Package 'ecp’

November 11, 2019

Type Package

Title Non-Parametric Multiple Change-Point Analysis of Multivariate Data

Version 3.1.2

Date 2019-11-10
Author Nicholas A. James, Wenyu Zhang and David S. Matteson
Maintainer Wenyu Zhang wz258@cornell.edu
Description Implements various procedures for finding multiple change-points. Two methods make use of dynamic programming and pruning, with no distributional assumptions other than the existence of certain absolute moments in one method. Hierarchical and exact search methods are included. All methods return the set of estimated changepoints as well as other summary information.

License GPL (>=2)
Depends R (>= 3.00), Rcpp
Suggests mvtnorm, MASS, combinat, R.rsp
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
VignetteBuilder R.rsp
Date/Publication 2019-11-11 06:20:14 UTC

R topics documented:

ACGH 2
DJIA 3
e.agglo 3
e.cp3o 5
e.cp3o_delta 7
e.divisive 8
kcpa 10
ks.cp3o 11
ks.cp3o_delta 12
Index 14

ACGH

Bladder Tumor Micro-Array Data

Description

Micro-array data for 43 different individuals with a bladder tumor.

Usage

data(ACGH)

Format

A list with the following components.
data: The micro-array data for 43 individuals. This information is stored in a 2215 by 43 matrix.
individual: A numeric vector indicating which individuals’ mico-array data are present.

Source

Bleakley K., Vert J.-P. (2011), The group fused Lasso for multiple change-point detection
N. Stransky, C. Vallot, F. Reyal, I. Bernard-Pierrot, S.G. Diez de Mediana, R. Segraves, Y. de Rycke, P. Elvin, A. Cassidy, C. Sparaggon, A. Graham, j. Southgate, B. Asselain, Y. Allory, C. C. Addou, D. G. Albertson, J.-P. Thiery, D. K. Chopin, D. Pinkel, and F. Radvanyi. Regional copy number-independent deregulation of transcription in cancer. Nat. Genet., 38(12):1386-1396, Dec 2006

References

Bleakley K., Vert J.-P. (2011), The group fused Lasso for multiple change-point detection
Nicholas A. James, David S. Matteson (2014). "ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data.", "Journal of Statistical Software, 62(7), 1-25", URL "http://www.jstatsoft.org/v62/i07/"

Examples

```
data(ACGH, package="ecp")
```


DJIA
 Dow Jones Industrial Average Index

Description

The weekly log returns for the Dow Jones Industrial Average index from April 1990 to January 2012.

Usage
 data(DJIA)

Format

A list with the following components.
dates: A character vector of dates associated with each observation in the returns series.
index: Weekly log returns from April 1990 to January 2012 of the DOW 30 index.
market: Weekly log returns from April 1990 to January 2012, for the companies in the DOW 30 apart from Kraft.

Source

http://research.stlouisfed.org/fred2/series/DJIA/downloaddata

References

Nicholas A. James, David S. Matteson (2014). "ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data.", "Journal of Statistical Software, 62(7), 1-25", URL "http://www.jstatsoft.org/v62/i07/"

Examples

```
data(DJIA, package="ecp")
```

```
    e.agglo ENERGY AGGLOMERATIVE
```


Description

An agglomerative hierarchical estimation algorithm for multiple change point analysis.

Usage

e.agglo(X, member=1:nrow(X), alpha=1, penalty=function(cps)\{0\})

Arguments

X
A Tx d matrix containing the length T time series with d-dimensional observations.
member Initial membership vector for the time series.
alpha Moment index used for determining the distance between and within clusters.
penalty Function used to penalize the obtained goodness-of-fit statistics. This function takes as its input a vector of change point locations (cps).

Details

Homogeneous clusters are created based on the initial clustering provided by the member argument. In each iteration, clusters are merged so as to maximize a goodness-of-fit statistic. The computational complexity of this method is $O\left(T^{\wedge} 2\right)$, where T is the number of observations.

Value

Returns a list with the following components.
merged \quad (T-1) $x 2$ matrix indicating which segments were merged at each step of the agglomerative procedure.
fit Vector showing the progression of the penalized goodness-of-fit statistic.
progression A Tx $(\mathrm{T}+1)$ matrix showing the progression of the set of change points.
cluster The estimated cluster membership vector.
estimates The location of the estimated change points.

Author(s)

Nicholas A. James

References

Matteson D.S., James N.A. (2013). A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data.

Nicholas A. James, David S. Matteson (2014). "ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data.", "Journal of Statistical Software, 62(7), 1-25", URL "http://www.jstatsoft.org/v62/i07/"

See Also

e.divisive

Rizzo M.L., Szekely G.L. (2005). Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method. Journal of Classification. pp. 151-183.

Rizzo M.L., Szekely G.L. (2010). Disco analysis: A nonparametric extension of analysis of variance. The Annals of Applied Statistics. pp. 1034-1055.

Examples

```
set.seed(100)
mem = rep(c(1,2,3,4),times=c(10,10,10,10))
x = as.matrix(c(rnorm(10,0,1),rnorm(20,2,1),rnorm(10,-1,1)))
y = e.agglo(X=x,member=mem,alpha=1,penalty=function(cp,Xts) 0)
y$estimates
## Not run:
# Multivariate spatio-temporal example
# You will need the following packages:
# mvtnorm, combinat, and MASS
library(mvtnorm); library(combinat); library(MASS)
set.seed(2013)
lambda = 1500 #overall arrival rate per unit time
muA = c(-7,-7) ; muB = c(0,0) ; muC = c(5.5,0)
covA = 25*diag(2)
covB = matrix(c(9,0,0,1),2)
covC = matrix(c(9,.9,.9,9),2)
time.interval = matrix(c(0, 1, 3,4.5,1,3,4.5,7),4,2)
#mixing coefficents
mixing.coef = rbind(c(1/3,1/3,1/3),c(.2,.5,.3), c(.35,.3,.35),
c(.2,.3,.5))
stppData = NULL
for(i in 1:4){
count = rpois(1, lambda* diff(time.interval[i,]))
Z = rmultz2(n = count, p = mixing.coef[i,])
S = rbind(rmvnorm(Z[1],muA,covA), rmvnorm(Z[2],muB,covB),
rmvnorm(Z[3],muC,covC))
X = cbind(rep(i,count), runif(n = count, time.interval[i,1],
time.interval[i,2]), S)
stppData = rbind(stppData, X[order(X[,2]),])
}
member = as.numeric(cut(stppData[,2], breaks = seq(0,7,by=1/12)))
output = e.agglo(X=stppData[,3:4],member=member,alpha=1,
penalty=function(cp,Xts) 0)
## End(Not run)
```

e.cp3o
CHANGE POINTS ESTIMATION BY PRUNED OBJECTIVE (VIA E-
STATISTIC)

Description

An algorithm for multiple change point analysis that uses dynamic programming and pruning. The E-statistic is used as the goodness-of-fit measure.

Usage

e.cp3o(Z, K=1, minsize=30, alpha=1, verbose=FALSE)

Arguments

Z

K The maximum number of change points.
minsize
alpha
verbose A flag indicating if status updates should be printed.

Details

Segmentations are found through the use of dynamic programming and pruning. For long time series, consider using e.cp3o_delta.

Value

The returned value is a list with the following components.
number The estimated number of change points.
estimates The location of the change points estimated by the procedure.
gofM A vector of goodness of fit values for differing number of change points. The first entry corresponds to when there is only a single change point, the second for when there are two, and so on.
cpLoc The list of locations of change points estimated by the procedure for different numbers of change points up to K.
time The total amount to time take to estimate the change point locations.

Author(s)

Nicholas A. James, Wenyu Zhang

References

W. Zhang, N. A. James and D. S. Matteson, "Pruning and Nonparametric Multiple Change Point Detection," 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, 2017, pp. 288-295.

See Also

Rizzo M.L., Szekely G.L (2005). Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method. Journal of Classification.

Rizzo M.L., Szekely G.L. (2010). Disco analysis: A nonparametric extension of analysis of variance. The Annals of Applied Statistics.

Examples

```
set.seed(400)
x1 = matrix(c(rnorm(50),rnorm(50,3)))
y1 = e.cp3o(Z=x1, K=2, minsize=30, alpha=1, verbose=FALSE)
#View estimated change point locations
y1$estimates
```

```
e.cp3o_delta
CHANGE POINTS ESTIMATION BY PRUNED OBJECTIVE (VIA E- STATISTIC)
```


Description

An algorithm for multiple change point analysis that uses dynamic programming and pruning. The E-statistic is used as the goodness-of-fit measure.

Usage

e.cp3o_delta(Z, K=1, delta=29, alpha=1, verbose=FALSE)

Arguments

Z
K The maximum number of change points.
delta The window size used to calculate the calculate the complete portion of our approximate test statistic. This also corresponds to one less than the minimum segment size.
alpha The moment index used for determining the distance between and within segments.
verbose A flag indicating if status updates should be printed.

Details

Segmentations are found through the use of dynamic programming and pruning. Between-segment distances are calculated only using points within a window of the segmentation point. The computational complexity of this method is $O\left(K T^{\wedge} 2\right)$, where K is the maximum number of change points, and T is the number of observations.

Value

The returned value is a list with the following components.

number	The estimated number of change points.
estimates	The location of the change points estimated by the procedure.

gofM A vector of goodness of fit values for differing number of change points. The first entry corresponds to when there is only a single change point, the second for when there are two, and so on.
cpLoc The list of locations of change points estimated by the procedure for different numbers of change points up to K.
time The total amount to time take to estimate the change point locations.

Author(s)

Nicholas A. James, Wenyu Zhang

References

W. Zhang, N. A. James and D. S. Matteson, "Pruning and Nonparametric Multiple Change Point Detection," 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, 2017, pp. 288-295.

See Also

Rizzo M.L., Szekely G.L (2005). Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method. Journal of Classification.

Rizzo M.L., Szekely G.L. (2010). Disco analysis: A nonparametric extension of analysis of variance. The Annals of Applied Statistics.

Examples

```
set.seed(400)
x1 = matrix(c(rnorm(100),rnorm(100,3),rnorm(100,0,2)))
y1 = e.cp3o_delta(Z=x1, K=7, delta=29, alpha=1, verbose=FALSE)
#View estimated change point locations
y1$estimates
```

e.divisive

ENERGY DIVISIVE

Description

A divisive hierarchical estimation algorithm for multiple change point analysis.

Usage

e.divisive(X, sig.lvl=.05, R=199, k=NULL, min.size=30, alpha=1)

Arguments

X	A Txd matrix containing the length T time series with d-dimensional observa- tions.
sig.lvl	The level at which to sequentially test if a proposed change point is statistically significant.
R	The maximum number of random permutations to use in each iteration of the permutation test. The permutation test p-value is calculated using the method outlined in Gandy (2009).
k	Number of change point locations to estimate, suppressing permutation based testing. If k=NULL then only the statistically significant estimated change points are returned.
min.size	Minimum number of observations between change points. alpha\quadThe moment index used for determining the distance between and within seg- ments.

Details

Segments are found through the use of a binary bisection method and a permutation test. The computational complexity of this method is $O\left(k T^{\wedge} 2\right)$, where k is the number of estimated change points, and T is the number of observations.

Value

The returned value is a list with the following components.
k.hat The number of clusters within the data created by the change points.
order.found The order in which the change points were estimated.
estimates Locations of the statistically significant change points.
considered.last
Location of the last change point, that was not found to be statistically significant at the given significance level.
permutations The number of permutations performed by each of the sequential permutation test.
cluster The estimated cluster membership vector.
p.values Approximate p-values estimated from each permutation test.

Author(s)

Nicholas A. James

References

Matteson D.S., James N.A. (2013). A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data.

Nicholas A. James, David S. Matteson (2014). "ecp: An R Package for Nonparametric Multiple Change Point Analysis of Multivariate Data.", "Journal of Statistical Software, 62(7), 1-25", URL "http://www.jstatsoft.org/v62/i07/"

See Also

e.agglo

Gandy, A. (2009) "Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk." Journal of the American Statistical Association.
Rizzo M.L., Szekely G.L (2005). Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method. Journal of Classification.
Rizzo M.L., Szekely G.L. (2010). Disco analysis: A nonparametric extension of analysis of variance. The Annals of Applied Statistics.

Examples

```
set.seed(100)
x1 = matrix(c(rnorm(100),rnorm(100,3),rnorm(100,0,2)))
y1 = e.divisive(X=x1,sig.lvl=0.05,R=199,k=NULL,min.size=30,alpha=1)
x2 = rbind(MASS::mvrnorm(100,c(0,0), diag(2)),
MASS::mvrnorm(100,c(2, 2), diag(2)))
y2 = e.divisive(X=x2,sig.lvl=0.05,R=499,k=NULL,min.size=30,alpha=1)
```

kcpa Kernel Change Point Analysis

Description

An algorithm for multiple change point analysis that uses the 'kernel trick' and dynamic programming.

Usage

$\operatorname{kcpa}(X, L, C)$

Arguments

X
$\mathrm{L} \quad$ The maximum number of change points.
C The constant used to penalize the inclusion of additional change points in the fitted model.

Details

Segments are found through the use of dynamic programming and the kernel trick.

Value

If the algorithm determines that the best fit is obtained through using k change points then the returned value is an array of length k, containing the change point locations.

Author(s)

Nicholas A. James

References

Harchaoui Z., Moulines E., Francis R.B (2009). Kernel Change-point Analysis. Advances in Neural Information Processing Systems.

ks.cp3o	CHANGE POINTS ESTIMATION BY PRUNED OBJECTIVE (VIA
	KOLMOGOROV-SMIRNOV STATISTIC)

Description

An algorithm for multiple change point analysis that uses dynamic programming and pruning. The Kolmogorov-Smirnov statistic is used as the goodness-of-fit measure.

Usage

ks.cp3o(Z, K=1, minsize=30, verbose=FALSE)

Arguments

Z A Txd matrix containing the length T time series with d-dimensional observations.
K The maximum number of change points.
minsize The minimum segment size.
verbose A flag indicating if status updates should be printed.

Details

Segmentations are found through the use of dynamic programming and pruning. For long time series, consider using ks.cp3o_delta.

Value

The returned value is a list with the following components.

number estimates gofM	The estimated number of change points. The location of the change points estimated by the procedure. first entry corresponds to when there is only a single change point, the second for when there are two, and so on.
cpLoc	The list of locations of change points estimated by the procedure for different numbers of change points up to K.
time	The total amount to time take to estimate the change point locations.

Author(s)

Wenyu Zhang

References

W. Zhang, N. A. James and D. S. Matteson, "Pruning and Nonparametric Multiple Change Point Detection," 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, 2017, pp. 288-295.

See Also

Kifer D., Ben-David S., Gehrke J. (2004). Detecting change in data streams. International Conference on Very Large Data Bases.

Examples

```
set.seed(400)
x = matrix(c(rnorm(100),rnorm(100,3),rnorm(100,0,2)))
y = ks.cp3o(Z=x, K=7, minsize=30, verbose=FALSE)
#View estimated change point locations
y$estimates
```

```
ks.cp3o_delta
```

CHANGE POINTS ESTIMATION BY PRUNED OBJECTIVE (VIA
KOLMOGOROV-SMIRNOV STATISTIC)

Description

An algorithm for multiple change point analysis that uses dynamic programming and pruning. The Kolmogorov-Smirnov statistic is used as the goodness-of-fit measure.

Usage

ks.cp3o_delta(Z, K=1, minsize=30, verbose=FALSE)

Arguments

Z

K
minsize
verbose

A $\mathrm{T} x \mathrm{~d}$ matrix containing the length T time series with d-dimensional observations.
The maximum number of change points.
The minimum segment size. This is also the window size used to calculate between-segment distances.
verbose A flag indicating if status updates should be printed.

Details

Segmentations are found through the use of dynamic programming and pruning. Between-segment distances are calculated only using points within a window of the segmentation point.

Value

The returned value is a list with the following components.
number The estimated number of change points.
estimates The location of the change points estimated by the procedure.
gofM A vector of goodness of fit values for differing number of change points. The first entry corresponds to when there is only a single change point, the second for when there are two, and so on.
cpLoc The list of locations of change points estimated by the procedure for different numbers of change points up to K.
time \quad The total amount to time take to estimate the change point locations.
Author(s)
Wenyu Zhang

References

W. Zhang, N. A. James and D. S. Matteson, "Pruning and Nonparametric Multiple Change Point Detection," 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, 2017, pp. 288-295.

See Also

Kifer D., Ben-David S., Gehrke J. (2004). Detecting change in data streams. International Conference on Very Large Data Bases.

Examples

```
set.seed(400)
x = matrix(c(rnorm(100),rnorm(100,3),rnorm(100,0,2)))
y = ks.cp3o_delta(Z=x, K=7, minsize=30, verbose=FALSE)
#View estimated change point locations
y$estimates
```


Index

*Topic agglomerative
e.agglo, 3
*Topic datasets
ACGH, 2
DJIA, 3
*Topic divisive
e.divisive, 8
*Topic dynamic
e.cp3o, 5
e.cp3o_delta, 7
ks.cp3o, 11
ks.cp3o_delta, 12
*Topic hierarchical
e.agglo, 3
e.divisive, 8
*Topic kernel
kcpa, 10
$*$ Topic pruning
e.cp3o, 5
e.cp3o_delta, 7
ks.cp3o, 11
ks.cp3o_delta, 12
ACGH, 2
DJIA, 3
e.agglo, 3, 10
e.cp3o, 5
e.cp3o_delta, 7
e.divisive, 4, 8
kcpa, 10
ks.cp3o, 11
ks.cp3o_delta, 12

