided intervals (Blaker 2000,
Agresti and Coull 1998). Blaker’s and Sterne’s methods (Blaker 2000, Sterne 1954) provide smaller
exact two-sided confidence interval estimates.

Value
A list containing the following:

ap the point estimate of apparent prevalence and the lower and upper bounds of the
confidence interval around the apparent prevalence estimate.

tp the point estimate of the true prevalence and the lower and upper bounds of the
confidence interval around the true prevalence estimate.

Note

This function uses apparent prevalence, test sensitivity and test specificity to estimate true preva-
lence (after Rogan and Gladen, 1978). Confidence intervals for the apparent and true prevalence
estimates are based on code provided by Reiczigel et al. (2010).

If apparent prevalence is less than (1 - diagnostic test specificity) the Rogan Gladen estimate of true
prevalence will be less than zero (Speybroeck et al. 2012). If the apparent prevalence is greater than
the diagnostic test sensitivity the Rogan Gladen estimate of true prevalence will be greater than one.

When AP < (1 - Sp) the function issues a warning to alert the user that the estimate of true prevalence
is invalid. A similar warning is issued when AP > Se. In either situation a Bayesian approach for
estimation of true prevalence is recommended. See Messam et al. (2008) for a concise introduction
to this topic.

References

Abel U (1993). DieBewertung Diagnostischer Tests. Hippokrates, Stuttgart.

Agresti A, Coull BA (1998). Approximate is better than exact’ for interval estimation of binomial
proportions. American Statistician 52: 119 - 126.

Blaker H (2000). Confidence curves and improved exact confidence intervals for discrete distribu-
tions. Canadian Journal of Statistics 28: 783 - 798.

Clopper CJ, Pearson ES (1934). The use of confidence of fiducial limits illustrated in the case of
the binomial. Biometrika 26: 404 - 413.

Gardener IA, Greiner M (1999). Advanced Methods for Test Validation and Interpretation in Vet-
erinary Medicince. Freie Universitat Berlin, ISBN 3-929619-22-9; 80 pp.

Messam L, Branscum A, Collins M, Gardner I (2008) Frequentist and Bayesian approaches to
prevalence estimation using examples from Johne’s disease. Animal Health Research Reviews 9: 1
- 23.

Reiczigel J, Foldi J, Ozsvari L (2010). Exact confidence limits for prevalence of disease with an
imperfect diagnostic test. Epidemiology and Infection 138: 1674 - 1678.
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Rogan W, Gladen B (1978). Estimating prevalence from results of a screening test. American
Journal of Epidemiology 107: 71 - 76.

Speybroeck N, Devleesschauwer B, Joseph L, Berkvens D (2012). Misclassification errors in preva-
lence estimation: Bayesian handling with care. International Journal of Public Health DOI:10.1007/s00038-
012-0439-9.

Sterne TE (1954). Some remarks on confidence or fiducial limits. Biometrika 41: 275 - 278.

Examples

## A simple random sample of 150 cows from a herd of 2560 is taken.

## Each cow is given a screening test for brucellosis which has a

## sensitivity of 96% and a specificity of 89%. Of the 150 cows tested

## 45 were positive to the screening test. What is the estimated prevalence
## of brucellosis in this herd (and its 95% confidence interval)?

epi.prev(pos = 45, tested = 150, se = 0.96, sp = 0.89, method = "blaker”,
units = 100, conf.level = 0.95)

## The estimated true prevalence of brucellosis in this herd is 22 (95% 14
## to 32) cases per 100 cows at risk.

## Moujaber et al. (2008) analysed the seroepidemiology of Helicobacter pylori
## infection in Australia. They reported seroprevalence rates together with
## 95% confidence intervals by age group using the Clopper-Pearson exact

## method (Clopper and Pearson, 1934). The ELISA test they applied had 96.4%
## sensitivity and 92.7% specificity. A total of 151 subjects 1 -- 4 years

## of age were tested. Of this group 6 were positive. What is the estimated
## true prevalence of Helicobacter pylori in this age group?

epi.prev(pos = 6, tested = 151, se = 0.964, sp = 0.927, method = "c-p”,
units = 100, conf.level = 0.95)

## The estimated true prevalence of Helicobacter pylori in 1 -- 4 year olds is
## -4 (95% CI -6 to 1) cases per 100. Warning issued by function to alert
## user that estimate of true prevalence invalid.

## Three dairy herds are tested for tuberculosis. On each herd a different test
## regime is used (each with a different diagnostic test sensitivity and

## specificity). The number of animals tested in each herd were 210, 189 and
## 124, respectively. The number of test-positives in each herd were 8, 12

## and 7. Test sensitivities were 0.60, 0.65 and 0.70 (respectively). Test

## specificities were 0.90, 0.95 and 0.99. What is the estimated true

## prevalence of tuberculosis in the three herds?

rval <- epi.prev(pos = c(80,100,50), tested = c(210,189,124),
se = c(0.60,0.65,0.70), sp = c(0.90,0.95,0.99), method = "blaker”,
units = 100, conf.level = 0.95)

round(rval$tp, digits = 3)

## True prevalence estimates for each herd:
## Herd 1: 56 (95% CI 43 to 70) cases per 100 cows.
## Herd 2: 80 (95% CI 68 to 92) cases per 100 cows.
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## Herd 3: 57 (95% CI 45 to 70) cases per 100 cows.

epi.RtoBUGS R to WinBUGS data conversion

Description

Writes data from an R list to a text file in WinBUGS-compatible format.

Usage

epi.RtoBUGS(datalist, towhere)

Arguments
datalist a list (normally, with named elements) which may include scalars, vectors, ma-
trices, arrays of any number of dimensions, and data frames.
towhere a character string identifying where the file is to be written.
Details

The function doesn’t check to ensure that only numbers are being produced. In particular, factor
labels in a dataframe will be output to the file, which normally won’t be desired.

Author(s)

Terry Elrod (terry.elrod @ualberta.ca), Kenneth Rice.

References

Best, NG. WinBUGS 1.3.1 Short Course, Brisbane, November 2000.

epi.SClip Lip cancer in Scotland 1975 - 1980

Description

This data set provides counts of lip cancer diagnoses made in Scottish districts from 1975 to 1980.
In addition to district-level counts of disease events and estimates of the size of the population at
risk, the data set contains (for each district) an estimate of the percentage of the population involved
in outdoor industry (agriculture, fishing, and forestry). It is known that exposure to sunlight is a
risk factor for cancer of the lip and high counts are to be expected in districts where there is a high
proportion of the workforce involved in outdoor industry.



76 epi.smd

Usage
data(epi.SClip)

Format
A data frame with 56 observations on the following 6 variables.

gridcode alternative district identifier.

id numeric district identifier (1 to 56).

district district name.

cases number of lip cancer cases diagnosed 1975 - 1980.
population total person years at risk 1975 - 1980.

prop.ag percent of the population engaged in outdoor industry.

Source

This data set has been analysed by a number of authors including Clayton and Kaldor (1987),
Conlon and Louis (1999), Stern and Cressie (1999), and Carlin and Louis (2000, p 270).

References

Clayton D, Kaldor J (1987). Empirical Bayes estimates of age-standardized relative risks for use in
disease mapping. Biometrics 43: 671 - 681.

Conlon EM, Louis TA (1999). Addressing multiple goals in evaluating region-specific risk using
Bayesian methods. In: Lawson AB (Editor), Disease Mapping and Risk Assessment for Public
Health. John Wiley & Sons, Ltd, Chichester, pp. 31 - 47.

Stern H, Cressie N (1999). Inference in extremes in disease mapping. In: Lawson AB (Editor),
Disease Mapping and Risk Assessment for Public Health. John Wiley & Sons, Ltd, Chichester, pp.
63 - 84.

Carlin BP, Louis TA (2000). Bayes and Empirical Bayes Methods for Data Analysis - Monographs
on Statistics and Applied Probability 69. Chapman and Hall, London, pp. 270.

epi.smd Fixed-effects meta-analysis of continuous outcomes using the stan-
dardised mean difference method

Description

Computes the standardised mean difference and confidence intervals of the standardised mean dif-
ference for continuous outcome data.

Usage

epi.smd(mean.trt, sd.trt, n.trt, mean.ctrl, sd.ctrl, n.ctrl,
names, method = "cohens", conf.level = 0.95)
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Arguments
mean.trt a vector, defining the mean outcome in the treatment group.
sd.trt a vector, defining the standard deviation of the outcome in the treatment group.
n.trt a vector, defining the number of subjects in the treatment group.
mean.ctrl a vector, defining the mean outcome in the control group.
sd.ctrl a vector, defining the standard deviation of the outcome in the control group.
n.ctrl a vector, defining the number of subjects in the control group.
names character string identifying each trial.
method a character string indicating the method to be used. Options are cohens or
hedges and glass.
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
Value

A list containing the following:

md standardised mean difference and its confidence interval computed for each trial.

md. invar the inverse variance (fixed effects) summary standardised mean difference.

md.dsl the DerSimonian and Laird (random effects) summary standardised mean dif-
ference.

heterogeneity a vector containing Q the heterogeneity test statistic, df the degrees of freedom
and its associated P-value.

Note

The standardised mean difference method is used when trials assess the same outcome, but measure
it in a variety of ways. For example: a set of trials might measure depression scores in psychiatric
patients but use different methods to quantify depression. In this circumstance it is necessary to
standardise the results of the trials to a uniform scale before they can be combined. The standard-
ised mean difference method expresses the size of the treatment effect in each trial relative to the
variability observed in that trial.

References

Deeks JJ, Altman DG, Bradburn MJ (2001). Statistical methods for examining heterogeneity and
combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman
D (eds). Systematic Review in Health Care Meta-Analysis in Context. British Medical Journal,
London, pp. 290 - 291.

See Also

epi.dsl,epi.iv,epi.mh
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Examples

## EXAMPLE 1:

## A systematic review comparing assertive community treatment (ACT) for the
## severely mentally ill was compared to standard care. A systematic review
## comparing ACT to standard care found three trials that assessed mental
## status after 12 months. All three trials used a different scoring system,
## so standardisation is required before they can be compared.

names <- c("Audini”, "Morse"”, "Lehman")
mean.trt <- c(41.4, 0.95, -4.10)
mean.ctrl <- c(42.3, 0.89, -3.80)
sd.trt <- c(14, 0.76, 0.83)

sd.ctrl <- c(12.4, 0.65, 0.87)

n.trt <- c(30, 37, 67)

n.ctrl <- c(28, 35, 58)

epi.smd(mean.trt, sd.trt, n.trt, mean.ctrl, sd.ctrl, n.ctrl,

names, method = "cohens”, conf.level = 0.95)
epi.smr Confidence intervals and tests of significance of the standardised mor-
tality [morbidity] ratio
Description

Computes confidence intervals and tests of significance of the standardised mortality [morbidity]
ratio.

Usage

epi.smr(obs, exp, method = "byar", conf.level = 0.95)

Arguments
obs integer, defining the observed number of events.
exp number, defining the expected number of events.
method character string, defining the method used. Options are chi2, mid.p, fisher,
byar, rothman.greenland, ury.wiggins and vandenbroucke. See details,
below.
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
Details

This function calculates the standardised mortality [morbidity] ratio based on scalars defining the
observed and expected number of [disease] events.
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The hypothesis that the SMR equals one is tested using the Chi square test, the Mid-P exact test,
the Fisher exact test and Byar’s approximation. Confidence intervals for the SMR are calculated
using the Mid-P exact test, the Fisher exact test, Byar’s approximation, Rothman and Greenland’s
method, Ury and Wiggin’s method and the Vandenbroucke method.

Exact confidence intervals and p-values should be used when the number of observed events is less
than or equal to five. For greater numbers of observed events, the approximation methods (Byar’s,
Rothman and Greenland, Ury and Wiggins and Vandenbroucke) should be used.

Value

A data frame listing:

obs the observed number of events, as entered by the user.
exp the expected number of events, as entered by the user.
est the point estimate of the SMR.

lower the lower bound of the confidence interval of the SMR.
upper the upper bound of the confidence interval of the SMR.

test.statistic test statistic of the significance of the SMR.

p.value the probability that the null hypothesis (i.e. the number of observed events di-
vided by the expected number of events equals 1) is true.

Note

Only 90%, 95% and 99% confidence limits are computed using the Ury and Wiggins method. If
conf.level does not equal 0.90, 0.95 or 0.99 NAs are returned for the lower and upper bound of
the SMR confidence interval.

Only 95% confidence limits are computed using Vandenbroucke’s method. If conf. level does not
equal 0.95 NAs are returned for the lower and upper bound of the SMR confidence interval.

References
Armitage P, Berry G, Mathews J (2002). Statistical Methods in Medical Research. Blackwell
Publications London.
Miettinen OS (1974). Comment. Journal of the American Statistical Association 69: 380 - 382.

Rothman K, Boice J (1979). Epidemiologic Analysis with a Programmable Calculator. U.S. De-
partment of Health, Education, and Welfare, Public Health Service, National Institutes of Health,
Washington, USA.

Rothman K, Greenland S, Lash T (2008). Modern Epidemiology. Lippincott, Williams and Wilkins
Philadelphia, USA.

Snedecor G, Cochran W (1989). Statistical Methods. Iowa University Press Ames, lowa.

Ury H, Wiggins A (1985). Another shortcut method for calculating the confidence interval of a
poisson variable (or of a standardized mortality ratio). American Journal of Epidemiology 122, 197
- 198.

Vandenbroucke J, (1982). A shortcut method for calculating the 95 percent confidence interval of
the standardized mortality ratio (Letter). American Journal of Epidemiology 115, 303 - 304.
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Examples

## EXAMPLE 1:

## The observed number of disease events in a province is 4; the expected
## number of disease events is 3.3. What is the standardised morbidity ratio
## and its 95% confidence interval? Test the hypothesis that the SMR equals
## one.

epi.smr(obs = 4, exp = 3.3, method = "mid.p", conf.level = 0.95)
## The standardised morbidity ratio is 1.2 (95% CI ©.38 to 2.9). We accept

## the null hypothesis and conclude that the SMR does not significantly
## differ from one (p = 0.657).

epi.sscc Sample size, power or minimum detectable odds ratio for an un-

matched or matched case-control study

Description
Calculates the sample size, power or minimum detectable odds ratio for an unmatched or matched
case-control study.

Usage

epi.sscc(OR, p@, n, power, r = 1, rho.cc = @, design = 1, sided.test = 2,
conf.level = 0.95, method = "unmatched”, fleiss = FALSE)

Arguments

OR scalar, the expected study odds ratio.

po scalar, the prevalence of exposure amongst the controls.

n scalar, the total number of subjects in the study (i.e. the number of cases plus
the number of controls).

power scalar, the required study power.

r scalar, the number in the control group divided by the number in the case group.

rho.cc scalar, the correlation between case and control exposures for matched pairs.
Ignored when method = "unmatched”.

design scalar, the design effect.

sided.test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the odds of exposure in cases is greater than or less than the odds of
exposure in controls. Use a one-sided test to evaluate whether or not the odds of
exposure in cases is greater than the odds of exposure in controls.

conf.level scalar, the level of confidence in the computed result.

method a character string defining the method to be used. Options are unmatched or
matched.

fleiss logical, indicating whether or not the Fleiss correction should be applied. This

argument is ignored when method = "matched"”.
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Details
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This function implements the methodology described by Dupont (1988). A detailed description of
sample size calculations for case-control studies (with numerous worked examples, many of them
reproduced below) is provided by Woodward (2005), pp. 381 to 426.

Value

A list containing the following:

n.total

n.case

n.control

power

OR

Note

the total number of subjects required to estimate the specified odds ratio at the
desired level of confidence and power (i.e. the number of cases plus the number
of controls).

the total number of case subjects required to estimate the specified odds ratio at
the desired level of confidence and power.

the total number of control subjects required to estimate the specified odds ratio
at the desired level of confidence and power.

the power of the study given the number of study subjects, the specified odds
ratio and the desired level of confidence.

the expected detectable odds ratio given the number of study subjects, the de-
sired power and desired level of confidence.

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

See the documentation for epi.cohortsize which provides an example using the design facility
implemented in this function.

References

Dupont WD (1988) Power calculations for matched case-control studies. Biometrics 44: 1157 -

1168.

Fleiss JL (1981). Statistical Methods for Rates and Proportions. Wiley, New York.

Kelsey JL, Thompson WD, Evans AS (1986). Methods in Observational Epidemiology. Oxford
University Press, London, pp. 254 - 284.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.

Examples

## EXAMPLE 1 (from Woodward 2005 p. 412):

## A case-control study of the relationship between smoking and CHD is

## planned. A sample of men with newly diagnosed CHD will be compared for
## smoking status with a sample of controls. Assuming an equal number of
## cases and controls, how many study subject are required to detect an
## odds ratio of 2.0 with ©.90 power using a two-sided 0.05 test? Previous
## surveys have shown that around 0.30 of males without CHD are smokers.
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epi.sscc(OR = 2.0, p@ = 0.30, n = NA, power = 0.90, r = 1, rho.cc = 0,
design = 1, sided.test = 2, conf.level = 0.95, method = "unmatched"”,
fleiss = FALSE)

## A total of 376 men need to be sampled: 188 cases and 188 controls.

## EXAMPLE 2 (from Woodward 2005 p. 414):

## Suppose we wish to determine the power to detect an odds ratio of 2.0
## using a two-sided 0.05 test when 188 cases and 940 controls

## are available (that is, the ratio of controls to cases is 5:1). Assume
## the prevalence of smoking in males without CHD is @.30.

n <- 188 + 940

epi.sscc(OR = 2.0, p@ = 0.30, n = n, power = NA, r =5, rho.cc = 0,
design = 1, sided.test = 2, conf.level = 0.95, method = "unmatched"”,
fleiss = TRUE)

## The power of this study, with the given sample size allocation is ©.99.
## EXAMPLE 3:
## The following statement appeared in a study proposal to identify risk

## factors for campylobacteriosis in humans:

## ‘*We will prospectively recruit 300 culture-confirmed Campylobacter cases

## reported under the Public Health Act. We will then recruit one control per
## case from general practices of the enrolled cases, using frequency matching

## by age and sex. With exposure levels of 10% (thought to be realistic
## given past foodborne disease case control studies) this sample size

## will provide 80% power to detect an odds ratio of 2 at the 5% alpha

## level.'

## Confirm the statement that 300 case subjects will provide 80% power in
## this study.

epi.sscc(OR = 2.0, p@ = 0.10, n = 600, power = NA, r = 1, rho.cc = 0.01,
design = 1, sided.test = 2, conf.level = 0.95, method = "matched”,
fleiss = TRUE)

## If the true odds ratio for Campylobacter in exposed subjects relative to
## unexposed subjects is 2.0 we will be able to reject the null hypothesis
## that this odds ratio equals 1 with probability (power) ©.826. The Type I

# error probability associated with this test of this null hypothesis is 0.05.

#i# EXAMPLE 4:

## We wish to conduct a case-control study to assess whether bladder cancer
## may be associated with past exposure to cigarette smoking. Cases will be
## patients with bladder cancer and controls will be patients hospitalised
## for injury. It is assumed that 20% of controls will be smokers or past
## smokers, and we wish to detect an odds ratio of 2 with power 90%.

## Three controls will be recruited for every case. How many subjects need

epi.sscc



epi.sscc

## to be enrolled in the study?

epi.sscc(OR = 2.0, p@ = 0.20, n = NA, power = 0.90, r = 3, rho.cc = 0,
design = 1, sided.test = 2, conf.level = 0.95, method = "unmatched”,
fleiss = FALSE)

## A total of 620 subjects need to be enrolled in the study: 155 cases and
## 465 controls.

## An alternative is to conduct a matched case-control study rather than the
## unmatched design outlined above. One case will be matched to one control

## and the correlation between case and control exposures for matched pairs

## (rho) is estimated to be ©0.01 (low). Using the same assumptions as those

## described above, how many study subjects will be required?

epi.sscc(OR = 2.0, p@ = 0.20, n = NA, power = .90, r = 1, rho.cc = 0.01,
design = 1, sided.test = 2, conf.level = 0.95, method = "matched”,
fleiss = FALSE)

## A total of 456 subjects need to be enrolled in the study: 228 cases and
## 228 controls.

## EXAMPLE 5:

## Code to reproduce the isograph shown in Figure 2 in Dupont (1988):
r<-1

pd = seq(from = 0.05, to = 0.95, length = 50)

OR <- seq(from = 1.05, to = 6, length = 100)

dat <- expand.grid(p@ = p@, OR = OR)

dat$n.total <- NA

for(i in 1:nrow(dat)){
dat$n.totall[i] <- epi.sscc(OR = dat$OR[i], p@ = dat$p@l[il, n = NA,
power = .80, r = 1, rho.cc = @, design = 1, sided.test = 2,
conf.level = 0.95, method = "unmatched”, fleiss = FALSE)$n.total
3

grid.n <- matrix(dat$n.total, nrow = length(p@))
breaks <- ¢(22:30,32,34,36,40,45,50,55,60,70,80,90,100,125,150,175,
200,300,500,1000)

par(mar = c¢(5,5,0,5), bty = "n")

contour(x = p@, y = OR, z = logl@(grid.n), add = FALSE, levels = logl@(breaks),
labels = breaks, xlim = c(0,1), ylim = c(1,6), las = 1, method = "flattest”,
xlab = 'Proportion of controls exposed', ylab = "Minimum OR to detect”)

## Not run:
## The same plot using ggplot2:

library(ggplot2); library(directlabels)

p <- ggplot(data = dat, aes(x = p@, y = OR, z = n.total)) +
geom_contour(aes(colour = ..level..), breaks = breaks) +

83
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epi.sscluslestb
scale_x_continuous(limits = c(@,1), name = "Proportion of controls exposed”) +
scale_y_continuous(limits = c(1,6), name = "Minimum OR to detect”)
print(direct.label(p, list("far.from.others.borders”, "calc.boxes",
"enlarge.box"”, hjust = 1, vjust = 1, box.color = NA,
fill = "transparent”, "draw.rects"”)))

## End(Not run)

## EXAMPLE 6:

## From page 1164 of Dupont (1988). A matched case control study is to be

## carried out to quantify the association between exposure A and an outcome B.
## Assume the prevalence of exposure in controls is 0.6@ and the

## correlation between case and control exposures for matched pairs (rho) is
## 0.20 (moderate). Assuming an equal number of cases and controls, how many
## subjects need to be enrolled into the study to detect an odds ratio of 3.0
## with 0.80 power using a two-sided 0.05 test?

epi.sscc(OR = 3.0, p@ = 0.60, n = NA, power = 0.80, r = 1, rho.cc = 0.2,
design = 1, sided.test = 2, conf.level = 0.95, method = "matched”,
fleiss = FALSE)

## A total of 162 subjects need to be enrolled in the study: 81 cases and
## 81 controls.

## How many cases and controls are required if we select three
## controls per case?

epi.sscc(OR = 3.0, p@ = 0.60, n = NA, power = 0.80, r = 3, rho.cc = 0.2,
design = 1, sided.test = 2, conf.level = 0.95, method = "matched”,
fleiss = FALSE)

## A total of 204 subjects need to be enrolled in the study: 51 cases and
## 153 controls.

epi.sscluslestb Sample size to estimate a binary outcome using one-stage cluster sam-
pling

Description

Sample size to estimate a binary outcome using one-stage cluster sampling.

Usage

epi.sscluslestb(b, Py, epsilon.r, rho, conf.level = 0.95)
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Arguments

b

Py

epsilon.r

rho

conf.level

Details
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scalar integer or vector of length two, the number of individual listing units in
each cluster to be sampled. See details, below.

scalar number, an estimate of the unknown population proportion.

the maximum relative difference between the estimate and the unknown popu-
lation value.

scalar number, the intracluster correlation.

scalar, defining the level of confidence in the computed result.

b as a scalar integer represents the total number of individual listing units from each cluster to be
sampled. If b is a vector of length two the first element represents the mean number of individ-
ual listing units to be sampled from each cluster and the second element represents the standard
deviation of the number of individual listing units to be sampled from each cluster.

At least 25 primary sampling units are recommended for one-stage cluster sampling designs. If less
than 25 clusters are returned by the function a warning is issued.

Value

A list containing the following:

n.psu

n.ssu

DEF

rho

References

the total number of primary sampling units (clusters) to be sampled for the spec-
ified level of confidence and relative error.

the total number of secondary sampling units to be sampled for the specified
level of confidence and relative error.

the design effect.

the intracluster correlation, as entered by the user.

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 258.

Machin D, Campbell MJ, Tan SB, Tan SH (2018). Sample Sizes for Clinical, Laboratory ad Epi-
demiological Studies, Fourth Edition. Wiley Blackwell, London, pp. 195 - 214.

Examples

## An aid project has distributed cook stoves in a single province in a

## resource-poor country. At the end of three years, the donors would like
## to know what proportion of households are still using their donated cook
## stove. A cross-sectional study is planned where villages in the province
## will be sampled and all households (approximately 75 per village) will be
## visited to determine whether or not the donated stove is still in use.

## A pilot study of the prevalence of stove usage in five villages

## showed that 0.46 of householders were still using their stove. The

## intracluster correlation for a study of this type is unknown, but thought
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## to be relatively high.

# If the donor wanted to be 90% confident that the survey estimate of stove
## usage was within 10% of the true population value, how many villages
## (i.e. clusters) would need to be sampled?

epi.sscluslestb(b = 75, Py = 0.46, epsilon.r = 0.10, rho = 0.20,
conf.level = 0.90)

## A total of 67 villages need to be sampled to meet the specifications
## of this study.

## Now imagine the situation where the number of households per village

## varies. We are told that the average number of households per village is
## 75 with the 0.025 quartile 40 households and the ©.975 quartile 180

## households. The expected standard deviation of the number of households
## per village is (180 - 40) / 4 = 35. How many villages need to be sampled?

epi.sscluslestb(b = c(75,35), Py = 0.46, epsilon.r = 0.10, rho = 0.20,
conf.level = 0.90)

## A total of 81 villages need to be sampled to meet the specifications
## of this study.

epi.sscluslestc Sample size to estimate a continuous outcome using one-stage cluster
sampling

Description

Sample size to estimate a continuous outcome using one-stage cluster sampling.

Usage

epi.sscluslestc(b, N, xbar, xsigma, epsilon.r, rho, conf.level = 0.95)

Arguments
b scalar integer or vector of length two, the number of individual listing units in
each cluster to be sampled. See details, below.
N scalar integer, representing the total number of individual listing units in the
population.
xbar scalar number, the expected mean of the continuous variable to be estimated.
xsigma scalar number, the expected standard deviation of the continuous variable to be

estimated.



epi.sscluslestc 87

epsilon.r scalar number, the maximum relative difference between the estimate and the
unknown population value.
rho scalar number, the intracluster correlation.
conf.level scalar number, the level of confidence in the computed result.
Details

b as a scalar integer represents the total number of individual listing units from each cluster to be
sampled. If b is a vector of length two the first element represents the mean number of individ-
ual listing units to be sampled from each cluster and the second element represents the standard
deviation of the number of individual listing units to be sampled from each cluster.

Value

A list containing the following:

n.psu the total number of primary sampling units (clusters) to be sampled for the spec-
ified level of confidence and relative error.
n.ssu the total number of secondary sampling units to be sampled for the specified
level of confidence and relative error.
DEF the design effect.
rho the intracluster correlation, as entered by the user.
References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 258.

Machin D, Campbell MJ, Tan SB, Tan SH (2018). Sample Sizes for Clinical, Laboratory ad Epi-
demiological Studies, Fourth Edition. Wiley Blackwell, London, pp. 195 - 214.

Examples

## A survey to estimate the average number of residents over 75 years of

## age that require the services of a nurse in a given retirement village is
## to be carried out using a one-stage cluster sampling strategy.

## There are five housing complexes in the village with 25 residents in each.
## We expect that there might be an average of 34 residents meeting this

## criteria (SD 5.5). We would like the estimated sample size to provide us

## with an estimate that is within 10% of the true value. Previous studies

## report an intracluster correlation for the number of residents requiring the
## services of a nurse in this retirement village housing complexes to

## be 0.10. How many housing complexes (clusters) should be sampled?

epi.sscluslestc(b = 25, N = 5 * 25, xbar = 34, xsigma = 5.5,
epsilon.r = ©.10, rho = @.10, conf.level = 0.95)

## A total of 2 housing complexes need to be sampled to meet the specifications
## of this study.
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epi.ssclus2estb Number of clusters to be sampled to estimate a binary outcome using
two-stage cluster sampling

Description

Number of clusters to be sampled to estimate a binary outcome using two-stage cluster sampling.

Usage
epi.ssclus2estb(b, Py, epsilon.r, rho, conf.level = 0.95)

Arguments
b scalar integer or vector of length two, the number of individual listing units in
each cluster to be sampled. See details, below.
Py scalar number, an estimate of the unknown population proportion.
epsilon.r the maximum relative difference between the estimate and the unknown popu-
lation value.
rho scalar number, the intracluster correlation.
conf.level scalar, defining the level of confidence in the computed result.
Details

b as a scalar integer represents the total number of individual listing units from each cluster to be
sampled. If b is a vector of length two the first element represents the mean number of individ-
ual listing units to be sampled from each cluster and the second element represents the standard
deviation of the number of individual listing units to be sampled from each cluster.

The methodology used in this function follows closely the approach described by Bennett et al.
(1991). At least 25 primary sampling units are recommended for two-stage cluster sampling de-
signs. If less than 25 clusters are returned by the function a warning is issued.

As a rule of thumb, around 30 clusters will provide good estimates of the true population value
with an acceptable level of precision (Binkin et al. 1992) when: (1) the true population value
is between 10% and 90%; and (2) the desired absolute error is around 5%. For a fixed number
of individuals selected per cluster (e.g. 10 individuals per cluster or 30 individuals per cluster),
collecting information on more than 30 clusters can improve the precision of the final population
estimate, however, beyond around 60 clusters the improvement in precision is minimal.

Value

A list containing the following:

n.psu the total number of primary sampling units (clusters) to be sampled for the spec-
ified level of confidence and relative error.

n.ssu the total number of secondary sampling units to be sampled for the specified
level of confidence and relative error.
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DEF the design effect.
rho the intracluster correlation, as entered by the user.
References

Bennett S, Woods T, Liyanage W, Smith D (1991). A simplified general method for cluster-sample
surveys of health in developing countries. World Health Statistics Quarterly 44: 98 - 106.

Binkin N, Sullivan K, Staehling N, Nieburg P (1992). Rapid nutrition surveys: How many clusters
are enough? Disasters 16: 97 - 103.

Machin D, Campbell MJ, Tan SB, Tan SH (2018). Sample Sizes for Clinical, Laboratory ad Epi-
demiological Studies, Fourth Edition. Wiley Blackwell, London, pp. 195 - 214.

Examples

## EXAMPLE 1 (from Bennett et al. 1991 p 102):

## We intend to conduct a cross-sectional study to determine the prevalence

## of disease X in a given country. The expected prevalence of disease is

## thought to be around 20%. Previous studies report an intracluster

## correlation for this disease to be 0.02. Suppose that we want to be 95%

## certain that our estimate of the prevalence of disease is within 5% of

## the true population value and that we intend to sample 20 individuals per

## cluster. How many clusters should be sampled to meet the requirements of the
## study?

epi.ssclus2estb(b = 20, Py = 0.20, epsilon.r = .05 / 0.20, rho = 0.02,
conf.level = 0.95)

## A total of 17 clusters need to be sampled to meet the specifications
## of this study. epi.ssclus2estb returns a warning message that the number of
## clusters is less than 25.

epi.ssclus2estc Number of clusters to be sampled to estimate a continuous outcome
using two-stage cluster sampling

Description
Number of clusters to be sampled to estimate a continuous outcome using two-stage cluster sam-
pling.

Usage

epi.ssclus2estc(b, N, xbar, xsigma, epsilon.r, rho, conf.level = 0.95)
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Arguments

b

xbar

xsigma

epsilon.r

rho

conf.level

Details

epi.ssclusZestc

scalar integer or vector of length two, the number of individual listing units in
each cluster to be sampled. See details, below.

scalar integer, representing the total number of individual listing units in the
population.

scalar number, the expected mean of the continuous variable to be estimated.

scalar number, the expected standard deviation of the continuous variable to be
estimated.

scalar number, the maximum relative difference between the estimate and the
unknown population value.

scalar number, the intracluster correlation.

scalar number, the level of confidence in the computed result.

b as a scalar integer represents the total number of individual listing units from each cluster to be
sampled. If b is a vector of length two the first element represents the mean number of individ-
ual listing units to be sampled from each cluster and the second element represents the standard
deviation of the number of individual listing units to be sampled from each cluster.

Value

A list containing the following:

n.psu

n.ssu

DEF

rho

References

the total number of primary sampling units (clusters) to be sampled for the spec-
ified level of confidence and relative error.

the total number of secondary sampling units to be sampled for the specified
level of confidence and relative error.

the design effect.

the intracluster correlation, as entered by the user.

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 292.

Machin D, Campbell MJ, Tan SB, Tan SH (2018). Sample Sizes for Clinical, Laboratory ad Epi-
demiological Studies, Fourth Edition. Wiley Blackwell, London, pp. 195 - 214.

Examples

## EXAMPLE 1 (from Levy and Lemeshow p 292):

## We intend to conduct a survey of nurse practitioners to estimate the
## average number of patients seen by each nurse. There are five health
## centres in the study area, each with three nurses. We intend to sample
## two nurses from each health centre. We would like to be 95% confident
## that our estimate is within 30% of the true population value. We expect
## that the mean number of patients seen at the health centre level
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## is 84 (var 567) and the mean number of patients seen at the nurse
## level is 28 (var 160). Previous studies report an intracluster
## correlation for the number of patients seen per nurse to be 0.02.
## How many health centres should be sampled?

epi.ssclus2estc(b = 2, N = 15, xbar = 28, xsigma = sqrt(160),
epsilon.r = 0.30, rho = 0.02, conf.level = 0.95)

## A total of 3 health centres need to be sampled to meet the specifications
## of this study.

epi.sscohortc Sample size, power or minimum detectable incidence risk ratio for a
cohort study using individual count data

Description
Sample size, power or minimum detectable incidence risk ratio for a cohort study using individual
count data.

Usage

epi.sscohortc(irexpl, irexp@, n, power, r = 1, design = 1, sided.test = 2,
conf.level = 0.95)

Arguments
irexp1 the expected incidence risk of the outcome in the exposed group (0 to 1).
irexp@ the expected incidence risk of the outcome in the non-exposed group (0 to 1).
n scalar, defining the total number of subjects in the study (i.e. the number in both
the exposed and unexposed groups).
power scalar, the required study power.
r scalar, the number in the exposed group divided by the number in the unexposed
group.
design scalar, the estimated design effect.
sided. test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the outcome incidence risk in the exposed group is greater than or less
than the outcome incidence risk in the unexposed group. Use a one-sided test
to evaluate whether or not the outcome incidence risk in the exposed group is
greater than the outcome incidence risk in the unexposed group.
conf.level scalar, defining the level of confidence in the computed result.
Details

The methodology in this function follows the approach described in Chapter 8 of Woodward (2005),
pp- 381 - 426.
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Value
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A list containing the following:

n.total

n.expl

n.expo

power

irr

Note

the total number of subjects required for the specified level of confidence and
power, respecting the requirement for r times as many individuals in the exposed
(treatment) group compared with the non-exposed (control) group.

the total number of subjects in the exposed (treatment) group for the specified
level of confidence and power, respecting the requirement for r times as many
individuals in the exposed (treatment) group compared with the non-exposed
(control) group.

the total number of subjects in the non-exposed (control) group for the specified
level of confidence and power, respecting the requirement for r times as many
individuals in the exposed (treatment) group compared with the non-exposed
(control) group.

the power of the study given the number of study subjects, the expected effect
size and level of confidence.

the incidence risk of the outcome in the exposed group divided by the incidence
risk of the outcome in the unexposed group (the incidence risk ratio).

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

Values need to be entered for irexp®, n, and power to return a value for irr. In this situation, the
lower value of irr represents the maximum detectable incidence risk ratio that is less than 1; the
upper value of irr represents the minimum detectable incidence risk ratio greater than 1.

References

Kelsey JL, Thompson WD, Evans AS (1986). Methods in Observational Epidemiology. Oxford
University Press, London, pp. 254 - 284.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.

Examples

## EXAMPLE 1 (from Woodward 2005 p. 406):

## A cohort study of smoking and coronary heart disease (CHD) in middle aged men
## is planned. A sample of men will be selected at random from the population
## and those that agree to participate will be asked to complete a

## questionnaire. The follow-up period will be 5 years. The investigators would

#i#
#it
#it
#i#
#it

like to be ©.90 sure of being able to detect when the risk ratio of CHD
is 1.4 for smokers, using a 0.05 significance test. Previous evidence
suggests that the incidence risk of death in non-smokers is 413 per
100,000 per year. Assuming equal numbers of smokers and non-smokers are
sampled, how many men should be sampled overall?

irexpl = 1.4 % (5 * 413)/100000; irexpd = (5 x 413)/100000
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epi.sscohortc(irexpl = irexpl, irexp@ = irexp@, n = NA, power = 0.90,
r =1, design = 1, sided.test = 1, conf.level = 0.95)

## A total of 12,130 men need to be sampled (6065 smokers and 6065 non-smokers).

## EXAMPLE 2 (from Woodward 2005 p. 406):
## Say, for example, we are only able to enrol 5000 subjects into the study
## described above. What is the minimum and maximum detectable risk ratio?

irexp@ = (5 * 413)/100000
epi.sscohortc(irexpl = NA, irexp@ = irexp@, n = 5000, power = 0.90,
r =1, design = 1, sided.test = 1, conf.level = 0.95)

## The minimum detectable risk ratio >1 is 1.65. The maximum detectable
## risk ratio <1 is 0.50.

## EXAMPLE 3:

## A study is to be carried out to assess the effect of a new treatment for

## anoestrus in dairy cattle. What is the required sample size if we expect

## the proportion of cows responding in the treatment (exposed) group to be

## 0.30 and the proportion of cows responding in the control (unexposed) group
## to be 0.15? The required power for this study is 0.80 using a two-sided

## 0.05 test.

epi.sscohortc(irexpl = 0.30, irexp@ = 0.15, n = NA, power = 0.80,
r =1, design = 1, sided.test = 2, conf.level = 0.95)

## A total of 242 cows are required: 121 in the treatment (exposed) group and
## 121 in the control (unexposed) group.

## Assume now that this study is going to be carried out using animals from a
## number of herds. What is the required sample size when you account for the
## observation that response to treatment is likely to cluster within herds.

## For the exercise, assume that the intra-cluster correlation coefficient
## (the rate of homogeneity, rho) for this treatment is .05 and the
## average number of cows sampled per herd will be 30.

## Calculate the design effect, given rho = (design - 1) / (nbar - 1),
## where nbar equals the average number of individuals per cluster:

design <- 0.05 * (30 - 1) + 1
epi.sscohortc(irexpl = 0.30, irexp@

= 5, n = NA, power = 0.80,
r = 1, design = design, sided.test

0.1

= 2, conf.level = 0.95)

## A total of 592 cows are required for this study: 296 in the treatment group
## and 296 in the control group.

93
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epi.sscohortt Sample size, power or minimum detectable incidence rate ratio for a
cohort study using person or animal time data

Description
Sample size, power or minimum detectable incidence rate ratio for a cohort study using person or
animal time data.

Usage

epi.sscohortt(irexpl, irexp@, FT = NA, n, power, r = 1, design = 1, sided.test = 2,
conf.level = 0.95)

Arguments
irexpl the expected incidence rate of the outcome in the exposed group (0 to 1).
irexp@ the expected incidence rate of the outcome in the non-exposed group (0 to 1).
FT the follow-up period (in years) for the study.
n scalar, defining the total number of subjects in the study (i.e. the number in both
the exposed and unexposed groups).
power scalar, the required study power.
r scalar, the number in the exposed group divided by the number in the unexposed
group.
design scalar, the estimated design effect.
sided. test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the outcome incidence rate in the exposed group is greater than or less
than the outcome incidence rate in the unexposed group. Use a one-sided test
to evaluate whether or not the outcome incidence rate in the exposed group is
greater than the outcome incidence rate in the unexposed group.
conf.level scalar, defining the level of confidence in the computed result.
Details

The methodology in this function follows the approach described in Lwanga and Lemeshow (1991).

Value
A list containing the following:

n.total the total number of subjects required for the specified level of confidence and
power, respecting the requirement for r times as many individuals in the treat-
ment group compared with the control group.

n.expl the total number of subjects in the treatment group for the specified level of con-
fidence and power, respecting the requirement for r times as many individuals
in the treatment group compared with the control group.
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n.expo the total number of subjects in the control group for the specified level of confi-
dence and power, respecting the requirement for r times as many individuals in
the treatment group compared with the control group.

power the power of the study given the number of study subjects, the expected effect
size and level of confidence.

irr the incidence rate of the outcome in the exposed group divided by the incidence
rate in the unexposed group (the incidence rate ratio).

Note

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

Values need to be entered for irexp@, n, and power to return a value for irr. In this situation, the
lower value of irr represents the maximum detectable incidence rate ratio that is less than 1; the
upper value of irr represents the minimum detectable incidence rate ratio greater than 1.

References

Lemeshow S, Hosmer D, Klar J, Lwanga S (1990). Adequacy of Sample Size in Health Studies.
John Wiley and Sons, New York.

Lwanga S, Lemeshow S (1991). Sample Size Determination in Health Studies. World Health
Organization, Geneva.

Examples

## EXAMPLE 1 (from Lwanga and Lemeshow 1991 p. 19):
## As part of a study of the long-term effect of noise on workers in a

## particularly noisy industry, it is planned to follow up a cohort of people

## who were recruited into the industry during a given period of time and to

## compare them with a similar cohort of individuals working in a much

## quieter industry. Subjects will be followed up for the rest of their lives or
## until their hearing is impaired. The results of a previous small-scale survey
## suggest that the annual incidence rate of hearing impairment in the noisy

## industry may be as much as 25%. How many people should be followed up

## in each of the groups (which are to be of equal size) to test the hypothesis
## that the incidence rates for hearing impairment in the two groups are the

## same, at the 5% level of significance and with a power of 80%? The

## alternative hypothesis is that the annual incidence rate for hearing

## impairment in the quieter industry is not more than the national average of
## about 10% (for people in the same age range), whereas in the noisy

## industry it differs from this.

## Note: An anunual incidence rate of 25% is equivalent to 25 cases of hearing
## impairment per 100 individuals per year.

epi.sscohortt(irexpl = 0.25, irexp@ = .10, FT = NA, n = NA, power = 0.80,
r =1, design = 1, sided.test = 2, conf.level = 0.95)

## A total of 46 subjects are required for this study: 23 in the exposed
## group and 23 in the unexposed group.
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## EXAMPLE 2 (from Lwanga and Lemeshow 1991 p. 19):

## A study similar to that described above is to be undertaken, but the

## duration of the study will be limited to 5 years. How many subjects should
## be followed up in each group?

epi.sscohortt(irexpl = 0.25, irexp@ = 0.10, FT

=5, n = NA, power = 0.80,
r =1, design = 1, sided.test = 2, conf.level =

0.95)

## A total of 130 subjects are required for this study: 65 in the exposed
## group and 65 in the unexposed group.

epi.sscompb Sample size, power and minimum detectable risk ratio when compar-
ing binary outcomes

Description

Sample size, power and minimum detectable risk ratio when comparing binary outcomes.

Usage

epi.sscompb(treat, control, n, power, r = 1, design = 1,
sided.test = 2, conf.level = 0.95)

Arguments

treat the expected proportion for the treatment group (see below).

control the expected proportion for the control group (see below).

n scalar, defining the total number of subjects in the study (i.e. the number in the
treatment plus the number in the control group).

power scalar, the required study power.

r scalar, the number in the treatment group divided by the number in the control
group.

design scalar, the estimated design effect.

sided.test use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether

or not the outcome proportion in the exposed (treatment) group is greater than
or less than the outcome proportion in the unexposed (control) group. Use a
one-sided test to evaluate whether or not the outcome proportion in the exposed
(treatment) group is greater than the outcome proportion in the unexposed (con-
trol) group.

conf.level scalar, defining the level of confidence in the computed result.
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Details

The methodology in this function follows the approach described in Chapter 8 of Woodward (2005).

With this function it is assumed that one of the two proportions is known and we want to test the null
hypothesis that the second proportion is equal to the first. Users are referred to the epi.sscohortc
function which relates to the two-sample problem where neither proportion is known (or assumed,
at least).

Because there is much more uncertainty in the two sample problem where neither proportion is
known, epi.sscohortc returns much larger sample size estimates. This function (epi.sscompb)
should be used in particular situations such as when a politician claims that at least 90% of the
population use seatbelts and we want to see if the data supports this claim.

Value

A list containing the following:

n.total the total number of subjects required for the specified level of confidence and
power, respecting the requirement for r times as many individuals in the treat-
ment group compared with the control group.

n.treat the total number of subjects in the treatment group for the specified level of con-
fidence and power, respecting the requirement for r times as many individuals
in the treatment group compared with the control group.

n.control the total number of subjects in the control group for the specified level of confi-
dence and power, respecting the requirement for r times as many individuals in
the treatment group compared with the control group.

power the power of the study given the number of study subjects, the expected effect
size and level of confidence.

lambda the proportion in the treatment group divided by the proportion in the control
group (a risk ratio).

Note

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

Values need to be entered for control, n, and power to return a value for 1ambda. In this situation,
the lower value of lambda represents the maximum detectable risk ratio that is less than 1; the upper
value of lambda represents the minimum detectable risk ratio greater than 1.

References

Fleiss JL (1981). Statistical Methods for Rates and Proportions. Wiley, New York.

Kelsey JL, Thompson WD, Evans AS (1986). Methods in Observational Epidemiology. Oxford
University Press, London, pp. 254 - 284.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.
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Examples

## EXAMPLE 1 (from Woodward 2005 pp. 403 - 404):

## A government initiative has decided to reduce the prevalence of male
## smoking to, at most, 30%. A sample survey is planned to test, at the
## 0.05 level, the hypothesis that the percentage of smokers in the male
## population is 30% against the one-sided alternative that it is greater.
## The survey should be able to find a prevalence of 32%, when it is true,
## with 0.90 power. How many men need to be sampled?

epi.sscompb(treat = .30, control = @.32, n = NA, power = 0.90,
r =1, design = 1, sided.test = 1, conf.level = 0.95)

## ## A total of 18,316 men should be sampled: 9158 in the treatment group and
## 9158 in the control group. The risk ratio (that is, the prevalence of

## smoking in males post government initiative divided by the prevalence of
## smoking in males pre inititative is 0.94.

## EXAMPLE 2:

## If we sample only 10,000 men (5000 in the treatment group and 5000 in the
## control group) what is the maximum detectable risk ratio that is less

## than 17

epi.sscompb(treat = NA, control = 0.32, n = 10000, power = 0.90,
r =1, design = 1, sided.test = 1, conf.level = 0.95)

## If we sample only 10,000 men the maximum detectable risk ratio will be 0.91.

epi.sscompc Sample size, power and minimum detectable difference when compar-
ing continuous outcomes

Description

Sample size, power and minimum detectable difference when comparing continuous outcomes.

Usage

epi.sscompc(treat, control, n, sigma, power, r = 1, design = 1,
sided.test = 2, conf.level = 0.95)

Arguments
treat the expected value for the treatment group (see below).
control the expected value for the control group (see below).
n scalar, defining the total number of subjects in the study (i.e. the number in the

treatment and control group).
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sigma

power

r

design

sided. test

conf.level

Details
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the expected standard deviation of the variable of interest for both treatment and
control groups.

scalar, the required study power.

scalar, the number in the treatment group divided by the number in the control
group.

scalar, the estimated design effect.

use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the outcome in the exposed (treatment) group is greater than or less than
the outcome in the unexposed (control) group. Use a one-sided test to evaluate
whether or not the outcome in the exposed (treatment) group is greater than the
outcome in the unexposed (control) group.

scalar, defining the level of confidence in the computed result.

The methodology in this function follows the approach described in Chapter 8 of Woodward (2005),

pp. 381 - 426.

Value

A list containing the following:

n.total

n.treat

n.control

power

delta

Note

the total number of subjects required for the specified level of confidence and
power, respecting the requirement for r times as many individuals in the treat-
ment group compared with the control group.

the total number of subjects in the treatment group for the specified level of con-
fidence and power, respecting the requirement for r times as many individuals
in the treatment group compared with the control group.

the total number of subjects in the control group for the specified level of confi-
dence and power, respecting the requirement for r times as many individuals in
the treatment group compared with the control group.

the power of the study given the number of study subjects, the expected effect
size and level of confidence.

the minimum detectable difference given the specified level of confidence and
power.

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

A detailed description of sample size calculations for case-control studies (with numerous worked
examples, many of them reproduced below) is provided by Woodward (2005), pages 381 to 426.

See the documentation for epi.cohortsize which provides an example using the design facility
implemented in this function.
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References

Kelsey JL, Thompson WD, Evans AS (1986). Methods in Observational Epidemiology. Oxford
University Press, London, pp. 254 - 284.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.

Examples

## EXAMPLE 1 (from Woodward 2005 p. 399):

## Supposed we wish to test, at the 5% level of significance, the hypothesis
## that cholesterol means in a population are equal in two study years against
## the one-sided alternative that the mean is higher in the second of the

## two years. Suppose that equal sized samples will be taken in each year,

## but that these will not necessarily be from the same individuals (i.e. the
## two samples are drawn independently). Our test is to have a power of ©.95
## at detecting a difference of 0.5 mmol/L. The standard deviation of serum
## cholesterol in humans is assumed to be 1.4 mmol/L.

epi.sscompc(treat = 5, control = 4.5, n = NA, sigma = 1.4, power = 0.95,
r =1, design = 1, sided.test = 1, conf.level = 0.95)

## To satisfy the study requirements 340 individuals need to be tested: 170 in
## the first year and 170 in the second year.

## EXAMPLE 2 (from Woodward 2005 pp. 399 - 400):

## Women taking oral contraceptives sometimes experience anaemia due to

## impaired iron absorption. A study is planned to compare the use of iron

## tablets against a course of placebos. Oral contraceptive users are

## randomly allocated to one of the two treatment groups and mean serum

## iron concentration compared after 6 months. Data from previous studies

## indicates that the standard deviation of the increase in iron

## concentration will be around 4 micrograms% over a 6-month period.

## The average increase in serum iron concentration without supplements is

## also thought to be 4 micrograms%. The investigators wish to be 90% sure

## of detecting when the supplement doubles the serum iron concentration using
## a two-sided 5% significance test. It is decided to allocate 4 times as many
## women to the treatment group so as to obtain a better idea of its effect.
## How many women should be enrolled in this study?

epi.sscompc(treat = 8, control = 4, n = NA, sigma = 4, power = 0.90,
r = 4, design = 1, sided.test = 2, conf.level = 0.95)

## The estimated sample size is 70. We allocate 70/5 = 14 women to the
## placebo group and four times as many (56) to the iron treatment group.

epi.sscomps Sample size, power and minimum detectable hazard when comparing
time to event
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Description
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Sample size, power and minimum detectable hazard when comparing time to event.

Usage

epi.sscomps(treat, control, n, power, r = 1, design = 1,
sided.test = 2, conf.level = 0.95)

Arguments

treat
control

n

power

design

sided. test

conf.level

Details

the expected value for the treatment group (see below).
the expected value for the control group (see below).

scalar, defining the total number of subjects in the study (i.e. the number in the
treatment and control group).

scalar, the required study power.

scalar, the number in the treatment group divided by the number in the control
group. This argument is ignored when method = "proportions”.

scalar, the estimated design effect.

use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the outcome hazard in the exposed (treatment) group is greater than or less
than the outcome hazard in the unexposed (control) group. Use a one-sided test
to evaluate whether or not the outcome hazard in the exposed (treatment) group
is greater than the outcome hazard in the unexposed (control) group.

scalar, defining the level of confidence in the computed result.

The argument treat is the proportion of treated subjects that will have not experienced the event
of interest at the end of the study period and control is the proportion of control subjects that
will have not experienced the event of interest at the end of the study period. See Therneau and
Grambsch pp 61 - 65.

Value

A list containing one or more of the following:

n.crude

n.total

hazard

power

the crude estimated total number of events required for the specified level of
confidence and power.

the total estimated number of events required for the specified level of confi-
dence and power, respecting the requirement for r times as many events in the
treatment group compared with the control group.

the minimum detectable hazard ratio >1 and the maximum detectable hazard
ratio <1.

the power of the study given the number of events, the expected hazard ratio and
level of confidence.
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Note

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

References

Therneau TM, Grambsch PM (2000). Modelling Survival Data - Extending the Cox Model. Springer,
London, pp. 61 - 65.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.

Examples

## EXAMPLE 1 (from Therneau and Grambsch 2000 p. 63):

## The 5-year survival probability of patients receiving a standard treatment
## is 0.30 and we anticipate that a new treatment will increase it to 0.45.
## Assume that a study will use a two-sided test at the .05 level with 0.90
## power to detect this difference. How many events are required?

epi.sscomps(treat = .45, control = 0.30, n = NA, power = 0.90,
r =1, design = 1, sided.test = 2, conf.level = 0.95)

## A total of 250 events are required. Assuming one event per individual,
## assign 125 individuals to the treatment group and 125 to the control group.

## EXAMPLE 2 (from Therneau and Grambsch 2000 p. 63):

## What is the minimum detectable hazard in a study involving 500 subjects where
## the treatment to control ratio is 1:1, assuming a power of 0.90 and a

## 2-sided test at the 0.05 level?

epi.sscomps(treat = NA, control = NA, n = 500, power = 0.90,
r =1, design = 1, sided.test = 2, conf.level = 0.95)

## Assuming treatment increases time to event (compared with controls), the
## minimum detectable hazard of a study involving 500 subjects (250 in the
## treatment group and 250 in the controls) is 1.33.

epi.ssdetect Sample size to detect an event

Description

Sample size to detect at least one event (e.g. a disease-positive individual) in a population. The
method adjusts sample size estimates on the basis of test sensitivity and can account for series and
parallel test interpretation.
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Usage

epi.ssdetect(N,
conf.level =

Arguments

N

prev

se

sp
interpretation

covar

conf.level

Value
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prev, se, sp, interpretation = "series"”, covar = c(0,0),
9.95)

a vector of length one or two defining the size of the population. The first ele-
ment of the vector defines the number of clusters, the second element defining
the mean number of sampling units per cluster.

a vector of length one or two defining the prevalence of disease in the popula-
tion. The first element of the vector defines the between-cluster prevalence, the
second element defines the within-cluster prevalence.

a vector of length one or two defining the sensitivity of the test(s) used.
a vector of length one or two defining the specificity of the test(s) used.

a character string indicating how test results should be interpreted. Options are
series or parallel.

a vector of length two defining the covariance between test results for disease
positive and disease negative groups. The first element of the vector is the co-
variance between test results for disease positive subjects. The second element
of the vector is the covariance between test results for disease negative subjects.
Use covar = c(0,0) (the default) if these values are not known.

scalar, defining the level of confidence in the computed result.

A list containing the following:

performance

sample.size

Note

The sensitivity and specificity of the testing strategy.

The number of clusters, units, and total number of units to be sampled.

Sample size calculations are carried out using the hypergeometric distribution, which takes into
account the size of the population being sampled (i.e. there’s no need to apply a finite correction

factor).

Define se1 and se2 as the sensitivity for the first and second test, sp1 and sp2 as the specificity
for the first and second test, p111 as the proportion of disease-positive subjects with a positive test
result to both tests and p@@@ as the proportion of disease-negative subjects with a negative test result
to both tests. The covariance between test results for the disease-positive group is p111 -sel * se2.
The covariance between test results for the disease-negative group is p0@0 -sp1 * sp2.

References

Cannon RM (2001). Sense and sensitivity — designing surveys based on an imperfect test. Preven-
tive Veterinary Medicine 49: 141 - 163.

Dohoo I, Martin W, Stryhn H (2009). Veterinary Epidemiologic Research. AVC Inc, Charlottetown,
Prince Edward Island, Canada, pp. 54.
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Examples

## EXAMPLE 1:

## We would like to confirm the absence of disease in a single 1000-cow
## dairy herd. We expect the prevalence of disease in the herd to be 5%.
## We intend to use a single test with a sensitivity of 0.90 and a

## specificity of 1.00. How many samples should we take to be 95% certain
## that, if all tests are negative, the disease is not present?

epi.ssdetect(N = 1000, prev = 0.05, se = 0.90, sp = 1.00, interpretation =
"series", covar = c(0,0), conf.level = 0.95)

## We need to sample 65 cows.

## EXAMPLE 2:

## We would like to confirm the absence of disease in a study area. If the

## disease is present we expect the between-herd prevalence to be 8% and the
## within-herd prevalence to be 5%. We intend to use two tests: the first has
## a sensitivity and specificity of ©.90 and 0.80, respectively. The second

## has a sensitivity and specificity of ©.95 and 0.85, respectively. The two
## tests will be interpreted in parallel. How many herds and cows within herds
## should we sample to be 95% certain that the disease is not present in the
## study area if all tests are negative? There area is comprised of

## approximately 5000 herds and the average number of cows per herd is 100.

epi.ssdetect(N = c(5000, 100), prev = c(0.08, 0.05), se = c(0.90, 0.95),
sp = c(0.80, 0.85), interpretation = "parallel”, covar = c(0,0),
conf.level = 0.95)

## We need to sample 46 cows from 40 herds (a total of 1840 samples).
## The sensitivity of this testing regime is 99%. The specificity of this
## testing regime is 68%.

## EXAMPLE 3:

## You want to document the absence of Mycoplasma from a 200-sow pig herd.
## Based on your experience and the literature, a minimum of 20% of sows

## would have seroconverted if Mycoplasma were present in the herd. How many
## sows do you need to sample?

epi.ssdetect(N = 200, prev = 0.20, se = 1.00, sp = 1.00, conf.level = 0.95)
## If you test 15 sows and all test negative you can state that you are 95%

## confident that the prevalence rate of Mycoplasma in the herd is less than
## 20%.

epi.ssequb Sample size for a parallel equivalence trial, binary outcome

Description

Sample size for a parallel equivalence trial, binary outcome.
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Usage

epi.ssequb(treat, control, delta, n, r = 1, power, alpha)

Arguments
treat the expected proportion of successes in the treatment group.
control the expected proportion of successes in the control group.
delta the equivalence limit, expressed as the change in the outcome of interest that
represents a clinically meaningful diffference.
n scalar, the total number of study subjects in the trial.
r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: IPs -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
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on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

To summarise (adapted from Machin et al. 2009, page 105):
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Test for Null hypothesis Alt hypothesis Type I Type 11
Superiority HO: Pn-Ps<=delta HIl: Pn-Ps>delta 2 sided, 5.0% 1 sided, 10 or 20%
Equivalence HO: I[Pn - Psl >=delta H1: IPn-Psl<delta 1 sided, 5.0% 1 sided, 20%
Non-inferiority HO: Pn - Ps >=delta  HI: Pn - Ps < delta 1 sided, 2.5% 1 sided, 10 or 20%

Superiority trial: H1 is that the new treatment is better than the standard treatment.
Equivalence trial: H1 is that the new treatment is not too different from the standard treatment.
Non-inferiority trial: H1 is that the new treatment is not much worse than the standard treatment.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Chow S, Shao J, Wang H (2008). Sample Size Calculations in Clinical Research. Chapman &
Hall/CRC Biostatistics Series, pp. 91.

Ewald B (2013). Making sense of equivalence and non-inferiority trials. Australian Prescriber 36:
170 - 173.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921
- 1986.

Julious SA (2009). Estimating Samples Sizes in Clinical Trials. CRC, New York.

Machin D, Campbell MJ, Tan SB, Tan SH (2009). Sample Size Tables for Clinical Studies. Wiley
Blackwell, New York.

Examples

## EXAMPLE 1 (from Machin, Campbell, Tan and Tan 2009 p. 113):

## Bennett, Dismukes, Duma et al. (1979) designed a clinical trial to test

## whether combination chemotherapy for a shorter period would be at least
## as good as conventional therapy for patients with cryptococcal meningitis.
## They recruited 39 patients to each treatment arm and wished to conclude

## that a difference of less than 20% in response rate between the treatments
## would indicate equivalence. Assuming a one-sided test size of 10%, a

## power of 80% and an overall response rate of 50%, what would be a

## realistic sample size if the trial were to be repeated?

epi.ssequb(treat = 0.50, control = 0.50, delta = 0.20, n = NA, r = 1,
power = 0.80, alpha = 0.10)

## A total of 166 subjects need to be enrolled in the trial, 83 in the
## treatment group and 83 in the control group.
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epi.ssequc Sample size for a parallel equivalence trial, continuous outcome

Description

Sample size for a parallel equivalence trial, continuous outcome.

Usage

epi.ssequc(treat, control, sd, delta, n, r = 1, power, alpha)

Arguments
treat the expected mean of the outcome of interest in the treatment group.
control the expected mean of the outcome of interest in the control group.
sd the expected population standard deviation of the outcome of interest.
delta the equivalence limit, expressed as the change in the outcome of interest that
represents a clinically meaningful diffference.
n scalar, the total number of study subjects in the trial.
r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: [Ps -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
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maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

For a summary of the key features of superiority, equivalence and non-inferiority trials, refer to the
documentation for epi. ssequb.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, Leonard J, Fields BT, Brad-
shaw M, Haywood H, McGee Z, Cate TR, Cobbs CG, Warner JF and Alling DW (1979). A compar-
ison of amphotericin B alone and combined flucytosine in the treatment of cryptococcal meningitis.
New England Journal of Medicine 301: 126 - 131.

Chow S, Shao J, Wang H (2008). Sample Size Calculations in Clinical Research. Chapman &
Hall/CRC Biostatistics Series, pp. 91.

Ewald B (2013). Making sense of equivalence and non-inferiority trials. Australian Prescriber 36:
170 - 173.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921
- 1986.

Julious SA (2009). Estimating Samples Sizes in Clinical Trials. CRC, New York.

Machin D, Campbell MJ, Tan SB, Tan SH (2009). Sample Size Tables for Clinical Studies. Wiley
Blackwell, New York.

Examples

## EXAMPLE 1 (from Machin, Campbell, Tan and Tan 2009 p. 113):

## It is anticipated that patients on a particular drug have a mean diastolic
## blood pressure of 96 mmHg, as against 94 mmHg on an alternative. It is also
## anticipated that the standard deviation of diastolic BP is approximately
## 8 mmHg. If one wishes to confirm that the difference is likely to be less
## than 5 mmHg, that is, one wishes to show equivalence, how many patients

## are need to be enrolled in the trial? Assume 80% power and

## 95% significance.

epi.ssequc(treat = 94, control = 96, sd = 8, delta = 5, n = NA,
r =1, power = 0.80, alpha = 0.05)
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## A total of 244 subjects need to be enrolled in the trial, 122 in the
## treatment group and 122 in the control group.

## EXAMPLE 2 (from Chow S, Shao J, Wang H 2008, p. 64):

## A pharmaceutical company is interested in conducting a clinical trial

## to compare two cholesterol lowering agents for treatment of patients with
## congestive heart disease using a parallel design. The primary efficacy
## parameter is the LDL. In what follows, we will consider the situation

## where the intended trial is for testing equivalence of mean responses

## in LDL. Assume that 80% power is required at a 5% level of significance.

## In this example, we assume a 5 unit (i.e. delta = 5) change of LDL is

## considered of clinically meaningful difference. Assume the standard

## of LDL is 10 units and the LDL concentration in the treatment group is 20
## units and the LDL concentration in the control group is 21 units.

epi.ssequc(treat = 20, control = 21, sd = 10, delta = 5, n = NA,
r =1, power = 0.80, alpha = 0.05)

## A total of 216 subjects need to be enrolled in the trial, 108 in the
## treatment group and 108 in the control group.

## EXAMPLE 2 (cont.):
## Suppose only 150 subjects were enrolled in the trial, 75 in the treatment

## group and 75 in the control group. What is the estimated study power?

epi.ssequc(treat = 0.20, control = 0.21, sd = 0.10, delta = 0.05, n = 150,
r =1, power = NA, alpha = 0.05)

## With only 150 subjects the estimated study power is 0.58.

epi.ssninfb Sample size for a non-inferiority trial, binary outcome

Description

Sample size for a non-inferiority trial, binary outcome.

Usage

epi.ssninfb(treat, control, delta, n, r = 1, power, alpha)

Arguments
treat the expected proportion of successes in the treatment group.
control the expected proportion of successes in the control group.
delta the equivalence limit, expressed as the change in the outcome of interest that

represents a clinically meaningful diffference.

n scalar, the total number of study subjects in the trial.
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r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: [Ps -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

For a summary of the key features of superiority, equivalence and non-inferiority trials, refer to the
documentation for epi . ssequb.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Blackwelder WC (1982). Proving the null hypothesis in clinical trials. Controlled Clinical Trials 3:
345 - 353.
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Examples

## EXAMPLE 1 (from Chow S, Shao J, Wang H 2008, p. 90):

## suppose a pharmaceutical company would like to conduct a clinical trial to
## compare the efficacy of two antimicrobial agents when administered orally
## to patients with skin infections.

## Assume the true mean cure rate of the treatment is 0.85 and the true mean
## cure rate of the control is 0.65. We consider a difference of less than 0.10
## in cure rate to be of no clinical importance (i.e. delta = -0.10).

## Assuming a one-sided test size of 5% and a power of 80% how many
## subjects should be included in the trial?

epi.ssninfb(treat = .85, control = 0.65, delta = -0.10, n = NA, r = 1,
power = 0.80, alpha = 0.05)

## A total of 50 subjects need to be enrolled in the trial, 25 in the
## treatment group and 25 in the control group.

## EXAMPLE 1 (cont.):
## Suppose only 40 subjects were enrolled in the trial, 20 in the treatment

## group and 20 in the control group. What is the estimated study power?

epi.ssninfb(treat = .85, control = 0.65, delta = -0.10, n = 40, r = 1,
power = NA, alpha = 0.05)

## With only 40 subjects the estimated study power is 0.73.

epi.ssninfc Sample size for a non-inferiority trial, continuous outcome

Description

Sample size for a non-inferiority trial, continuous outcome.
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Usage

epi.ssninfc(treat, control, sd, delta, n, r = 1, power, alpha)

Arguments
treat the expected mean of the outcome of interest in the treatment group.
control the expected mean of the outcome of interest in the control group.
sd the expected population standard deviation of the outcome of interest.
delta the equivalence limit, expressed as the change in the outcome of interest that
represents a clinically meaningful diffference.
n scalar, the total number of study subjects in the trial.
r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: IPs -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
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on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

For a summary of the key features of superiority, equivalence and non-inferiority trials, refer to the
documentation for epi. ssequb.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Blackwelder WC (1982). Proving the null hypothesis in clinical trials. Controlled Clinical Trials 3:
345 - 353.

Ewald B (2013). Making sense of equivalence and non-inferiority trials. Australian Prescriber 36:
170 - 173.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921
- 1986.

Julious SA (2009). Estimating Samples Sizes in Clinical Trials. CRC, New York.

Machin D, Campbell MJ, Tan SB, Tan SH (2009). Sample Size Tables for Clinical Studies. Wiley
Blackwell, New York.

Scott IA (2009). Non-inferiority trials: determining whether alternative treatments are good enough.
Medical Journal of Australia 190: 326 - 330.

Zhong B (2009). How to calculate sample size in randomized controlled trial? Journal of Thoracic
Disease 1: 51 - 54.

Examples

## EXAMPLE 1 (from Chow S, Shao J, Wang H 2008, p. 61 - 62):

## A pharmaceutical company is interested in conducting a clinical trial

## to compare two cholesterol lowering agents for treatment of patients with
## congestive heart disease using a parallel design. The primary efficacy

## parameter is the LDL. In what follows, we will consider the situation

## where the intended trial is for testing non-inferiority of mean responses
## in LDL. Assume that 80% power is required at a 5% level of significance.

## In this example, we assume a 5% (i.e. delta = ©.05) change in LDL is
## a clinically meaningful difference. Assume the standard deviation of
## LDL is 0.10 and the LDL concentration in the treatment group is 0.20
## units and the LDL concentration in the control group is ©.20 units.

0.20, control = 0.20, sd = 0.10, delta = 0.05, n = NA,

epi.ssninfc(treat =
= 0.80, alpha = 0.05)

r =1, power

## A total of 100 subjects need to be enrolled in the trial, 50 in the
## treatment group and 50 in the control group.
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epi.sssimpleestb Sample size to estimate a binary outcome using simple random sam-
pling

Description

Sample size to estimate a binary outcome using simple random sampling.

Usage

epi.sssimpleestb(N = 1E+06, Py, epsilon.r, conf.level = 0.95)

Arguments
N scalar integer, the total number of individual listing units in the population.
Py scalar number, an estimate of the population proportion to be estimated.
epsilon.r scalar number, the maximum relative difference between the estimate and the
unknown population value.
conf.level scalar number, the level of confidence in the computed result.
Value

Returns an integer defining the required sample size.

Note

epsilon.r defines the maximum relative difference between our estimate and the unknown pop-
ulation value. The sample estimate should not differ in absolute value from the true unknown
population parameter d by more than epsilon.r x d.

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 70 - 75.

Scheaffer RL, Mendenhall W, Lyman Ott R (1996). Elementary Survey Sampling. Duxbury Press,
New York, pp. 95.

Otte J, Gumm I (1997). Intra-cluster correlation coefficients of 20 infections calculated from the
results of cluster-sample surveys. Preventive Veterinary Medicine 31: 147 - 150.

Examples

## EXAMPLE 1:

## We want to estimate the seroprevalence of Brucella abortus in a population
## of cattle. An estimate of the unknown prevalence of B. abortus in this

## population is ©.15. We would like to be 95% certain that our estimate is
## within 20% of the true proportion of the population that is seropositive
## to B. abortus. Calculate the required sample size.
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n.crude <- epi.sssimpleestb(N = 1E+06, Py = @.15, epsilon.r = 0.20,

conf.level = 0.95)

n.crude

#it

#it
#it
#it
#it
#it
#it

#it
#it

#it

#it
#it

A total of 544 cattle need to be sampled to meet the survey requirements.

EXAMPLE 1 (continued):

Being seropositive to brucellosis is likely to cluster within herds.

Otte and Gumm (1997) cite the intraclass correlation coefficient (rho) of
Brucella abortus to be in the order of ©.09. Adjust the sample size
estimate to account for clustering at the herd level. Assume that, on
average, 20 animals will be sampled per herd:

Let D equal the design effect and nbar equal the average number of
individuals per cluster:

rho = (D - 1) / (nbar - 1)

Solving for D:
D <- rho * (nbar - 1) + 1

rho <- 0.09; nbar <- 20
D <- rho * (nbar - 1) + 1

n.adj <- ceiling(n.crude * D)

n.adj

## After accounting for the presence of clustering at the herd level we
## estimate that a total of 1475 cattle need to be sampled to meet

## the requirements of the survey.

epi.sssimpleestc Sample size to estimate a continuous outcome using simple random

sampling

Description

Sample size to estimate a continuous outcome using simple random sampling.

Usage

epi.sssimpleestc(N = 1E+06, xbar, sigma, epsilon.r, conf.level = 0.95)

Arguments

N

scalar integer, representing the total number of individual listing units in the
population.

xbar scalar number, the expected mean of the continuous variable to be estimated.
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sigma scalar number, the expected standard deviation of the continuous variable to be
estimated.
epsilon.r scalar number, the maximum relative difference between the estimate and the

unknown population value.

conf.level scalar number, the level of confidence in the computed result.

Value

Returns an integer defining the required sample size.

Note

epsilon.r defines the maximum relative difference between our estimate and the unknown pop-
ulation value. The sample estimate should not differ in absolute value from the true unknown
population parameter d by more than epsilon.r * d.

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 70 - 75.

Scheaffer RL, Mendenhall W, Lyman Ott R (1996). Elementary Survey Sampling. Duxbury Press,
New York, pp. 95.

Otte J, Gumm I (1997). Intra-cluster correlation coefficients of 20 infections calculated from the
results of cluster-sample surveys. Preventive Veterinary Medicine 31: 147 - 150.

Examples

## EXAMPLE 1:

## A city contains 20 neighbourhood health clinics and it is desired to take a
## sample of clinics to estimate the total number of persons from all these

## clinics who have been given, during the past 12 month period, prescriptions
## for a recently approved antidepressant. If we assume that the average number
## of people seen at these clinics is 1500 per year with the standard deviation
## equal to 300, and that approximately 5% of patients (regardless of clinic)

## are given this drug, how many clinics need to be sampled to yield an estimate
## that is within 20% of the true population value?

pmean <- 1500 * 0.05; psigma <- (300 * 0.05)
epi.sssimpleestc(N = 20, xbar = pmean, sigma = psigma, epsilon.r = 0.20,
conf.level = 0.95)

## Three clinics need to be sampled to meet the requirements of the survey.

## EXAMPLE 2:

## We want to estimate the mean bodyweight of deer on a farm. There are 278
## animals present. We anticipate the mean body weight to be around 200 kg
## and the standard deviation of body weight to be 30 kg. We would like to
## be 95% certain that our estimate is within 10 kg of the true mean. How
## many deer should be sampled?
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epi.sssimpleestc(N = 278, xbar = 200, sigma = 30, epsilon.r = 10 / 200,
conf.level = 0.95)

## A total of 31 deer need to be sampled to meet the requirements of the survey.

epi.ssstrataestb Sample size to estimate a binary outcome using stratified random sam-
pling

Description

Sample size to estimate a binary outcome using stratified random sampling.

Usage

epi.ssstrataestb(strata.n, strata.Py, epsilon.r, conf.level = 0.95)

Arguments
strata.n vector of integers, the number of individual listing units in each strata.
strata.Py vector of numbers, the expected proportion of individual listing units with the
outcome of interest for each strata.
epsilon.r scalar number, the maximum relative difference between the estimate and the
unknown population value.
conf.level scalar number, the level of confidence in the computed result.
Value

A list containing the following:

strata.sample the estimated sample size for each strata.
strata.total the estimated total size.

strata.stats mean the mean across all strata, sigma.bx the among-strata variance, sigma.wx
the within-strata variance, and sigma. x the among-strata variance plus the within-
strata variance, rel.var the within-strata variance divided by the square of the
mean, and gamma the ratio of among-strata variance to within-strata variance.

Author(s)

Mark Stevenson (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,
Australia).

Javier Sanchez (Atlantic Veterinary College, University of Prince Edward Island, Charlottetown
Prince Edward Island, C1A 4P3, Canada).
References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 175 - 179.
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Examples
## EXAMPLE 1:
## Dairies are to be sampled to determine the proportion of herd managers
## using foot bathes. Herds are stratified according to size (small, medium,
## and large). The number of herds in each strata are 1500, 2500, and 4000
## (respectively). A review of the literature indicates that use of foot bathes
## on farms is in the order of ©.50, with the probability of usage increasing
## as herds get larger. How many dairies should be sampled?

strata.n <- c(1500, 2500, 4000)
strata.Py <- c(0.50, 0.60, 0.70)
epi.ssstrataestb(strata.n, strata.Py, epsilon.r = 0.20, conf.level = 0.95)

#it

A total of 54 herds should be sampled: 10 small, 17 medium, and 27 large.

epi.ssstrataestc Sample size to estimate a continuous outcome using a stratified ran-

dom sampling design

Description

Sample size to estimate a continuous outcome using a stratified random sampling design.

Usage

epi.ssstrataestc(strata.n, strata.xbar, strata.sigma, epsilon.r,

conf.level = 0.95)

Arguments
strata.n vector of integers, defining the number of individual listing units in each strata.
strata.xbar vector of numbers, defining the expected means of the continuous variable to be

estimated for each strata.

strata.sigma vector of numbers, defining the expected standard deviation of the continous

variable to be estimated for each strata.

epsilon.r scalar number, the maximum relative difference between the estimate and the
unknown population value.
conf.level scalar number, the level of confidence in the computed result.
Value

A list containing the following:

strata.sample the estimated sample size for each strata.

strata.total the estimated total size.



120 epi.sssupb

strata.stats mean the mean across all strata, sigma.bx the among-strata variance, sigma.wx
the within-strata variance, and sigma. x the among-strata variance plus the within-
strata variance, rel.var the within-strata variance divided by the square of the
mean, and gamma the ratio of among-strata variance to within-strata variance.

Author(s)

Mark Stevenson (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,
Australia).

Javier Sanchez (Atlantic Veterinary College, University of Prince Edward Island, Charlottetown
Prince Edward Island, C1A 4P3, Canada).

References

Levy PS, Lemeshow S (1999). Sampling of Populations Methods and Applications. Wiley Series
in Probability and Statistics, London, pp. 175 - 179.

Examples

## EXAMPLE 1:

## Hospital episodes (Levy and Lemeshow 1999, page 176 -- 178)

## We plan to take a sample of the members of a health maintenance

## organisation (HMO) for purposes of estimating the average number

## of hospital episodes per person per year. The sample will be selected
## from membership lists according to age (under 45 years, 45 -- 64 years,
## 65 years and over). The number of members in each strata are 600, 500,
## and 400 (respectively). Previous data estimates the mean number of

## hospital episodes per year for each strata as 0.164, 0.166, and 0.236
## (respectively). The variance of these estimates are 0.245, 0.296, and
## 0.436 (respectively). How many from each strata should be sampled to be
## 95% that the sample estimate of hospital episodes is within 20% of the
## true value?

strata.n <- c(600, 500, 400)

strata.xbar <- c(0.164, 0.166, 0.236)

strata.sigma <- sqrt(c(@.245, 0.296, 0.436))

epi.ssstrataestc(strata.n, strata.xbar, strata.sigma, epsilon.r = 0.20,
conf.level = 0.95)

## The number allocated to the under 45 years, 45 -- 64 years, and 65 years
## and over stratums should be 223, 186, and 149 (a total of 558). These

## results differ from the worked example provided in Levy and Lemeshow where
## certainty is set to approximately 99%.

epi.sssupb Sample size for a parallel superiority trial, binary outcome
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Description

Sample size for a parallel superiority trial, binary outcome.

Usage

epi.sssupb(treat, control, delta, n, r = 1, power, alpha)

Arguments
treat the expected proportion of successes in the treatment group.
control the expected proportion of successes in the control group.
delta the equivalence limit, expressed as the change in the outcome of interest that
represents a clinically meaningful diffference.
n scalar, the total number of study subjects in the trial.
r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: IPs -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
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standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

For a summary of the key features of superiority, equivalence and non-inferiority trials, refer to the
documentation for epi. ssequb.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Chow S, Shao J, Wang H (2008). Sample Size Calculations in Clinical Research. Chapman &
Hall/CRC Biostatistics Series, page 90.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921
- 1986.

Pocock SJ (1983). Clinical Trials: A Practical Approach. Wiley, New York.

Examples

## EXAMPLE 1 (from Chow S, Shao J, Wang H 2008, p. 91):

## Suppose that a pharmaceutical company is interested in conducting a

## clinical trial to compare the efficacy of two antimicrobial agents

## when administered orally once daily in the treatment of patients

## with skin infections. In what follows, we consider the situation

## where the intended trial is for testing superiority of the

## test drug over the active control drug. For this purpose, the following
## assumptions are made. First, sample size calculation will be performed
## for achieving 80% power at the 5% level of significance.

## Assume the true mean cure rates of the treatment agents and the active
## control are 85% and 65%, respectively. Assume the superiority
## margin is 5%.

epi.sssupb(treat = 0.85, control = 0.65, delta = 0.05, n = NA,
r =1, power = 0.80, alpha = 0.05)

## A total of 196 subjects need to be enrolled in the trial, 98 in the
## treatment group and 98 in the control group.

epi.sssupc Sample size for a parallel superiority trial, continuous outcome

Description

Sample size for a parallel superiority trial, continuous outcome.
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Usage

epi.sssupc(treat, control, sd, delta, n, r = 1, power, alpha)

Arguments
treat the expected mean of the outcome of interest in the treatment group.
control the expected mean of the outcome of interest in the control group.
sd the expected population standard deviation of the outcome of interest.
delta the equivalence limit, expressed as the change in the outcome of interest that
represents a clinically meaningful diffference.
n scalar, the total number of study subjects in the trial.
r scalar, the number in the treatment group divided by the number in the control
group.
power scalar, the required study power.
alpha scalar, defining the desired alpha level.
Value

A list containing the following:

n.total the total number of study subjects required.
n.treat the required number of study subject in the treatment group.
n.control the required number of study subject in the control group.
power the specified or calculated study power.

Note

Consider a clinical trial comparing two groups, a standard treatment (s) and a new treatment (n). In
each group, a proportion of subjects respond to the treatment: Ps and Pn.

With a superiority trial we specify the maximum acceptable difference between Pn and Ps as delta.
The null hypothesis is HO: Pn - Ps <= delta and the alternative hypothesis is H1: Pn - Ps > delta.

An equivalence trial is used if want to prove that two treatments produce the same clinical outcomes.
With an equivalence trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: IPs - Pnl >= delta and the alternative hypothesis is H1: IPs -
Pnl < delta. In bioequivalence trials, a 90% confidence interval is often used. The value of the
maximum acceptable difference delta is chosen so that a patient will not detect any change in
effect when replacing the standard treatment with the new treatment.

With a non-inferiority trial, we specify the maximum acceptable difference between Pn and Ps as
delta. The null hypothesis is HO: Ps - Pn >= delta and the alternative hypothesis is H1: Ps - Pn
< delta. The aim of a non-inferiority trial is show that a new treatment is not (much) inferior to a
standard treatment. Showing non-inferiority can be of interest because: (a) it is often not ethically
possible to do a placebo-controlled trial, (b) the new treatment is not expected to be better than the
standard treatment on primary efficacy endpoints, but is safer, (c) the new treatment is not expected
to be better than the standard treatment on primary efficacy endpoints, but is cheaper to produce or
easier to administer, (d) the new treatment is not expected to be better than the standard treatment
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on primary efficacy endpoints in clinical trial, but compliance will be better outside the clinical trial
and hence efficacy better outside the trial.

For a summary of the key features of superiority, equivalence and non-inferiority trials, refer to the
documentation for epi . ssequb.

When calculating the power of a study, note that the variable n refers to the total study size (that is,
the number of subjects in the treatment group plus the number in the control group).

References

Chow S, Shao J, Wang H (2008). Sample Size Calculations in Clinical Research. Chapman &
Hall/CRC Biostatistics Series, page 61.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921
- 1986.

Pocock SJ (1983). Clinical Trials: A Practical Approach. Wiley, New York.

Examples

## EXAMPLE 1

## A pharmaceutical company is interested in conducting a clinical trial

## to compare two cholesterol lowering agents for treatment of patients with
## congestive heart disease (CHD) using a parallel design. The primary

## efficacy parameter is the concentration of high density lipoproteins.

## (HDL). We consider the situation where the intended trial is to test

## superiority of the test drug over the active control agent. Sample

## size calculations are to be calculated to achieve 80% power at the

## 5% level of significance.

## In this example, we assume that if treatment results in a 5 unit

## (i.e. delta = 5) increase in HDL it is declared to be superior to the
## active control. Assume the standard deviation of HDL is 10 units and
## the HDL concentration in the treatment group is 20 units and the

## HDL concentration in the control group is 20 units.

epi.sssupc(treat = 20, control = 20, sd = 10, delta = 5, n = NA,
r =1, power = 0.80, alpha = 0.05)

## A total of 100 subjects need to be enrolled in the trial, 50 in the
## treatment group and 50 in the control group.

epi.ssxsectn Sample size, power or minimum detectable prevalence ratio for a
cross-sectional study

Description

Sample size, power or minimum detectable prevalence ratio for a cross-sectional study.



epi.ssxsectn

Usage
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epi.ssxsectn(pexpl, pexp@, n, power, r = 1, design = 1, sided.test = 2,
conf.level = 0.95)

Arguments

pexpl
pexpd

n

power

design

sided. test

conf.level

Details

the expected prevalence of the outcome in the exposed group (0 to 1).
the expected prevalence of the outcome in the non-exposed group (0 to 1).

scalar, defining the total number of subjects in the study (i.e. the number in both
the exposed and unexposed groups).

scalar, the required study power.

scalar, the number in the exposed group divided by the number in the unexposed
group.

scalar, the estimated design effect.

use a one- or two-sided test? Use a two-sided test if you wish to evaluate whether
or not the outcome prevalence in the exposed group is greater than or less than
the outcome prevalence in the unexposed group. Use a one-sided test to evaluate
whether or not the outcome prevalence in the exposed group is greater than the
outcome incidence rate in the unexposed group.

scalar, defining the level of confidence in the computed result.

The methodology in this function follows the approach described in Chapter 8 of Woodward (2005),

pp. 381 - 426.

Value

A list containing the following:

n.total

n.expl

n.expo

power

pr

the total number of subjects required for the specified level of confidence and
power, respecting the requirement for r times as many individuals in the exposed
(treatment) group compared with the non-exposed (control) group.

the total number of subjects in the exposed (treatment) group for the specified
level of confidence and power, respecting the requirement for r times as many
individuals in the exposed (treatment) group compared with the non-exposed
(control) group.

the total number of subjects in the non-exposed (control) group for the specified
level of confidence and power, respecting the requirement for r times as many
individuals in the exposed (treatment) group compared with the non-exposed
(control) group.

the power of the study given the number of study subjects, the expected effect
size and level of confidence.

the prevalence of the outcome in the exposed group divided by the prevalence
of the outcome in the unexposed group (the prevalence ratio).
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Note

The power of a study is its ability to demonstrate the presence of an association, given that an
association actually exists.

Values need to be entered for pexp@, n, and power to return a value for pr. In this situation, the
lower value of pr represents the maximum detectable prevalence ratio that is less than 1; the upper
value of pr represents the minimum detectable prevalence ratio greater than 1.

References

Kelsey JL, Thompson WD, Evans AS (1986). Methods in Observational Epidemiology. Oxford
University Press, London, pp. 254 - 284.

Woodward M (2005). Epidemiology Study Design and Data Analysis. Chapman & Hall/CRC, New
York, pp. 381 - 426.

Examples

## EXAMPLE 1:

## You have been asked to design a cross-sectional study on the smoking

## prevalence among male and female university students. Your hypothesis is that
## the prevalence of smoking is higher among male students (around 50%)

## compared with female students (35%). How many students would need to be

## enrolled into a study if you would like to 80% certain of detecting a

## prevalence ratio of .50 / ©.35 = 1.4 using a 0.05 significance test?

## Assume that equal numbers of males and females will be recruited into the

## study.

epi.ssxsectn(pexpl = 0.50, pexpd = 0.35, n = NA, power = 0.80,
r =1, design = 1, sided.test = 2, conf.level = 0.95)

## A total of 340 students will be required to take part in the study: 170
## males and 170 females.

epi.tests Sensitivity, specificity and predictive value of a diagnostic test

Description

Computes true and apparent prevalence, sensitivity, specificity, positive and negative predictive
values, and positive and negative likelihood ratios from count data provided in a 2 by 2 table.

Usage

epi.tests(dat, conf.level = @.95)

## S3 method for class 'epi.tests'
print(x, ...)
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## S3 method for class 'epi.tests'

summary(object, ...)
Arguments
dat an object of class table containing the individual cell frequencies (see below).
conf.level magnitude of the returned confidence interval. Must be a single number between
Oand 1.
x, object an object of class epi. tests.
Ignored.
Details

Exact binomial confidence limits are calculated for test sensitivity, specificity, and positive and
negative predictive value (see Collett 1999 for details).

Confidence intervals for positive and negative likelihood ratios are based on formulae provided by
Simel et al. (1991).

Diagnostic accuracy is defined as the proportion of all tests that give a correct result. Diagnostic
odds ratio is defined as how much more likely will the test make a correct diagnosis than an incorrect
diagnosis in patients with the disease (Scott et al. 2008). The number needed to diagnose is defined
as the number of paitents that need to be tested to give one correct positive test. Youden’s index is
the difference between the true positive rate and the false positive rate. Youden’s index ranges from
-1 to +1 with values closer to 1 if both sensitivity and specificity are high (i.e. close to 1).

Value

An object of class epi.tests containing the following:

aprev apparent prevalence.

tprev true prevalence.

se test sensitivity.

sp test specificity.

diag.acc diagnostic accuracy.

diag.or diagnostic odds ratio.

nnd number needed to diagnose.
youden Youden’s index.

ppv positive predictive value.

npv negative predictive value.

plr likelihood ratio of a positive test.
nlr likelihood ratio of a negative test.
pro the proportion of subjects with the outcome ruled out.

pri the proportion of subjects with the outcome ruled in.
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pfp of all the subjects that are truly outcome negative, the proportion that are incor-
rectly classified as positive (the proportion of false positives).

pfn of all the subjects that are truly outcome positive, the proportion that are incor-
rectly classified as negative (the proportion of false negative).

Note
Disease + Disease - Total
Test + a b a+b
Test - [¢ d c+d
Total a+c b+d a+b+c+d
Author(s)

Mark Stevenson (Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,
Australia). Charles Reynard (School of Medical Sciences, The University of Manchester, United
Kingdom).
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Examples

## EXAMPLE 1:

## From Scott et al. 2008, Table 1. A new diagnostic test was trialled
## on 1586 patients. Of 744 patients that were disease positive, 670 were
## test positive. Of 842 patients that were disease negative, 640 were
## test negative. What is the likeliood ratio of a positive test?

## What is the number needed to diagnose?
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dat <- as.table(matrix(c(670,202,74,640), nrow = 2, byrow = TRUE))
colnames(dat) <- c("Dis+","Dis-")

rownames(dat) <- c("Test+","Test-")

rval <- epi.tests(dat, conf.level = 0.95)

print(rval); summary(rval)

## Test sensitivity is 0.90 (95% CI .88 -- 0.92). Test specificity is
## 0.76 (95% CI ©.73 -- 0.79). The likelihood ratio of a positive test
## is 3.75 (95% CI 3.32 to 4.24). The number needed to diagnose is

## 1.51 (95% CI 1.41 to 1.65). Around 15 persons need to be tested

## to return 10 positive tests.

## EXAMPLE 2:

## A biomarker assay has been developed to identify patients that are at
## high risk of experiencing myocardial infarction. The assay varies on
## a continuous scale, from @ to 1. Researchers believe that a biomarker
## assay result of greater than or equal to 0.60 renders a patient test
## positive, that is, at elevated risk of experiencing a heart attack
## over the next 12 months.

## Generate data consistent with the information provided above. Assume the
## prevalence of high risk subjects in your population is 0.35:
set.seed(1234)
dat <- data.frame(out = rbinom(n = 200, size = 1, prob = 0.35),

bm = runif(n = 200, min = @, max = 1))

## Classify study subjects as either test positive or test negative
## according to their biomarker test result:
dat$test <- ifelse(dat$bm >= 0.6, 1, @)

## Generate a two-by-two table:
tab <- table(dat$test, dat$out)[2:1,2:1]
rval <- epi.tests(tab, conf.level = 0.95)

# What proportion of subjects are ruled out as being at high risk of
## myocardial infarction?

rval$elements$pro

# Answer: 0.61 (95% CI ©.54 to 0.68).

# What proportion of subjects are ruled in as being at high risk of
## myocardial infarction?

rval$elements$pri

# Answer: 0.38 (95% CI 0.32 to 0.45).

# What is the proportion of false positive results?
rval$elements$pfp
# Answer: 0.37 (95% CI 0.29 to 0.45).

# What is the proportion of false negative results?
rval$elements$pfn
# Answer: 0.58 (95% CI @.44 to 0.70).
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