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BOOST Implements BOOST SNP-SNP interaction test

Description

For a pair of SNPs (X1, X2) and a binary phenotype Y , the BOOST function computes the ratio of
maximum log-likelihoods for two models: the full model and the main effects model. Mathemat-
ically speaking, the full model is a logistic regression model with both main effects and interac-
tion terms (X1, X2, X1 ×X2). The main effects model is a logistic regression model with only
(X1, X2) as covariates. Since we are interested in the synergies with a single variant, we do not
implement the initial sure screening stage in BOOST which filters out non-significant pairs.

Usage

BOOST(A, X, Y, ncores = 1)

Arguments

A target variant. The SNP A is encoded as 0, 1, 2.

X genotype matrix (excluding A). The only accepted SNP values are also 0, 1 and
2.

Y observed phenotype. Binary or two-level factor.

ncores number of threads (default 1)
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Value

The interaction statistic between each column in X and A

See Also

The webpage http://bioinformatics.ust.hk/BOOST.html provides additional details about the
BOOST software

Examples

X <- matrix((runif(500, min = 0, max = 1) < 0.5) +
(runif(500, min = 0, max = 1) < 0.5), nrow = 50)

A <- (runif(50, min = 0, max = 1) < 0.5) + (runif(50, min = 0, max = 1) < 0.5)
Y <- runif(50, min = 0, max = 1) < 1/(1+exp(-.5 * A * X[, 3] + .25 * A * X[, 7]))
BOOST(A, X, Y)

cond_prob Computes the propensity scores

Description

In this function, and for each sample, we compute both propensity scores P (A = 1|X) and P (A =
0|X). The application of the forward algorithm on the passed hmm allows us to estimate the joint
probability of (A, X), for all values of the target variant A = 0, 1, 2. The Bayes formula yields the
corresponding conditional probabilities. Depending on the binarization rule, we combine them to
obtain the propensity scores.

Usage

cond_prob(X, target_name, hmm, binary = FALSE, ncores = 1)

Arguments

X genotype matrix. Make sure to assign colnames(X) beforehand.

target_name target variant name

hmm fitted parameters of the fastPHASE hidden Markov model. The HMM model is
to be fitted with the fast_HMM function.

binary if TRUE, the target SNP values 0 and (1,2) are respectively mapped to 0 and
1. That describes a dominant mechanism. Otherwise, if FALSE, we encode a
recessive mechanism where the values 0 and 1 respectively map to (0,1) and 2.

ncores number of threads (default 1)

Value

Two-column propensity score matrix. The first column lists the propensity score P (A = 0|X),
while the second gives P (A = 1|X).

http://bioinformatics.ust.hk/BOOST.html
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See Also

fast_HMM

Examples

p <- 3 # Number of states
K <- 2 # Dimensionality of the latent space

p_init <- rep(1 / K, K)
p_trans <- array(runif((p - 1) * K * K), c(p - 1, K, K))
# Normalizing the transition probabilities
for (j in seq_len(p - 1)) {
p_trans[j, , ] <- p_trans[j, , ] / (matrix(rowSums(p_trans[j, , ]), ncol = 1) %*% rep(1, K))

}

p_emit <- array(stats::runif(p * 3 * K), c(p, 3, K))
# Normalizing the emission probabilities
for (j in seq_len(p)) {
p_emit[j, , ] <- p_emit[j, , ] / (matrix(rep(1, 3), ncol = 1) %*% colSums(p_emit[j, , ]))

}

hmm <- list(pInit = p_init, Q = p_trans, pEmit = p_emit)

n <- 2
X <- matrix((runif(n * p, min = 0, max = 1) < 0.4) +

(runif(n * p, min = 0, max = 1) < 0.4),
nrow = 2, dimnames = list(NULL, paste0("SNP_", seq_len(p))))

cond_prob(X, "SNP_2", hmm, ncores = 1, binary = TRUE)

epiGWAS Runs a selection of epistasis detection methods in a joint manner

Description

This function is a wrapper for the different epistasis detection methods implemented in this package.
If methods is "all", we run OWL and the four modified outcome approaches. Otherwise, we run a
selection of those methods. In this case, the methods argument is a character vector with its entries
being the names of the functions to call.

Usage

epiGWAS(A, X, Y, propensity, methods = "all", parallel = TRUE,
shift = 0.1, ...)
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Arguments

A target variant

X rest of the genotype

Y phenotype

propensity propensity scores

methods character vector for the epistasis detection methods to call

parallel whether to perform support estimation in a parallelized fashion for the modified
outcome family of methods

shift regularization parameter for shifted_outcome

... additional arguments to be passed to stabilityGLM or stabilityBIG

Value

list of numeric vectors. Each vector corresponds to the auc scores of a particular method in methods.

See Also

OWL, modified_outcome, shifted_outcome, normalized_outcome and robust_outcome

Examples

n <- 20
p <- 8
X <- matrix((runif(n * p) < 0.4) + (runif(n * p) < 0.4),

ncol = p, nrow = n) # SNP matrix
A <- rbinom(n, 1, 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
Y <- rnorm(n)
aucs <- epiGWAS(A, X, Y, propensity, lambda_min_ratio = 0.01, parallel = FALSE,

shift = 0.2, n_subsample = 1, short = TRUE, eps = 1e-4,
methods = c("normalized_outcome", "robust_outcome"))

names(aucs)

fast_HMM Fits a HMM to a genotype dataset by calling fastPHASE

Description

In this function, we fit the fastPHASE hidden Markov model (HMM) using the EM algorithm. The
fastPHASE executable is required to run fast_HMM. It can be downloaded from the following web
page: http://scheet.org/software.html

http://scheet.org/software.html
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Usage

fast_HMM(X, out_path = NULL, X_filename = NULL,
fp_path = "bin/fastPHASE", n_state = 12, n_iter = 25)

Arguments

X genotype matrix

out_path prefix for the fitted parameters filenames. If NULL, the files are saved in a tem-
porary directory.

X_filename filename for the fastPHASE-formatted genotype file. If NULL, the file is created
in a temporary directory.

fp_path path to the fastPHASE executable

n_state dimensionality of the latent space

n_iter number of iterations for the EM algorithm

Details

Because of the quadratic complexity of the forward algorithm in terms of the dimensionality of the
latent space n_state, we recommend setting this parameter to 12. Choosing a higher number does
not result in a dramatic increase of performance. An optimal choice for the number of iterations for
the EM algorithm is between 20 and 25.

Value

Fitted parameters of the fastPHASE HMM. They are grouped in a list with the following fields:
pInit for the initial marginal distribution, the three-dimensional array Q for the transition probabil-
ities and finally pEmit, another three-dimensional array for the emission probabilities

References

Scheet, P., & Stephens, M. (2006). A fast and flexible statistical model for large-scale population
genotype data: applications to inferring missing genotypes and haplotypic phase. American Journal
of Human Genetics, 78(4), 629–644.

Examples

p <- 50
n <- 100
genotypes <- matrix((runif(n * p, min = 0, max = 1) < 0.5) +

(runif(n * p, min = 0, max = 1) < 0.5),
nrow = n, dimnames = list(NULL, paste0("SNP_", seq_len(p))))

hmm <- fast_HMM(genotypes, fp_path = "/path/to/fastPHASE",
n_state = 4, n_iter = 10)
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forward Applies the forward algorithm to a genotype dataset

Description

Applies the forward_sample function to each row in X. If the ncores > 1, the function calling is per-
formed in a parallel fashion to reduce the running time. The parallelization backend is doParallel.
If the latter package is not installed, the function switches back to single-core mode.

Usage

forward(X, p_init, p_trans, p_emit, ncores = 1)

Arguments

X genotype matrix. Each row corresponds to a separate sample

p_init marginal distributions for the first hidden state

p_trans 3D dimensional array for the transition probabilities

p_emit 3D dimensional array for the emission probabilities

ncores number of threads (default 1)

Value

A vector of log probabilities

References

Rabiner, Lawrence R. ’A tutorial on hidden Markov models and selected applications in speech
recognition.’ Proceedings of the IEEE 77.2 (1989): 257-286.

Examples

p <- 3 # Number of states
K <- 2 # Dimensionality of the latent space

p_init <- rep(1 / K, K)
p_trans <- array(runif((p - 1) * K * K), c(p - 1, K, K))
# Normalizing the transition probabilities
for (j in seq_len(p - 1)) {
p_trans[j, , ] <- p_trans[j, , ] / (matrix(rowSums(p_trans[j, , ]), ncol = 1) %*% rep(1, K))

}

p_emit <- array(stats::runif(p * 3 * K), c(p, 3, K))
# Normalizing the emission probabilities
for (j in seq_len(p)) {
p_emit[j, , ] <- p_emit[j, , ] / (matrix(rep(1, 3), ncol = 1) %*% colSums(p_emit[j, , ]))

}
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n <- 2
X <- matrix((runif(n * p, min = 0, max = 1) < 0.4) +

(runif(n * p, min = 0, max = 1) < 0.4), nrow = 2)

# Computing the joint log-probabilities
log_prob <- forward(X, p_init, p_trans, p_emit)

forward_sample Applies the forward algorithm to a single observation

Description

The forward algorithm is applied in order to compute the joint probability for the observation x.
For hidden Markov models, the forward algorithm is an attractive option because of its linear com-
plexity in the number of hidden states. However, the complexity becomes quadratic in terms of the
dimensionality of the latent space.

Usage

forward_sample(x, p_init, p_trans, p_emit)

Arguments

x one-sample genotype

p_init marginal distributions for the first hidden state

p_trans 3D dimensional array for the transition probabilities

p_emit 3D dimensional array for the emission probabilities

Details

Our implementation of the forward algorithm makes use of the LogSumExp transformation for
increased numerical stability.

Value

Joint probability for the state x in a log form

References

Rabiner, Lawrence R. ’A tutorial on hidden Markov models and selected applications in speech
recognition.’ Proceedings of the IEEE 77.2 (1989): 257-286.
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Examples

p <- 3 # Number of states
K <- 2 # Dimensionality of the latent space

p_init <- rep(1 / K, K)
p_trans <- array(runif((p - 1) * K * K), c(p - 1, K, K))
# Normalizing the transition probabilities
for (j in seq_len(p - 1)) {
p_trans[j, , ] <- p_trans[j, , ] / (matrix(rowSums(p_trans[j, , ]), ncol = 1) %*% rep(1, K))

}

p_emit <- array(stats::runif(p * 3 * K), c(p, 3, K))
# Normalizing the emission probabilities
for (j in seq_len(p)) {
p_emit[j, , ] <- p_emit[j, , ] / (matrix(rep(1, 3), ncol = 1) %*% colSums(p_emit[j, , ]))

}

X <- (runif(p, min = 0, max = 1) < 0.5) + (runif(p, min = 0, max = 1) < 0.5)

# Computing the joint log-probabilities
log_prob <- forward_sample(X, p_init, p_trans, p_emit)

genotypes Simulated genotypes

Description

We simulated 300 unphased European genotypes. For that matter, we used the HAPGEN2 software
and the 1000 genome phase 3 reference data. The simulated regions are located on the 22 chromo-
some between the nucleotide positions 16061016 (rs9617528) and 19976834 (rs887201). Only the
markers of the Affymetrix 500K are included.

Usage

data(genotypes)

Format

An integer matrix with 300 rows and 450 columns. The SNP rsIDs and positions, in addition to
their reference and alternate alleles, are combined in colnames(X).

References

Su, Z., Marchini, J., & Donnelly, P. (2011). HAPGEN2: Simulation of multiple disease SNPs.
Bioinformatics, 27(16), 2304–2305.

Consortium, T. 1000 G. P., Auton, A., Abecasis, G. R., Altshuler (Co-Chair), D. M., Durbin (Co-
Chair), R. M., Abecasis, G. R., . . . Abecasis, G. R. (2015). A global reference for human genetic
variation. Nature, 526, 68.
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Examples

data(genotypes)

hmm <- fast_HMM(genotypes, fp_path = '/path/to/fastPHASE')

gen_model Samples effect sizes for the disease model

Description

The generated disease model is the list of effect size coefficients. The list comprises the following
fields: ’syner’, ’marg’ and ’inter’. ’syner’ is itself a list of numeric vectors with two entries named
’A0’ and ’A1’. ’A0’ refers to the vector of effect sizes when the target variant A = 0. Similarly,
’A1’ refers to the vector of effect sizes in the case A = 1. The two other entries ’marg’ and
’inter’ are, respectively, the marginal and epistatic effect sizes. The effect sizes are independent
and normally-distributed. The mean parameter is either a list of vectors or a vector of length 4. If
mean is a vector, then the effect sizes for each type of effects have the same mean. Otherwise, the
corresponding vector in the list specifies their individual means. The same logic applies to sd, the
standard deviation parameter. For coherence, the parameters mean and sd are encoded in the same
order as the output.

Usage

gen_model(nX, nY, nZ12, mean = rep(0, 4), sd = rep(1, 4))

Arguments

nX number of SNPs interacting with the target variant

nY number of SNPs with marginal effects

nZ12 number of SNP pairs with epistatic effects

mean vector or list of means

sd vector or list of standard deviations

Value

a list of vectors corresponding to the effect size coefficients.

Examples

effect_sizes <- gen_model(nX = 2, nY = 2, nZ12 = 1,
mean = rep(1, 4), sd = rep(1, 4))
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maf SNP minor allele frequencies

Description

maf contains the minor allele frequencies for the 450 SNPs in the genotypes dataset

Usage

data(maf)

Format

a numeric vector

Examples

data(maf)
all((maf <= 0.5) & (maf >= 0))

merge_cluster Merges a number of clusters around the target

Description

The purpose of the function merge_cluster is to define an enlarged window of SNPs which are in
linkage disequilibrium with the target. It replaces the indices of neighbor clusters with center, the
target cluster index. The neighborhood is defined according to the parameter k (see Arguments for
more details). Subsequently, we filter them out for the estimate of the propensity scores.

Usage

merge_cluster(clusters, center, k = 3)

Arguments

clusters vector of cluster memberships. Typically, the output of cutree

center the target variant cluster

k vector or integer. if k is given as a vector, it corresponds to the cluster indices
to be updated. Otherwise, if k is an integer, the cluster indices to be updated lie
between center-k and center+k.

Value

The updated cluster membership vector. The cluster indexing is also updated so that the maximum
cluster index is equal to the total number of clusters after merging.



12 modified_outcome

Examples

hc <- hclust(dist(USArrests))
clusters <- cutree(hc, k = 10)
merge_cluster(clusters, center=5, k=2)

modified_outcome Implements the modified outcome approach

Description

In the modified outcome approach, we estimate the risk differenceE [Y |A = 1, X]−E [Y |A = 0, X].
The risk difference measures the synergy between A and the set of covariates in X. For genome-wide
association studies, it can be interpreted as a pure epistatic term. However, for a single sample, we
only observe one of the two possibilities A=1 or A=0, making the direct estimate of the risk differ-
ence impossible. Through propensity scores, modified outcome was proposed as a solution to this
problem. The risk difference is recovered by constructing a modified outcome that combines A, Y
and the propensity score π(A|X): Y ×

[
A

π(A=1|X) −
1−A

1−π(A=1|X)

]
. The use of stabilityGLM or

stabilityBIG for the modified outcome regression allows us to recover the interacting components
within X.

Usage

modified_outcome(A, X, Y, propensity, parallel = FALSE, ...)

Arguments

A target variant

X rest of the genotype

Y phenotype

propensity propensity scores vector/matrix. If given as a matrix, the first column is π(A =
0|X) while the second is π(A = 1|X)

parallel whether to perform support estimation in a parallelized fashion with the stabilityBIG
function

... additional arguments to be passed to stabilityGLM or stabilityBIG

Value

a vector containing the area under the stability selection path for each variable in X

References

Rosenbaum, Paul R., and Donald B. Rubin. ’The central role of the propensity score in observa-
tional studies for causal effects.’ Biometrika 70.1 (1983): 41-55.
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Examples

n <- 30
p <- 10
X <- matrix((runif(n * p) < 0.5) + (runif(n * p) < 0.5), ncol = p, nrow = n)
A <- (runif(n, min = 0, max = 1) < 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
Y <- runif(n) < 1/ (1 + exp(- 2 * X[, 5, drop = FALSE]))
auc_scores <- modified_outcome(A, X, Y, propensity,

ncores = 1, parallel = TRUE, n_subsample = 1)

normalized_outcome Implements the normalized modified outcome approach

Description

Normalized modified outcome is an improvement to modified_outcome. Its large-sample variance
is lower than the original modified outcome approach. The only difference between the two methods
lies in the normalization of the propensity scores. The inverses of the propensity scores 1/π(A =
1|X) and 1/π(A = 0|X) are respectively normalized by their sum

∑
i 1/π(Ai = 1|Xi) and∑

i 1/π(Ai = 0|Xi).

Usage

normalized_outcome(A, X, Y, propensity, parallel = FALSE, ...)

Arguments

A target variant

X rest of the genotype

Y phenotype

propensity propensity scores

parallel whether to perform support estimation in a parallelized fashion

... additional arguments to be passed to stabilityGLM or stabilityBIG

Value

a vector containing the area under the stability selection path for each variable in X

Examples

n <- 30
p <- 10
X <- matrix((runif(n * p) < 0.5) + (runif(n * p) < 0.5),

ncol = p, nrow = n) # SNP matrix
A <- (runif(n) < 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
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Y <- runif(n) < 0.4
normalized_scores <- normalized_outcome(A, X, Y, propensity,

lambda_min_ratio = 0.02 , n_subsample = 1)

OWL Implements the outcome weighted learning approach

Description

To recover the synergistic interactions between the target A and the rest of the genotype X, OWL for-
mulates a weighted binary classification problem. The outcome is the mapping of A to {0,1}. The
covariates are X. The propensity scores and the phenotypes are combined in the sample weights
Y/π(A|X). For binary phenotypes, OWL is a case-only approach. The approach also accommo-
dates nonnegative continuous phenotypes.

Usage

OWL(A, X, Y, propensity, ...)

Arguments

A target variant. If not binary, the variable A must be encoded as either (0, 1) or
(0, 1, 2).

X rest of the genotype

Y phenotype (binary or continuous)

propensity propensity scores (a vector or a two-column matrix)

... additional arguments to stabilityGLM

Details

For continuous phenotypes, if the outcome Y is not nonnegative, it is translated to make it nonnega-
tive.

Value

a vector containing the area under the stability selection path for each variable in X

References

Zhao, Y., Zeng, D., Rush, A. J., & Kosorok, M. R. (2012). Estimating Individualized Treat-
ment Rules Using Outcome Weighted Learning. Journal of the American Statistical Association,
107(499), 1106–1118.
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Examples

n <- 30
p <- 10
X <- matrix((runif(n * p) < 0.5) + (runif(n * p) < 0.5), ncol = p, nrow = n)
A <- (runif(n, min = 0, max = 1) < 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
Y <- runif(n, min = 0, max = 1) < 1/ (1 + exp(-X[, c(1, 7)] %*% rnorm(2)))
OWL(A, X, Y, propensity, short = FALSE, n_lambda = 50, n_subsample = 1)

propensity propensity scores

Description

To obtain the scores for the samples in genotypes, we first remove all SNPs in the genomic interval
[18038910, 18288361] to alleviate linkage disequilibrium around the target SNP rs2535708 (posi-
tion 18184169). Afterwards, we apply fast_HMM followed by cond_prob. The results are stored in
propensity.

Usage

data(propensity)

Format

a numeric vector

Examples

data(propensity)

robust_outcome Implements the robust modified outcome approach

Description

A key feature of robust_outcome is its resilience to the misspecification of propensity scores,
which is a major limitation of classical modified outcome approaches. Except for shifted_outcome,
all of the modified outcome approaches belong to a parameterized class of unbiased estimators for
the risk difference term E [Y |A = 1, X]−E [Y |A = 0, X]. Within that class, robust modified out-
come is the approach with the least large-sample variance. For more details about this approach,
see Lunceford and Davidian (2004)

Usage

robust_outcome(A, X, Y, propensity, parallel = FALSE, ...)
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Arguments

A target variant

X rest of the genotype

Y phenotype

propensity propensity scores

parallel whether to perform support estimation in a parallelized fashion

... additional arguments to be passed to stabilityGLM or stabilityBIG

Value

a vector containing the area under the stability selection path for each variable in X

References

Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity score
in estimation of causal treatment effects: A comparative study. Statistics in Medicine, 23(19),
2937–2960.

Examples

n <- 30
p <- 10
X <- matrix((runif(n * p) < 0.4) + (runif(n * p) < 0.4),

ncol = p, nrow = n) # SNP matrix
A <- rbinom(n, 1, 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
Y <- runif(n) < 0.4
robust_scores <- robust_outcome(A, X, Y, propensity,

lambda_min_ratio = 0.01 , n_subsample = 1)

sample_SNP Samples causal SNPs with different effect types

Description

The sampled SNPs are combined in a list of character vectors with the following fields: target,
marginal, inter1 and inter2. Through the parameters overlap_marg and overlap_inter, the syn-
ergistic SNPs with the target can have additional marginal and epistatic effects. The SNPs are
consecutively sampled in the following order: target, marginal, inter1 and inter2. For each SNP,
we iteratively sample until the picked SNP candidate meets the constraints defined by thresh_MAF
and window_size (see arguments for more details) or until the maximum number of resamplings is
reached. To avoid duplication of effects, we sample at most one SNP per cluster.
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Usage

sample_SNP(nX, nY, nZ12, clusters, MAF, thresh_MAF = 0.2,
window_size = 3, overlap_marg = 0, overlap_inter = 0,
max_iter = 10000)

Arguments

nX number of SNPs interacting with the target variant

nY number of SNPs with marginal effects

nZ12 number of SNP pairs with epistatic effects

clusters vector of cluster memberships. Typically, the output of cutree. For ease of
identification, the SNP IDs in names(clusters) are mandatory.

MAF vector of minor allele frequencies. The order of the SNPs in MAF is identical to
that in clusters.

thresh_MAF lower-bound on the minor allele frequencies of causal SNPs. Rare variants are
inherently difficult to recover. Assessing the retrieval performance on common
variants better reflects the true performance of the epistasis detection algorithm.

window_size in number of clusters. Beside the target variant, the causal SNPs are sampled
outside of a window centered around the target. On each side of the target
variant, the width of the window is window_size.

overlap_marg number of SNPs with both synergistic effects with the target and marginal effects

overlap_inter number of SNPs with both synergistic effects with the target and additional
epistatic effects

max_iter maximum number of sampling rejections for each SNP. If exceeded, the function
generates an error

Value

list of character vectors containing to the causal SNP IDs. The output list entries are: target,
marginal, inter1 and inter2. An epistatic pair is obtained from the combination of two SNPs with
identical positions in inter1 and inter2.

Warning

Make sure to supply the SNP IDs in names(clusters). The SNPs in the output list are referenced
by their names.

Examples

clusters <- rep(seq_len(10), each = 3)
names(clusters) <- paste0("SNP_", seq_along(clusters))
MAF <- runif(length(clusters), min = 0.1, max = 0.5)

sample_SNP(nX = 2, nY = 2, nZ12 = 1, clusters, MAF, thresh_MAF = 0.2,
window_size = 2, overlap_marg = 1, overlap_inter = 0)
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shifted_outcome Implements the shifted modified outcome approach

Description

Shifted modified outcome is an improvement to modified outcome. It is a heuristic which consists
in the addition of of a small translation term to the inverse of the propensity score. The goal is
to avoid numerical instability due to low propensity scores values. More precisely, the inverses of
the propensity scores become 1/(π(A|X) + ξ). We recommend keeping the default value of the
parameter ξ at 0.1.

Usage

shifted_outcome(A, X, Y, propensity, parallel = FALSE, shift = 0.1,
...)

Arguments

A target variant

X rest of the genotype

Y phenotype

propensity propensity scores

parallel whether to perform support estimation in a parallelized fashion

shift regularization term to be added to the propensity scores to avoid numerical sta-
bility

... additional arguments to be passed to stabilityGLM or stabilityBIG

Value

a vector containing the area under the stability selection path for each variable in X

Examples

n <- 30
p <- 10
X <- matrix((runif(n * p) < 0.5) + (runif(n * p) < 0.5),

ncol = p, nrow = n) # SNP matrix
A <- (runif(n) < 0.3)
propensity <- runif(n, min = 0.4, max = 0.8)
Y <- runif(n) < 1/ (1 + exp(-X[, 2, drop = FALSE]))
shifted_scores <- shifted_outcome(A, X, Y, propensity,

shift = 0.1, n_subsample = 1)
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sim_phenotype Simulates a binary phenotype

Description

The phenotypes are simulated according to a logistic regression model. Depending on the chosen
configuration in sample_SNP, the model includes different effect types: synergistic effects with the
target, marginal effects and additional epistatic effects. We offer the option to generate a balanced
phenotype vector between cases and controls, through the intercept parameter.

Usage

sim_phenotype(X, causal, model, intercept = TRUE)

Arguments

X genotype matrix

causal causal SNPs.

model disease model

intercept binary flag. If intercept=TRUE, a non-null intercept is added so that the output
is (approximately) balanced between cases and controls.

Value

A vector of simulated phenotypes which are encoded as a two-level factor (TRUE/FALSE).

See Also

sample_SNP and gen_model

Examples

nX <- 5
nY <- 3
nZ12 <- 2
clusters <- rep(seq_len(25), each = 3)
names(clusters) <- paste0("SNP_", seq_along(clusters))
MAF <- runif(length(clusters), min = 0.2, max = 0.5)

n_samples <- 3
X <- matrix((runif(n_samples * length(clusters)) < 0.4) +

(runif(n_samples * length(clusters)) < 0.4),
ncol = length(clusters), nrow = n_samples)

colnames(X) <- names(clusters)

causal <- sample_SNP(
nX, nY, nZ12, clusters, MAF, thresh_MAF = 0.2, window_size = 2,
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overlap_inter = 0)
model <- gen_model(nX, nY, nZ12, mean = rnorm(4), sd = rep(1, 4))
Y <- sim_phenotype(X, causal, model, intercept = TRUE)

stabilityBIG Computes the area under the stability path for all covariates

Description

This function implements the same model selection technique extensively described in stabilityGLM.
The sole difference is the use of a different elastic net solver. In this function, we make use
of biglasso. Thanks to its parallel backend, biglasso scales well to high-dimensional GWAS
datasets. However, in our case, because of the use of additional backend files, a slight decrease in
runtime is to be expected, compared with stabilityGLM.

Usage

stabilityBIG(X, Y, family = "gaussian", n_subsample = 20,
n_lambda = 100, lambda_min_ratio = 0.01, eps = 1e-05,
short = TRUE, ncores = 2)

Arguments

X design matrix formatted as a big.matrix object

Y response vector

family response type. Either ’gaussian’ or ’binomial’

n_subsample number of subsamples for stability selection

n_lambda total number of lambda values
lambda_min_ratio

the minimum value of the regularization parameter lambda as a fraction of the
maximum lambda, the first value for which the elastic net support is not empty.

eps elastic net mixing parameter (see stabilityGLM for more details)

short whether to compute the aucs only on the first half of the stability path. We
observed better performance with thresholded paths

ncores number of cores for the biglasso solver

Value

a vector grouping the aucs of all covariates within X
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See Also
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Other support estimation functions: stabilityGLM

Examples

n <- 100
p <- 25
X <- bigmemory::as.big.matrix(matrix(runif(n * p), ncol = p))
Y <- runif(n, min = 0, max = 1) < 0.5
aucBIG <- stabilityBIG(X, Y,

family = "binomial", short = TRUE,
ncores = 1, n_lambda = 200, n_subsample = 1

)

stabilityGLM Computes the area under the stability path for all covariates

Description

To perform model selection, this function scores all covariates in X according to the area under their
stability selection paths. Our model selection procedure starts by dynamically defining a grid for
the elastic net penalization parameter λ. To define the grid, we solve the full-dataset elastic net.
This yields n_lambda log-scaled values between λmax and λmin. λmax is the maximum value
for which the elastic net support is not empty. On the other hand, λmin can be derived through
lambda_min_ratio, which is the ratio of λmin to λmax. The next step is identical to the original
stability selection procedure. For each value of λ, we solve n_subsample times the same elastic
net, though for a different subsample. The subsample is a random selection of half of the samples
of the original dataset. The empirical frequency of each covariate entering the support is then the
number of times the covariate is selected in the support as a fraction of n_subsample. We obtain the
stability path by associating each value of λ with the corresponding empirical frequency. The final
scores are the areas under the stability path curves. This is a key difference with the original stability
selection procedure where the final score is the maximum empirical frequency. On simulations, our
scoring technique outperformed maximum empirical frequencies.
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Usage

stabilityGLM(X, Y, weights = rep(1, nrow(X)), family = "gaussian",
n_subsample = 20, n_lambda = 100, short = TRUE,
lambda_min_ratio = 0.01, eps = 1e-05)

Arguments

X input design matrix

Y response vector

weights nonnegative sample weights

family response type. Either ’gaussian’ or ’binomial’

n_subsample number of subsamples for stability selection

n_lambda total number of lambda values

short whether to compute the aucs only on the first half of the stability path. We
observed better performance for thresholded paths

lambda_min_ratio

ratio of λmin to λmax (see description for a thorough explanation)

eps elastic net mixing parameter.

Details

For a fixed λ, the L2 penalization is λ× eps, while the L1 penalization is λ× (1− eps). The goal
of the L2 penalization is to ensure the uniqueness of the solution. For that reason, we recommend
setting eps « 1.

Value

a vector containing the areas under the stability path curves

References
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Haury, A. C., Mordelet, F., Vera-Licona, P., & Vert, J. P. (2012). TIGRESS: Trustful Inference of
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See Also

glmnet-package

Other support estimation functions: stabilityBIG
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Examples

# ---- Continuous data ----
n <- 50
p <- 20
X <- matrix(rnorm(n * p), ncol = p)
Y <- crossprod(t(X), rnorm(p))
aucs_cont <- stabilityGLM(X, Y,

family = "gaussian", n_subsample = 1,
short = FALSE

)

# ---- Binary data ----
X <- matrix(rnorm(n * p), ncol = p)
Y <- runif(n, min = 0, max = 1) < 1 / (1 + exp(-X[, c(1, 7, 15)] %*% rnorm(3)))
weights <- runif(n, min = 0.4, max = 0.8)
aucs_binary <- stabilityGLM(X, Y,

weights = weights,
n_lambda = 50, lambda_min_ratio = 0.05, n_subsample = 1

)

subsample Creates multiple subsamples without replacement

Description

The subsampling is iteratively performed in order to generate multiple subsamples of a predeter-
mined size.

Usage

subsample(n, size = n%/%2, n_subsample)

Arguments

n original sample size

size subsample size

n_subsample total number of subsamples

Value

a matrix of indices with size rows and n_subsample columns.

Examples

n <- 50 # Total number of samples
n_subsample <- 10 # Number of subsamples

sub_matrix <- subsample(n = n, n_subsample = n_subsample)
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