Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <doi:10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <doi:10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>).
Version: | 1.1.0 |
Imports: | MASS, car, changepoint, ecp, graphics, ismev, lokern, robustbase, stats |
Suggests: | openair |
Published: | 2020-05-07 |
Author: | Martina Campulova [cre], Martina Campulova [aut], Roman Campula [ctb] |
Maintainer: | Martina Campulova <martina.campulova at mendelu.cz> |
License: | GPL-2 |
NeedsCompilation: | no |
Citation: | envoutliers citation info |
Materials: | NEWS |
CRAN checks: | envoutliers results |
Reference manual: | envoutliers.pdf |
Package source: | envoutliers_1.1.0.tar.gz |
Windows binaries: | r-devel: envoutliers_1.1.0.zip, r-release: envoutliers_1.1.0.zip, r-oldrel: envoutliers_1.1.0.zip |
macOS binaries: | r-release: envoutliers_1.1.0.tgz, r-oldrel: envoutliers_1.1.0.tgz |
Old sources: | envoutliers archive |
Please use the canonical form https://CRAN.R-project.org/package=envoutliers to link to this page.