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1 Introduction

The main goal of this package is to overcome the limitation of the environmentName() function in the base
package which does not return the name of an environment unless it is a package, a namespace, or a system
environment (e.g. the global environment, the base environment). In fact, the environmentName() function
returns an empty string when the argument is a user-defined environment.

On the other hand, the environment itself is identified solely by its memory address, which makes it difficult
to track an environment once we have defined a number of them. These limitations –and the workaround
provided by this package– can be seen by running the following code snippet:
myenv <- new.env()
cat("The name of the environment just defined is: ", environmentName(myenv), "(empty)\n")

## The name of the environment just defined is: (empty)
cat("Simply referencing the environment just defined yields its memory address,

which is not so helpful: "); print(myenv)

## Simply referencing the environment just defined yields its memory address,
## which is not so helpful:

## <environment: 0x00000000102a8b68>
cat("Using the environment_name() function of the envnames package gives

the environment name:", environment_name(myenv))

## Using the environment_name() function of the envnames package gives
## the environment name: myenv

Clearly the last one is the result we most likely want, and the envnames package makes this possible by
creating a lookup table that maps environment names to their memory addresses. The different functions of
this package use this lookup table to provide the user with valuable information, such as the name of the
environment where an object resides, be it a package environment, a user-defined environment, or even a
function execution environment.

Why do we care about knowing the name of user-defined environments and function execution environments?
That piece of information may be handy for example under the following scenarios:

• working in a package where user-defined environments have been defined in a nested structure:
this package facilitates the navigation through those environments and their connection between
them, eliminating e.g. the use of ls() as a rudimentary tool to identify the human-understandable
environment (e.g. myenv) referred by an environment given by its memory address (e.g. <environment:
0x063dbc90> in 32-bit systems or <environment: 0x00000000063dbc90> in 64-bit systems), as
already seen above.
For more information and examples, see below the section on function get_env_names(), that returns
a map of currently defined environments and the way they are connected or nested.

• debugging an application:
this package makes it easier to retrieve variables in different environments; for instance, retrieve the
value of a variable in the parent environment to the environment where the debugger is currently
positioned, which could well be a function execution environment.
For more information and examples, see below the sections on functions get_obj_name() and
get_obj_value(), which can be used to retrieve the name and value of the variable leading to a
particular variable in connected environments, and the section on environment_name(), which can be
used to retrieve the name of an execution environment.

Apart from this core functionality, additional tools were added during the package development process which
include:
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• an enhancement of the built-in exists() function with the capability of searching objects recursively
–i.e. in environments defined inside other environments–, as well as searching objects that are the result
of expressions. This functionality is provided by the obj_find() function.

• a simplification of the output obtained when retrieving the calling function name and the stack of
calling functions, currently provided by the built-in function sys.calls(). This functionality is
provided by functions get_fun_name(), get_fun_calling(), and get_fun_calling_chain(), which
return simple strings or array of strings with the function names of interest.

• the retrieval of the memory address of an object. This functionality is provided by the
get_obj_address() function.

Currently the package has 11 functions directly accessible to the user (plus one function that is an alias).

Definition of workspace: despite being a widely used concept, we want to emphasize here that in this
document we use the word “workspace” to refer to the memory space where all visible objects exist. In
practice, this includes all the environments that are reachable via the search() path, namely the system
environments (global environment, base environment), all loaded packages, and all user environments defined
within and, if inside packages, exported. Note that package namespaces are not part of the workspace.

Naming convention: Function names are all small caps and the underscore is used to separate keywords
(e.g. environment_name(), get_obj_address(), etc.)

2 Description of the 11 functions in the package

This section describes the functionality of the 11 available functions, which are now briefly described as 7
groups made up of functions with similar functionality and sorted by relevance in terms of historical and
practical use:

1) get_env_names(), used to retrieve the name of all the environments defined in the workspace together
with their memory address. This is an address-name lookup table, the core element of the package that
allows the “magic” to happen.

2) environment_name() / get_env_name() (its alias), used to get the name of user-defined and execution
environments (as well as all other named environments).

3) obj_find(), used to find an object in the workspace and recursively within environments.

4) get_fun_name(), get_fun_calling(), get_fun_calling_chain(), used to get the function calling
name and stack displayed in a format that is easier to manipulate than the one provided by sys.calls().

5) get_fun_env(), used to retrieve a function’s execution environment.

6) get_obj_name(), get_obj_value(), used to retrieve the name and value of the object leading to a
given function’s parameter.

7) get_obj_address(), address(), used to get the memory address of an object; get_obj_address()
first looks for the object (using obj_find()), while address() assumes it exists in the environment
where the function is run.

Each of the above set of functions will be described in the following sub-sections, where each title is a sentence
stating the main purpose of the presented function(s).
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2.1 get_env_names(): retrieve the address-name lookup table of defined envi-
ronments

The get_env_names() function returns a map of all the environments defined in a given environment. If no
environment location is given, the map includes all the environments existing in the whole workspace.

In practice, the map is an address-name lookup table that relates the memory address of each environment
(be it a system environmet, a package environment, a user-defined environment, or optionally a function
execution environment) to its name.

This address-name lookup table is the basis for the operation of most of the other functions in the package,
which rely on it to retrieve the names of environments based on their memory addresses.

The signature of the function is the following:
get_env_names(envir = NULL, include_functions = FALSE).

2.1.1 Examples

2.1.1.1 Let’s start with the definition of a few environments

We define a couple of environments and nested environments.
env1 <- new.env()
env_of_envs <- new.env()
with(env_of_envs, env21 <- new.env())

Note that environment env21 is nested in environment env_of_envs.

2.1.1.2 Basic operation

The following call returns a data frame containing the address-name lookup table, where the two main
columns are:
- address that contains the memory address of the environment, and
- name that contains the name of the environment.

The other columns are used to give context to the environments, such as:
- path which tells us how to reach user-defined environments that are nested within other user-defined
environments. The path is relative to the envir environment given as parameter, or from the global
environment if no envir is given. As an example, see the case for environment env21 nested within
env_of_envs.
- location which indicates, for instance, the package where an environment is defined, or the name of the
enclosing environment of a function –i.e. where the function is defined–, if the concerned environment is a
function’s execution environment.
get_env_names()

## type location locationaddress address
## 1 user R_GlobalEnv <0000000004454F80> <0000000010C32618>
## 2 user R_GlobalEnv <0000000004454F80> <0000000010B6BA88>
## 3 user R_GlobalEnv <0000000004454F80> <00000000109073A0>
## 4 user R_GlobalEnv <0000000004454F80> <00000000102A8B68>
## 5 user package:envnames <000000001005DB50> <0000000010490340>
## 6 user package:envnames <000000001005DB50> <000000001048FB28>
## 7 user package:envnames <000000001005DB50> <000000001048F310>
## 8 function tools <000000000AA94C50> <000000000CD0A6B8>
## 9 function base <0000000004454ED8> <000000000AA5C658>
## 10 function tryCatch <000000000AA5C658> <000000000AA5BF90>
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## 11 function tryCatch <000000000AA5C658> <000000000AA5BC48>
## 12 function tryCatchOne <000000000AA5BC48> <000000000AA5B900>
## 13 function knitr <000000000CDC5040> <000000000AA5B430>
## 14 function knitr <000000000CDC5040> <000000000AA65900>
## 15 function rmarkdown <000000000CB256D8> <000000000A708EA8>
## 16 function knitr <000000000CDC5040> <000000000BDF9B40>
## 17 function knitr <000000000CDC5040> <000000000A9CDD50>
## 18 function base <0000000004454ED8> <0000000010526D80>
## 19 function knitr <000000000CDC5040> <0000000010527368>
## 20 function knitr <000000000CDC5040> <0000000010527608>
## 21 function knitr <000000000CDC5040> <0000000010527720>
## 22 function knitr <000000000CDC5040> <000000001042D418>
## 23 function knitr <000000000CDC5040> <0000000010401B40>
## 24 function knitr <000000000CDC5040> <00000000103DFE18>
## 25 function evaluate <000000000BF7C070> <00000000103DD7F8>
## 26 function evaluate <000000000BF7C070> <000000001037DD18>
## 27 function evaluate_call <000000001037DD18> <0000000010360488>
## 28 function evaluate_call <000000001037DD18> <0000000010360568>
## 29 function base <0000000004454ED8> <0000000010360878>
## 30 function base <0000000004454ED8> <0000000010360E28>
## 31 function base <0000000004454ED8> <000000001035D228>
## 32 function base <0000000004454ED8> <0000000004454F80>
## 33 system/package <NA> <NA> <0000000004454F80>
## 34 system/package <NA> <NA> <000000001005DB50>
## 35 system/package <NA> <NA> <000000000BC67BB8>
## 36 system/package <NA> <NA> <000000000B05F3F0>
## 37 system/package <NA> <NA> <000000000BE387F8>
## 38 system/package <NA> <NA> <000000000BF95238>
## 39 system/package <NA> <NA> <000000000B5D0F50>
## 40 system/package <NA> <NA> <000000000B4FE7C8>
## 41 system/package <NA> <NA> <000000000A784700>
## 42 system/package <NA> <NA> <0000000004421E80>
## 43 namespace <NA> <NA> <000000001000E5C0>
## 44 namespace <NA> <NA> <000000000AEEAFA8>
## 45 namespace <NA> <NA> <000000000B5B4928>
## 46 namespace <NA> <NA> <000000000C01F2E0>
## 47 namespace <NA> <NA> <000000000B65BC78>
## 48 namespace <NA> <NA> <000000000B5AAB68>
## 49 namespace <NA> <NA> <000000000AB5C8C0>
## 50 namespace <NA> <NA> <0000000004454ED8>
## 51 empty <NA> <NA> <0000000004421EB8>
## pathname path name
## 1 env1 env1
## 2 env_of_envs env_of_envs
## 3 env_of_envs$env21 env_of_envs env21
## 4 myenv myenv
## 5 testenv testenv
## 6 testenv$env1 testenv env1
## 7 testenv$env1$env22 testenv$env1 env22
## 8 tools::buildVignettes tools::buildVignettes
## 9 tryCatch tryCatch
## 10 tryCatchList tryCatchList
## 11 tryCatchOne tryCatchOne
## 12 doTryCatch doTryCatch
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## 13 engine$weave engine weave
## 14 vweave_rmarkdown vweave_rmarkdown
## 15 rmarkdown::render rmarkdown::render
## 16 knitr::knit knitr::knit
## 17 process_file process_file
## 18 withCallingHandlers withCallingHandlers
## 19 process_group process_group
## 20 process_group.block process_group.block
## 21 call_block call_block
## 22 block_exec block_exec
## 23 in_dir in_dir
## 24 evaluate evaluate
## 25 evaluate::evaluate evaluate::evaluate
## 26 evaluate_call evaluate_call
## 27 timing_fn timing_fn
## 28 handle handle
## 29 withCallingHandlers withCallingHandlers
## 30 withVisible withVisible
## 31 eval eval
## 32 eval eval
## 33 .GlobalEnv .GlobalEnv
## 34 package:envnames package:envnames
## 35 package:stats package:stats
## 36 package:graphics package:graphics
## 37 package:grDevices package:grDevices
## 38 package:utils package:utils
## 39 package:datasets package:datasets
## 40 package:methods package:methods
## 41 Autoloads Autoloads
## 42 package:base package:base
## 43 package:envnames package:envnames
## 44 package:stats package:stats
## 45 package:graphics package:graphics
## 46 package:grDevices package:grDevices
## 47 package:utils package:utils
## 48 package:datasets package:datasets
## 49 package:methods package:methods
## 50 package:base package:base
## 51 R_EmptyEnv R_EmptyEnv

For instance, in the above map we can see that the envnames package defines an environment called testenv
which contains two other nested enviroments: env1 and env22.

We can also restrict the lookup table to the environments defined within another environment. Now the path
to the environment is relative to the environment on which the search is restricted (indicated as the envir
parameter of the function).
get_env_names(envir=env_of_envs)

## type location locationaddress address
## 1 user env_of_envs <0000000010B6BA88> <00000000109073A0>
## 2 function tools <000000000AA94C50> <000000000CD0A6B8>
## 3 function base <0000000004454ED8> <000000000AA5C658>
## 4 function tryCatch <000000000AA5C658> <000000000AA5BF90>
## 5 function tryCatch <000000000AA5C658> <000000000AA5BC48>
## 6 function tryCatchOne <000000000AA5BC48> <000000000AA5B900>
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## 7 function knitr <000000000CDC5040> <000000000AA5B430>
## 8 function knitr <000000000CDC5040> <000000000AA65900>
## 9 function rmarkdown <000000000CB256D8> <000000000A708EA8>
## 10 function knitr <000000000CDC5040> <000000000BDF9B40>
## 11 function knitr <000000000CDC5040> <000000000A9CDD50>
## 12 function base <0000000004454ED8> <0000000011F99180>
## 13 function knitr <000000000CDC5040> <0000000011F98C40>
## 14 function knitr <000000000CDC5040> <0000000011F989A0>
## 15 function knitr <000000000CDC5040> <0000000011F98888>
## 16 function knitr <000000000CDC5040> <000000001237E6F8>
## 17 function knitr <000000000CDC5040> <0000000011C22368>
## 18 function knitr <000000000CDC5040> <0000000011C24640>
## 19 function evaluate <000000000BF7C070> <0000000011C26C60>
## 20 function evaluate <000000000BF7C070> <00000000114E94E0>
## 21 function evaluate_call <00000000114E94E0> <000000001188E6A8>
## 22 function evaluate_call <00000000114E94E0> <000000001188E5C8>
## 23 function base <0000000004454ED8> <000000001188E2B8>
## 24 function base <0000000004454ED8> <000000001188DD08>
## 25 function base <0000000004454ED8> <0000000011891908>
## 26 function base <0000000004454ED8> <0000000004454F80>
## pathname path name
## 1 env21 env21
## 2 tools::buildVignettes tools::buildVignettes
## 3 tryCatch tryCatch
## 4 tryCatchList tryCatchList
## 5 tryCatchOne tryCatchOne
## 6 doTryCatch doTryCatch
## 7 engine$weave engine weave
## 8 vweave_rmarkdown vweave_rmarkdown
## 9 rmarkdown::render rmarkdown::render
## 10 knitr::knit knitr::knit
## 11 process_file process_file
## 12 withCallingHandlers withCallingHandlers
## 13 process_group process_group
## 14 process_group.block process_group.block
## 15 call_block call_block
## 16 block_exec block_exec
## 17 in_dir in_dir
## 18 evaluate evaluate
## 19 evaluate::evaluate evaluate::evaluate
## 20 evaluate_call evaluate_call
## 21 timing_fn timing_fn
## 22 handle handle
## 23 withCallingHandlers withCallingHandlers
## 24 withVisible withVisible
## 25 eval eval
## 26 eval eval
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2.2 environment_name(): retrieve name of user-defined and function execution
environments

The environment_name() function (or its alias get_env_name()) extends the functionality of the built-in
environmentName() function by also retrieving the name of user-defined environments and function execution
environments.

Although the name of an environment can be easily retrieved with deparse(substitute(env1)) where
env1 is a user-defined environment, the most useful scenario is when we have just the memory address of
the environment where e.g. an object resides (as in e.g. <environment: 0x0437fb40> in 32-bit systems or
<environment: 0x000000000437fb40> in 64-bit systems). In this scenario, environment_name() can tell
us the name of the environment having that memory address.

Note that the address-to-name resolution also works for function execution environments, as we shall see in
the examples below.

The signature of the function is the following:
environment_name(env, envir = NULL, envmap = NULL, matchname = FALSE, ignore = NULL,
include_functions = FALSE).

2.2.1 Examples

2.2.1.1 Basic operation

Let’s retrieve the names of the environments defined above. This may sound trivial because we are already
typing the environment name! However, we receive additional information as follows:

• the output from the first call includes all the environments where the environment with the given name
(e.g. env1) is found.

• the output from the second call contains the path to use (starting from the calling environment) in
order to reach the environment being searched for (e.g. stating that env21 is found inside environment
env_of_envs).

cat("Name of environment 'env1':\n")

## Name of environment 'env1':
environment_name(env1)

## R_GlobalEnv package:envnames$testenv
## "env1" "env1"
cat("Name of environment 'env21':\n")

## Name of environment 'env21':
environment_name(env21)

## [1] "env_of_envs$env21"

For future reference, let us point out that the first case above is a case of environments with the same name
existing in different environments.

If we already know the environment where the environment of interest is defined, we can specify it in the
envir parameter so that the search for the environment is restricted to the specified environment:
cat("Name of environment 'env1' when we specify its location:\n")

## Name of environment 'env1' when we specify its location:
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environment_name(env1, envir=globalenv())

## [1] "env1"
cat("Name of environment 'env21' when we specify its location:\n")

## Name of environment 'env21' when we specify its location:
environment_name(env21, envir=env_of_envs)

## [1] "env21"

Note that no path information is attached now to the returned names in either case, because only one
environment is found inside the respective specified environments.

We can also retrieve the name of the testenv environment:
cat("Name of environment 'testenv':\n")

## Name of environment 'testenv':
environment_name(testenv)

## [1] "package:envnames$testenv"

where we obtain the information that testenv is defined in package envnames.

2.2.1.2 More advanced examples

As above we saw a case of environments with the same name existing in different environments, let’s now see
a case of different environments having the same memory address.

So, let’s define a new environment that points to one of the already defined environments, and let’s retrieve
its name as above:
e_proxy <- env_of_envs$env21
environment_name(e_proxy)

## R_GlobalEnv env_of_envs
## "e_proxy" "env21"

What we get is a named array containing the names of all the environments (in alphabetical order) that
point to the same memory address (in this case env21 and e_proxy). The names attribute of the array
contains the environments where these environments are found (in this case env_of_envs defined in the
global environment, and R_GlobalEnv, the global environment).

We can disable the behaviour of matching environments just by memory address by setting the matchname
parameter to TRUE so that the returned environments must match both the memory address and the given
name:
environment_name(e_proxy, matchname=TRUE)

## [1] "e_proxy"

Now the result is an unnamed array because there is only one environment matched by the search for the
e_proxy environemnt. Furthermore, the result indicates that the environment is defined in the global environ-
ment, as otherwise the location where it were defined would be part of the name (as in e.g. env1$e_proxy).

Note however that the last call could actually returnmore than one environment in the case where environments
sharing the same name (e_proxy in the above example) were defined in different environments. We could
have this situation if we defined an environment called "e_proxy" in environment env_of_envs, as shown in
the following example:
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env_of_envs$e_proxy <- new.env()
environment_name(e_proxy, matchname=TRUE)

## R_GlobalEnv env_of_envs
## "e_proxy" "e_proxy"

Again a named array is returned with all the matches (by name) to the searched environment.

Finally, if we try to retrieve the environment name of a non-existing environment, we get NULL.
environment_name(non_existing_env)

## NULL

2.2.1.3 Retrieving the environment name associated with a memory address

Now suppose we have a memory address and we would like to know if that memory address represents
an environment. We can simply call environment_name() with the memory address passed as character
argument, as shown in the following example:
env1_address = get_obj_address(testenv$env1)
environment_name(env1_address)

## [1] "package:envnames$testenv$env1"

Of course, in practice we would not call the get_obj_address() function to get the environment’s memory
address; we would simply type in the memory address we are after. Note that this memory address depends
on the architecture (32-bit or 64-bit) and it can be given in one of the following four ways:

• an 8-digit (32-bit) / 16-digit (64-bit) address, e.g. "0000000011D7A150" (64-bit architecture)

• a 10-digit (32-bit) / 18-digit (64-bit) address, e.g. "0x0000000011D7A150" (64-bit architecture)

• either of the above addresses enclosed in < >, e.g. "<0000000011D7A150>" or "<0x0000000011D7A150>"
(64-bit archiecture)

• a 10-digit (32-bit) / 18-digit (64-bit) address preceeded by the environment: keyword and enclosed in
< >, e.g.: "<environment: 0x0000000011D7A150>" (64-bit architecture)

(note: Linux Debian distributions may have a 12-digit memory address representation. The best way to know
what the memory address representation is in a particular system is to call e.g. address("x").)

The last format is particularly useful when copying & pasting the result of querying an environment object,
for example when typing testenv$env1 at the R command prompt, in which case we get:
testenv$env1

## <environment: 0x000000001048fb28>

If the memory address does not match any of the above formats or does not represent an environment,
environment_name() returns NULL. Ex:
x = 2
environment_name(get_obj_address(x))

## NULL

as the address of x is not the address of an environment.
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2.2.1.4 Retrieving a function execution environment

If called from within a function with no arguments, environment_name() returns the execution environment
of the function, which is identified by the name of the function. This is given with its full path, as in e.g.
env1$f, when environment_name() is called from function f() defined in environment env1.

Since the first argument of environment_name() is the environment whose name we want to retrieve, we could
also retrieve the execution environment of any calling function by specifying the corresponding parent.frame.
Once again the name of such parent execution environment would be the name of the function given with its
full path.

The following example illustrates the above two use cases.
with(env_of_envs$env21, {

f <- function() {
cat("1) We are inside function:", environment_name(), "\n")
cat("2) The calling environment is:", environment_name(parent.frame()), "\n")

}
g <- function() {

f()
}

})
cat("Having defined both f() and g() in environment env_of_envs$env21,

and having function g() call f()...\n")

## Having defined both f() and g() in environment env_of_envs$env21,
## and having function g() call f()...
cat("...when we call env_of_envs$env21$f() from the global environment,

we get the output that follows:\n")

## ...when we call env_of_envs$env21$f() from the global environment,
## we get the output that follows:
env_of_envs$env21$f()

## 1) We are inside function: env_of_envs$env21$f
## 2) The calling environment is: R_GlobalEnv
cat("\n...and when we call f() from inside function g(),

we get the output that follows:\n")

##
## ...and when we call f() from inside function g(),
## we get the output that follows:
env_of_envs$env21$g()

## 1) We are inside function: e_proxy$f
## 2) The calling environment is: env_of_envs$env21$g

Note that, in the second case when f() is called from g() –and not directly from the global environment–,
the enviroment showing as path to f() is not env_of_envs$env21 (as we would have expected) but e_proxy.
The reason is that environment e_proxy (in the global environment) points to the same memory address as
env_of_envs$env21. And since environment names are retrieved by their memory address (which in this
case is the memory address of f’s execution environment), there may be more than one environment matching
the same memory address. In such cases, the rule implemented in environment_name() is to retrieve the
matching environment whose name comes first in alphabetical order (which in this case is e_proxy –coming
before both env_of_envs$e_proxy and env_of_envs$env21 in alphabetical order, all environments that
match the memory address of the environment where f() is defined).

11



But if we call env_of_envs$env21$f() (instead of calling f() as above) from a function h() defined in the
env_of_envs$env21 environment, we get:
with(env_of_envs$env21, {

f <- function() {
cat("1) We are inside function", environment_name(), "\n")
cat("2) The calling environment is:", environment_name(parent.frame()), "\n")

}
h <- function() {

env_of_envs$env21$f()
}
}

)
env_of_envs$env21$h()

## 1) We are inside function env_of_envs$env21$f
## 2) The calling environment is: env_of_envs$env21$h

i.e., when making explicit the location of function f(), such location is shown as part of the name of the
execution environment (as opposed to seeing a “supposedly strange” location e_proxy as above).
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2.3 obj_find(): find the environments where (visible) objects exist

With the obj_find() function we can check if an object exists in the whole workspace and retrieve all the
environments where it has been found. In the case of packages, only exported objects are searched for.

All environments –including system environments, packages, user-defined environments, and optionally
function execution environments– are crawled and searched for the object. This includes any environments
that are defined within other environments (nested), and it therefore represents an enhancement to the
built-in exists() function, which does not search for an object inside nested environments.

The function returns a character array with all the environments where the object has been found.

Objects to search for can be specified either as a symbol or as a string. Ex: obj_find(x) and obj_find("x")
both look for an object called “x”. They can also be the result of an expression as in v[1].

The function returns NULL if the object is not found or if the expression is invalid. For instance
obj_find(unquote(quote(x))) returns NULL because the unquote() function does not exist in R.

The signature of the function is the following:
obj_find(obj, envir = NULL, envmap = NULL, globalsearch = TRUE, n = 0, return_address =
FALSE, include_functions = FALSE, silent = TRUE)

2.3.1 Examples

2.3.1.1 Let’s start with a few object definitions

We define a couple of objects in the environments already defined above:
x <- 5
env1$x <- 3
with(env_of_envs, env21$y <- 5)
with(env1, {

vars_as_string <- c("x", "y", "z")
})

2.3.1.2 Basic operation

Now let’s look for these objects:
environments_where_obj_x_is_found = obj_find(x)
cat("Object 'x' found
in the following environments:"); print(environments_where_obj_x_is_found)

## Object 'x' found
## in the following environments:

## [1] "R_GlobalEnv" "env1"
environments_where_obj_y_is_found = obj_find(y)
cat("Object 'y' found
in the following environments:"); print(environments_where_obj_y_is_found)

## Object 'y' found
## in the following environments:

## [1] "e_proxy" "env_of_envs$env21"

(if we are seeing more environments than expected in the above output, let us recall that two e_proxy
environments point to the same environment as env_of_envs$env21)
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environments_where_obj_is_found = obj_find(vars_as_string)
cat("Object 'vars_as_string' found
in the following environments:"); print(environments_where_obj_is_found)

## Object 'vars_as_string' found
## in the following environments:

## [1] "env1"

Let’s also look for the objects defined in vars_as_string and vars_quoted.
environments_where_obj_1_is_found = obj_find(env1$vars_as_string[1])

## Here we are looking for the object 'x'
cat(paste("Object '", env1$vars_as_string[1], "' found
in the following environments:")); print(environments_where_obj_1_is_found)

## Object ' x ' found
## in the following environments:

## [1] "R_GlobalEnv" "env1"
environments_where_obj_2_is_found = obj_find(env1$vars_as_string[2])

## Here we are looking for the object 'y'
cat(paste("Object '", env1$vars_as_string[2], "' found
in the following environments:")); print(environments_where_obj_2_is_found)

## Object ' y ' found
## in the following environments:

## [1] "e_proxy" "env_of_envs$env21"
environments_where_obj_3_is_found = obj_find(env1$vars_as_string[3])

## Here we are looking for the object 'z' which does not exist
cat(paste("Object '", env1$vars_as_string[3], "' found
in the following environments:")); print(environments_where_obj_3_is_found)

## Object ' z ' found
## in the following environments:

## NULL

or using sapply() to look for all the objects whose names are stored in env1$vars_as_strings at once:
environments_where_objs_are_found = with(env1, sapply(vars_as_string, obj_find) )
cat("The objects defined in the 'env1$vars_as_string' array are found

in the following environments:\n");

## The objects defined in the 'env1$vars_as_string' array are found
## in the following environments:
print(environments_where_objs_are_found)

## $x
## [1] "R_GlobalEnv" "env1"
##
## $y
## [1] "e_proxy" "env_of_envs$env21"
##
## $z
## NULL
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Note how calling obj_find() from within the env1 environment (which we do in order to resolve the
vars_as_string variable –the argument of obj_find()) still searches for the objects everywhere. This is
because parameter globalsearch is set to TRUE (by default). If we set it to FALSE and we add envir=env1
as searched environment, we would get a non NULL value only for the objects defined in the env1 environment,
as shown below:
environments_where_objs_are_found = with(env1,

sapply(vars_as_string, obj_find, globalsearch=FALSE, envir=env1) )
cat("The objects defined in the 'env1$vars_as_string' array are found

in the following environments (no globalsearch):\n");

## The objects defined in the 'env1$vars_as_string' array are found
## in the following environments (no globalsearch):
print(environments_where_objs_are_found)

## $x
## [1] "env1"
##
## $y
## NULL
##
## $z
## NULL

NOTE: Even if we run sapply() inside environment env1, it is important to add parameter envir=env1 to
the call to obj_find(); if we don’t add it, no object is found because the calling environment for obj_find()
(i.e. its parent environment) is not env1 but the sapply() execution environment, where the objects do not
exist.

We can also search for objects given as a symbol:
environments_where_obj_x_is_found = obj_find(as.name("x"))
cat("Object 'x' found in the following environments:\n")

## Object 'x' found in the following environments:
print(environments_where_obj_x_is_found)

## [1] "R_GlobalEnv" "env1"

Finally, we can also search for visible (exported) objects defined in packages:
environments_where_obj_is_found = obj_find(aov)
cat("Object 'aov' found in the following environments:\n")

## Object 'aov' found in the following environments:
print(environments_where_obj_is_found)

## [1] "package:stats"

15



2.4 get_fun_name(), get_fun_calling(), get_fun_calling_chain(): retrieve
functions in the function calling chain (stack)

Functions get_fun_name(), get_fun_calling(), and get_fun_calling_chain() can be used to retrieve
information about calling functions. The first two retrieve information about one function while the latter
retrieves information about the functions in the calling chain or stack, in the same spirit as sys.calls().

However, the get_fun_calling_chain() function was designed to give an output that is easier to handle
than the output from sys.calls() in the practical scenario of making a decision based on the name of the
calling function. The following section shows such an example.

The signatures of the three aforementioned functions are:
get_fun_name(n = 0)
get_fun_calling(n = 1, showParameters = FALSE)
get_fun_calling_chain(n = NULL, showParameters = FALSE, silent = TRUE)

2.4.1 Examples

The example of this section shows the practical impact of using the get_fun_calling_chain() function
instead of the built-in sys.calls() function to retrieve the calling stack and make decisions based on the
calling function names.

In particular note:
- How easy it is to check what the calling function is (just do a string comparison as in e.g. get_fun_calling()
== "env1$f"). On the contrary, when using sys.call() we first need to parse the output before making
such a comparison. See this link for more details.
- We get a data frame containing the chain of calling functions, from the most recent call to least recent,
including function parameters if desired.

2.4.1.1 Let’s start with a few object definitions

1) First we define a couple of new environments:
env11 <- new.env()
env12 <- new.env()

2) Now we define an example function h to be called by two different functions f defined in two different
user-environments. This function h sums +1 or +2 to the input parameter x depending on which function
f was responsible for calling it.

with(globalenv(),
h <- function(x, silent=TRUE) {

fun_calling_chain = get_fun_calling_chain(silent=silent)

# Do a different operation on input parameter x depending on the calling function
fun_calling = get_fun_calling(showParameters=FALSE)
if (fun_calling == "env11$f") { x = x + 1 }
else if (fun_calling == "env12$f") { x = x + 2 }

return(x)
}
)

3) Finally we define the two functions f that call h, respectively in environments env11 and env12:

16

http://stackoverflow.com/questions/15595478/how-to-get-the-name-of-the-calling-function-inside-the-called-routine


with(env11,
f <- function(x, silent=TRUE) {

fun_calling_chain = get_fun_calling_chain()
return(h(x, silent=silent))

}
)

with(env12,
f <- function(x, silent=TRUE) {

fun_calling_chain = get_fun_calling_chain()
return(h(x, silent=silent))

}
)

2.4.2 Basic operation

We now run these functions f and take note of their output.

• Output from env11$f():

## Function calling chain:
## tools$tools::buildVignettes -> base$tryCatch -> tryCatchList -> tryCatchOne -> doTryCatch -> engine$weave -> knitr$vweave_rmarkdown -> rmarkdown$rmarkdown::render -> knitr$knitr::knit -> knitr$process_file -> base$withCallingHandlers -> knitr$process_group -> knitr$process_group.block -> knitr$call_block -> knitr$block_exec -> knitr$in_dir -> knitr$evaluate -> evaluate$evaluate::evaluate -> evaluate$evaluate_call -> timing_fn -> base$handle -> base$withCallingHandlers -> base$withVisible -> base$eval -> eval -> base$cat -> env11$f -> R_GlobalEnv$h
##
## When h(x) is called by env11$f(x=0) the output is: 1

• Output from env12$f():

## Function calling chain:
## tools$tools::buildVignettes -> base$tryCatch -> tryCatchList -> tryCatchOne -> doTryCatch -> engine$weave -> knitr$vweave_rmarkdown -> rmarkdown$rmarkdown::render -> knitr$knitr::knit -> knitr$process_file -> base$withCallingHandlers -> knitr$process_group -> knitr$process_group.block -> knitr$call_block -> knitr$block_exec -> knitr$in_dir -> knitr$evaluate -> evaluate$evaluate::evaluate -> evaluate$evaluate_call -> timing_fn -> base$handle -> base$withCallingHandlers -> base$withVisible -> base$eval -> eval -> base$cat -> env12$f -> R_GlobalEnv$h
##
## When h(x) is called by env12$f(x=0) the output is: 2

Note how easy it was (by using just a string comparison) to decide what action to take based on the f()
function calling h() and perform a different operation.

Note also that, in order to decide between the two possible calling functions env11$f() or env12$f() we
used get_fun_calling(), as opposed to get_fun_name(), because the latter returns just the function name,
devoided of any environment name.
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2.5 get_fun_env(): retrieve a function’s execution environment

The get_fun_env() function can be used to retrieve the execution environment of a function by simply
giving the function’s name.

This removes the need of knowing the position of the function in the calling chain, which is a piece of
information that is required by the usual way of retrieving a function’s execution environment, namely with
parent.frame().

The following example illustrates.

2.5.1 Basic operation

Let’s start defining a couple of functions that make up a function calling chain. The called function h()
retrieves and displays the value of variable x both inside h() and inside the calling function env1$g(), whose
execution environment is retrieved by get_fun_env("env1$g").
h <- function(x) {

# Get the value of parameter 'x' in the execution environment of function 'env1$g'
# The returned value is a list because there may exist different instances of the
# same function.
xval_h = x
xval_g = evalq(x, get_fun_env("env1$g")[[1]])
cat("The value of variable 'x' in function", get_fun_name(), "is", xval_h, "\n")
cat("The value of variable 'x' inside function env1$g is", xval_g, "\n")

}
env1 <- new.env()
with(env1,

g <- function() {
x = 2
return( h(3) )

}
)
env1$g()

## The value of variable 'x' in function h is 3
## The value of variable 'x' inside function env1$g is 2

When get_fun_env() is called from outside a function, it returns NULL, even when the function exists.
cat("The execution environment of a function that is not in the calling chain is:\n")

## The execution environment of a function that is not in the calling chain is:
print(get_fun_env("env1$g"))

## NULL

2.5.2 Advanced example that puts together get_fun_calling() and get_fun_env()

In this example the parent frame of function h() (i.e. the execution environment of the calling function) is
retrieved with get_fun_env(get_fun_calling()).
h <- function(x) {

parent_function_name = get_fun_calling(n=1)
cat("Using get_fun_calling() and environment_name() functions:

The parent frame of function", get_fun_name(), "is", get_fun_calling(n=2), "\n")
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# Get the value of parameter 'x' in the execution environment of function 'env1$g'
# The returned value is a list because there may exist different instances of the
# same function.
xval_h = x
xval_g = evalq(x, get_fun_env(parent_function_name)[[1]])
cat("Using get_fun_name():

The value of variable 'x' in function", get_fun_name(), "is", xval_h, "\n")
cat("Using get_fun_env() and evalq() functions:

The value of variable 'x' inside function", parent_function_name, "is", xval_g,"\n")
}
env1 <- new.env()
with(env1,

g <- function() {
x = 2
return( h(3) )

}
)
env1$g()

## Using get_fun_calling() and environment_name() functions:
## The parent frame of function h is env1$g
## Using get_fun_name():
## The value of variable 'x' in function h is 3
## Using get_fun_env() and evalq() functions:
## The value of variable 'x' inside function env1$g is 2

Clearly in the above examples we already know the position of function env1$g() in the calling chain, so
using parent.frame() would have sufficed. However, using get_fun_env() could help in case the function
calling chain from withing h() changes in the future, in which case we would not need to update the number
of the parent frame in order to refer to the execution environment of function env1$g().
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2.6 get_obj_name(), get_obj_value(): retrieve the name/value of an object at
a specified parent generation

The get_obj_name() and get_obj_value() functions are intended to help track objects and their values as
they are passed through different environments. The most useful of the two is get_obj_name(), because the
values of linked objects are the same as they traverse the different environments, making get_obj_value()
be almost the same as calling eval() or evalq() at any environment (except for some special cases described
in the function’s documentation). However, get_obj_value() provides some kind of shortcut to the required
eval() or evalq() expressions that do the same thing.

When called from within a function get_obj_name() can be used to know the name of the object that leads
to a particular parameter a few generations back following the function calling chain. In other words, it helps
us know the object in a given parent generation that is “responsible” for a function’s parameter value.

After learning a little more about get_obj_name(), one may have the impression that it gives the same result
as the one provided by deparse(substitute()). However, this is not the case as is shown in the examples
that follow.

The signatures of these two functions are:
get_obj_name(obj, n = 0, eval = FALSE, silent = TRUE) get_obj_value(obj, n = 0, silent =
TRUE)

2.6.1 Examples

2.6.1.1 Let’s start with a few function definitions
getObjNameAndCompareWithSubstitute <- function(y, eval=FALSE) {

parent_generation = 2
get_obj_name_result = get_obj_name(y, n=parent_generation, eval=eval)
deparse_result = deparse(y)
substitute_result = substitute(y, parent.frame(n=parent_generation))
deparse_substitute_result = deparse(substitute(y, parent.frame(n=parent_generation)))
eval_result = evalq(y, envir=parent.frame(n=parent_generation))
if (!eval) {

cat("Result of get_obj_name(y, n=", parent_generation, "): ", get_obj_name_result,
"\n\tConceptually this is the name of the object at parent generation ",
parent_generation,
"\n\tLEADING to *parameter* 'y'.\n", sep="")

cat("Result of deparse(substitute(y, parent.frame(n=", parent_generation, "))): ",
deparse_substitute_result,
"\n\tConceptually this is the substitution of *variable* 'y'
at parent generation ", parent_generation,
"\n\tconverted to a string.\n", sep="")

} else {
cat("Result of get_obj_name(y, n=", parent_generation, ", eval=", eval, "): ",

get_obj_name_result,
"\n\tConceptually this is the object LEADING to *parameter* 'y' evaluated
at parent generation ", parent_generation, ".\n", sep="")

cat("Result of deparse(y): ", deparse_result,
"\n\tConceptually this is the value of *parameter* 'y' converted to a character
string.\n", sep="")

cat("Result of substitute(y, parent.frame(n=", parent_generation, ")): ",
substitute_result,
"\n\tConceptually this is the substitution of *variable* 'y' at parent generation ",
parent_generation,
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".\n", sep="")
cat("Result of evalq(y, envir=parent.frame(n=", parent_generation, ")): ",

eval_result,
"\n\tConceptually this is the evaluation of *variable* 'y' at parent generation ",
parent_generation,
".\n", sep="")

}
}

callGetObjNameAndCompareWithSubstitute <- function(x, eval=FALSE) {
getObjNameAndCompareWithSubstitute(x, eval=eval)

}

2.6.1.2 Basic operation

Let’s compare the result of calling get_obj_name() with the result of deparse(substitute()):
y <- -9 # Global variable with the same name as the parameter of testing function
z <- 3
callGetObjNameAndCompareWithSubstitute(z)

## Result of get_obj_name(y, n=2): z
## Conceptually this is the name of the object at parent generation 2
## LEADING to *parameter* 'y'.
## Result of deparse(substitute(y, parent.frame(n=2))): y
## Conceptually this is the substitution of *variable* 'y'
## at parent generation 2
## converted to a string.

Note the conceptual difference: deparse(substitute(y, parent.frame(n=2))) retrieves the object assigned
to y at parent generation 2 (substitution) and returns it as a string (deparsing), while get_obj_name(y,
n=2) first traces back the object names in parent generations leading to parameter y, and then returns the
name of the object at the specified parent generation.

When eval=TRUE, get_obj_name() behaves the same way as deparse(), because the values of the objects
leading to parameter y in parent generations is always the same and equal to the parameter’s value. This
result is the same as the one obtained by calling get_obj_value(). The following example illustrates:
y <- -9 # Global variable with the same name as the parameter of testing function
z <- 3
callGetObjNameAndCompareWithSubstitute(z, eval=TRUE)

## Result of get_obj_name(y, n=2, eval=TRUE): 3
## Conceptually this is the object LEADING to *parameter* 'y' evaluated
## at parent generation 2.
## Result of deparse(y): 3
## Conceptually this is the value of *parameter* 'y' converted to a character
## string.
## Result of substitute(y, parent.frame(n=2)): y
## Conceptually this is the substitution of *variable* 'y' at parent generation 2.
## Result of evalq(y, envir=parent.frame(n=2)): -9
## Conceptually this is the evaluation of *variable* 'y' at parent generation 2.

That is, calling get_obj_name(y, n=n, eval=TRUE) (or its equivalent get_obj_value()) retrieves the value
of parameter y in parent generation n, which is the same in all parent generations and equal to the value
of parameter y inside the calling function. Therefore, this is the same as the result of deparse(y). On the
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other hand substituting or evaluating variable y in parent generation 2 concerns directly variable y in that
parent generation.

2.6.1.3 Finding the parameter path leading to a given function’s parameter

The get_obj_name() function can also be used to find the set of variables in the different parent environments
leading to a specified variable in the current environment. A particular case of this is the parameter path in
a function calling chain leading to a function’s parameter, which is illustrated below.

Let’s define a set of simple functions that create a calling chain, f1() -> f2() -> f3() each of them having
a parameter with a different name (x, y, and z):
f1 <- function(x) {

cat("f1(x) is calling f2(y=x)...\n")
f2(x)

}
f2 <- function(y) {

cat("f2(y) is calling f3(z=y)...\n")
f3(y)

}
f3 <- function(z) {

cat("f3(z) is retrieving the parameter path from three parent environments
leading to function parameter z...\n\n")

cat("Output from get_obj_name(z, n=3, silent=FALSE):\n")
variable_leading_to_z_3levels_back = get_obj_name(z, n=3, silent=FALSE)

}
w = 1.3
f1(w)

## f1(x) is calling f2(y=x)...
## f2(y) is calling f3(z=y)...
## f3(z) is retrieving the parameter path from three parent environments
## leading to function parameter z...
##
## Output from get_obj_name(z, n=3, silent=FALSE):
## Start at environment f3, object name is 'z'
## Level 1 back: environment = f2, object name is 'y'
## Level 2 back: environment = f1, object name is 'x'
## Level 3 back: environment = R_GlobalEnv, object name is 'w'

So, we clearly see the environments and variables leading to parameter z from R_GlobalEnv$w:
R_GlobalEnv$w -> f1$x -> f2$y -> f3$z

2.6.2 Use of get_obj_value()

The result of calling get_obj_value() is the same as calling get_obj_name() with eval=TRUE. It may come
as a handy function (by reducing writing) to use in debugger contexts to find out the value of variables in
different environments.

The following example illustrates the use of the function from within a function and shows the difference
with the result of using evalq(). Let’s start defining two functions:
getObjValueAndCompareWithEval <- function(y) {

parent_generation = 2
get_obj_value_result = get_obj_value(y, n=parent_generation)
eval_result = evalq(y, envir=parent.frame(n=parent_generation))
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cat("Result of get_obj_value(y, n=", parent_generation, "): ", get_obj_value_result,
"\n\tConceptually this is the object LEADING to *parameter* 'y'
\tevaluated at parent generation ",
parent_generation, ".\n", sep="")

cat("Result of evalq(y, envir=parent.frame(n=", parent_generation, ")): ", eval_result,
"\n\tConceptually this is the evaluation of *variable* 'y' at parent generation ",
parent_generation, ".\n", sep="")

}

callGetObjValueAndCompareWithEval <- function(x) { getObjValueAndCompareWithEval(x) }

Now let’s see the results of calling this function which explains the differences between get_obj_value()
and evalq().
y <- -9 # Global variable with the same name as the parameter of testing function
z <- 3
callGetObjValueAndCompareWithEval(z)

## Result of get_obj_value(y, n=2): 3
## Conceptually this is the object LEADING to *parameter* 'y'
## evaluated at parent generation 2.
## Result of evalq(y, envir=parent.frame(n=2)): -9
## Conceptually this is the evaluation of *variable* 'y' at parent generation 2.
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2.7 get_obj_address() and address(): retrieve the memory address of an object

Following are examples of using the get_obj_address() function to retrieve the memory address of an
object, which is then checked by the address() function that calls the direct method (via a C function call)
to retrieve an object’s memory address. The differences between these two functions are also explained.

In the get_obj_address() function, the object can be given either as a symbol or as an expression. If given
as an expression, the memory address of the result of the expression is returned. If the result is yet another
expression, the process stops, i.e. the memory address of that final expression is returned.

Internally this funcion first calls obj_find() to look for the object (using globalsearch=TRUE) and then
retrieves the object’s memory address, showing the name of all the environments where the object was found,
or NULL if the object is not found.

The signature of the function is the following:
get_obj_address(obj, envir = NULL, envmap = NULL, n = 0, include_functions = FALSE)

2.7.1 Examples

The following two calls return the same result:
obj_address1 = get_obj_address(x)
cat("Output of 'get_obj_address(x)':\n"); print(obj_address1)

## Output of 'get_obj_address(x)':

## R_GlobalEnv
## "<0000000014225EC0>"
obj_address2 = with(env1, get_obj_address(x))
cat("Output of 'with(env1, get_obj_address(x))':\n"); print(obj_address2)

## Output of 'with(env1, get_obj_address(x))':

## R_GlobalEnv
## "<0000000014225EC0>"

Note especially the last case, where calling get_obj_address() from within the env1 environment still
searches for the object everywhere.

We can restrict the memory addresses returned by making the environment where the object is located
explicit –by either using the $ notation or the envir parameter of get_obj_address(). In this case only
the address of the specified object is returned, even if other objects with the same name exist within the
specified environment. A few examples follow:
get_obj_address(env1$x)

## NULL
get_obj_address(x, envir=env1)

## NULL
with(env1, get_obj_address(x, envir=env1))

## NULL

Note there is a slight difference between calling get_obj_address() using the $ notation and calling it with
the envir= parameter: in the latter case, the result is an unnamed array.
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Suppose now the object is an expression referencing three potential existing objects as strings, more specifically
an array:
vars = c("x", "y", "nonexistent")
get_obj_address(vars[1], envir=env1)

## NULL
sapply(vars, get_obj_address)

## $x
## R_GlobalEnv
## "<0000000014225EC0>"
##
## $y
## R_GlobalEnv e_proxy env_of_envs$env21
## "<0000000015020308>" "<0000000013E041A8>" "<0000000013E041A8>"
##
## $nonexistent
## NULL

(if we are seeing more environments than expected in the above output, let us recall that environment e_proxy
points to the same environment as env_of_envs$env21)

We can check that the memory address is correct by running the internal function address() which calls a C
function that retrieves the memory address of an object:
address(env1$x)

## [1] "<0000000004421EF0>"
address(e_proxy$y)

## [1] "<0000000013E041A8>"

Finally: why would we use get_obj_address() instead of address() to retrieve the memory address of an
object? For two main reasons:
- get_obj_address() first searches for the object in all user-defined environments, while address() needs to
be called from within the environment where the object is defined.
- get_obj_address() returns NULL if the object does not exist, while address() returns the memory address
of the NULL object, which may be misleading.

To prove the second statement, we simply run the following two commands which yield the same result:
address(env1$nonexistent)

## [1] "<0000000004421EF0>"
address(NULL)

## [1] "<0000000004421EF0>"

while running get_obj_address() on the non-existent object yields NULL:
get_obj_address(env1$nonexistent)

## NULL
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3 Summing up

We have described all the 11 visible functions defined in the envnames package and shown examples of using
them, as follows:

1) We have used get_env_names() to retrieve all the environments defined in the workspace in the form
of a lookup table where the environment name can be looked up from its memory address.

2) We have used environment_name() / get_env_name() (its alias) to retrieve the name of an environment.
This function extends the functionality of the built-in environmentName() function by retrieving:

• the name of a user-defined environment

• the name and path to environments defined inside other environments

• the name and path to the function associated to an execution environment

• the name of the environment associated to a memory address

3) We have used obj_find() to find an object in the workspace. This function extends the functionality
of the built-in exists() function by:

• searching for the object in user-defined environments and in function execution environments

• searching for the object recursively (i.e. in environments defined inside other environments)

4) We have used get_fun_name(), get_fun_calling(), get_fun_calling_chain() to get the stack of
calling functions. These functions return the stack information in a manner that is much simpler than
the built-in sys.calls() function, making it easier to check the names of the calling functions and
make decisions that depend on them.

5) We have used get_fun_env() to get the execution environment of a function in the calling chain by
simply passing the function’s name, so that we can retrieve the value of objects that exist within.

6) We have used get_obj_name(), get_obj_value() to retrieve the name and value of the object leading
to a given function’s parameter.

7) We have used get_obj_address(), address() to retrieve the memory address of an object. These
functions provide a functionality that is not available in base R. Note that the data.table package
also provides a function called address() to retrieve the memory address of an object; however the
object is not searched for in the whole workspace as is the case with the get_obj_address() function
in this package.
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This vignette was generated under the following platform:

## SystemInfo
## sysname Windows
## release 10 x64
## version build 17134
## machine x86-64

## _
## platform x86_64-w64-mingw32
## arch x86_64
## os mingw32
## system x86_64, mingw32
## status
## major 3
## minor 5.1
## year 2018
## month 07
## day 02
## svn rev 74947
## language R
## version.string R version 3.5.1 (2018-07-02)
## nickname Feather Spray
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