
Package ‘edeaR’
June 17, 2020

Type Package

Title Exploratory and Descriptive Event-Based Data Analysis

Version 0.8.5

Date 2020-06-17

Description Exploratory and descriptive analysis of event based data. Provides methods for describ-
ing and selecting process data, and for preparing event log data for process min-
ing. Builds on the S3-class for event logs implemented in the package 'bupaR'.

License MIT + file LICENSE

Depends R(>= 3.0.0)

Imports bupaR (>= 0.4.1), dplyr, data.table, ggplot2, ggthemes, glue,
tibble, shiny, miniUI, tidyr, shinyTime, lubridate, purrr,
stringr, rlang, zoo, hms, forcats

LazyData true

RoxygenNote 7.1.0.9000

URL https://www.bupar.net, https://github.com/bupaverse/edeaR

Suggests knitr, eventdataR, rmarkdown

VignetteBuilder knitr

BugReports https://github.com/bupaverse/edeaR/issues

NeedsCompilation no

Author Gert Janssenswillen [aut, cre],
Marijke Swennen [ctb]

Maintainer Gert Janssenswillen <gert.janssenswillen@uhasselt.be>

Repository CRAN

Date/Publication 2020-06-17 16:10:02 UTC

R topics documented:
activity_frequency . 3
activity_presence . 4

1

https://www.bupar.net
https://github.com/bupaverse/edeaR
https://github.com/bupaverse/edeaR/issues

2 R topics documented:

change_day . 6
create_work_schedule . 6
edeaR . 7
end_activities . 7
filter_activity . 8
filter_activity_frequency . 10
filter_activity_instance . 11
filter_activity_presence . 12
filter_case . 14
filter_case_condition . 15
filter_endpoints . 15
filter_endpoints_conditions . 17
filter_lifecycle . 18
filter_lifecycle_presence . 19
filter_precedence . 21
filter_precedence_condition . 22
filter_precedence_resource . 24
filter_processing_time . 25
filter_resource . 26
filter_resource_frequency . 27
filter_throughput_time . 29
filter_time_period . 30
filter_trace . 32
filter_trace_frequency . 33
filter_trace_length . 34
filter_trim . 35
filter_trim_lifecycle . 37
idle_time . 38
number_of_repetitions . 39
number_of_selfloops . 41
number_of_traces . 44
plot . 44
print.activity_frequency . 46
print.idle_time . 46
print.number_of_repetitions . 47
print.number_of_selfloops . 47
print.processing_time . 48
print.throughput_time . 48
print.trace_coverage . 49
print.trace_length . 49
processing_time . 50
redo_repetitions_referral_matrix . 52
redo_selfloops_referral_matrix . 52
resource_frequency . 53
resource_involvement . 55
resource_specialisation . 56
size_of_repetitions . 58
size_of_selfloops . 59

activity_frequency 3

start_activities . 60
throughput_time . 62
trace_coverage . 63
trace_length . 65

Index 67

activity_frequency Metric: Activity Frequency

Description

Provides summary statistics about the frequency of activity types at the level of log, traces, cases,
activity types.

Usage

activity_frequency(eventlog, level, append, append_column, ...)

S3 method for class 'eventlog'
activity_frequency(
eventlog,
level = c("log", "trace", "activity", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
activity_frequency(
eventlog,
level = c("log", "trace", "activity", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, trace, case, activity. For more infor-
mation, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

4 activity_presence

... Deprecated arguments

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

Details

• At log level, This metric shows the summary statistics of the frequency of activities throughout
the complete event log.

• On the level of the cases, this metric showsthe absolute and relative number of times the
different activity types occur in each case. The absolute number shows the number of distinct
activity types that occur in each of the cases. The relative number is calculated based on the
total activity executions in the case.

• On trace level, this metric presents the absolute and relative number of times a specific activity
type occurs in each trace.

• On the level of the activities, this metric provides the absolute and relative frequency of a
specific activity in the complete event log.

Methods (by class)

• eventlog: Compute activity frequency for eventlog

• grouped_eventlog: Compute activity frequency for grouped event log

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

activity_presence Metric: Activity Presence

Description

Calculates for each activity type in what percentage of cases it is present.

Usage

activity_presence(eventlog, append, append_column, sort, ...)

S3 method for class 'eventlog'
activity_presence(
eventlog,
append = F,
append_column = "absolute",
sort = TRUE,
...

)

activity_presence 5

S3 method for class 'grouped_eventlog'
activity_presence(
eventlog,
append = F,
append_column = "absolute",
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

... Deprecated arguments

Details

An indication of variance can be the presence of the activities in the different cases. This metric
shows for each activity the absolute number of cases in which each activity occurs together with its
relative presence.

Methods (by class)

• eventlog: Compute activity presence for event log

• grouped_eventlog: Compute activity presence for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

Examples

Not run:
data <- data.frame(case = rep("A",5),
activity_id = c("A","B","C","D","E"),
activity_instance_id = 1:5,
lifecycle_id = rep("complete",5),
timestamp = 1:5,
resource = rep("resource 1", 5))

log <- bupaR::eventlog(data,case_id = "case",
activity_id = "activity_id",

6 create_work_schedule

activity_instance_id = "activity_instance_id",
lifecycle_id = "lifecycle_id",
timestamp = "timestamp",
resource_id = "resource")

activity_presence(log)

End(Not run)

change_day Adjust days in work schedule

Description

Adjust days in work schedule

Usage

change_day(work_schedule, day, start_time, end_time)

Arguments

work_schedule Work schedule created with create_work_schedule

day A numeric vector containing the days to be changed. 1 = monday.

start_time The new start time for selected days (hh:mm:ss)

end_time The new end time for selected days (hh:mm:ss)

create_work_schedule Create work schedule

Description

Create work schedule

Usage

create_work_schedule(start_time = "9:00:00", end_time = "17:00:00")

Arguments

start_time Character indicating the usual start time for workdays (hh:mm:ss)

end_time Character indicating the usual end time for workdays (hh:mm:ss)

edeaR 7

edeaR edeaR - Exploratory and Descriptive Event-based data Analysis in R

Description

This package provides several useful techniques for Exploratory and Descriptive analysis of event
based data in R, developed by the Business Informatics Research Group of Hasselt University.

end_activities Metric: End activities

Description

Analyse the end activities in the process.

Usage

end_activities(eventlog, level, append, ...)

S3 method for class 'eventlog'
end_activities(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
end_activities(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

8 filter_activity

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

Details

• On log levels, this metric shows the absolute and relative number of activities that are the last
activity in one or more of the cases.

• On the level of the specific cases, this metric provides an overview of the end activity of each
case.

• On the activity level This metric calculates for each activity the absolute and relative number of
cases that end with this activity type. Similar to the start activities metric, the relative number
is calculated as a portion of the number of cases, being the number of \"opportunities\" that
an activity could be the end activity. The cumulative sum is added to have an insight in the
number of activities that is required to cover a certain part of the total.

• On the level of the distinct resources, an overview of which resources execute the last activity
per case can be of interest for a company. Probably this person is responsible for the correct
communication to the customer.

• Finally, on the resource-activity level, this metric shows for each occurring resource-activity
combination the absolute and relative number of times this resource executes this activity as
an end activity in a case.

Methods (by class)

• eventlog: Compute end activities for eventlog

• grouped_eventlog: Compute end activities for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

filter_activity Filter: Activity

Description

Filters the log based on activities

filter_activity 9

Usage

filter_activity(eventlog, activities, reverse, ...)

S3 method for class 'eventlog'
filter_activity(eventlog, activities, reverse = FALSE, ...)

S3 method for class 'grouped_eventlog'
filter_activity(eventlog, activities, reverse = FALSE, ...)

ifilter_activity(eventlog)

S3 method for class 'activitylog'
filter_activity(eventlog, activities, reverse = FALSE, ...)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

activities Character vector containing one or more activity identifiers.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

Details

The method filter_activity can be used to filter on activity identifiers. It has an activities argument, to
which a vector of identifiers can be given. The selection can be negated with the reverse argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter eventlog for activity labels

• grouped_eventlog: Filter grouped eventlog for activity labels

• activitylog: Filter activity_log for activity labels

See Also

vignette("filters","edeaR")

10 filter_activity_frequency

filter_activity_frequency

Filter: Activity frequency

Description

Filters the log based on frequency of activities.

Usage

filter_activity_frequency(eventlog, interval, percentage, reverse, ...)

S3 method for class 'eventlog'
filter_activity_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_activity_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

ifilter_activity_frequency(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval An activity frequency interval (numeric vector of length 2). Half open interval
can be created using NA.

percentage The target coverage of activity instances. A percentile of 0.9 will return the
most common activity types of the eventlog, which account for at least 90% of
the activity instances.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

filter_activity_instance 11

Details

Filtering the event log based in activity frequency can be done in two ways: using an interval of
allowed frequencies, or specify a coverage percentage.

• percentage: When filtering using a percentage p%, the filter will return p frequency. The filter
will retain additional activity labels as long as the number of activity instances does not exceed
the percentage threshold.

• interval: When filtering using an interval, activity labels will be retained when their absolute
frequency fall in this interval. The interval is specified using a numeric vector of length 2.
Half open intervals can be created by using NA. E.g., ‘c(10, NA)‘ will select activity labels
which occur 10 times or more.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter eventlog on activity frequency

• grouped_eventlog: Stratified filter for grouped eventlog

See Also

vignette("filters","edeaR")

filter_activity_instance

title Filter: Activity instance

Description

Filters the log based on activity instance identifier

Usage

filter_activity_instance(eventlog, activity_instances, reverse)

S3 method for class 'eventlog'
filter_activity_instance(eventlog, activity_instances = NULL, reverse = FALSE)

S3 method for class 'grouped_eventlog'
filter_activity_instance(eventlog, activity_instances = NULL, reverse = FALSE)

ifilter_activity_instance(eventlog)

12 filter_activity_presence

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
activity_instances

A vector of activity instance identifiers

reverse Logical, indicating whether the selection should be reversed.

Details

The method filter_activity_instance can be used to filter on activity instance identifiers. It has an
activity_instances argument, to which a vector of identifiers can be given. The selection can be
negated with the reverse argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter for eventlogs

• grouped_eventlog: Stratified filter for grouped eventlogs

See Also

vignette("filters","edeaR")

filter_activity_presence

Filter: Activity Presence

Description

Filters cases based on the presence (or absence) of activities

Usage

filter_activity_presence(eventlog, activities, method, reverse)

S3 method for class 'eventlog'
filter_activity_presence(
eventlog,
activities = NULL,
method = c("all", "one_of", "none", "exact", "only"),
reverse = FALSE

)

filter_activity_presence 13

S3 method for class 'grouped_eventlog'
filter_activity_presence(
eventlog,
activities = NULL,
method = c("all", "one_of", "none", "exact", "only"),
reverse = FALSE

)

ifilter_activity_presence(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

activities Character vector containing one or more activity identifiers.

method Filter method. If "all", each of the activities should be present. If "one_of", at
least one of them should be present. If "none", none of the activities are allowed
to occur in the filtered traces.

reverse Logical, indicating whether the selection should be reversed.

Details

This functions allows to filter cases that contain certain activities. It requires as input a vector
containing one or more activity labels and it has a method argument. The latter can have the values
all, none or one_of.

• When set to ‘all‘, it means that all the specified activity labels must be present for a case to be
selected

• ‘none‘ means that they are not allowed to be present.

• ‘one_of‘ means that at least one of them must be present.

• ‘only‘ means that only (a set of) these activities are allowed to be present

• ‘exact‘ means that only exactly these activities can be present (although multiple times and in
random orderings)

When only one activity label is supplied, note that methods all and one_of will be identical.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log on presence of activities.

• grouped_eventlog: Filter grouped event log on presence of activities.

14 filter_case

See Also

vignette("filters","edeaR")

filter_case title Filter: Case

Description

Filters the log based on case identifier

Usage

filter_case(eventlog, cases, reverse)

S3 method for class 'eventlog'
filter_case(eventlog, cases = NULL, reverse = FALSE)

S3 method for class 'grouped_eventlog'
filter_case(eventlog, cases = NULL, reverse = FALSE)

ifilter_case(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

cases A vector of cases identifiers

reverse Logical, indicating whether the selection should be reversed.

Details

The method filter_case can be used to filter on case identifiers. It has an cases argument, to which a
vector of identifiers can be given. The selection can be negated with the reverse argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter for eventlogs

• grouped_eventlog: Stratified filter for grouped eventlogs

See Also

vignette("filters","edeaR")

filter_case_condition 15

filter_case_condition title Filter: Case

Description

Filters cases using a condition

Usage

filter_case_condition(eventlog, condition, reverse)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

condition A condition

reverse Logical, indicating whether the selection should be reversed.

Details

Only keeps cases if the condition is valid for at least one event.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

See Also

vignette("filters","edeaR")

filter_endpoints Filter: Start and end activities

Description

Filters the log based on a provided set of start and end activities

16 filter_endpoints

Usage

filter_endpoints(
eventlog,
start_activities,
end_activities,
percentage,
reverse,
...

)

S3 method for class 'eventlog'
filter_endpoints(
eventlog,
start_activities = NULL,
end_activities = NULL,
percentage = NULL,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_endpoints(
eventlog,
start_activities = NULL,
end_activities = NULL,
percentage = NULL,
reverse = FALSE,
...

)

ifilter_endpoints(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
start_activities

A vector of activity identifiers, or NULL
end_activities A vector of activity identifiers, or NULL
percentage A percentage p to be used as percentile cut off. When this is used, the most

common endpoint-pairs will be selected until at least the p% of the cases are
selected.

reverse Logical, indicating whether the selection should be reversed.
... Deprecated arguments.

Details

The filter_endpoints method filters cases based on the first and last activity label. It can be used in
two ways: by specifying vectors with allowed start activities and/or allowed end activities, or by

filter_endpoints_conditions 17

specifying a percentile. In the latter case, the percentile value will be used as a cut off. For example,
when set to 0.9, it will select the most common endpoint pairs which together cover at least 90

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log stratified

See Also

vignette("filters","edeaR")

filter_endpoints_conditions

Filter: Start and end conditions

Description

Filters cases where the first and/or last activity adhere to the specified conditions

Usage

filter_endpoints_conditions(
eventlog,
start_condition,
end_condition,
reverse,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
start_condition

A logical condition

end_condition A logical condition

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

18 filter_lifecycle

Details

The filter_endpoints method filters cases based on the first and last activity label. It can be used in
two ways: by specifying vectors with allowed start activities and/or allowed end activities, or by
specifying a percentile. In the latter case, the percentile value will be used as a cut off. For example,
when set to 0.9, it will select the most common endpoint pairs which together cover at least 90

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

See Also

vignette("filters","edeaR")

filter_lifecycle Filter: Life cycle

Description

Filters the log based on the life cycle id

Usage

filter_lifecycle(eventlog, lifecycle, reverse, ...)

S3 method for class 'eventlog'
filter_lifecycle(eventlog, lifecycle, reverse = FALSE, ...)

S3 method for class 'grouped_eventlog'
filter_lifecycle(eventlog, lifecycle, reverse = FALSE, ...)

ifilter_lifecycle(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

lifecycle Character vector containing one or more life cycle identifiers.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

Details

The method filter_lifecycle can be used to filter on life cycle identifiers. It has an lifecycle argument,
to which a vector of identifiers can be given. The selection can be negated with the reverse argument.

filter_lifecycle_presence 19

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter eventlog on life cycle labels

• grouped_eventlog: Filter grouped eventlog on life cycle labels

See Also

vignette("filters","edeaR")

filter_lifecycle_presence

Filter: Life cycle Presence

Description

Filters activity instances based on the presence (or absence) of life cycles

Usage

filter_lifecycle_presence(eventlog, lifecycle, method, reverse)

S3 method for class 'eventlog'
filter_lifecycle_presence(
eventlog,
lifecycle = NULL,
method = c("all", "one_of", "none", "exact", "only"),
reverse = FALSE

)

S3 method for class 'grouped_eventlog'
filter_lifecycle_presence(
eventlog,
lifecycle = NULL,
method = c("all", "one_of", "none", "exact", "only"),
reverse = FALSE

)

ifilter_lifecycle_presence(eventlog)

20 filter_lifecycle_presence

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

lifecycle Character vector containing one or more life cycle identifiers.

method Filter method. If "all", each of the life cycle labels should be present. If
"one_of", at least one of them should be present. If "none", none of the life
cycle labels are allowed to occur in the filtered activity instances.

reverse Logical, indicating whether the selection should be reversed.

Details

This functions allows to filter activity instances that (do not) contain certain life cycle identifiers.
It requires as input a vector containing one or more life cycle labels and it has a method argument.
The latter can have the values all, none or one_of.

• When set to ‘all‘, it means that all the specified life cycle labels must be present for an activity
instance to be selected

• ‘none‘ means that they are not allowed to be present.

• ‘one_of‘ means that at least one of them must be present.

• ‘only‘ means that only (a set of) these life cycle labels are allowed to be present

• ‘exact‘ means that only exactly these life cycle labels can be present (although multiple times
and in random orderings)

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log on presence of life cycle labels.

• grouped_eventlog: Filter grouped event log on presence of life cycle labels.

See Also

vignette("filters","edeaR")

filter_precedence 21

filter_precedence Filter: precedence relations

Description

Filters cases based on the precedence relations between two sets of activities.

Usage

filter_precedence(
eventlog,
antecedents,
consequents,
precedence_type,
filter_method,
reverse

)

S3 method for class 'eventlog'
filter_precedence(
eventlog,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE

)

S3 method for class 'grouped_eventlog'
filter_precedence(
eventlog,
antecedents,
consequents,
precedence_type = c("directly_follows", "eventually_follows"),
filter_method = c("all", "one_of", "none"),
reverse = FALSE

)

ifilter_precedence(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
antecedents, consequents

The set of antecendent and consequent activities. Both are character vectors con-
taining at leaste one activity identifier. All pairs of antecedents and consequents
are turned into seperate precedence rules.

22 filter_precedence_condition

precedence_type

When directly_follows, the consequent activity should happen immediately
after the antecedent activities. When eventually_follows, other events are
allowed to happen in between.

filter_method When all, only cases where all the relations are valid are preserved. When
one_of, all the cases where at least one of the conditions hold are preserved.
When none, none of the relations are allowed.

reverse Logical, indicating whether the selection should be reversed.

Details

In order to extract a subset of an event log which conforms with a set of precedence rules, one
can use the filter_precedence method. There are two types of precendence relations which can be
tested: activities that should directly follow each other, or activities that should eventually follow
each other. The type can be set with the precedence type argument. Further, the filter requires a
vector of one or more antecedents (containing activity labels), and one or more consequents. Finally,
also a filter method argument can be set. This argument is relevant when there is more than one
antecedent or consequent. In such a case, you can specify that all possible precedence combinations
must be present (all), at least one of them (one of), or none (none).

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_precedence_condition

Filter: precedence relations

Description

Filters cases based on the precedence relations between two sets of activities.

filter_precedence_condition 23

Usage

filter_precedence_condition(
eventlog,
antecedent_condition,
consequent_condition,
precedence_type,
reverse

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

antecedent_condition, consequent_condition

The antecendent and consequent conditions

precedence_type

When directly_follows, the consequent condition should hold immediately
after the antecedent condition hold When eventually_follows, other events
are allowed to happen in between.

reverse Logical, indicating whether the selection should be reversed.

Details

In order to extract a subset of an event log which conforms with a set of precedence rules, one
can use the filter_precedence method. There are two types of precendence relations which can be
tested: activities that should directly follow each other, or activities that should eventually follow
each other. The type can be set with the precedence type argument. Further, the filter requires a
vector of one or more antecedents (containing activity labels), and one or more consequents. Finally,
also a filter method argument can be set. This argument is relevant when there is more than one
antecedent or consequent. In such a case, you can specify that all possible precedence combinations
must be present (all), at least one of them (one of), or none (none).

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

See Also

vignette("filters","edeaR")

24 filter_precedence_resource

filter_precedence_resource

Filter: precedence relations with identical resources

Description

Filters cases based on the precedence relations between two sets of activities, where both antecen-
dent and consequent have to be executed by the same resource.

Usage

filter_precedence_resource(
eventlog,
antecedents,
consequents,
precedence_type,
filter_method,
reverse

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
antecedents, consequents

The set of antecendent and consequent activities. Both are character vectors con-
taining at least one activity identifier. All pairs of antecedents and consequents
are turned into seperate precedence rules.

precedence_type

When directly_follows, the consequent activity should happen immediately
after the antecedent activities. When eventually_follows, other events are
allowed to happen in between.

filter_method When all, only cases where all the relations are valid are preserved. When
one_of, all the cases where at least one of the conditions hold are preserved.
When none, none of the relations are allowed.

reverse Logical, indicating whether the selection should be reversed.

Details

In order to extract a subset of an event log which conforms with a set of precedence rules, one
can use the filter_precedence method. There are two types of precendence relations which can be
tested: activities that should directly follow each other, or activities that should eventually follow
each other. The type can be set with the precedence type argument. Further, the filter requires a
vector of one or more antecedents (containing activity labels), and one or more consequents. Finally,
also a filter method argument can be set. This argument is relevant when there is more than one
antecedent or consequent. In such a case, you can specify that all possible precedence combinations
must be present (all), at least one of them (one of), or none (none). In case an activity instance exists
of more than one events with different resource identifiers, only the first will be considered.

filter_processing_time 25

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

See Also

vignette("filters","edeaR")

filter_processing_time

Filter: Processing Time

Description

Filters cases based on their processing time.

Usage

filter_processing_time(eventlog, interval, percentage, reverse, units, ...)

S3 method for class 'eventlog'
filter_processing_time(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("days", "hours", "mins", "secs", "weeks"),
...

)

S3 method for class 'grouped_eventlog'
filter_processing_time(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("days", "hours", "mins", "secs", "weeks"),
...

)

ifilter_processing_time(eventlog)

26 filter_resource

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval An duration interval (numeric vector of length 2) to be used for absolute. Half
open interval can be created using NA.

percentage A percentage p to be used for relative filtering.

reverse Logical, indicating whether the selection should be reversed.

units The time unit used for defining filter intervals.

... Deprecated arguments.

Details

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a processing
time in this interval. The time units in which this interval is defined can be submitted with the units
argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_resource Filter: Resource

Description

Filters the log based on resource identifiers

filter_resource_frequency 27

Usage

filter_resource(eventlog, resources, reverse)

S3 method for class 'eventlog'
filter_resource(eventlog, resources, reverse = FALSE)

S3 method for class 'grouped_eventlog'
filter_resource(eventlog, resources, reverse = FALSE)

ifilter_resource(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

resources A vector of resources identifiers

reverse Logical, indicating whether the selection should be reversed.

Details

#’ The method filter_resource can be used to filter on resource identifiers. It has a resources argu-
ment, to which a vector of identifiers can be given. The selection can be negated with the reverse
argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_resource_frequency

Filter: Activity frequency

28 filter_resource_frequency

Description

Filters the log based on frequency of activities

Filtering the event log based in resource frequency can be done in two ways: using an interval of
allowed frequencies, or specify a coverage percentage.

• percentage: When filtering using a percentage p%, the filter will return p frequency. The
filter will retain additional resource labels as long as the number of activity instances does not
exceed the percentage threshold.

• interval: When filtering using an interval, resource labels will be retained when their absolute
frequency fall in this interval. The interval is specified using a numeric vector of length 2.
Half open intervals can be created by using NA. E.g., ‘c(10, NA)‘ will select resource labels
which occur 10 times or more.

Usage

filter_resource_frequency(eventlog, interval, percentage, reverse, ...)

S3 method for class 'eventlog'
filter_resource_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_resource_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

ifilter_resource_frequency(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval An resource frequency interval (numeric vector of length 2). Half open interval
can be created using NA.

percentage The target coverage of activity instances. A percentile of 0.9 will return the most
common resource types of the eventlog, which account for at least 90% of the
activity instances.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

filter_throughput_time 29

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event logs

See Also

vignette("filters","edeaR")

filter_throughput_time

Filter: Throughput Time

Description

Filters cases based on their throughput time.

Usage

filter_throughput_time(eventlog, interval, percentage, reverse, units, ...)

S3 method for class 'eventlog'
filter_throughput_time(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("days", "hours", "mins", "secs", "weeks"),
...

)

S3 method for class 'grouped_eventlog'
filter_throughput_time(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
units = c("days", "hours", "mins", "secs", "week"),
...

)

ifilter_throughput_time(eventlog)

30 filter_time_period

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval An duration interval (numeric vector of length 2) to be used for absolute. Half
open interval can be created using NA.

percentage A percentage p to be used for relative filtering.

reverse Logical, indicating whether the selection should be reversed.

units The time unit used for defining filter intervals.

... Deprecated arguments.

Details

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a throughput
time in this interval. The time units in which this interval is defined can be submitted with the units
argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_time_period Filter: Time Period

Description

Function to filter eventlog using a time period.

filter_time_period 31

Usage

filter_time_period(eventlog, interval, filter_method, force_trim, reverse, ...)

S3 method for class 'eventlog'
filter_time_period(
eventlog,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_time_period(
eventlog,
interval = NULL,
filter_method = c("contained", "intersecting", "start", "complete", "trim"),
force_trim = FALSE,
reverse = FALSE,
...

)

ifilter_time_period(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
interval A time interval. A vector of length 2 of type Date or POSIXct. Half-open

intervals can be created with NA.
filter_method Can be contained,start,complete,intersecting or trim.
force_trim Logical, if true in combination with filter method trim activity instances on the

edges of the interval are cut at the exact edge of the interval.
reverse Logical, indicating whether the selection should be reversed.
... Deprecated arguments.

Details

Event data can be filtered by supplying a time window to the method filter_time_period. There are
5 different filter methods.

• contained keeps all the events related to cases contained in the time period.
• start keeps all the events related to cases started in the time period.
• complete keeps all the events related to cases complete in the time period.
• intersecting keeps all the events related to cases in which at least one event started and/or

ended in the time period.
• trim keeps all the events which started and ended in the time frame.

32 filter_trace

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_trace title Filter: Trace

Description

Filters the log based on trace id

Usage

filter_trace(eventlog, trace_ids, reverse)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

trace_ids A vector of trace identifiers

reverse Logical, indicating whether the selection should be reversed.

Details

The method filter_trace can be used to filter on trace id It has an trace_ids argument, to which a
vector of identifiers can be given. The selection can be negated with the reverse argument.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

See Also

vignette("filters","edeaR")

filter_trace_frequency 33

filter_trace_frequency

Filter: Trace frequency

Description

Filters the log based the frequency of traces, using an interval or a percentile cut off.

Usage

filter_trace_frequency(eventlog, interval, percentage, reverse, ...)

S3 method for class 'eventlog'
filter_trace_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_trace_frequency(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

ifilter_trace_frequency(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval WHen given an interval, the filter will select cases of which the trace has a
frequency inside the interval.

percentage When given a percentage p, the filter will select the most common traces, until
at least p% of the cases is covered.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

Details

This filter can be used to filter cases based on the frequency of the corresponding trace. A trace is a
sequence of activity labels, and will be discussed in more detail in Section 6. There are again two

34 filter_trace_length

ways to select cases based on trace frequency, by interval or by percentile cut off. The percentile
cut off will start with the most frequent traces.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_trace_length Filter: Trace length percentile

Description

Filters cases on length, using a percentile threshold.

Usage

filter_trace_length(eventlog, interval, percentage, reverse, ...)

S3 method for class 'eventlog'
filter_trace_length(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

S3 method for class 'grouped_eventlog'
filter_trace_length(
eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...

)

ifilter_trace_length(eventlog)

filter_trim 35

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

interval An trace length interval (numeric vector of length 2) to be used for absolute.
Half open interval can be created using NA.

percentage A percentage p to be used for relative filtering.

reverse Logical, indicating whether the selection should be reversed.

... Deprecated arguments.

Details

This filter can be used by using an interval or by using a percentage. The percentage will always
start with the shortest cases first and stop including cases when the specified percentile is reached.
On the other hand, an absolute interval can be defined instead to filter cases which have a length in
this interval.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_trim Filter: Trim cases

Description

Trim cases from the first event of a set of start activities to the last event of a set of end activities.

Usage

filter_trim(eventlog, start_activities, end_activities, reverse)

S3 method for class 'eventlog'
filter_trim(
eventlog,
start_activities = NULL,
end_activities = NULL,

36 filter_trim

reverse = FALSE
)

S3 method for class 'grouped_eventlog'
filter_trim(
eventlog,
start_activities = NULL,
end_activities = NULL,
reverse = FALSE

)

ifilter_trim(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.

start_activities

A vector of activity identifiers, or NULL

end_activities A vector of activity identifiers, or NULL

reverse Logical, indicating whether the selection should be reversed.

Details

One can trim cases by removing one or more activity instances at the start and/or end of a case.
Trimming is performed until all cases have a start and/or end point belonging to a set of allowed
activity labels. This filter requires a set of allowed start activities and/or a set of allowed end
activities. If one of them is not provided it will not trim the cases at this edge.The selection can be
reversed, which means that only the trimmed events at the start and end of cases are retained. As
such, this argument allows to cut intermediate parts out of traces.

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

filter_trim_lifecycle 37

filter_trim_lifecycle Filter: Trim activity instances based on life cycle labels

Description

Trim activity instances from the first event of a set of start life cycle labels to the last event of a set
of end life cycle labels

Usage

filter_trim_lifecycle(eventlog, start_lifecycle, end_lifecycle, reverse)

S3 method for class 'eventlog'
filter_trim_lifecycle(
eventlog,
start_lifecycle = NULL,
end_lifecycle = NULL,
reverse = FALSE

)

S3 method for class 'grouped_eventlog'
filter_trim_lifecycle(
eventlog,
start_lifecycle = NULL,
end_lifecycle = NULL,
reverse = FALSE

)

ifilter_trim_lifecycle(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object.
start_lifecycle

A vector of life cycle identifiers, or NULL

end_lifecycle A vector of life cycle identifiers, or NULL

reverse Logical, indicating whether the selection should be reversed.

Details

One can trim activity instances by removing one or more events at the start and/or end of the activity
instances. Trimming is performed until all activity instances have a start and/or end point belonging
to a set of allowed life cycle labels. This filter requires a set of allowed start life cycle labels and/or
a set of allowed life cycle labels. If one of them is not provided it will not trim the activity instances
at this edge.The selection can be reversed, which means that only the trimmed events at the start
and end of activity instances are retained. As such, this argument allows to cut intermediate parts
out of activity instances.

38 idle_time

Value

When given an eventlog, it will return a filtered eventlog. When given a grouped eventlog, the filter
will be applied in a stratified way (i.e. each separately for each group). The returned eventlog will
be grouped on the same variables as the original event log.

Methods (by class)

• eventlog: Filter event log

• grouped_eventlog: Filter grouped event log

See Also

vignette("filters","edeaR")

idle_time Metric: Idle Time

Description

Calculates the amount of time that no activity occurs.

Usage

idle_time(eventlog, level, append, append_column, units, ...)

S3 method for class 'eventlog'
idle_time(
eventlog,
level = c("log", "case", "trace", "resource"),
append = FALSE,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
idle_time(
eventlog,
level = c("log", "case", "trace", "resource"),
append = FALSE,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
...

)

number_of_repetitions 39

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, trace, or resource. For more
information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

units Time units to be used

... Deprecated arguments

sort Sort by decreasing idle time. Defaults to true. Only relevant voor trace and
resource level.

Details

• On the level of the complete event log, the idle time metric provides an overview of summary
statistics of the idle time per case, aggregated over the complete event log.

• The metric applied on the level of the specific cases in the event log provides an overview of
the total idle time per case

• On the level of the different traces that occur in the event log, the idle time metric provides an
overview of the summary statistics of the idle time for each trace in the event log.

• The metric can also be of interest on the level of the resources, to get an insight in the amount
of time each resource \"wastes\" during the process.

Methods (by class)

• eventlog: Compute the idle time for eventlog

• grouped_eventlog: Compute idle time for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

number_of_repetitions Metric: Number of repetitions

Description

Provides information statistics on the number of repetitions

40 number_of_repetitions

Usage

number_of_repetitions(eventlog, type, level, append, ...)

S3 method for class 'eventlog'
number_of_repetitions(
eventlog,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
number_of_repetitions(
eventlog,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

type The type of repetitions, either repeat or redo.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

Details

A repetition is an execution of an activity within a case while that activity has already been executed
before, but one or more other activities are executed in between.Similar to the self-loop metric, a
distinction should be made between repeat and redo repetitions. Repeat repetitions are activity
executions of the same activity type that are executed not immediately following each other, but
by the same resource. Redo repetitions are activity executions of the same activity type that are

number_of_selfloops 41

executed not immediately following each other and by a different resource than the first activity
occurrence of this activity type.

• The number of repetitions can be calculated on the level of the complete event log. This metric
shows the summary statistics of the number of repetitions within a case, which can provide
insights in the amount of waste in an event log. Each combination of two or more occurrences
of the same activity, executed not immediately following each other, by the same resource is
counted as one repeat repetition of this activity.

• On case level, this metric provides the absolute and relative number of repetitions in each case.

• On the level of specific activities, this metric shows which activities occur the most in a rep-
etition. The absolute and relative number of both repeat and redo repetitions is provided by
this metric, giving an overview per activity.

• When looking at the different resources executing activities in the event log, it can be inter-
esting to have an overview of which resources need more than one time to execute an activity
in a case or which resources need to have an activity redone later on in the case by another re-
source. This metric provides the absolute and relative number of times each resource appears
in a repetition.

• Finally, the same metric can be looked at on the level of specific resource-activity combi-
nations, providing the company with specific information about which activities and which
resources are involved in the repetitions. For this metric the absolute and relative number of
repeat and redo repetitions is provided. Again two difierent relative numbers are provided,
one relative to the total number of executions of the activity in the complete event log, and one
relative to the total number of executions performed by the resource throughout the complete
event log.

Methods (by class)

• eventlog: Apply metric on event log

• grouped_eventlog: Apply metric on grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

number_of_selfloops Metric: Number of selfloops in trace

Description

Provides information statistics on the number of selfloops.

42 number_of_selfloops

Usage

number_of_selfloops(eventlog, type, level, append, ...)

S3 method for class 'eventlog'
number_of_selfloops(
eventlog,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
number_of_selfloops(
eventlog,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.
type The type of repetitions, either all, repeat or redo.
level Level of granularity for the analysis: log, case, activity, resource or resource-

activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments
append_column Which of the output columns to append to log, if append = T. Default column

depends on chosen level.
sort Sort output on count. Defaults to TRUE. Only for levels with frequency count

output.

Details

Activity instances of the same activity type that are executed more than once immediately after
each other by the same resource are in a self-loop (length-1-loop). If an activity instance of the
same activity type is executed 3 times after each other by the same resource, this is defined as a size
2 self-loop.

Two types of self-loops are defined, which are repeat self-loops and redo self-loops. Repeat self-
loops are activity executions of the same activity type that are executed immediately following each

number_of_selfloops 43

other by the same resource. Redo self-loops are activity executions of the same activity type that
are executed immediately following each other by a different resource. Repeat and redo repetitions
are explained further on.

These metrics are presented on five different levels of analysis, which are the complete event log,
cases, activities, resources and resource-activity combinations.

• On the level of the complete event log, the summary statistics of the number of self-loops
within a trace can give a first insight in the amount of waste in an event log. As stated earlier,
each combination of two occurrences of the same activity executed by the same resource will
be counted as one repeat self-loop of this activity.

• This metric on the level of cases provides an overview of the absolute and relative number of
repeat and redo self-loops in each case. To calculate the relative number, each (repeat or redo)
self-loop is counted as 1 occurrence, and the other activity instances are also counted as 1.

• On the level of the distinct activities in the event log, the absolute and relative number of self-
loops per activity can be an indication for the company which activities are causing the most
waste in the process.

• Similar to the metric on the level of the activities, the number of self-loops on the level of
the resources executing the activities can give a company insights in which employee needs to
repeat his or her work most often within a case, or for which employee the work he or she did
should be redone by another employee within the same case. This metric shows the absolute
and relative number of both repeat and redo self-loops for each resource in the event log.

• Finally, the metric can be applied to the level of the specifc resource-activity combinations, in
order to get an insight in which activities are the most crucial for which resources. This metric
shows the absolute and relative number of both repeat and redo self-loops for each of the
resource-activity combinations that occur in the event log. Two different relative numbers are
provided here, one from the resource perspective and one from the activity perspective. At the
resource perspective, the denominator is the total number of executions by the resource under
consideration. At the activity perspective, the denominator is the total number of occurrences
of the activity under consideration.

Methods (by class)

• eventlog: Compute number of selfloops for eventlog

• grouped_eventlog: Compute number of selfloops for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

44 plot

number_of_traces Metric: Number of traces

Description

Computes how many traces there are.

Usage

number_of_traces(eventlog)

S3 method for class 'eventlog'
number_of_traces(eventlog)

S3 method for class 'grouped_eventlog'
number_of_traces(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

Details

This metric provides two values, the absolute and relative number of traces that occur in the event
log. The relative number shows expected number of traces needed to cover 100 cases.

Methods (by class)

• eventlog: Number of traces in eventlog

• grouped_eventlog: Number of traces in each group of eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

plot Plot Methods

Description

Visualize metric

plot 45

Usage

S3 method for class 'activity_frequency'
plot(x, ...)

S3 method for class 'activity_presence'
plot(x, ...)

S3 method for class 'end_activities'
plot(x, ...)

S3 method for class 'idle_time'
plot(x, ...)

S3 method for class 'processing_time'
plot(x, ...)

S3 method for class 'referral_matrix'
plot(x, ...)

S3 method for class 'resource_frequency'
plot(x, ...)

S3 method for class 'resource_involvement'
plot(x, ...)

S3 method for class 'resource_specialisation'
plot(x, ...)

S3 method for class 'start_activities'
plot(x, ...)

S3 method for class 'throughput_time'
plot(x, ...)

S3 method for class 'trace_coverage'
plot(x, ...)

S3 method for class 'trace_length'
plot(x, ...)

S3 method for class 'number_of_selfloops'
plot(x, ...)

S3 method for class 'number_of_repetitions'
plot(x, ...)

46 print.idle_time

Arguments

x Data to plot

... Additional variables

Value

A ggplot object, which can be customized further, if deemed necessary.

print.activity_frequency

Activity Frequency Print

Description

Print Actvitity Frequency Information

Usage

S3 method for class 'activity_frequency'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.idle_time Idle Time Print

Description

Print idle time Information

Usage

S3 method for class 'idle_time'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.number_of_repetitions 47

print.number_of_repetitions

Repetitions Print

Description

Print Repetitions Information

Usage

S3 method for class 'number_of_repetitions'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.number_of_selfloops

Selfloops Print

Description

Print Selfloops Information

Usage

S3 method for class 'number_of_selfloops'
print(x, ...)

Arguments

x Data to print

... Additional arguments

48 print.throughput_time

print.processing_time Processing Time Print

Description

Print Processing Time Information

Usage

S3 method for class 'processing_time'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.throughput_time Throughput Time Print

Description

Print Throughput Time Information

Usage

S3 method for class 'throughput_time'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.trace_coverage 49

print.trace_coverage Trace coverage print

Description

Print Trace coverage Information

Usage

S3 method for class 'trace_coverage'
print(x, ...)

Arguments

x Data to print

... Additional arguments

print.trace_length Trace length Print

Description

Print Trace length Information

Usage

S3 method for class 'trace_length'
print(x, ...)

Arguments

x Data to print

... Additional arguments

50 processing_time

processing_time Metric: Processing time

Description

Provides summary statistics about the processing time of the process.

Usage

processing_time(
eventlog,
level,
append,
append_column,
units,
sort,
work_schedule,
...

)

S3 method for class 'eventlog'
processing_time(
eventlog,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = F,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
work_schedule = NULL,
...

)

S3 method for class 'grouped_eventlog'
processing_time(
eventlog,
level = c("log", "trace", "case", "activity", "resource", "resource-activity"),
append = F,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
work_schedule = NULL,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

processing_time 51

level Level of granularity for the analysis: log, case, trace, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

units Time units to be used

sort Sort on decreasing processing time. For case level only.

work_schedule A schedule of working hours. If provided, only working hours are counted as
processing time.

... Deprecated arguments

Details

In contrast to the throughput time of the cases in an event log, the metrics concerning the active
time or the actual processing time provide summary statistics on the processing time of events on
the level of the complete event log, the specific cases, traces, the activities, and the resource-activity
combinations.

• On log level, this metric calculates the summary statistics of the actual processing time per
case, summarised over the complete event log.

• On case level, a list of cases with their processing time are provided.

• On trace level, the summary statistics of processing time can be calculated for each possible
sequence of activities that appears in the event log.

• Duration can also be calculated on the level of each activity. For each activity, an overview of
the average processing time -or the service time- of this activity can be of interest.

• We can also look at the processing time per case on the level of each separate resource. This
way, a company gets an overview of the amount of time each resource spends on a case and
which resources spend more time on cases than others.

• On the resource-activity level, finally, we can have a look at the efficiency of resources by
looking at the combination of each resource with each activity.

Methods (by class)

• eventlog: Compute processing time for event log

• grouped_eventlog: Compute processing time on grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

52 redo_selfloops_referral_matrix

redo_repetitions_referral_matrix

Referral matrix repetitons

Description

Provides a list of initatiors and completers of redo repetitons

Usage

redo_repetitions_referral_matrix(eventlog)

S3 method for class 'eventlog'
redo_repetitions_referral_matrix(eventlog)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

Methods (by class)

• eventlog: Compute matrix for eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_repetitions

redo_selfloops_referral_matrix

Referral matrix selfloops

Description

Provides a list of initatiors and completers of redo selfloops

Usage

redo_selfloops_referral_matrix(eventlog)

S3 method for class 'eventlog'
redo_selfloops_referral_matrix(eventlog)

resource_frequency 53

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

Methods (by class)

• eventlog: Compute matrix for eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_selfloops

resource_frequency Metric: Resource frequency

Description

Analyses the frequency of resources at different levels of analysis

Usage

resource_frequency(eventlog, level, append, ...)

S3 method for class 'eventlog'
resource_frequency(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
resource_frequency(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

54 resource_frequency

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

Details

Comparable to the concept of the activity frequency the frequency of resources in a business process
can also be very insightful for companies, e.g., during company restructuring.

• On the level of the complete event log, summary statistics show the number of times a resource
executes an activity in the complete event log.

• To get a better view on the variance between the different cases, the summary statistics of the
frequency of resources can be calculated on the level of the cases. This way, a company gets
an insight in the number of different resources working on each case together with the number
of activities a resource executes per case.

• At the level of the different activities, the resource frequency states how many different re-
sources are executing a specific activity in the complete event log.

• At the level of the distinct resources in the event log, this metric simply shows the absolute
and relative frequency of occurrences of each resource in the complete event log.

• Finally, at the most specific level of analysis, the absolute and relative number of times each
resource-activity level occurs in the complete event log can be calculated. Two different rel-
ative numbers are provided here, one from the resource perspective and one from the activity
perspective. At the resource perspective, the denominator is the total number of executions
by the resource under consideration. At the activity perspective, the denominator is the total
number of occurrences of the activity under consideration.

Methods (by class)

• eventlog: Resource frequency for eventlog

• grouped_eventlog: Resource frequency for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

resource_involvement 55

resource_involvement Metric: Resource Involvement

Description

Calculates for each resource/resource-activity in what percentage of cases it is present.

Usage

resource_involvement(eventlog, level, append, ...)

S3 method for class 'eventlog'
resource_involvement(
eventlog,
level = c("case", "resource", "resource-activity"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
resource_involvement(
eventlog,
level = c("case", "resource", "resource-activity"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

56 resource_specialisation

Details

Next to the resource frequency, the involvement of resources in cases can be of interest to, e.g.,
decide how "indispensable" they are. This metric is provided on three levels of analysis, which are
the cases, the resources, and the resource-activity combinations

• At the level of the specific cases, the absolute and relative number of distinct resources execut-
ing activities in each case is calculated. This way a company gets an overview of which cases
are handled by a small amount of resources and which cases need more resources, indicating
a higher level of variance in the process.

• On the level of the distinct resources, this metric provides the absolute and relative number
of cases in which each resource is involved, indicating which resources are more "necessary"
within the business process than the others.

• On the level of the specific resource-activity combinations, this metric provides a list of all
resource-activity combinations with the absolute and relative number of cases in which each
resource-activity combination is involved.

Methods (by class)

• eventlog: Resource involvement for eventlog

• grouped_eventlog: Resource involvement for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

resource_specialisation

Metric: Resource Specialisation

Description

Analyses whether resources specialise in specific activities

Usage

resource_specialisation(eventlog, level, append, ...)

resource_specialization(eventlog, level, append, ...)

S3 method for class 'eventlog'
resource_specialisation(
eventlog,
level = c("log", "case", "activity", "resource"),
append = F,
append_column = NULL,

resource_specialisation 57

sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
resource_specialisation(
eventlog,
level = c("log", "case", "activity", "resource"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.
level Level of granularity for the analysis: log, case, or resource. For more informa-

tion, see vignette("metrics","edeaR")#’
append Logical, indicating whether to append results to original event log. Ignored

when level is log or trace.
... Deprecated arguments
append_column Which of the output columns to append to log, if append = T. Default column

depends on chosen level.
sort Sort output on count. Defaults to TRUE. Only for levels with frequency count

output.

Details

This can give a company an overview of which resources are performing certain activities more
than others, and which resources are responsible for containing all knowledge or capabilities on
one topic.

• On the level of the complete event log, this metric provides summary statistics on the number
of distinct activities executed per resource.

• On the level of the cases, this metric provides the number of distinct activities that are executed
within each case together with the summary statistics of the distinct activities executed per
resource in each case.

• On the level of the distinct activities, this metric provides an overview of the absolute and
relative number of different resources executing this activity within the complete event log.
This will give a company insights in which activities resources are specialised in.

• Finally, the resource specialisation can also be calculated on the resource level, showing the
absolute and relative number of distinct activities that each resource executes.

Methods (by class)

• eventlog: Resource specialization for eventlog
• grouped_eventlog: Resource specialization for grouped eventlog

58 size_of_repetitions

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

size_of_repetitions Metric: Size of repetitions

Description

Provides summary statistics on the sizes of repetitions.

Usage

size_of_repetitions(eventlog, type, level, append, ...)

S3 method for class 'eventlog'
size_of_repetitions(
eventlog,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
...

)

S3 method for class 'grouped_eventlog'
size_of_repetitions(
eventlog,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

type The type of repetitions, either all, repeat or redo.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

size_of_selfloops 59

Methods (by class)

• eventlog: Size of repetitions for eventlog

• grouped_eventlog: Size of repetitions for grouped event log

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_repetitions

size_of_selfloops Metric: Size of selfloops

Description

Provides summary statistics on the sizes of selfloops

Usage

size_of_selfloops(eventlog, type, level, append, ...)

S3 method for class 'eventlog'
size_of_selfloops(
eventlog,
type = c("all", "repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
...

)

S3 method for class 'grouped_eventlog'
size_of_selfloops(
eventlog,
type = c("repeat", "redo"),
level = c("log", "case", "activity", "resource", "resource-acitivty"),
append = FALSE,
append_column = NULL,
...

)

60 start_activities

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

type The type of repetitions, either all, repeat or redo.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

Methods (by class)

• eventlog: Size of selfloops for eventlog

• grouped_eventlog: Size of selfloops for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

See Also

number_of_selfloops

start_activities Metric: Start activities

Description

Analyse the start activities in the process

Usage

start_activities(eventlog, level, append, ...)

S3 method for class 'eventlog'
start_activities(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

start_activities 61

S3 method for class 'grouped_eventlog'
start_activities(
eventlog,
level = c("log", "case", "activity", "resource", "resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort output on count. Defaults to TRUE. Only for levels with frequency count
output.

Details

• On log levels, this metric shows the absolute and relative number of activities that are the first
activity in one or more of the cases.

• On the level of the specific cases, this metric provides an overview of the start activity of each
case.

• On the activity level This metric calculates for each activity the absolute and relative number
of cases that start with this activity type. The relative number is calculated as a portion of
the number of cases, being the number of "opportunities" that an activity could be the start
activity. The cumulative sum is added to have an insight in the number of activities that is
required to cover a certain part of the total.

• On the level of the distinct resources, an overview of which resources execute the first activity
per case can be of interest for a company. Probably this person is responsible for the correct
communication to the customer.

• Finally, on the resource-activity level, this metric shows for each occurring resource-activity
combination the absolute and relative number of times this resource executes this activity as
an start activity in a case.

Methods (by class)

• eventlog: Start activities for eventlog

• grouped_eventlog: Start activities for grouped eventlog

62 throughput_time

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

throughput_time Metric: Throughput time of cases

Description

Provides summary statistics concerning the throughput times of cases.

Usage

throughput_time(eventlog, level, append, append_column, units, ...)

S3 method for class 'eventlog'
throughput_time(
eventlog,
level = c("log", "trace", "case"),
append = FALSE,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
throughput_time(
eventlog,
level = c("log", "trace", "case"),
append = FALSE,
append_column = NULL,
units = c("days", "hours", "mins", "secs", "weeks"),
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

trace_coverage 63

units Time units to be used

... Deprecated arguments

sort Sort by decreasing throughput time. Defaults to true. Only relevant for case
level.

Details

• The throughput time of a case is the total duration of the case, or the difference between the
timestamp of the end event and the timestamp of the start event of the case. Possible idle time
is also included in this calculation.

• On log level, the summary statistics of these throughput to describe the throughput time of
cases in an aggregated fashion.

• Instead of looking at all cases in the log, it can be interesting to analyse the different process
variants or traces in the log

Methods (by class)

• eventlog: Throughput time for eventlog

• grouped_eventlog: Throughput time for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

trace_coverage Metric: Trace coverage

Description

Analyses the structuredness of an event log by use of trace frequencies. Applicable at logn case and
trace level

Usage

trace_coverage(eventlog, level, append, ...)

S3 method for class 'eventlog'
trace_coverage(
eventlog,
level = c("log", "trace", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

64 trace_coverage

S3 method for class 'grouped_eventlog'
trace_coverage(
eventlog,
level = c("log", "trace", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort by decreasing throughput time. Defaults to true. Only relevant for case
level.

Details

• Trace: The absolute and relative frequency of each trace is returned

• Case: for each case, the coverage of the corresponding trace is returned

• Log: Summary statistics of the coverage of traces is returned.

Methods (by class)

• eventlog: Trace coverage metric for eventlog

• grouped_eventlog: Trace coverage metric for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

trace_length 65

trace_length Metric: Trace length

Description

Analysis of trace lengths

Usage

trace_length(eventlog, level, append, ...)

S3 method for class 'eventlog'
trace_length(
eventlog,
level = c("log", "trace", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

S3 method for class 'grouped_eventlog'
trace_length(
eventlog,
level = c("log", "trace", "case"),
append = F,
append_column = NULL,
sort = TRUE,
...

)

Arguments

eventlog The dataset to be used. Should be a (grouped) eventlog object. eventlog.

level Level of granularity for the analysis: log, case, activity, resource or resource-
activity. For more information, see vignette("metrics","edeaR")

append Logical, indicating whether to append results to original event log. Ignored
when level is log or trace.

... Deprecated arguments

append_column Which of the output columns to append to log, if append = T. Default column
depends on chosen level.

sort Sort by decreasing throughput time. Defaults to true. Only relevant for case
level.

66 trace_length

Details

This metric provides an overview of the number of activities that occur in each trace. In this metric,
instances of an activity, as opposed to the actual activities, are calculated.

• On the level of the log, the number of actual transactions in a trace are calculated and aggre-
gated on the log level.

• On the level of the cases, this metric calculates the number of activity instances in each case.

• This metric shows the number of activity instances executed in each trace. #’

Methods (by class)

• eventlog: Trace length for eventlog

• grouped_eventlog: Trace length for grouped eventlog

References

Swennen, M. (2018). Using Event Log Knowledge to Support Operational Exellence Techniques
(Doctoral dissertation). Hasselt University.

Index

activity_frequency, 3
activity_presence, 4

change_day, 6
create_work_schedule, 6

edeaR, 7
end_activities, 7

filter_activity, 8
filter_activity_frequency, 10
filter_activity_instance, 11
filter_activity_presence, 12
filter_case, 14
filter_case_condition, 15
filter_endpoints, 15
filter_endpoints_conditions, 17
filter_lifecycle, 18
filter_lifecycle_presence, 19
filter_precedence, 21
filter_precedence_condition, 22
filter_precedence_resource, 24
filter_processing_time, 25
filter_resource, 26
filter_resource_frequency, 27
filter_throughput_time, 29
filter_time_period, 30
filter_trace, 32
filter_trace_frequency, 33
filter_trace_length, 34
filter_trim, 35
filter_trim_lifecycle, 37

idle_time, 38
ifilter_activity (filter_activity), 8
ifilter_activity_frequency

(filter_activity_frequency), 10
ifilter_activity_instance

(filter_activity_instance), 11
ifilter_activity_presence

(filter_activity_presence), 12

ifilter_case (filter_case), 14
ifilter_endpoints (filter_endpoints), 15
ifilter_lifecycle (filter_lifecycle), 18
ifilter_lifecycle_presence

(filter_lifecycle_presence), 19
ifilter_precedence (filter_precedence),

21
ifilter_processing_time

(filter_processing_time), 25
ifilter_resource (filter_resource), 26
ifilter_resource_frequency

(filter_resource_frequency), 27
ifilter_throughput_time

(filter_throughput_time), 29
ifilter_time_period

(filter_time_period), 30
ifilter_trace_frequency

(filter_trace_frequency), 33
ifilter_trace_length

(filter_trace_length), 34
ifilter_trim (filter_trim), 35
ifilter_trim_lifecycle

(filter_trim_lifecycle), 37

number_of_repetitions, 39, 52, 59
number_of_selfloops, 41, 53, 60
number_of_traces, 44

plot, 44
print.activity_frequency, 46
print.idle_time, 46
print.number_of_repetitions, 47
print.number_of_selfloops, 47
print.processing_time, 48
print.throughput_time, 48
print.trace_coverage, 49
print.trace_length, 49
processing_time, 50

redo_repetitions_referral_matrix, 52

67

68 INDEX

redo_selfloops_referral_matrix, 52
resource_frequency, 53
resource_involvement, 55
resource_specialisation, 56
resource_specialization

(resource_specialisation), 56

size_of_repetitions, 58
size_of_selfloops, 59
start_activities, 60

throughput_time, 62
trace_coverage, 63
trace_length, 65

	activity_frequency
	activity_presence
	change_day
	create_work_schedule
	edeaR
	end_activities
	filter_activity
	filter_activity_frequency
	filter_activity_instance
	filter_activity_presence
	filter_case
	filter_case_condition
	filter_endpoints
	filter_endpoints_conditions
	filter_lifecycle
	filter_lifecycle_presence
	filter_precedence
	filter_precedence_condition
	filter_precedence_resource
	filter_processing_time
	filter_resource
	filter_resource_frequency
	filter_throughput_time
	filter_time_period
	filter_trace
	filter_trace_frequency
	filter_trace_length
	filter_trim
	filter_trim_lifecycle
	idle_time
	number_of_repetitions
	number_of_selfloops
	number_of_traces
	plot
	print.activity_frequency
	print.idle_time
	print.number_of_repetitions
	print.number_of_selfloops
	print.processing_time
	print.throughput_time
	print.trace_coverage
	print.trace_length
	processing_time
	redo_repetitions_referral_matrix
	redo_selfloops_referral_matrix
	resource_frequency
	resource_involvement
	resource_specialisation
	size_of_repetitions
	size_of_selfloops
	start_activities
	throughput_time
	trace_coverage
	trace_length
	Index

