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add_woe Add WoE in a data frame

Description

A tidyverse friendly way to plug WoE versions of a set of predictor variables against a given binary
outcome.

Usage

add_woe(.data, outcome, ..., dictionary = NULL, prefix = "woe")

Arguments

.data A tbl. The data.frame to plug the new woe version columns.
outcome The bare name of the outcome variable.
... Bare names of predictor variables, passed as you would pass variables to dplyr::select().

This means that you can use all the helpers like starts_with() and matches().
dictionary A tbl. If NULL the function will build a dictionary with those variables passed

to .... You can pass a custom dictionary too, see dictionary() for details.
prefix A character string that will be the prefix to the resulting new variables.

Details

You can pass a custom dictionary to add_woe(). It must have the exactly the same structure of the
output of dictionary(). One easy way to do this is to tweak a output returned from it.

Value

A tibble with the original columns of .data plus the woe columns wanted.

Examples

mtcars %>% add_woe("am", cyl, gear:carb)
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dictionary Weight of evidence dictionary

Description

Builds the woe dictionary of a set of predictor variables upon a given binary outcome. Convenient
to make a woe version of the given set of predictor variables and also to allow one to tweak some
woe values by hand.

Usage

dictionary(.data, outcome, ..., Laplace = 1e-06)

Arguments

.data A tbl. The data.frame where the variables come from.

outcome The bare name of the outcome variable with exactly 2 distinct values.

... bare names of predictor variables or selectors accepted by dplyr::select().

Laplace Default to 1e-6. The pseudocount parameter of the Laplace Smoothing estima-
tor. Value to avoid -Inf/Inf from predictor category with only one outcome class.
Set to 0 to allow Inf/-Inf.

Details

You can pass a custom dictionary to step_woe(). It must have the exactly the same structure of the
output of dictionary(). One easy way to do this is by tweaking an output returned from it.

Value

a tibble with summaries and woe for every given predictor variable stacked up.

References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.

Examples

mtcars %>% dictionary("am", cyl, gear:carb)
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is_tf_available Test to see if tensorflow is available

Description

Test to see if tensorflow is available

Usage

is_tf_available()

Value

A logical

Examples

is_tf_available()

step_discretize_cart Discretize numeric variables with CART

Description

step_discretize_cart creates a specification of a recipe step that will discretize numeric data
(e.g. integers or doubles) into bins in a supervised way using a CART model.

Usage

step_discretize_cart(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
cost_complexity = 0.01,
tree_depth = 10,
min_n = 20,
rules = NULL,
skip = FALSE,
id = rand_id("discretize_cart")

)

## S3 method for class 'step_discretize_cart'
tidy(x, ...)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor".

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome to train CART
models in order to discretize explanatory variables.

cost_complexity

The regularization parameter. Any split that does not decrease the overall lack
of fit by a factor of cost_complexity is not attempted. Corresponds to cp in
rpart::rpart(). Defaults to 0.01.

tree_depth The maximum depth in the final tree. Corresponds to maxdepth in rpart::rpart().
Defaults to 10.

min_n The number of data points in a node required to continue splitting. Corresponds
to minsplit in rpart::rpart(). Defaults to 20.

rules The splitting rules of the best CART tree to retain for each variable. If length
zero, splitting could not be used on that column.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_discretize_cart object.

Details

step_discretize_cart() creates non-uniform bins from numerical variables by utilizing the in-
formation about the outcome variable and applying a CART model.

The best selection of buckets for each variable is selected using the standard cost-complexity prun-
ing of CART, which makes this discretization method resistant to overfitting.

This step requires the rpart package. If not installed, the step will stop with a note about installing
the package.

Note that the original data will be replaced with the new bins.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

embed::step_discretize_xgb(), recipes::recipe(), recipes::prep.recipe(), recipes::bake.recipe()



6 step_discretize_xgb

Examples

library(modeldata)
data(ad_data)
library(rsample)

split <- initial_split(ad_data, strata = "Class")

ad_data_tr <- training(split)
ad_data_te <- testing(split)

cart_rec <-
recipe(Class ~ ., data = ad_data_tr) %>%
step_discretize_cart(tau, age, p_tau, Ab_42, outcome = "Class", id = "cart splits")

cart_rec <- prep(cart_rec, training = ad_data_tr)

# The splits:
tidy(cart_rec, id = "cart splits")

bake(cart_rec, ad_data_te, tau)

step_discretize_xgb Discretize numeric variables with XgBoost

Description

step_discretize_xgb creates a specification of a recipe step that will discretize numeric data (e.g.
integers or doubles) into bins in a supervised way using an XgBoost model.

Usage

step_discretize_xgb(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
sample_val = 0.2,
learn_rate = 0.3,
num_breaks = 10,
tree_depth = 1,
min_n = 5,
rules = NULL,
skip = FALSE,
id = rand_id("discretize_xgb")

)

## S3 method for class 'step_discretize_xgb'
tidy(x, ...)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor".

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome to train XgBoost
models in order to discretize explanatory variables.

sample_val Share of data used for validation (with early stopping) of the learned splits (the
rest is used for training). Defaults to 0.20.

learn_rate The rate at which the boosting algorithm adapts from iteration-to-iteration. Cor-
responds to eta in the xgboost package. Defaults to 0.3.

num_breaks The maximum number of discrete bins to bucket continuous features. Corre-
sponds to max_bin in the xgboost package. Defaults to 10.

tree_depth The maximum depth of the tree (i.e. number of splits). Corresponds to max_depth
in the xgboost package. Defaults to 1.

min_n The minimum number of instances needed to be in each node. Corresponds to
min_child_weight in the xgboost package. Defaults to 5.

rules The splitting rules of the best XgBoost tree to retain for each variable.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_discretize_xgb object.

Details

step_discretize_xgb() creates non-uniform bins from numerical variables by utilizing the infor-
mation about the outcome variable and applying the xgboost model. It is advised to impute missing
values before this step. This step is intended to be used particularly with linear models because
thanks to creating non-uniform bins it becomes easier to learn non-linear patterns from the data.

The best selection of buckets for each variable is selected using an internal early stopping scheme
implemented in the xgboost package, which makes this discretization method prone to overfitting.

The pre-defined values of the underlying xgboost learns good and reasonably complex results. How-
ever, if one wishes to tune them the recommended path would be to first start with changing the
value of num_breaks to e.g.: 20 or 30. If that doesn’t give satisfactory results one could experiment
with modifying the tree_depth or min_n parameters. Note that it is not recommended to tune
learn_rate simultaneously with other parameters.

This step requires the xgboost package. If not installed, the step will stop with a note about installing
the package.

Note that the original data will be replaced with the new bins.
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Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

embed::step_discretize_cart(), recipes::recipe(), recipes::prep.recipe(), recipes::bake.recipe()

Examples

library(modeldata)
data(credit_data)
library(rsample)

split <- initial_split(credit_data, strata = "Status")

credit_data_tr <- training(split)
credit_data_te <- testing(split)

xgb_rec <-
recipe(Status ~ ., data = credit_data_tr) %>%
step_medianimpute(all_numeric()) %>%
step_discretize_xgb(all_numeric(), outcome = "Status")

xgb_rec <- prep(xgb_rec, training = credit_data_tr)

bake(xgb_rec, credit_data_te, Price)

step_embed Encoding Factors into Multiple Columns

Description

step_embed creates a specification of a recipe step that will convert a nominal (i.e. factor) predictor
into a set of scores derived from a tensorflow model via a word-embedding model. embed_control
is a simple wrapper for setting default options.

Usage

step_embed(
recipe,
...,
role = "predictor",
trained = FALSE,
outcome = NULL,
predictors = NULL,
num_terms = 2,
hidden_units = 0,
options = embed_control(),
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mapping = NULL,
history = NULL,
skip = FALSE,
id = rand_id("lencode_bayes")

)

## S3 method for class 'step_embed'
tidy(x, ...)

embed_control(
loss = "mse",
metrics = NULL,
optimizer = "sgd",
epochs = 20,
validation_split = 0,
batch_size = 32,
verbose = 0,
callbacks = NULL

)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_embed, this indi-
cates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the embedding variables created
will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the neural
network. Only numeric and two-level factors are currently supported.

predictors An optional call to vars to specify any variables to be added as additional pre-
dictors in the neural network. These variables should be numeric and perhaps
centered and scaled.

num_terms An integer for the number of resulting variables.

hidden_units An integer for the number of hidden units in a dense ReLu layer between the
embedding and output later. Use a value of zero for no intermediate layer (see
Details below).

options A list of options for the model fitting process.

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

history A tibble with the convergence statistics for each term. This is NULL until the step
is trained by recipes::prep.recipe().
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skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_embed object.
optimizer, loss, metrics

Arguments to pass to keras::compile()

epochs, validation_split, batch_size, verbose, callbacks

Arguments to pass to keras::fit()

Details

Factor levels are initially assigned at random to the new variables and these variables are used in
a neural network to optimize both the allocation of levels to new columns as well as estimating a
model to predict the outcome. See Section 6.1.2 of Francois and Allaire (2018) for more details.

The new variables are mapped to the specific levels seen at the time of model training and an extra
instance of the variables are used for new levels of the factor.

One model is created for each call to step_embed. All terms given to the step are estimated and
encoded in the same model which would also contain predictors give in predictors (if any).

When the outcome is numeric, a linear activation function is used in the last layer while softmax is
used for factor outcomes (with any number of levels).

For example, the keras code for a numeric outcome, one categorical predictor, and no hidden units
used here would be

keras_model_sequential() %>%
layer_embedding(
input_dim = num_factor_levels_x + 1,
output_dim = num_terms,
input_length = 1

) %>%
layer_flatten() %>%
layer_dense(units = 1, activation = 'linear')

If a factor outcome is used and hidden units were requested, the code would be

keras_model_sequential() %>%
layer_embedding(
input_dim = num_factor_levels_x + 1,
output_dim = num_terms,
input_length = 1

) %>%
layer_flatten() %>%
layer_dense(units = hidden_units, activation = "relu") %>%
layer_dense(units = num_factor_levels_y, activation = 'softmax')
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Other variables specified by predictors are added as an additional dense layer after layer_flatten
and before the hidden layer.

Also note that it may be difficult to obtain reproducible results using this step due to the nature of
Tensorflow (see link in References).

tensorflow models cannot be run in parallel within the same session (via foreach or futures) or
the parallel package. If using a recipes with this step with caret, avoid parallel processing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and several columns containing embed in the name.

References

Francois C and Allaire JJ (2018) Deep Learning with R, Manning

"How can I obtain reproducible results using Keras during development?" https://tinyurl.com/
keras-repro

"Concatenate Embeddings for Categorical Variables with Keras" https://flovv.github.io/Embeddings_
with_keras_part2/

Examples

library(modeldata)
data(okc)

if (is_tf_available()) {
rec <- recipe(Class ~ age + location, data = okc) %>%
step_embed(location, outcome = vars(Class),

options = embed_control(epochs = 10))
}

# See https://tidymodels.github.io/embed/ for examples

step_feature_hash Dummy Variables Creation via Feature Hashing

Description

step_feature_hash creates a a specification of a recipe step that will convert nominal data (e.g.
character or factors) into one or more numeric binary columns using the levels of the original data.

https://tinyurl.com/keras-repro
https://tinyurl.com/keras-repro
https://flovv.github.io/Embeddings_with_keras_part2/
https://flovv.github.io/Embeddings_with_keras_part2/
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Usage

step_feature_hash(
recipe,
...,
role = "predictor",
trained = FALSE,
num_hash = 2^6,
preserve = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("feature_hash")

)

## S3 method for class 'step_feature_hash'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which factor variables will be used to
create the dummy variables. See selections() for more details. The selected
variables must be factors. For the tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the binary dummy variable columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

num_hash The number of resulting dummy variable columns.

preserve A single logical; should the selected column(s) be retained (in addition to the
new dummy variables)?

columns A character vector for the selected columns. This is NULL until the step is trained
by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_feature_hash object.

Details

step_feature_hash() will create a set of binary dummy variables from a factor or character vari-
able. The values themselves are used to determine which row that the dummy variable should be
assigned (as opposed to having a specific column that the value will map to).
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Since this method does not rely on a pre-determined assignment of levels to columns, new factor
levels can be added to the selected columns without issue. Missing values result in missing values
for all of the hashed columns.

Note that the assignment of the levels to the hashing columns does not try to maximize the alloca-
tion. It is likely that multiple levels of the column will map to the same hashed columns (even with
small data sets). Similarly, it is likely that some columns will have all zeros. A zero-variance filter
(via recipes::step_zv()) is recommended for any recipe that uses hashed columns.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or original variables selected).

References

Weinberger, K, A Dasgupta, J Langford, A Smola, and J Attenberg. 2009. "Feature Hashing for
Large Scale Multitask Learning." In Proceedings of the 26th Annual International Conference on
Machine Learning, 1113–20. ACM.

Kuhn and Johnson (2020) Feature Engineering and Selection: A Practical Approach for Predictive
Models. CRC/Chapman Hall https://bookdown.org/max/FES/encoding-predictors-with-many-categories.
html

See Also

recipes::step_dummy(), recipes::step_zv()

Examples

data(okc, package = "modeldata")

if (is_tf_available()) {
# This may take a while:
rec <-

recipe(Class ~ age + location, data = okc) %>%
step_feature_hash(location, num_hash = 2^6, preserve = TRUE) %>%
prep()

# How many of the 135 locations ended up in each hash column?
results <-

juice(rec, starts_with("location")) %>%
distinct()

apply(results %>% select(-location), 2, sum) %>% table()
}

https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html
https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html
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step_lencode_bayes Supervised Factor Conversions into Linear Functions using Bayesian
Likelihood Encodings

Description

step_lencode_bayes creates a specification of a recipe step that will convert a nominal (i.e. fac-
tor) predictor into a single set of scores derived from a generalized linear model estimated using
Bayesian analysis.

Usage

step_lencode_bayes(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
options = list(seed = sample.int(10^5, 1)),
verbose = FALSE,
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_bayes")

)

## S3 method for class 'step_lencode_bayes'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_bayes,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

options A list of options to pass to rstanarm::stan_glmer().

verbose A logical to control the default printing by rstanarm::stan_glmer().

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().
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skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_lencode_bayes object.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using rstanarm::stan_glmer() and no intercept via

stan_glmer(outcome ~ (1 | predictor), data = data, ...)

where the ... include the family argument (automatically set by the step) as well as any arguments
given to the options argument to the step. Relevant options include chains, iter, cores, and
arguments for the priors (see the links in the References below). prior_intercept is the argument
that has the most effect on the amount of shrinkage.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).

References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

"Hierarchical Partial Pooling for Repeated Binary Trials" https://tinyurl.com/stan-pooling

"Prior Distributions for ‘rstanarm“ Models" https://tinyurl.com/stan-priors

"Estimating Generalized (Non-)Linear Models with Group-Specific Terms with rstanarm" https:
//tinyurl.com/stan-glm-grouped

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(okc)

https://tinyurl.com/stan-pooling
https://tinyurl.com/stan-priors
https://tinyurl.com/stan-glm-grouped
https://tinyurl.com/stan-glm-grouped
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reencoded <- recipe(Class ~ age + location, data = okc) %>%
step_lencode_bayes(location, outcome = vars(Class))

# See https://tidymodels.github.io/embed/ for examples

step_lencode_glm Supervised Factor Conversions into Linear Functions using Likeli-
hood Encodings

Description

step_lencode_glm creates a specification of a recipe step that will convert a nominal (i.e. factor)
predictor into a single set of scores derived from a generalized linear model.

Usage

step_lencode_glm(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_bayes")

)

## S3 method for class 'step_lencode_glm'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_glm,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().



step_lencode_glm 17

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_lencode_glm object.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).

References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(okc)

glm_est <- recipe(Class ~ age + location, data = okc) %>%
step_lencode_glm(location, outcome = vars(Class))

# See https://tidymodels.github.io/embed/ for examples
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step_lencode_mixed Supervised Factor Conversions into Linear Functions using Bayesian
Likelihood Encodings

Description

step_lencode_mixed creates a specification of a recipe step that will convert a nominal (i.e. factor)
predictor into a single set of scores derived from a generalized linear mixed model.

Usage

step_lencode_mixed(
recipe,
...,
role = NA,
trained = FALSE,
outcome = NULL,
options = list(verbose = 0),
mapping = NULL,
skip = FALSE,
id = rand_id("lencode_mixed")

)

## S3 method for class 'step_lencode_mixed'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_lencode_mixed,
this indicates the variables to be encoded into a numeric format. See recipes::selections()
for more details. For the tidy method, these are not currently used.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

outcome A call to vars to specify which variable is used as the outcome in the generalized
linear model. Only numeric and two-level factors are currently supported.

options A list of options to pass to lme4::lmer() or lme4::glmer().

mapping A list of tibble results that define the encoding. This is NULL until the step is
trained by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations
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id A character string that is unique to this step to identify it.

x A step_lencode_mixed object.

Details

For each factor predictor, a generalized linear model is fit to the outcome and the coefficients are
returned as the encoding. These coefficients are on the linear predictor scale so, for factor outcomes,
they are in log-odds units. The coefficients are created using a no intercept model and, when two
factor outcomes are used, the log-odds reflect the event of interest being the first level of the factor.

For novel levels, a slightly timmed average of the coefficients is returned.

A hierarchical generalized linear model is fit using lme4::lmer() or lme4::glmer(), depending
on the nature of the outcome, and no intercept via

lmer(outcome ~ 1 + (1 | predictor), data = data, ...)

where the ... include the family argument (automatically set by the step) as well as any arguments
given to the options argument to the step. Relevant options include control and others.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables for encoding), level
(the factor levels), and value (the encodings).

References

Micci-Barreca D (2001) "A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems," ACM SIGKDD Explorations Newsletter, 3(1), 27-32.

Zumel N and Mount J (2017) "vtreat: a data.frame Processor for Predictive Modeling," arXiv:1611.09477

Examples

library(recipes)
library(dplyr)
library(modeldata)

data(okc)

reencoded <- recipe(Class ~ age + location, data = okc) %>%
step_lencode_mixed(location, outcome = vars(Class))

# See https://tidymodels.github.io/embed/ for examples
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step_umap Supervised and unsupervised uniform manifold approximation and
projection (UMAP)

Description

step_umap creates a specification of a recipe step that will project a set of features into a smaller
space.

Usage

step_umap(
recipe,
...,
role = "predictor",
trained = FALSE,
outcome = NULL,
neighbors = 15,
num_comp = 2,
min_dist = 0.01,
learn_rate = 1,
epochs = NULL,
options = list(verbose = FALSE, n_threads = 1),
seed = sample(10^5, 2),
retain = FALSE,
object = NULL,
skip = FALSE,
id = rand_id("umap")

)

## S3 method for class 'step_umap'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose variables. For step_umap, this indi-
cates the variables to be encoded into a numeric format. Numeric and factor
variables can be used. See recipes::selections() for more details. For the
tidy method, these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new embedding columns
created by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.



step_umap 21

outcome A call to vars to specify which variable is used as the outcome in the encoding
process (if any).

neighbors An integer for the number of nearest neighbors used to construct the target sim-
plicial set.

num_comp An integer for the number of UMAP components.

min_dist The effective minimum distance between embedded points.

learn_rate Positive number of the learning rate for the optimization process.

epochs Number of iterations for the neighbor optimization. See uwot::umap() for mroe
details.

options A list of options to pass to uwot::umap(). The arguments X, n_neighbors,
n_components, min_dist, n_epochs, ret_model, and learning_rate should
not be passed here. By default, verbose and n_threads are set.

seed Two integers to control the random numbers used by the numerical methods.
The default pulls from the main session’s stream of numbers and will give repro-
ducible results if the seed is set prior to calling prep.recipe() or bake.recipe().

retain A single logical for whether the original predictors should be kept (in addition
to the new embedding variables).

object An object that defines the encoding. This is NULL until the step is trained by
recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_umap object.

Details

UMAP, short for Uniform Manifold Approximation and Projection, is a nonlinear dimension reduc-
tion technique that finds local, low-dimensional representations of the data. It can be run unsuper-
vised or supervised with different types of outcome data (e.g. numeric, factor, etc).

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with a column called terms (the selectors or variables for embedding)
is returned.

References

McInnes, L., & Healy, J. (2018). UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. https://arxiv.org/abs/1802.03426.

"How UMAP Works" https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

https://arxiv.org/abs/1802.03426
https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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Examples

library(recipes)
library(dplyr)
library(ggplot2)

split <- seq.int(1, 150, by = 9)
tr <- iris[-split, ]
te <- iris[ split, ]

set.seed(11)
supervised <-

recipe(Species ~ ., data = tr) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors()) %>%
step_umap(all_predictors(), outcome = vars(Species), num_comp = 2) %>%
prep(training = tr)

theme_set(theme_bw())

bake(supervised, new_data = te, Species, starts_with("umap")) %>%
ggplot(aes(x = umap_1, y = umap_2, col = Species)) +
geom_point(alpha = .5)

step_woe Weight of evidence transformation

Description

step_woe creates a specification of a recipe step that will transform nominal data into its numerical
transformation based on weights of evidence against a binary outcome.

Usage

step_woe(
recipe,
...,
role = "predictor",
outcome,
trained = FALSE,
dictionary = NULL,
Laplace = 1e-06,
prefix = "woe",
skip = FALSE,
id = rand_id("woe")

)

## S3 method for class 'step_woe'
tidy(x, ...)
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Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables will be used to com-
pute the components. See selections() for more details. For the tidy method,
these are not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new woe components columns
created by the original variables will be used as predictors in a model.

outcome The bare name of the binary outcome encased in vars().

trained A logical to indicate if the quantities for preprocessing have been estimated.

dictionary A tbl. A map of levels and woe values. It must have the same layout than
the output returned from dictionary(). If ‘NULL“ the function will build a
dictionary with those variables passed to .... See dictionary() for details.

Laplace The Laplace smoothing parameter. A value usually applied to avoid -Inf/Inf
from predictor category with only one outcome class. Set to 0 to allow Inf/-Inf.
The default is 1e-6. Also known as ’pseudocount’ parameter of the Laplace
smoothing technique.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = TRUE as it may
affect the computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_woe object.

Details

WoE is a transformation of a group of variables that produces a new set of features. The formula is

woec = log((P (X = c|Y = 1))/(P (X = c|Y = 0)))

where c goes from 1 to C levels of a given nominal predictor variable X .

These components are designed to transform nominal variables into numerical ones with the prop-
erty that the order and magnitude reflects the association with a binary outcome. To apply it on
numerical predictors, it is advisable to discretize the variables prior to running WoE. Here, each vari-
able will be binarized to have woe associated later. This can achieved by using step_discretize().

The argument Laplace is an small quantity added to the proportions of 1’s and 0’s with the goal
to avoid log(p/0) or log(0/p) results. The numerical woe versions will have names that begin with
woe_ followed by the respective original name of the variables. See Good (1985).

One can pass a custom dictionary tibble to step_woe(). It must have the same structure of the
output from dictionary() (see examples). If not provided it will be created automatically. The
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role of this tibble is to store the map between the levels of nominal predictor to its woe values.
You may want to tweak this object with the goal to fix the orders between the levels of one given
predictor. One easy way to do this is by tweaking an output returned from dictionary().

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with the woe dictionary used to map categories with woe values.

References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.

Examples

library(modeldata)
data("credit_data")

set.seed(111)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[ in_training, ]
credit_te <- credit_data[-in_training, ]

rec <- recipe(Status ~ ., data = credit_tr) %>%
step_woe(Job, Home, outcome = vars(Status))

woe_models <- prep(rec, training = credit_tr)

# the encoding:
bake(woe_models, new_data = credit_te %>% slice(1:5), starts_with("woe"))
# the original data
credit_te %>% slice(1:5) %>% dplyr::select(Job, Home)
# the details:
tidy(woe_models, number = 1)

# Example of custom dictionary + tweaking
# custom dictionary
woe_dict_custom <- credit_tr %>% dictionary(Job, Home, outcome = "Status")
woe_dict_custom[4, "woe"] <- 1.23 #tweak

#passing custom dict to step_woe()
rec_custom <- recipe(Status ~ ., data = credit_tr) %>%

step_woe(Job, Home, outcome = vars(Status), dictionary = woe_dict_custom) %>%
prep

rec_custom_baked <- bake(rec_custom, new_data = credit_te)
rec_custom_baked %>% dplyr::filter(woe_Job == 1.23) %>% head
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woe_table Crosstable with woe between a binary outcome and a predictor vari-
able.

Description

Calculates some summaries and the WoE (Weight of Evidence) between a binary outcome and a
given predictor variable. Used to biuld the dictionary.

Usage

woe_table(predictor, outcome, Laplace = 1e-06)

Arguments

predictor A atomic vector, usualy with few distinct values.

outcome The dependent variable. A atomic vector with exactly 2 distinct values.

Laplace The pseudocount parameter of the Laplace Smoothing estimator. Default to
1e-6. Value to avoid -Inf/Inf from predictor category with only one outcome
class. Set to 0 to allow Inf/-Inf.

Value

a tibble with counts, proportions and woe. Warning: woe can possibly be -Inf. Use ’Laplace’ arg to
avoid that.

References

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Hastie, T., Tibshirani, R. and Friedman, J. (1986). Elements of Statistical Learning, Second Edition,
Springer, 2009.

Good, I. J. (1985), "Weight of evidence: A brief survey", Bayesian Statistics, 2, pp.249-270.
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