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Abstract

The R package emdi facilitates the estimation of regionally disaggregated indicators
using small area estimation methods and provides tools for model building, diagnostics,
presenting, and exporting the results. The package version 1.1.7 includes unit-level small
area models that rely on access to micro data which may be challenging due to confi-
dentiality constraints. In contrast, area-level models are less demanding with respect to
(a) data requirements, as only aggregates are needed for estimating regional indicators,
and (b) computational resources, and enable the incorporation of design-based properties.
Therefore, the area-level model (Fay and Herriot 1979) and various extensions have been
added to version 2.0.1 of the package emdi. These extensions include amongst others (a)
transformed area-level models with back-transformations, (b) spatial and robust exten-
sions, (c) adjusted variance estimation methods, and (d) area-level models that account
for measurement errors. Corresponding mean squared error estimators are implemented
for assessing the uncertainty. User-friendly tools like a stepwise variable selection func-
tion, model diagnostics, benchmarking options, high quality maps and export options of
the results enable the user a complete analysis procedure - from model building to diag-
nostics. The functionality of the package is demonstrated by illustrative examples based
on synthetic data for Austrian districts.

Keywords: Fay-Herriot models, official statistics, survey statistics, small area estimation.

1. Introduction

Small area estimation (SAE) has gained importance not only in research but also in many
fields of application to get a better insight of indicators at a small-scale level. Among oth-
ers, SAE is used for estimating socio-economic measures like income, poverty and health or
indicators for agriculture (Datta et al. 1991; Tzavidis et al. 2012; Zhang et al. 2015; Pratesi
2016). Especially official statistics and economic or political decision makers benefit from
reliable estimation of disaggregated indicators and thus SAE methods. Existing surveys were
often not planned for these disaggregated levels and show only small sample sizes which often
leads to a low precision of the estimates. SAE methods can be employed to avoid expensive
and time-consuming enlargements of the sample size of surveys. because the reduced sample
size on disaggregated levels leads to reduced precision of the estimates. SAE methods can be
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employed to avoid expensive and time-consuming enlargements of the sample size of surveys.
The idea is to combine data sources with model-based approaches. Existing survey data will
be enriched by auxiliary information, e.g., from census or register data, to improve the accu-
racy of the estimation of the indicators on area- or domain- level. The terms area and domain
can be used interchangably and refer either to a geographic area or to any subpopulation of
a population of interest like socio-demographic groups. Among others, Pfeffermann (2013),
Rao and Molina (2015), Tzavidis et al. (2018) and Jiang and Rao (2020) give comprehensive
overviews of SAE methods.
The main goal of the package emdi is the simplification of estimating these regionally disag-
gregated indicators. The package version 1.1.7 contains direct estimation based exclusively on
survey data and model-based estimation using the unit-level empirical best predictor (EBP)
method (Molina and Rao 2010). The EBP approach is powerful since it enables the simul-
taneous estimation of various indicators. For this, it relies on unit-level information, i.e.,
information about each unit in each domain. Even though survey data often provides unit-
level information, access to census or register data at unit-level is less likely. Hence, area-level
models provide a valuable alternative. First, only area-level aggregates are needed for the
estimation of the regional indicators. Second, area-level models can consider the survey de-
sign by integrating the sampling weights. Third, the computation is faster compared to the
computational intensive EBP approach.
Various R packages that employ different area-level models are available on the Comprehen-
sive R Archive Network (CRAN): The package smallarea (Nandy 2015) offers different vari-
ance estimation methods (maximum likelihood (ML), residual maximum likelihood (REML),
Prasad-Rao- and Fay-Herriot method-of-moment) for the standard Fay-Herriot (FH) model
and a function to estimate unknown sampling variances. The opportunity of estimating unit-
and area-level models under heteroscedasticity is provided by the JoSAE package (Breiden-
bach 2018). The package saery (Lefler et al. 2014) provides functions for the estimation of
temporal FH models. The robust estimation of area-level models with spatial and/or tem-
poral structures in the random effects is supported by package saeRobust (Warnholz 2018).
The estimation of multivariate FH models is possible with package msae (Permatasari and
Ubaidillah 2020). The package hbsae (Boonstra 2012) allows for the fitting of unit- and area-
level models by frequentist or hierarchical Bayesian approaches. The possibility of estimating
FH models and some of its extensions in a Bayesian framework is also given by the BayesSAE

package (Shi 2018). Further on, the mme package (Lopez-Vizcaino et al. 2019) allows the
building of Gaussian area-level multinominal mixed-effects models in the SAE context. One
of the commonly used packages is the sae package (Molina and Marhuenda 2015). It includes
a wide range of area-level models (the standard FH model with REML, ML and FH method-
of-moment model fitting and a spatial and a spatio-temporal extension of the FH model) and
unit-level models (the nested error linear regression model of Battese et al. (1988) and the
EBP approach). Table 1 gives an overview of the packages and the implemented methodology.
Package emdi version 2.0.1 expands the existing packages for the following reasons:

• None of the existing packages contains such a variety of different area-level models.

• In addition to the spatial and robust area-level models that are already available in
existing R packages, emdi includes also area-level models that are not available in ex-
isting packages: adjusted variance estimation methods and transformation options for
the standard FH model, and a measurement error FH model.
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Standard variance estimation
√ √ √ √

Adjusted variance estimation
√

Unknown sampling variances
√

Heteroscedasticity
√

Spatial correlation
√ √

Spatio-temporal correlation
√

Temporal correlation
√

Robust
√ √

Robust, spatial correlation
√ √

Robust, (spatio-)temporal
correlation

√

Multivariate
√

Bayesian formulation
√ √

Gaussian multinomial
√

Transformation (log, arcsin)
√

Measurement error
√

Table 1: Overview of implemented area-level models in R packages available on CRAN.

• Package emdi offers user-friendly tools that go beyond model estimation for the new and
existing methods like specific diagnostic tools both in form of a summary and graphical
diagnostics, and the comparison of the model-based with direct estimates and their
respective mean squared error (MSE) estimates. Furthermore, benchmarking options,
geographically visualization of the results in form of high quality maps, and export of
the results to Excel and OpenDocument Spreadsheet are provided.

• Plus a stepwise variable selection algorithm for area-level models is included in emdi to
allow the user to build a model based on information criteria.

Thus, the newly introduced package version 2.0.1 extends the current version 1.1.7 by various
area-level models, but stays in line with the user-friendly orientation of the existing version.
The structure of the paper can be described as follows. Section 2 introduces the statistical
methods implemented in the package. The included example data sets are presented in
Section 3. Section 4 provides an illustrative description of the functions using the example
data sets. While Section 4.1 guides the reader from model building to model diagnostics of
a standard FH model and exporting the results to Excel, Section 4.2 follows with relatively
short descriptions of how to build the different extended area-level models. Finally, Section 5
concludes and gives an outlook.

2. Statistical methodology

Area-level models for the estimation of indicators like means, totals or shares have been added
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to the new package release (2.0.1). These comprise the area-level model by Fay and Herriot
(1979) and several extensions of this standard model to account for issues that may come up in
real data applications. To measure the precision of those models, respective MSE estimators
have been integrated following the literature.

2.1. Standard Fay-Herriot model

Throughout the paper, a finite population U is assumed that consists of N units that are
subdivided into D domains or areas of specific sizes N1, ..., ND. Then a random sample of
size n can be drawn from U and partitioned into D areas with n1, ..., nD observations per
domain.
The FH model links area-level direct estimators that are based on survey data to covariates
aggregated on an area level that stem from e.g., administrative (like register or census) data
or alternative data sources (like satellite, social media or mobile phone data). The FH model
is composed of two levels. The first one is the sampling model

θ̂Dir
i = θi + ei, i = 1, . . . , D.

θ̂Dir
i is an unbiased direct estimator for a population indicator of interest θi, for instance a

mean or a ratio. ei stands for independent and normally distributed sampling errors with

ei
ind
∼ N(0, σ2

ei
). Even though the model assumes known sampling variances, in practical

applications σ2
ei

are usually unknown and have to be estimated from the unit-level sample
data (Rivest and Vandal 2003; Wang and Fuller 2003; You and Chapman 2006). Package
emdi provides a non-parametric bootstrap for estimating the variances of the direct estimator
(Alfons and Templ 2013). To allow for complex survey designs, sampling weights (w) can be
considered in the direct estimation (Horvitz and Thompson 1952). For example, an estimator
for the population mean θi of a continous variable of interest y for each area i is estimated by

θ̂Dir
i =

∑ni

j=1 wijyij∑ni

j=1 wij
,

where the index j indicates an individual with j = 1, ..., ni in the i-th area. The second level
links the target indicator θi linearly to area-specific covariates xi,

θi = x⊤

i β + ui,

where β is a vector of unknown fixed-effect parameters, ui is an independent and identically

normally distributed random effect with ui
iid
∼ N(0, σ2

u).
The combination of the sampling and the linking model leads to a special linear mixed model

θ̂Dir
i = x⊤

i β + ui + ei, i = 1, . . . , D. (1)

The empirical best linear unbiased estimators β̂ of β are computed by weighted least square
theory. The empirical best linear unbiased predictor (EBLUP) of θi is obtained by substituting
the variance parameter σ2

u with an estimate. The resulting estimator can then be written as

θ̂FH
i = x⊤

i β̂ + ûi

= γ̂iθ̂
Dir
i + (1 − γ̂i)x

⊤

i β̂. (2)
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The EBLUP/FH estimator can be understood as a weighted average of the direct estimator

θ̂Dir
i and a regression-synthetic part x⊤

i β̂. The estimated shrinkage factor γ̂i = σ̂2
u

σ̂2
u+σ2

ei

puts

more weight on the direct estimator when the sampling variance is small and vice versa. Areas
for which no direct estimation results exist because the sample size is zero or the results may
not be published are called out-of-sample domains. For those domains the prediction reduces
to the regression-synthetic component θ̂FH

i,out = x⊤
i β̂ (Rao and Molina 2015).

Estimation methods for σ2

u

The variance of area random effects has to be estimated. Commonly used approaches are the
FH method-of-moment estimator (Fay and Herriot 1979), the ML, and the REML estimators
(Rao and Molina 2015). The likelihood methods are known to perform more efficiently than
the methods of moments (Rao and Molina 2015). The commonly used methods can produce
negative variance estimates that are supposed to be strictly positive. In the estimation meth-
ods mentioned above, negative variance estimates are set to zero (σ̂2

u = max(σ̃2
u, 0)) resulting

in zero estimates of the shrinkage factor γi. Therefore no weight is put on the direct estimator
ignoring its possible reliability. This poses a problem especially when the number of areas is
small. To avoid this so-called over-shrinkage problem, Li and Lahiri (2010) and Yoshimori
and Lahiri (2014) proposed methods that adjust the respective likelihoods of the standard
ML and REML approaches by a factor:

Ladj(σ
2
u) = A × L

(
σ2

u

)
,

where A denotes the adjustment factor and L(σ2
u) the given likelihood function. The proposed

adjustment factors are:

• by Li and Lahiri (2010): A = σ2
u,

• by Yoshimori and Lahiri (2014): A =

(
tan−1

(
D∑

i=1

γi

))1/D

.

Simulation studies conducted by Yoshimori and Lahiri (2014) showed that the adjusted
Yoshimori-Lahiri methods are preferable when the variance of the area random effect is small
relative to the sampling variance. Otherwise the adjusted Li-Lahiri methods are recom-
mended. Package emdi offers six different variance estimation methods: standard ML (ml)
and REML (reml), adjusted ML and REML following Li and Lahiri (2010) (amrl, ampl) and
Yoshimori and Lahiri (2014) (amrl_yl, ampl_yl).

2.2. Extended area-level models

In real data applications problems might occur that were theoretically not expected or as-
sumptions of the standard FH model, e.g., normality and independency of the error terms,
may be violated. The following Section outlines the extensions of the standard FH model
that are implemented in package emdi.

Transformations
When working with right skewed data like income, wealth or business data, the assumptions
of a linear relation between the response and the explanatory variables and normality of both
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error terms (ui and ei) of the FH model may be violated. Applying a log-transformation
could be a reasonable solution to meet these model assumptions (Neves et al. 2013; Kreutz-
mann et al. 2019a). In package emdi, the direct estimates and their variances are transformed
following Neves et al. (2013):

θ̂Dir*log
i = log

(
θ̂Dir

i

)
,

VAR(θ̂Dir*log
i ) =

(
θ̂Dir

i

)−2

VAR

(
θ̂Dir

i

)
,

where the *log notation stands for the logarithmic transformed scale. To obtain the FH
estimator on the transformed scale θ̂FH*log

i , θ̂Dir
i is substituted by θ̂Dir*log

i and VAR(θ̂Dir*log
i )

serves as estimate for the sampling variances (σ2
ei

) in Equation 2. Since the logarithm is a
nonlinear transformation, the final FH estimates on the original scale require a bias correction
after the back-transformation (Slud and Maiti 2006; Sugawasa and Kubokawa 2017). Package
emdi allows to choose two options:

1. A "crude" method (bc_crude) that takes the properties of the log-normal distribution
into account (Rao 2003; Neves et al. 2013):

θ̂FH, crude
i = exp

{
θ̂FH*log

i + 0.5MSE
(
θ̂FH*log

i

)}
.

2. A bias correction suggested by Slud and Maiti (2006) (bc_sm) that further regards the
bias due to the random effects:

θ̂FH, Slud-Maiti
i = exp

{
θ̂FH*log

i + 0.5σ̂2
u

(
1 − γ̂*log

i

)}
.

The FH estimator on the transformed scale is denoted by θ̂FH*log
i and accordingly MSE(θ̂FH*log

i )
stands for a MSE estimator on the transformed scale, e.g., the Prasad-Rao or Datta-Lahiri
MSE (cf. Section 2.3). The Slud-Maiti back-transformation is derived for the ML vari-
ance estimation of the random effect and cannot be applied in the presence of out-of-sample
domains, because the back-transformation contains the estimate of the shrinkage factor on
domain level. In those cases, the "crude" method can be applied which allows to use also
other variance estimation methods.
Another transformation provided by package emdi is the arcsin transformation that is widely
used when the direct estimator of the FH model is a ratio (Casas-Cordero et al. 2016; Schmid
et al. 2017). Package emdi automatically transforms the direct estimates and the sampling
variances as suggested by Jiang et al. (2001):

θ̂Dir*arcsin
i = sin−1

(√(
θ̂Dir

i

))
,

VAR(θ̂Dir*arcsin
i ) = 1/(4ñi),

where the *arcsin denotes the arcsin transformed scale and ñi the effective sample size which
can be described as the sample size adjusted by the sampling design (Jiang et al. 2001). The
FH model is estimated using Equation 2 and the results are additionally truncated to the
interval [0, π/2] to ensure results between 0 and 1, if needed. To obtain final estimates on the
original scale, the final estimation results must be subjected to a back-transformation. Two
different back-transformations are available in emdi:
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1. A "naive" back-transformation (naive):

θ̂FH, naive
i = sin2

(
θ̂FH*arcsin

i

)
.

2. A back-transformation with bias-correction (bc) following Sugawasa and Kubokawa
(2017) and Hadam et al. (2020):

θ̂FH, bc
i =

∫
∞

−∞

sin2(t)
1

2π
σ̂2

uσ2
ei

σ̂2
u+σ2

ei

exp


−

(
t − θ̂FH*arcsin

i

)2

2
σ̂2

uσ2
ei

σ̂2
u+σ2

ei


 dt.

Spatial FH model
The standard FH model assumes independency of the random effects. When working with
geographical areas, assuming correlated random effects to incorporate a certain neighbour-
ing structure can be valuable. Package emdi contains the spatial FH model introduced by
Petrucci and Salvati (2006) that considers a simultaneously autoregressive process of order
one, SAR(1). Compared to the standard model, the estimation differs mainly by discarding
the assumptions of independent random effects and estimating a spatial autoregressive coef-
ficient (ρ) which takes values between −1 and 1. The higher the absolute value, the stronger
the relationship with the neighboring areas. The random effect ui in Equation 1 is replaced
by

u = ρ1W u + ǫ, ǫ ∼ N(0D, σ2
1ID), (3)

with W being the D×D row standardized proximity matrix that describes the neighbourhood
structure of the areas, 0D a vector of zeros and ID the D × D identity matrix. The random
effects u of Equation 3 follow a SAR(1). When normality of the random effects is assumed,
the model can be fitted by ML (ml) and REML (reml). The application of spatial FH models
should be considered when no geographic auxiliary variables are available to capture the spa-
tial relation or when ρ1 is larger than 0.5 (Bertarelli et al. 2019). Even before estimating the
model, package emdi enables the testing for spatial correlation by the Moran’s I and Geary’s
C statistics (Cliff and Ord 1981; Pratesi and Salvati 2008). While Moran’s I mimics an usual
correlation coefficient whose values range from −1 and 1, Geary’s C takes values between 0
and 2 (0: positive, 1: no, 2: negative spatial autocorrelation). Both statistics behave inversely
to each other.

Robust area-level models
For the case of influential outlying observations, package emdi allows for robust versions of
the standard and the spatial FH model. The theory is extensively studied in Warnholz (2016)
that extended the robust estimation procedure for linear mixed models suggested by Sinha
and Rao (2009) to area-level models. The model fitting can be understood as a robustified
ML version that also contains an influence function together with a tuning constant k. The
recommendation is to set the tuning constant to 1.345 (Sinha and Rao 2009). When non-
symmetric outliers are expected to influence the robust estimation, a bias correction should be
involved. This correction can be controlled by a multiplyer constant c that is used for the bias
correction. For further details we also refer to Chambers et al. (2014) and Schmid et al. (2016).
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Measurement error model
The standard FH model is based on the assumption that the covariates are measured without
error (Fay and Herriot 1979). This characteristic is typically assumed because census or
register data are used as auxiliary information. However, when the covariate information
stems from larger surveys or alternative data sources this assumption can be violated. Package
emdi includes an implementation of the measurement error (ME) model developed by Ybarra
and Lohr (2008). To account for the ME in the covariates xi, they modified the shrinkage
factor as follows:

γi =
σ2

u + β⊤Ciβ

σ2
u + β⊤Ciβ + σ2

ei

,

where the Ci stands for variance-covariance matrix of the covariates which needs to be given
to the model. The modified shrinkage factor pulls more weight on the direct estimator when
the variances of the covariates are large. For the estimation of the βs and the σ2

u, they used a
modified method of weighted least squares and a moment estimator, respectively. Additional
details are available in Ybarra and Lohr (2008).

2.3. Mean squared error estimation

To evaluate the accuracy of the EBLUP estimates, the MSE is the most common measure
used in SAE (Rao and Molina 2015). Package emdi offers a variety of MSE estimators
stemming from both analytical determination and resampling strategies like boostrap and
jackknife methods. Table 2 gives an overview about the included MSE approaches. For each
area-level model presented in Section 2.1 and 2.2 the provided MSE type(s) is (are) shown.
Please refer to the quoted references for extensive formulas and derivations. As additional
measure of variability of the direct and FH estimates, within various functions and methods

of package emdi, the coefficient of variation (CV) is provided: CV =
√

M̂SE(θ̂i)/θ̂i, where

θ̂i either stands for θ̂Dir
i or θ̂FH

i .

3. Data sets

The version 1.1.7 of package emdi contains a sample (eusilcA_smp) and a population data
set (eusilcA_pop) at a household level. The data generating processs for both data sets is
extensively described in Kreutzmann et al. (2019b). Besides the modification of not produc-
ing out-of-sample domains for the area-level version of the data sets, the process is almost
equivalent. As basis for the data sets serves the synthetic Austrian European Union Statistics
on Income and Living Conditions (EU-SILC) data set (eusilcP) from 2006 of the simFrame

package (Alfons et al. 2010). The lowest regional level in the eusilcP data set consists of the
nine Austrian states. Based on certain population size and income criteria, households were
allocated to 94 Austrian districts resulting in the synthetic population data set eusilcA_pop.
For the eusilcA_smp data set, a sample was drawn following a stratified random sampling
process using the districts as strata. To show the usage of the FH model and its extensions,
area-level data is required. The area-level survey and population data sets, eusilcA_smpAgg

and eusilcA_popAgg, are obtained by aggregation on the district level with the help of
the direct function of the package emdi. The direct estimates in eusilcA_smpAgg are the
weighted mean equivalized household income Mean, the ratio of households that earn more
than the national median income (MTMED) and their variances. These are based on the equiv-
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Model Type of MSE Reference

Standard FH (depending on variance estimation of σ2
u)

ml/ampl_yl Analytical Datta and Lahiri (2000)
reml/amrl_yl Analytical Prasad and Rao (1990)
ampl/amrl Analytical Li and Lahiri (2010)
ml/reml (out-of-
sample)

Analytical Rao and Molina (2015)

Transformations
log (depending on back-transformation)
bc_crude Analytical Rao (2003), Neves et al.

(2013)
bc_sm Analytical Slud and Maiti (2006)
arcsin (depending on back-transformation)
naive Jackknife Jiang et al. (2001)

Weighted Jackknife Jiang et al. (2001); Chen and
Lahiri (2002)

Parametric bootstrap Hadam et al. (2020)
bc Parametric bootstrap Hadam et al. (2020)
Spatial FH (depending on variance estimation)

ml/reml Analytical Singh et al. (2005)
ml/reml Parametric bootstrap Molina et al. (2009)
reml Nonparametric bootstrap Molina et al. (2009)

Robust FH
Pseudolinear Warnholz (2016)
Parametric bootstrap Warnholz (2016)

FH with ME
Jackknife Jiang et al. (2002)

Table 2: Overview of the MSE estimation options of the fh function.

alized household income eqIncome in eusilcA_smp corresponding to the total income of a
household divided by the size of the household that is equalised by the modified equivalence
scale of the Organisation for Economic Co-operation and Development (OECD) (Hagenaars
et al. 1994). Additionally, the mean of the variable cash, its variance and the sample sizes
are included in eusilcA_smpAgg since these are used in the model extensions. The popula-
tion data set eusilcA_popAgg contains a variety of variables that describe different income
sources of households and a variable that describes the ratios of the population sizes per area
and the total population size ratio_n. The variable Domain exists in both data sets and
indentifies the different districts. Both data sets have 94 observations standing for the 94
Austrian districts, the sample data set eusilcA_smpAgg contains eight variables and the pop-
ulation data set eusilcA_popAgg 15. Table 3 provides an overview of all included variables
of the sample and population data set. For the creation of the proximity matrix used in the
spatial FH model and also for the usage of the map_plot function, a shape file is needed.
The package provides a shape file for the 94 districts of Austria shape_austria_dis (.rda

format, SpatialPolygonsDataFrame). It stems from the SynerGIS website (Bundesamt für
Eich- und Vermessungswesen 2017). The data set eusilcA_prox comprising an exemplary
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Variable Meaning

Sample data set
Domain Austrian districts
Mean Mean of the equivalized household income
MTMED Share of households who earn more than the

national median income
Cash Mean employee cash or near cash income
Var_Mean Variance of equivalized household income
Var_MTMED Variance of share of households who earn

more than the national median income
Var_Cash Variance of employee cash or near cash income
n Effective sample sizes

Population data set
Domain Austrian districts
eqsize Equivalized household size according to the

modified OECD scale
cash Employee cash or near cash income
self_empl Cash benefits or losses from self-employment

(net)
unempl_ben Unemployment benefits (net)
age_ben Old-age benefits (net)
surv_ben Survivor’s benefits (net)
sick_ben Sickness benefits (net)
dis_ben Disability benefits (net)
rent Income from rental of a property or land (net)
fam_allow Family/children related allowances (net)
house_allow Housing allowances (net)
cap_inv Interest, dividends, profit from capital

investments in unincorporated business (net)
tax_adj Repayments/receipts for tax adjustment (net)
ratio_n Ratios of the population size per area and the

total population size

Table 3: Variables of the aggregated data sets. The Domain variables are factors, the rest of
the variables are numeric. Except for the variables Domain and ratio_n, the observations of
all variables of the population data set consist of the mean values per district.

proximity matrix is also added to package emdi. The creation of eusilcA_prox is described
in Section 4.1.

4. Functionality and case studies

While the theoretical background of the implemented area-level models has been introduced
in Section 2, the focus of Section 4 lies on the functionality and the work flow in R. All of the
contained area-level models can be applied by one function: fh. Table 4 gives an overview of
the 20 input arguments of function fh, together with a short description and default settings if



S. Harmening, A. Kreutzmann, S. Pannier, N. Salvati, T. Schmid 11

Argument Description Default

fixed Formula of fixed-effects part of linear
mixed model

vardir Domain-specific sampling variances of
the direct estimates

combined_data Combined sample and census data set
domains Domain indentifier for combined_data NULL
method Model fitting method reml
interval Lower and upper limit for the variance

estimation
NULL

k Tuning constant for robust estimation 1.345
c Bias correction multiplyer constant for

robust estimation
1

transformation Type of transformation no
backtransformation Type of back-transformation NULL
eff_smpsize Effective sample sizes for the arcsin

transformation
NULL

correlation Correlation of random effects no
corMatrix Proximity matrix for the spatial model NULL
Ci Array of the variance-covariance matrix

of the explanatory variables for each
area for the ME model

NULL

tol Tolerance value for the variance
estimation

0.0001

maxit Maximum number of iteration for the
variance estimation

100

MSE MSE estimation FALSE
mse_type Type of MSE estimator analytical
B Number of bootstrap iteration for

estimating a bootstrap MSE
50

seed Seed for random number generator 123

Table 4: Input arguments of function fh.

specified. Not every argument needs a specification for every estimated model. Depending on
the area-level model, different arguments have to be determined (see Table 6 in Appendix A).
The flow diagram of Figure 1 demonstrates the estimation possibilities of a standard FH
model introduced in Section 2.1. In line with the direct and ebp functions of package ver-
sion 1.1.7, the S3 object system is used for function fh (Chambers and Hastie 1992). All
three return objects of class emdi, but in addition, the application of function direct leads
to a direct object, and of functions ebp and fh to objects of class model. The latter two are
further classified into ebp and fh objects. Even though all of the returned objects contain ten
components, not every component is available for each estimation method such that in these
cases they are indicated as NULL (see Table 5). Furthermore, the model component differs for
the two model classes. The components for the objects of class fh are provided in Table 7
in Appendix B. Not all of the components are available for every area-level model, e.g., the
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analytical

Li-Lahiri
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analytical

Datta-
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analytical

Prasad-
Rao MSE:

analytical

Figure 1: Overview of the standard FH model and adjusted variance estimation methods.

shrinkage factors per domain are not provided for the spatial and robust model extensions as
they do not enable an intuitive interpretation. Due to the consistent structure, all functions
and methods of emdi version 1.1.7 can be applied to objects of class fh. Additionally, new
functions and methods are available for the area-level models. Figure 2 demonstrates the
steps of a full data analysis procedure and the respective functions from model building and
diagnostics to presenting the results. Section 4.1 explains the procedure shown in Figure 2
step by step for the standard FH model by using the Austrian EU-SILC data described in
Section 3. To understand how the different extended area-level models are fitted with function
fh, Section 4.2 shortly gives instructions.

4.1. Estimation procedure for the standard Fay-Herriot model

The aim of the illustrative example is to estimate the equivalized income for the 94 Austrian
districts. The package and the example data sets are loaded as follows:

R> library("emdi")

R> data("eusilcA_popAgg")

R> data("eusilcA_smpAgg")

Combine input data
The function fh requires one data set (argument combined_data) that comprises the sample
and population data. Thus, the data set has to contain all variables of the formula object
fixed, the variances of the direct estimates and optionally, a domain identifier. In case the
sample and population data are only available separately, a merging function combine_data

is provided. The necessary arguments are both data sets and characters specifying the domain
indicator for the respective data sets.

R> combined_data <- combine_data(
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Name Description Available for
direct model ebp model fh

1 ind Point estimates per area
√ √ √

2 MSE Variance/MSE estimaties
per area

√ √ √

3 transform_param Transformation and shift
parameters

√

4 model Fitted model
√ √

5 framework List for data description
√ √ √

6 transformation Type of transformation
√ √

7 method Estimation method
√ √

8 fixed Formula of fixed effects
√ √

9 call Function call
√ √ √

10 successful_bootstraps Number of successful
bootstraps

√ √

Table 5: The ten emdi object components distuingished in direct, ebp and fh. More detailed
information are provided by the package documentation.

+ pop_data = eusilcA_popAgg, pop_domains = "Domain",

+ smp_data = eusilcA_smpAgg, smp_domains = "Domain")

Identify spatial structures
With the help of a proximity matrix, the Moran’s I and Geary’s C test statistics can be
computed to identify spatial structures by the spatialcor.tests command. For the creation
of the proximity matrix, the shapefile has to be loaded. We load the Austrian shapefile that
is provided by package emdi for our example and merge it to the sample data set by using the
respective domain identifiers with the help of the merge method from package sp (Pebesma
and Bivand 2005). Before merging, we sort the Austrian shapefile corresponding to the order
of the domains in the sample data.

R> library("sp")

R> load_shapeaustria()

R> shape_austria_dis <- shape_austria_dis[order(shape_austria_dis$PB),]

R> austria_shape <- merge(shape_austria_dis, eusilcA_smpAgg, by.x = "PB",

+ by.y = "Domain", all.x = F)

Then the poly2nb and nb2mat functions of the spdep package (Bivand and Wong 2018)
are used. While poly2nb generates a list of neighbours that share joint boundaries, nb2mat

computes a weights matrix. The style argument has to be set to W, as a row standardized
proximity matrix is required.

R> library("spdep")

R> rel <- poly2nb(austria_shape, row.names = austria_shape$PB)

R> eusilcA_prox <- nb2mat(rel, style = "W", zero.policy = TRUE)

Thus, a row standardized proximity matrix is generated that initially had weights amounting
to one if an area shares a boundary with another area and to zero when the respective areas
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Combine sample
and population

data: combine_data

Identify spatial structures:
spatialcor.tests

Perform model
selection: step

Estimate EBLUPs
and MSEs: fh

Assess the estimated
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EBLUPs: benchmark
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alize the results:

estimators and map_plot

Export the results:
write.excel, write.ods

Figure 2: Estimation proce-
dure for area-level models.

are not neighbours. Function spatialcor.tests makes
use of the moran.test and geary.test functions with
their respective default settings of package spdep. The
input arguments are the created matrix and the direct
estimates.

R> spatialcor.tests(direct = combined_data$Mean,

+ corMatrix = eusilcA_prox)

Statistics Value p.value

1 Moran's I 0.2453677 5.607958e-05

2 Geary's C 0.6238681 2.473294e-03

Since the output indicates only a weak positive spatial
autocorrelation, the following estimation procedure
does not consider the integration of a correlation
structure of the random effects.

Perform model selection
Besides theoretical considerations on which auxiliary
variables should be part of the model, the decision for
the best model should be based on information criteria
like the Akaike or Bayesian information criterion (AIC,
BIC). Many applications use selection techniques based
on linear regression (Casas-Cordero et al. 2016; Schmid
et al. 2017). Instead, package emdi provides the AIC,
BIC, the Kullback information criterion (KIC) and their
bootstrap and bias corrected versions (AICc, AICb1,
AICb2, KICc, KICb1, KICb2) especially developed for
FH models by Marhuenda et al. (2014). These criteria
are also included in the package sae, but package emdi

enables a stepwise variable selection procedure based
on the chosen information criteria comparable to the
step function for lm models of package stats (R Core
Team 2020). The most important input arguments
are an object of class fh and the direction of the
stepwise search ("both", "backward", "forward"). In
this example, the default setting "backward" and the
"KICb2" information criterion is used. In the fixed

argument of the fh function, the variables equivalized
household size (eqsize), employee cash (cash), cash
benefits from self-employment (self_empl) and un-
employment benefits (unempl_ben) are included. For
a valid comparison of models based on information
criteria the model fitting method has to be ml. The
output shows the stepwise removal of variables until
the lowest KICb2 is reached, the function call and
an overview of the estimated coefficients of the final
recommended model.
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R> fh_std <- fh(fixed = Mean ~ cash + self_empl + unempl_ben,

+ vardir = "Var_Mean", combined_data = combined_data,

+ domains = "Domain", method = "ml")

R> step(fh_std, criteria = "KICb2")

Start: KICb2 = 1709.42

Mean ~ cash + self_empl + unempl_ben

df KICb2

- unempl_ben 1 1708.3

<none> 1709.4

- self_empl 1 1763.0

- cash 1 1808.6

Step: KICb2 = 1708.33

Mean ~ cash + self_empl

df KICb2

<none> 1708.3

- self_empl 1 1765.3

- cash 1 1816.1

Call:

fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,

domains = "Domain", method = "ml", MSE = FALSE)

Coefficients:

coefficients std.error t.value p.value

(Intercept) 3070.512311 635.94290168 4.828283 1.377153e-06

cash 1.059385 0.07049025 15.028815 4.754350e-51

self_empl 1.745636 0.22017394 7.928443 2.219112e-15

KICb2 is the lowest when the variable unempl_ben is removed. Therefore, the formula Mean

~ cash + self_empl is used in the following.

Estimate EBLUPs and MSEs
The standard FH model is built. In addition to the fixed part, required arguments are
vardir and combined_data. We specify the domains (if the domains argument is set to
NULL, the domains are numbered consecutively) and activate the MSE estimation.

R> fh_std <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

+ combined_data = combined_data, domains = "Domain", method = "ml",

+ MSE = TRUE)

Assess the estimated model
In many publications using FH models, model diagnostics are not or only little discussed. One
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reason for this might be the lack of existing implementation of those measures in R or other
statistical software. The summary method of emdi provides additional information about
the data and model components, in particular the chosen estimation methods, the number
of domains, the log-likelihood, the information criteria by Marhuenda et al. (2014), the R2

and the adjusted R2 proposed by Lahiri and Suntornchost (2015). Additionally, measures to
validate model assumptions about the standardized realized residuals and the random effects
are provided: skewness and kurtosis (skewness and kurtosis of package moments, Komsta
and Novomestky, 2015) of the standardized realized residuals and the random effects and
the test statistics with corresponding p value of the Shapiro-Wilks-test for normality of both
error terms. As the introduced area-level models do not assume a homoscedastic sampling
distribution, for the summary and plot methods the realized residuals (êi) are standardized
by: êstd

i = êi/σei
. The summary output differs slightly for the different implemented area-level

models. For example, log-likehoods and thus information criteria are not available in theory
for the robust and the ME model.

R> summary(fh_std)

Call:

fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,

domains = "Domain", method = "ml", MSE = TRUE)

Out-of-sample domains: 0

In-sample domains: 94

Variance and MSE estimation:

Variance estimation method: ml

Estimated variance component(s): 1371195

MSE method: datta-lahiri

Coefficients:

coefficients std.error t.value p.value

(Intercept) 3070.512311 635.94290168 4.828283 1.377153e-06

cash 1.059385 0.07049025 15.028815 4.754350e-51

self_empl 1.745636 0.22017394 7.928443 2.219112e-15

Explanatory measures:

loglike AIC AICc AICb1 AICb2 BIC KIC

1 -847.8303 1703.661 1703.91 1715.758 1703.461 1713.834 1707.661

KICc KICb1 KICb2 R2 AdjR2

1 1708.783 1720.632 1708.335 0.9212817 0.9482498

Residual diagnostics:

Skewness Kurtosis Shapiro_W Shapiro_p

Standardized_Residuals 0.3004662 3.971216 0.9840810 0.3119346

Random_effects -0.4113238 3.086048 0.9839858 0.3072834
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Transformation: No transformation

The output of the example shows that all domains have survey information and the variance
of σ2

u amounts to 1371195. Further, all of the included auxiliary variables are significant even
on a small significance level and their explanatory power is large with an adjusted R2 of
around 0.95. The results of the Shapiro-Wilk-test indicate that normality is not rejected for
both errors. Graphical residual diagnostics are possible by the plot method.

R> plot(fh_std)

Figure 3 shows normal quantile-quantile (Q-Q) plots of the standardized realized residuals
and random effects (Figure 3a) as well as plots of the kernel densities of the distribution
of both error terms and for comparison a standard normal distribution (Figure 3b and 3c).
Like in the emdi version 1.1.7, the user is free to modify the interface of the plots. The
label and color arguments are easy to edit. Additionally, the overall appearance of the
plots are changeable by the gg_theme argument as the plots are built with the ggplot2 pack-
age (Wickham 2016). We refer to the package documentation for a detailed description of
how to customize the plot arguments. Figure 3 supports the results of the normality tests
provided in the summary output, the distribution of the standardized random effects may
be slightly skewed (Figure 3c). If one would not be satisfied with the results, applying a
log-transformation could improve the distribution of the error terms.

Compare results with direct estimates
The FH results should be consistent with the direct estimates for domains with a small di-
rect MSE and/or large sample sizes. Further, the precision of the direct estimates should
be improved by using auxiliary information. The comparison of the direct and model-based
(FH) estimates can be done graphically by the generic function compare_plot. For the fh

method the required input argument is an object of class fh. When the default settings of
the command are used, the output consists of two plots: a scatter plot proposed by Brown
et al. (2001) and a line plot. Besides the direct and FH estimates, the plot contains the
fitted regression and the identity line. Both lines should not differ too much. Preferably, the
model-based (FH) estimates should track the direct estimates within the line plot especially
for domains with a large sample size/small MSE of the direct estimator. The points are
ordered by decreasing MSE of the direct estimates. In addition, the input arguments MSE and
CV can be set to TRUE leading to two extra plots, respectively. The MSE/CV estimates of the
direct and model-based (FH) estimates are compared firstly via boxplots and secondly via
ordered scatter plots (ordered by increasing CV of the direct estimates). Like for the plot

command, a variety of customization options are offered, e.g., the label options (label), the
format of the points (shape) and the style of the line (line_type).

R> compare_plot(fh_std, CV = TRUE, label = "no_title")

Except of one high value, the fitted regression and identity line of the scatter plot (Figure 4a)
are relatively close. Note that the high value corresponds to the domain Eisenstadt (Stadt)
with a very small sample size of 10 and the highest MSE of the direct estimates, so the direct
estimator is very uncertain. Also the direct estimates are well tracked by the model-based
(FH) estimates within the line plot (Figure 4b). The boxplot (Figure 4c) and the ordered
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Figure 3: Output of plot(fh_std): (a) normal quantile-quantile (Q-Q) plots of the standard-
ized realized residuals and random effects, (b) and (c): kernel densities of the distribution
of the standardized realized residuals and random effects (blue) in comparison to a standard
normal distribution (black).

scatter plot (Figure 4d) show that the precision of the direct estimates could be improved by
the usage of the FH model in terms of CVs. Additionally, almost all of the CV values are
less than 20% which is a common rule of the UK Office for National Statistics in order to
determine whether estimation results should be published (Miltiadou 2020).
Further on, the function compare enables the user to compute a goodness of fit diagnostic
(Brown et al. 2001) and a correlation coefficient of the direct estimates and the estimates of
the regression-synthetic part of the FH model (Chandra et al. 2015). Following Brown et al.
(2001) the difference between the model-based estimates and the direct estimates should not
be significant (null hypothesis). The Wald test statistic is specified as

W (θ̂FH
i ) =

D∑

i=1

(
θ̂Dir

i − θ̂FH
i

)2

V̂AR

(
θ̂Dir

i

)
+ M̂SE

(
θ̂FH

i

)
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Figure 4: Output of compare_plot(fh_std): (a) and (b) scatter and line plots of direct and
model-based point estimates, (c) and (d) boxplot and scatter plots of the CV estimates of the
direct and model-based (FH) estimates.

and is χ2-distributed with D degrees of freedom. When working with out-of-sample domains,
those are not taken into account, because the direct estimates and their variances are missing.
The input argument of function compare is an fh object.

R> compare(fh_std)

Brown test

Null hypothesis: EBLUP estimates do not differ significantly from the

direct estimates

W.value Df p.value

46.97181 94 0.9999874



20 Producing Estimates Based on Area-Level Models in R

Correlation between synthetic part and direct estimator: 0.94

The results of the goodness of fit statistic and the correlation coefficient confirm what the
scatter and the line plot already indicated. In the example the null hypothesis is not rejected
and the correlation coefficient indicates a strong positive correlation (0.94) between the direct
and model-based (FH) estimates.

Benchmarking for consistent estimates
The idea of benchmarking is that the aggregated FH estimates should sum up to estimates
of a higher regional level (τ):

D∑

i=1

ξiθ̂
FH,bench
i = τ,

where ξi stands for the share of the population size of each area in the total population size
(Ni/N). In our example, the EBLUP estimates could get aggregated on a national level and
then compared to or benchmarked with the Austrian mean equivalized income. Package emdi

contains a benchmark function that allows the user to select three different options suggested
by Datta et al. (2011). A general estimator of the three options can be written as follows:

θ̂FH,bench
i = θ̂FH

i +

(
D∑

i=1

ξ2
i

φi

)−1(
τ −

D∑

i=1

ξiθ̂
FH
i

)
ξi

φi
.

Depending on the weight φi, the formula leads to different benchmarking options. If φi equals
ξi, all FH estimates are adjusted by the same factor (raking). A ratio adjustment (ratio)
is being conducted if φi = ξi/θ̂FH

i . For the last option, θ̂FH
i is replaced by M̂SE(θ̂FH

i ) in the
ratio adjustment formula (MSE_adj). While the first option is a relatively naive approach,
the latter two conduct larger adjustments for the areas with larger FH and MSE estimates,
respectively. Thus, for the benchmark function the following arguments have to be specified:
an object of class fh, a benchmark value, a vector containing the ξis (share) and the type

of benchmarking. The output is a data frame with an extra column FH_Bench for the bench-
marked EBLUP values. If the optional argument overwrite is set to TRUE, the benchmarked
results are added to the fh object and the MSE estimates of the non benchmarked FH es-
timates are set to NULL. For the used example, the benchmark value is calculated by taking
the mean of the variable eqIncome of the eusilcA_smp data frame. The ξis can be found in
eusilcA_popAgg as ratio_n.

R> fh_bench <- benchmark(fh_std, benchmark = 20140.09,

+ share = eusilcA_popAgg$ratio_n, type = "ratio")

R> head(fh_bench)

Domain Direct FH FH_Bench Out

1 Amstetten 14768.57 14242.04 14480.61 0

2 Baden 21995.72 21616.40 21978.49 0

3 Bludenz 12069.59 12680.38 12892.79 0

4 Braunau am Inn 10770.53 11925.82 12125.59 0

5 Bregenz 35731.20 32101.69 32639.43 0

6 Bruck-Mürzzuschlag 23027.37 22523.50 22900.79 0
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It is recognizeable that for the first six Austrian districts the original estimates are slightly
modified by the benchmarking.

Extract and visualize the results
The generic function estimators offers an easy way to overview the EBLUP, MSE and CV
results of the direct estimates compared to the model-based (FH) results. The following
output shows the EBLUP and MSE results for the first six domains in Austria.

R> head(estimators(fh_std, MSE = TRUE))

Domain Direct Direct_MSE FH FH_MSE

1 Amstetten 14768.57 926167.4 14242.04 599010.6

2 Baden 21995.72 446534.3 21616.40 356586.1

3 Bludenz 12069.59 1243265.0 12680.38 716040.1

4 Braunau am Inn 10770.53 1029502.4 11925.82 643500.2

5 Bregenz 35731.20 4467316.4 32101.69 1302156.0

6 Bruck-Mürzzuschlag 23027.37 1971664.0 22523.50 906339.2

While the highest equalized income of the considered domains was found in Bregenz, the
lowest was estimated for Braunau am Inn. The MSE estimates of the EBLUPs are always
lower than those of the direct estimates, indicating that the precision of the direct estimates
could be improved with the help of the FH model.
Differences among the areas or hotspots of special interest are easier to detect on maps. With
function map_plot, package emdi offers a user-friendly way to produce maps since creating
maps can often become a time consuming task. The input arguments mainly consist of an
object of class emdi and a spatial polygon of a shape file. The only issue that might come up
is if domain identifiers in the data do not match to the respective identifiers of the shape file.
In those cases, the input argument map_tab is required which is a data frame that contains
the matching of the domain indentifiers of the population and the shape file data sets. For
detailed instructions, we refer to Kreutzmann et al. (2019b) and to the help page of function
map_plot.
For producing maps of the 94 Austrian districts, the Austrian shape file has to be loaded. In
addition to the emdi object, the SpatialPolygonsDataFrame object (map_obj) and a domain
indicator (map_dom_id) have to be specified. The map_tab argument is not necessary since
the identifiers match in our example. To allow for an easier comparison of the results, we
adjust the scales of the maps using the scale_points argument.

R> load_shapeaustria()

R> map_plot(object = fh_std, MSE = TRUE,

+ map_obj = shape_austria_dis, map_dom_id = "PB",

+ scale_points = list(Direct = list(ind = c(8000, 60000),

+ MSE = c(200000, 10000000)), FH = list(ind = c(8000, 60000),

+ MSE = c(200000, 10000000))))

Figures 5a and 5c show the distribution of the estimated (direct vs. model-based) equivalized
income across Austria. It is striking that white and light red tones dominate the map,
indicating relatively low mean incomes of the districts. But in contrast, districts like
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(b)

(c)
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Figure 5: Output of map_plot(): Maps of the
direct and FH estimates ((a) and (c)) with cor-
responding MSE estimates ((b) and (d)).

for example Eisenstadt (Stadt), Urfahr-
Umgebung and Mödling stand out having
the largest incomes. Urfahr-Umgebung is
also eye-catching when having a look at
the MSE estimates (Figures 5b and 5d).
The MSE of the direct and the FH esti-
mates are quiet high. Probably a single
wealthy household raised the mean in-
come and also the variance. Figure 5b
contains some districts with MSEs larger
than the customized scaling (gray areas).
Without the scaling it would have been
hard to identify any differences in Figure 5d.

Export the results
Some users might have an interest to
store the results separately or to use them
for presentations. Excel provides many
opportunities for that. Compared to some
existing R packages, the emdi function
write.excel does not only export the esti-
mation results to Excel, but also the output
of summary. The input arguments are again
similar to the estimators command except
that the newly created path and filename
of the spreadsheet file has to be specified.
The output consists of a new Excel file
which shows the summary output on the
first sheet and the estimation results on
the second sheet. The package openxlsx

(Walker 2018) has been used for the linkage
with Excel.

When working with Microsoft Windows an extra zipping applications for R is necessary for the
usage of package openxlsx (Walker 2018). Thus, the user is recommended to install RTools.
For Linux and macOS zipping application are automatically installed. Using a similar syntax,
the results can also be exported to OpenDocument Spreadsheets by the command write.ods.
The difference to write.excel is that multipe files are created. The output of the FH model
is exemplarily exported to Excel.

R> write.excel(fh_std, file = "fh_std_output.xlsx", MSE = TRUE,

+ CV = TRUE)

Figure 6 provides an insight of the output.

4.2. Estimation of the extended area-level models

This section is dedicated to the model building of the extensions of the standard FH model
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(a)

(b)

Figure 6: Extract of the Excel spreadsheets created by write.excel: (a) summary Output,
(b) estimation results.

(see Section 2.2) implemented in emdi. Figure 7 in Appendix A provides an overview of the
options that can be chosen and Table 6 summarizes which arguments have to be specified for
the respective models.

FH model with transformation
If the indicator of interest needs a transformation, either log or arcsin, in addition to the
function used in Section 4.2, the arguments transformation and backtransformation must
be specified. If, for example, the share of households per area that earn more than the na-
tional median income (MTMED) is the indicator of interest, an arcsin transformation can be
used. The bias-corrected back-transformation bc is chosen in the example. Two more argu-
ments are needed when using an arcsin transformation: the name of the variable describing
the effective sample sizes (eff_smpsize) which needs to be contained in the combined_data

frame. Because of having chosen the bias-corrected back-transformation, the only possible
mse_type is boot, if the MSE estimation is activated.

R> fh_arcsin <- fh(fixed = MTMED ~ cash + age_ben + rent + house_allow,

+ vardir = "Var_MTMED", combined_data = combined_data,

+ domains = "Domain", transformation = "arcsin",

+ backtransformation = "bc", eff_smpsize = "n", MSE = TRUE,

+ mse_type = "boot")
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Spatial FH model
In case the spatial correlation tests conducted in Section 4.1 would have indicated a spatial
correlation of the domains, a spatial FH model for incorporating the spatial structure in the
model could be used. For that the correlation has to be set to spatial and the proximity
matrix exemplarily created in Section 4.1 has to be given to the model within the corMatrix

argument. The possible variance estimation methods are ml and reml.

R> fh_spatial <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

+ combined_data = combined_data, domains = "Domain",

+ correlation = "spatial", corMatrix = eusilcA_prox, MSE = TRUE)

Robust FH model
If extreme values could influence the estimation, the application of a robust model might be
appropriate. Within the robust framework, package emdi allows the user to choose between
a standard and a spatial model (defaults to correlation = "no"). The estimation method
must equal reblup or reblupbc which includes a bias correction that can be modified by the
argument c. Further, the tuning constant k defaults to 1.345 as proposed by Sinha and Rao
(2009) and Warnholz (2016) and can be changed if desired. The functions of the package
saeRobust Warnholz (2018) are utilized for the robust extensions. An exemplary call with
pseudolinear MSE estimation looks like this:

R> fh_robust <- fh(fixed = Mean ~ cash + self_empl,

+ vardir = "Var_Mean", combined_data = combined_data,

+ domains = "Domain", method = "reblup", MSE = TRUE,

+ mse_type = "pseudo")

Measurement error model
If as auxiliary information other data sources than register data, e.g., data from larger surveys
or big data sourcs are used, the ME model should be applicated. For the estimation of the
ME model, the model fitting method has to be set to me and the only possible MSE estimation
method is jackknife. The most complex input argument consists of the creation of the MSE
array Ci. The variability of the auxiliary variables that is taken into account by the ME
model is expressed by the variance-covariance matrices per domain (Ci). For example, for
three covariates a, b and c the array should look like

Ci =




0 0 0 0
0 VARi(a) COVi(a, b) COVi(a, c)
0 COVi(a, b) VARi(b) COVi(b, c)
0 COVi(a, c) COVi(b, c) VARi(c)


 , i = 1, ..., D.

The first row and column contain zeros, because the intercept is considered. The variances and
covariances can be computed by standard approaches like for example the Horvitz-Thompson
estimator. In R the array is computed by

P <- number of covariates

M <- number of areas

Ci_array <- array(data = 0, dim = c(P + 1, P + 1, M))
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for(i in 1:M){

Ci_array[2,2,i] <- Var_a[i]

Ci_array[3,3,i] <- Var_b[i]

Ci_array[4,4,i] <- Var_c[i]

Ci_array[3,2,i] <- Ci_array[2,3,i] <- Cov_ab[i]

Ci_array[4,2,i] <- Ci_array[2,4,i] <- Cov_ac[i]

Ci_array[4,3,i] <- Ci_array[3,4,i] <- Cov_bc[i]

}

For the Austrian EUSILC data example, the equalized income can also be explained by a
variable of the sample data set. The code below demonstrates how the variance-covariance
matrix is created for one covariate (variable Cash and its variance Var_Cash) and how the
final ME model is built.

R> P <- 1

R> M <- 94

R>

R> Ci_array <- array(data = 0, dim = c(P + 1, P + 1, M))

R>

R> for(i in 1:M){

+ Ci_array[2,2,i] <- eusilcA_smpAgg$Var_Cash[i]

+ }

R>

R> fh_yl <- fh(fixed = Mean ~ Cash, vardir = "Var_Mean",

+ combined_data = eusilcA_smpAgg, domains = "Domain", method = "me",

+ Ci = Ci_array, MSE = TRUE, mse_type = "jackknife")

5. Conclusion and outlook

In this paper, we have presented how the emdi package version 1.1.7 has been extended by
various area-level models. Besides the well-known FH model, adjusted variance estimation
methods and transformation options are offered to the user. In addition, spatial, robust, and
ME model extensions of the standard model allow the user to address various issues that arise
in practical data applications. All of these methods can be estimated conveniently by using
a single function that provides EBLUP and the respective MSE estimates to measure their
precision. Especially in Section 4 it becomes clear that the package does not only contain the
estimation of the different SAE models. Instead, it additionally provides user-friendly tools
to enable a whole data analysis procedure: 1. starting with model building and estimation,
moving on to 2. model assessment and diagnostics, 3. presentation of the results, and finishing
with 4. exporting the results to Excel or OpenDocument Spreadsheet.
For future package versions, it is planned to expand the options in the field of area-level
models. In some practical applications the incorporation of area random effects is redundant.
Therefore, an area-level estimator that considers a preliminary testing for the area random
effects following Molina et al. (2015) will be included. The emdi version 2.0.1 accounts for
spatial structures of the random effects. Future developments will also account for out-of-
sample EBLUP and MSE estimation for the spatial model proposed by Saei and Chambers



26 Producing Estimates Based on Area-Level Models in R

(2005) and for temporal and spatio-temporal extensions (Rao and Yu 1994; Marhuenda et al.
2013). For the existing ME model, a bootstrap MSE estimation option will be added to the
package since the Jackknife MSE estimator may produce negative MSE estimates (Marchetti
et al. 2015). Furthermore, cross-validation options additional to the model assessment via
information criteria and the R2 will be investigated. Lastly, a stepwise variable selection
function and a compare method for objects of class model, ebp are planned.
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A. Area-level model options and input arguments of function fh

FH model with
transformation

transformation

log arcsin

crude bias-
correction:
bc_crude

Slud and
Maiti bias-

correction: bc_sm

backtransformation

Naive back-
transformation:

naive

general bias-
correction: bc

crude back-transf.
Datta-Lahiri/

Prasad-Rao MSE:
analytical

Slud-Maiti
analytical MSE:

analytical

(weighted)
Jackknife MSE:

(weighted_)
jackknife

bootstrap
MSE: boot

Spatial FH model

method

ml reml

analytical MSE:
analytical

parametric bootstrap
MSE: spatialparboot

nonparametric
bootstrap MSE:

spatialnonparboot

Robust FH model

correlation

no spatial

pseudo
linearisation

MSE: pseudo

parametric
bootstrap

MSE: boot

ME model

method

measurement er-
ror model: ME

Jackknife MSE:
jackknife

Figure 7: Overview of extended area-level models and combinations of estimation methods.
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Argument FH model
Standard Transformed Spatial Robust ME

fixed
√ √ √ √ √

vardir
√ √ √ √ √

combined
√ √ √ √ √

domains (
√

) (
√

) (
√

) (
√

) (
√

)
method

√ √ √ √ √

interval (
√

) (
√

)
k

√

c
√

transformation
√ √ √ √ √

backtransformation
√

eff_smpsize (only if
√

transformation = "arcsin")

correlation
√ √ √ √ √

corMatrix (only if
√ √

correlation = "spatial")

Ci
√

tol
√ √ √

maxit
√ √ √

MSE
√ √ √ √ √

mse_type (only if MSE = TRUE)
√ √ √ √ √

B (
√

)
√ √ √

seed (
√

) (
√

) (
√

) (
√

)

Table 6: Required
√

and optional (
√

) input arguments of function fh for the different area-
levels models. B: Only if bootstrap MSE is chosen. When the standard FH model is applied,
B is required for the computation of the information criteria by Marhuenda et al. (2014)
(optionally).
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B. Output of the model component of an fh object

Name Short description Available for
Standard Transformed Spatial Robust ME

coefficients Estimated regression
coefficients

√ √ √ √ √

variance Estimated variance of
the random effects/
estimated spatial
correlation parameter

√ √ √ √ √

random_effects Random effects per
domain

√ √ √ √ √

real_residuals Realized residuals per
domain

√ √ √ √ √

std_real_residuals Standardized realized
residuals per domain

√ √ √ √ √

gamma Shrinkage factors per
domain

√ √ √

model_select Model selection and
accuracy criteria

√ √ √

correlation Selected correlation
structure of the
random effects

√ √ √ √ √

k Tuning constant
√

c Multiplyer constant
for bias correction

√

seed Seed of the random
number generator

√ √ √ √

Table 7: Components of the output component model for models of class fh.

C. Reproducibility

For the computation of the results in this paper we worked with R version 4.0.2 on a 64-bit
platform under Microsoft Windows 10 with the installed packages listed in Table 8. Using the
package packrat (Ushey et al. 2018) a snapshot of the corresponding repository was created
that is available from the GitHub folder (https://github.com/SoerenPannier/emdi.git).
We suggest the following steps:

• Install Git.

• Create a new project in RStudio.

• Choose checkout from version control and select Git.

• Insert the repository URL: https://github.com/SoerenPannier/emdi.git.

https://github.com/SoerenPannier/emdi.git
https://github.com/SoerenPannier/emdi.git
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• Let packrat complete the initialization process.

• Restart RStudio.

• Enter the R command packrat::restore().

• After finishing the installation process all packages are installed as provided in Table 8.
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Package Version Package Version Package Version

BBmisc 1.11 emdi 2.0.1 pkgbuild 1.0.8
BH 1.72.0-3 evaluate 0.14 pkgconfig 2.0.3
DBI 1.1.0 expm 0.999-4 pkgload 1.1.0
HLMdiag 0.3.1 fansi 0.4.1 plyr 1.8.6
KernSmooth 2.23-17 farver 2.0.3 praise 1.0.0
LearnBayes 2.15.1 foreign 0.8-80 prettyunits 1.1.1
MASS 7.3-51.6 formula.tools 1.7.1 processx 3.4.2
Matrix 1.2-18 gdata 2.18.0 ps 1.3.3
MuMIn 1.43.17 ggplot2 3.3.2 purrr 0.3.4
R.cache 0.14.0 glue 1.4.1 raster 3.3-7
R.methodsS3 1.8.0 gmodels 2.18.1 readODS 1.6.7
R.oo 1.23.0 gridExtra 2.3 readr 1.3.1
R.rsp 0.43.2 gtable 0.3.0 rematch 1.0.1
R.utils 2.9.2 gtools 3.8.2 reshape2 1.4.4
R6 2.4.1 highr 0.8 rgeos 0.5-3
RColorBrewer 1.1-2 hms 0.5.3 rlang 0.4.6
RLRsim 3.1-6 isoband 0.2.2 roxygen2 7.1.1
Rcpp 1.0.4.6 knitr 1.29 rprojroot 1.3-2
RcppArmadillo 0.9.900.1.0 labeling 0.3 rstudioapi 0.11
RcppEigen 0.3.3.7.0 laeken 0.5.1 saeRobust 0.2.0
aoos 0.5.0 lattice 0.20-41 scales 1.1.1
assertthat 0.2.1 lifecycle 0.2.0 sf 0.9-4
backports 1.1.8 lme4 1.1-23 simFrame 0.5.3
boot 1.3-25 magrittr 1.5 sp 1.4-2
brew 1.0-6 maptools 1.0-1 spData 0.3.5
callr 3.4.3 markdown 1.1 spdep 1.1-5
cellranger 1.1.0 memoise 1.1.0 statmod 1.4.34
checkmate 2.0.0 mgcv 1.8-31 stringi 1.4.6
class 7.3-17 mime 0.9 stringr 1.4.0
classInt 0.4-3 minqa 1.2.4 testthat 2.3.2
cli 2.0.2 modules 0.8.0 tibble 3.0.1
clipr 0.7.0 moments 0.14 units 0.6-7
coda 0.19-3 munsell 0.5.0 utf8 1.1.4
colorspace 1.4-1 nlme 3.1-148 vctrs 0.3.1
commonmark 1.7 nloptr 1.2.2.1 viridisLite 0.3.0
crayon 1.3.4 openxlsx 4.1.5 withr 2.2.0
deldir 0.1-25 operator.tools 1.6.3 xfun 0.15
desc 1.2.0 packrat 0.5.0 xml2 1.3.2
digest 0.6.25 parallelMap 1.5.0 xtable 1.8-4
e1071 1.7-3 pbapply 1.4-2 yaml 2.2.1
ellipsis 0.3.1 pillar 1.4.4 zip 2.0.4

Table 8: Installed packages for the computation of the results in this paper.
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