Package 'epca'

June 26, 2020
Type Package
Title Exploratory Principal Component Analysis
Version 1.0.0
Date 2020-06-20
Description Exploratory principal component analysis for largescale dataset, including sparse principal component analysis and sparse matrix approximation.

URL https://github.com/fchen365/epca
BugReports https://github.com/fchen365/epca/issues
License GPL-3
Depends R (>=3.5),
Imports clue, irlba, imager, matlab, Matrix, RSpectra, tidyverse, GPArotation,
Suggests elasticnet, ggcorrplot, rmarkdown, markdown, reshape2, matlabr, knitr, PMA,

VignetteBuilder knitr, rmarkdown
Encoding UTF-8
RoxygenNote 7.1.0
NeedsCompilation no
Author Fan Chen [aut, cre] (https://orcid.org/0000-0003-4508-6023)
Maintainer Fan Chen fan.chen@wisc.edu
Repository CRAN
Date/Publication 2020-06-26 10:10:06 UTC

R topics documented:

epca-package 2
absmin 3
absmin.criteria 3
cpve 4
dist.matrix 4
distance 5
exp.frac 6
fftshift 7
hard 7
inner 8
labelCluster 8
misClustRate 9
norm.Lp 10
permColumn 10
pitprops 11
polar 11
prewhiten 12
print.sca 12
print.sma 13
prs 13
pve 15
rootmatrix 16
rotation 16
sca 17
shrinkage 20
sma 21
soft 24
trim.fringe 24
varimax 25
varimax.criteria 25
vgQ.absmin 26
Index 28
epca-package Exploratory Principal Component Analysis

Description

epca is for comprehending any data matrix that contains low-rank and sparse underlying signals of interest. The package currently features two key tools: (1) sca for sparse principal component analysis and (2) sma for sparse matrix approximation, a two-way data analysis for simultaneously row and column dimensionality reductions.

References

Chen, F. and Rohe K. (2020) "A New Basis for Sparse PCA".

```
absmin
Absmin Rotation
```


Description

Given a $\mathrm{p} x \mathrm{k}$ matrix x , finds the orthogonal matrix (rotation) that minimizes the absmin.criteria.

Usage

absmin(L, Tmat $=$ diag(ncol(L)), normalize = FALSE, eps = 1e-05, maxit = 1000L)

Arguments

L a matrix or Matrix.
Tmat matrix, initial rotation matrix.
normalize logical. Should Kaiser normalization be performed? If so the rows of x are re-scaled to unit length before rotation, and scaled back afterwards.
eps The tolerance for stopping: the relative change in the sum of singular values.
maxit integer, maximum number of iteration (default to 1,000).

Value

A list with three elements:
rotated the rotated matrix.
rotmat the (orthogonal) rotation matrix.
n.iter the number of iteration taken.

See Also

GPArotation: :GPForth

```
absmin.criteria Absmin Criteria
```


Description

Calculate the absmin criteria. This is a helper function for absmin.

Usage

absmin.criteria(L)

Arguments

$\mathrm{L} \quad$ a matrix or Matrix.

Description

Calculate the CPVE.

Usage

cpve(mat, V , is.cov = FALSE)

Arguments

```
    mat matrix or Matrix, the original data matrix X or cov (X) = crossprod(X)/(nrow(X)
            -1)
    V matrix, coefficients of linear transformation, e.g., loadings (in PCA).
    is.cov logical, whether the input matrix is a covariance matrix or a Gram matrix.
```


Value

a numeric vector of length $n \operatorname{col}(\mathrm{~V})$, the i-th value is the CPVE of the first i columns in V.

See Also

pve

Examples

```
## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
cpve(as.matrix(swiss), ld)
```

```
dist.matrix Matrix Column Distance
```


Description

Compute the distance between two matrices. The distance between two matrices is defined as the sum of distances between column pairs. This function matches the columns of two matrices, such that the matrix distance (i.e., the sum of paired column distances) is minimized. This is accomplished by solving an optimization over column permutation. Given two matrices, x and y, find permutation p() that minimizes sum_i similarity $(x[, p(i)], y[, i])$, where the similarity() can be "euclidean" distance, 1 - "cosine", or "maximum" difference (manhattan distance). The solution is computed by clue: :solve_LSAP().

Usage

dist.matrix(x, y, method = "euclidean")

Arguments

x, y	matrix or Matrix, of the same number of rows. The columns of x and y will be
scaled to unit length.	
method	distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

a list of four components:
dist dist, the distance matrix.
match solve_LSAP, the column matches.
value numeric vector, the distance between pairs of columns.
method character, the distance measure used.
nrow integer, the dimension of the input matrices, i.e., nrow(x).

See Also

clue::solve_LSAP

Examples

$x<-\operatorname{diag}(4)$
$y<-x+r n o r m(16, ~ s d=0.05) ~ \# ~ a d d ~ s o m e ~ n o i s e ~$
$y=t(t(y) / \operatorname{sqrt}(\operatorname{colSums}(y$ ^ 2))) \#\# normalize the columns
\#\# euclidian distance between column pairs, with minimal matches
dist.matrix(x, y, "euclidean")
distance Matrix Distance

Description

Matrix Distance

Usage

distance(x, y, method = "euclidean")

Arguments

x
matrix or Matrix, of the same number of rows. The columns of x and y will be scaled to unit length.
y matrix or Matrix, of the same number of rows. The columns of x and y will be scaled to unit length.
method distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

numeric, the distance between two matrices.

Description

Calculate fractional exponent/power, a^{\wedge} (num/den), where a could be negative.

Usage

\#\# S3 method for class 'frac'
$\exp (a$, num, den)

Arguments

a
num a positive integer, numerator of the exponent.
den a positive integer, denominator of the exponent.

Value

numeric, the evaluated $\mathrm{a}^{\wedge}($ num $/$ den $)$

fftshift ffshift

Description

Rearrange the matrix so that zero frequency component is in the middle of the matrix. This is similar to the fftshift function in MATLAB

Usage

fftshift(x)

Arguments

$x \quad$ a matrix of image.

References

Olshausen, Bruno A., and David J. Field. "Emergence of simple-cell receptive field properties by learning a sparse code for natural images." Nature 381.6583 (1996): 607.
hard Hard-thresholding

Description

Perform hard-thresholding given the cut-off value.

Usage

$\operatorname{hard}(x, t)$

Arguments

x
t
any numerical matrix or vector.
numeric, the amount to hard-threshold, i.e., $\operatorname{sgn}\left(x_{i j}\right)\left(\left|x_{i j}-t\right|\right)_{+}$.

Description

Calculate the custom matrix inner product, $Z=\operatorname{crossprod}(X, Y)$, where $Z[i, j]=F U N(X[i], Y[, j])$.

Usage

inner (X, Y, FUN = "crossprod", ...)

Arguments

X, Y
matrix or Matrix.
FUN function or a character (1) name of base function. The function should take in two vectors as input and ouput a numeric (1) result.
\ldots additional parameters for FUN.

Value

matrix, inner product of X and Y.

Examples

```
x <- matrix(1:6, 2, 3)
y <- matrix(7:12, 2, 3)
## The default is equivalent to `crossprod(x, y)`
inner(x, y)
## We can compute the pair-wise Euclidean distance of columns.
EuclideanDistance = function(x, y) crossprod(x, y)^2
inner(x, y, EuclideanDistance)
```

labelCluster Label Cluster

Description

Assign cluster labels to each row from the membership matrix.

Usage

labelCluster(x, ties.method = "random")

Arguments

x
matrix with non-negative entries, where $x[i, j]$ is the estimated likelihood (or any equivalent measure) of node i belongs to block j. The higher the more likely.
ties.method character, how should ties be handled, "random", "first", "last" are allowed. See base: : rank() for details.

Value

integer vector of the same length as x. Each entry is one of $1,2, \ldots, n c o l(x)$.

```
misClustRate Mis-Classification Rate (MCR)
```


Description

Compute the empirical MCR, assuming that \#cluster = \#block, This calculation allows a permutation on clusters.

Usage

misClustRate(cluster, truth)

Arguments

cluster vector of integer or factor, estimated cluster membership.
truth a vector of the same length as clusters, the true cluster labels.

Value

numeric, the MCR.

Examples

```
truth = rep(1:3, each = 30)
cluster = rep(3:1, times = c(25, 32, 33))
misClustRate(cluster, truth)
```

norm.Lp Element-wise Matrix Norm

Description

Compute element-wise matrix Lp-norm. This is a helper function to shrinkage().

Usage

norm. Lp(mat, $\mathrm{p}=1$)

Arguments

mat a matrix or Matrix.
$\mathrm{p} \quad$ numeric (1), the p for defining the Lp norm.

Value

numeric(1), the absolute sum of all elements.

Description

Perform column permutation of block membership matrix for aesthetic visualization. That is, the k -th column gives k -th cluster. This is done by ranking the column sums of squares (by default).

Usage

permColumn (x, s = 2)

Arguments

x
a non-negative matrix, nNode x nBlock,
s
integer, order of non-linear

Description

The pitprops data is a correlation matrix that was calculated from 180 observations. There are 13 explanatory variables. Jeffers (1967) tried to interpret the first six PCs. This is a classical example showing the difficulty of interpreting principal components.

References

Jeffers, J. (1967) "Two case studies in the application of principal component", Applied Statistics, 16, 225-236.

Examples

```
## NOT TEST
data(pitprops)
ggcorrplot::ggcorrplot(pitprops)
```

polar Polar Decomposition

Description

Perform the polar decomposition of an $n \times p(n>p)$ matrix X into $U P$, where U is an $n \times p$ matrix with orthogonal columns (i.e. crossprod(U) is the identity matrix), and P is a $\mathrm{p} x \mathrm{p}$ positivesemidefinite Hermitian matrix. The function returns the U matrix. This is a helper function of prs().

Usage

polar (x)

Arguments

x a matrix or Matrix, which is presumed full-rank.

Value

a matrix of the unitary part of the polar decomposition.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

Examples

```
x <- matrix(1:6, nrow = 3)
polar_x <- polar(x)
```

prewhiten Pre-whiten Image

Description

Mimic/simulate the processing in retina, the lateral geniculate nucleus (LGN), and V1 (1) scale all pixels to constant variance (e.g., 1). (2) combined low-pass/whitening filter

Usage

prewhiten(img)

Arguments

img a matrix of square image.

References

Olshausen, Bruno A., and David J. Field. "Emergence of simple-cell receptive field properties by learning a sparse code for natural images." Nature 381.6583 (1996): 607.

```
    print.sca Print SCA
```


Description

Print SCA

Usage

\#\# S3 method for class 'sca'
print(x, verbose $=$ FALSE, ...)

Arguments

X
verbose
... an sca object.
logical(1), whether to print out loadings.
additional input to generic print.

Value

Print an sma object interactively.

```
print.sma Print SMA
```


Description

Print SMA

Usage

\#\# S3 method for class 'sma'
print (x, verbose $=$ FALSE,..)

Arguments

X
an sma object.
verbose logical(1), whether to print out loadings.
... additional input to generic print.

Value

Print an sma object interactively.
prs Polar-Rotate-Shrink

Description

This function is a helper function of sma(). It performs polar docomposition, orthogonal rotation, and soft-thresholding shrinkage in order. The three steps together enable sparse estimates of the SMA and SCA.

Usage

prs(X, Z.hat, gamma, rotate, shrink, normalize, order, flip, epsilon)

Arguments

X, Z.hat	the matrix product $A<-\operatorname{crossprod}(X, Z$. hat) is the input. X and Z. hat are separated because the former is additionally used to compute the proportion of variance explained, in the case when order $=$ TRUE.
gamma	numeric, the sparsity parameter.
rotate	character (1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
shrink	character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).
normalize	logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
order	logical, whether to re-order the columns of the estimates (see details).
flip	logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
epsilon	numeric, tolerance of convergence precision (default to 0.00001).

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in options-""varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.
shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options-"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.
normalize: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized A sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of A), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take A as an argument and return a vector which is used like the vector above.
order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of Z or Y) by their explained variance in the data, which is defined as $\operatorname{sum}\left((A \% * \% y)^{\wedge} 2\right)$, where y is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by Y (and Z), particularly when Y (and Z) is may not be strictly orthogonal.
flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., sum ($\left.x^{\wedge} 3\right)$) are non-negative.

Value
a matrix of the sparse estimate, of the same dimension as $\operatorname{crossprod}(X, Z . h a t)$.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

See Also

sma, sca, polar, rotation, shrinkage

```
pve Proportion of Variance Explained (PVE)
```


Description

Calculate the variance in a matrix explained by a set of linear transformation, (e.g. eigenvectors).

Usage

pve(mat, V , is.cov = FALSE)

Arguments

mat matrix or Matrix, the original data matrix X or $\operatorname{cov}(X)=\operatorname{crossprod}(X) /(\operatorname{nrow}(X)$ -1)
V matrix, coefficients of linear transformation, e.g., loadings (in PCA).
is.cov logical, whether the input matrix is a covariance matrix or a Gram matrix.

Value

a numeric value between 0 and 1 , the proportion of variance in mat explained by Y .

Examples

```
## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
pve(as.matrix(swiss), ld)
```

```
    rootmatrix Find root matrix
```


Description

Find X from the Gram matrix (i.e., crossprod (X)).

```
Usage
    rootmatrix(x)
```

Arguments
x
a symmetric matrix.
rotation Varimax Rotation

Description

Perform varimax rotation. Flip the signs of columns so that the resulting matrix is positive-skewed.

```
Usage
    rotation(
        x,
        rotate = c("varimax", "absmin"),
        normalize = FALSE,
        flip = TRUE,
        eps = 1e-06
    )
```


Arguments

x
rotate character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
normalize logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
flip logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
eps numeric precision tolerance.

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in options-"varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.
normalize: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized A sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of A), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take A as an argument and return a vector which is used like the vector above.
flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., sum $\left(x^{\wedge} 3\right)$) are non-negative.

Value

the rotated matrix of the same dimension as x.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

See Also

prs, varimax

Examples

```
## use the "swiss" data
fa <- factanal( ~., 2, data = swiss, rotation = "none")
rotation(loadings(fa))
```


Description

sca performs sparse principal components analysis on the given numeric data matrix. Choices of rotation techniques and shrinkage operators are available.

Usage

```
    sca(
    A,
    k = min(5, dim(A)),
    gamma = NULL,
    is.cov = FALSE,
    rotate = c("varimax", "absmin"),
    shrink = c("soft", "hard"),
    center = TRUE,
    scale = TRUE,
    normalize = FALSE,
    order = TRUE,
    flip = TRUE,
    max.iter = 1000,
    epsilon = 1e-05,
    quiet = TRUE
    )
```


Arguments

A
$\mathrm{k} \quad$ integer, rank of approximation.
gamma
is.cov logical, whether the A is a covariance matrix or Gram matrix (i.e., crossprod (X)). This function presumes that A is not covariance matrix.
rotate character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).
center logical, whether to center columns of A (see scale()).
scale logical, whether to scale columns of A (see scale()).
normalize
order logical, whether to re-order the columns of the estimates (see details).
flip logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
max.iter integer, maximum number of iteration (default to 1,000).
epsilon numeric, tolerance of convergence precision (default to 0.00001).
quiet
logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
logical, whether to mute the process report (default to TRUE)

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in options-""varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.
shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options-"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.
normalize: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized A sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of A), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take A as an argument and return a vector which is used like the vector above.
order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of Z or Y) by their explained variance in the data, which is defined as $\operatorname{sum}\left((A \% * \% y)^{\wedge} 2\right)$, where y is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by Y (and Z), particularly when Y (and Z) is may not be strictly orthogonal.
flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., sum $\left(x^{\wedge} 3\right)$) are non-negative.

Value

an sca object that contains:

loadings	matrix, sparse loadings of PCs.
scores	an nxk matrix, the component scores.
sdev	a numeric vector of length k, standard deviation of each columns of scores. These may not sum to exactly 1 because of a slight loss of orthogonality.
pve	a numeric vector of length k, cumulative proportion of variance in A explained by the top PCs.
center	logical, this records the center parameter. scale
n.iter	logical, this records the scale parameter. integer, number of iteration taken.
n.obs	integer, sample size, that is, nrow(A).

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

See Also

sma, prs

Examples

```
## ------ example 1
## simulate a low-rank data matrix with some additive Gaussian noise
n <- 300
p<- 50
k <- 5 ## rank
Z <- shrinkage(polar(matrix(runif(n * k), n, k)), sqrt(n))
B <- diag(5) * 3
Y <- shrinkage(polar(matrix(runif(p * k), p, k)), sqrt(p))
E <- matrix(rnorm(n * p, sd = .01), n, p)
X <- scale(Z %*% B %*% t(Y) + E)
## perform sparse PCA
s.sca <- sca(X, k)
s.sca
## ------ example 2 ------
## use the `pitprops` data from the `elasticnet` package
data(pitprops)
## find 3 sparse PCs
s.sca <- sca(pitprops, 3, gamma = 4.5)
print(s.sca, verbose = TRUE)
## find 6 sparse PCs
s.sca <- sca(pitprops, 6, gamma = 6)
print(s.sca, verbose = TRUE)
```

shrinkage Shrinkage

Description

Shrink a matrix using soft-thresholding or hard-thresholding.

Usage

shrinkage(x, gamma, shrink = c("soft", "hard"), epsilon = 1e-11)

Arguments

x
gamma
shrink
epsilon
matrix or Matrix, to be threshold.
numeric, the constraint of Lp norm, i.e. $\|x\| \leq \gamma$. character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details). numeric, precision tolerance. This should be greater than .Machine\$double.eps.

Details

A binary search to find the cut-off value.
shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options-"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.

Value

a list with two components:
matrix matrix, the matrix that results from soft-thresholding
norm numeric, the norm of the matrix after soft-thresholding. This value is close to constraint if using the second option.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

See Also

prs

Examples

x <- matrix (1:6, nrow = 3)
shrink_x <- shrinkage(x, 1)

Description

Perform the sparse matrix approximation (SMA) of a data matrix X as three components: Z B Y', where Z and Y are sparse, and B is low-rank but not necessarily diagonal.

```
Usage
    sma(
        A,
        k = min(5, dim(A)),
        gamma = NULL,
        rotate = c("varimax", "absmin"),
        shrink = c("soft", "hard"),
        center = FALSE,
        scale = FALSE,
        normalize = FALSE,
        order = FALSE,
        flip = FALSE,
        max.iter = 1000,
        epsilon = 1e-05,
        quiet = TRUE
)
```


Arguments

A
$\mathrm{k} \quad$ integer, rank of approximation.
gamma numeric(2), sparsity parameters. If gamma is numeric(1), it is used for both left and right sparsity component (i.e, Z and Y). If absent, the two parameters are set as (default): sqrt(nk) and sqrt(pk) for Z and Y respectively, where n xp is the dimension of A .
rotate character(1), rotation method. Two options are currently available: "varimax" (default) or "absmin" (see details).
shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding (see details).
center logical, whether to center columns of A (see scale()).
scale logical, whether to scale columns of A (see scale()).
normalize logical, whether to rows normalization should be done before and undone afterward the rotation (see details).
order logical, whether to re-order the columns of the estimates (see details).
flip logical, whether to flip the signs of the columns of estimates such that all columns are positive-skewed (see details).
max.iter integer, maximum number of iteration (default to 1,000).
epsilon numeric, tolerance of convergence precision (default to 0.00001).
quiet logical, whether to mute the process report (default to TRUE)

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in options-"varimax" and "absmin". The "varimax" rotation maximizes the element-wise L4 norm of the rotated matrix. It is faster and computationally more stable. The "absmin" rotation minimizes
the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower and computationally less stable.
shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in options-"soft"- and "hard"-thresholding. The "soft"-thresholding universally reduce all elements and sets the small elements to zeros. The "hard"-thresholding only sets the small elements to zeros.
normalize: The argument normalize gives an indication of if and how any normalization should be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no normalization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries of normalized A sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin", if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of A), then the columns are divided by normalize before rotation and multiplied by normalize after rotation. Also, If normalize is a function then it should take A as an argument and return a vector which is used like the vector above.
order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For this, we order the sparse components (i.e., the columns of Z or Y) by their explained variance in the data, which is defined as $\operatorname{sum}\left((A \% * \% y)^{\wedge} 2\right)$, where y is a column of the sparse component. Note: not to be confused with the cumulative proportion of variance explained by Y (and Z), particularly when Y (and Z) is may not be strictly orthogonal.
flip: The argument flip gives an indication of if and the columns of estimated sparse component should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables, are column-wise invariant to a sign flipping. This is because flipping of a principal direction does not influence the amount of the explained variance by the component. If flip=TRUE, then the columns of loadings will be flip accordingly, such that each column is positive-skewed. This means that for each column, the sum of cubic elements (i.e., sum $\left(x^{\wedge} 3\right)$) are non-negative.

Value

an sma object that contains:
$Z, B, Y \quad$ the three parts in the SMA (i.e., $Z B Y^{\prime}$). Z is a sparse n x matrix that contains the row components (loadings). The row names of Z inherit the row names of A . B is a $k x k$ matrix that contains the scores of SMA; the Frobenius norm of B equals to the total variance explained by the SMA. Y is a sparse $n \mathrm{xk}$ matrixthat contains the column components (loadings).

The row names of Y inherit the column names of A.
score the total variance explained by the SMA. This is the optimal objective value obtained.
n.iter integer, the number of iteration taken.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse PCA."

See Also

Examples

```
## simulate a rank-5 data matrix with some additive Gaussian noise
n <- 300
p<- 50
k <- 5 ## rank
Z <- shrinkage(polar(matrix(runif(n * k), n, k)), sqrt(n))
B <- diag(5) * 3
Y <- shrinkage(polar(matrix(runif(p * k), p, k)), sqrt(p))
E <- matrix(rnorm(n * p, sd = .01), n, p)
X <- scale(Z %*% B %*% t(Y) + E)
## perform sparse matrix approximation
s.sma <- sma(X, k)
s.sma
```

soft Soft-thresholding

Description

Perform soft-thresholding given the cut-off value.

Usage

$\operatorname{soft}(x, t)$

Arguments

$x \quad$ any numerical matrix or vector.
$\mathrm{t} \quad$ numeric, the amount to soft-threshold, i.e., $\operatorname{sgn}\left(x_{i j}\right)\left(\left|x_{i j}-t\right|\right)_{+}$.
trim.fringe Trim Image

Description

Trim the fringes of image

Usage

trim.fringe(img, hem = 6)

Arguments

img	a matrix of square image.
hem	integer, the width of trimmed fringes.

```
    varimax Varimax Rotation
```


Description

This is a re-implementation of stats::varimax, which (1) adds a parameter for the maximum number of iterations, (2) sets the default normalize parameter to FALSE, (3) outputs the number of iteration taken, and (4) returns regular matrix rather than in loadings class.

Usage

varimax (x, normalize $=$ FALSE, eps $=1 \mathrm{e}-05$, maxit $=1000 \mathrm{~L})$

Arguments

x
A loadings matrix, with p rows and $k<p$ columns
normalize logical. Should Kaiser normalization be performed? If so the rows of x are re-scaled to unit length before rotation, and scaled back afterwards.
eps The tolerance for stopping: the relative change in the sum of singular values.
maxit integer, maximum number of iteration (default to 1,000).

Value

A list with three elements:
rotated the rotated matrix.
rotmat the (orthogonal) rotation matrix.
n.iter the number of iterations taken.

See Also

stats::varimax

```
varimax.criteria The varimax criterion
```


Description

Calculate the varimax criterion

Usage

varimax.criteria(mat)

Arguments

```
    mat
    a matrix or Matrix.
```


Value

a numeric of evaluated varimax criterion.

References

Varimax rotation (Wikipedia)

Examples

```
## use the "swiss" data
fa <- factanal( ~., 2, data = swiss, rotation = "none")
lds <- loadings(fa)
## compute varimax criterion:
varimax.criteria(lds)
## compute varimax criterion (after the varimax rotation):
rlds <- rotation(lds, rotate = "varimax")
varimax.criteria(rlds)
```


Description

This is a helper function for absmin and is not to be used directly by users.

Usage

vgQ.absmin(L)

Arguments

L a matrix or Matrix.

Value

a list required by GPArotation: : GPForth for the absmin rotation.

Examples

```
## Not run:
## NOT RUN
## NOT for users to call.
## End(Not run)
```


Index

```
*Topic datasets
    pitprops,11
*Topic package
    epca-package, 2
absmin, 3, 3, 26
absmin.criteria, 3, 3
base::rank(),9
clue::solve_LSAP, 5
clue::solve_LSAP(),4
cpve, 4
dist.matrix,4
distance, 5
epca-package, 2
exp.frac,6
fftshift,7
hard, }
inner, 8
labelCluster,8
misClustRate, }
norm.Lp,10
permColumn, 10
pitprops, }1
polar, 11, 15
prewhiten, 12
print,12,13
print.sca, 12
print.sma, 13
prs,13,17, 20, 21,23
prs(),11
pve, 4, 15
```

